Contents

Pı	Preface			xi	
N	otatio	on		xii	
1	Introduction				
	1.1	Overvi	iew	1	
	1.2	Typica	al scales in high-energy physics	4	
	Furt	her read	ing	11	
	Exer	cises		12	
2	Lore	entz an	d Poincaré symmetries in QFT	13	
	2.1	Lie gro	oups	13	
	2.2	The Lo	orentz group	16	
	2.3	The Lo	orentz algebra	18	
	2.4	Tensor	representations	20	
		2.4.1	Decomposition of Lorentz tensors under $SO(3)$	22	
	2.5	Spinor	ial representations	24	
		2.5.1	Spinors in non-relativistic quantum mechanics	24	
		2.5.2	Spinors in the relativistic theory	26	
	2.6	Field r	representations	29	
		2.6.1	Scalar fields	29	
		2.6.2	Weyl fields	31	
		2.6.3	Dirac fields	32	
		2.6.4	Majorana fields	33	
		2.6.5	Vector fields	34	
	2.7	The Poincaré group		34	
		2.7.1	Representation on fields	35	
		2.7.2	Representation on one-particle states	36	
	Summary of chapter			40	
	Further reading			41	
	Exer	cises		41	
3	Classical field theory			43	
	3.1	.1 The action principle		43	
	3.2	Noethe	er's theorem	46	
		3.2.1	The energy–momentum tensor	49	
	3.3	Scalar fields		51	
		3.3.1	Real scalar fields; Klein–Gordon equation	51	
		3 3 2	Complex scalar field: $U(1)$ charge	53	

	3.4	Spinor fields	54	
		3.4.1 The Weyl equation; helicity	54	
		3.4.2 The Dirac equation	56	
		3.4.3 Chiral symmetry	62	
		3.4.4 Majorana mass	63	
	3.5	The electromagnetic field	65	
		3.5.1 Covariant form of the free Maxwell equations	65	
		3.5.2 Gauge invariance; radiation and Lorentz gauges	66	
		3.5.3 The energy–momentum tensor	67	
		3.5.4 Minimal and non-minimal coupling to matter	69	
	3.6			
	3.7			
		The fine structure of the hydrogen atom	74	
		Relativistic energy levels in a magnetic field	79	
	Sum	mary of chapter	80	
	Exer	rcises	81	
4	-	intization of free fields	83	
	4.1	Scalar fields	83	
		4.1.1 Real scalar fields. Fock space	83	
	4.0	4.1.2 Complex scalar field; antiparticles	86	
	4.2	Spin 1/2 fields	88	
		4.2.1 Dirac field	88	
		4.2.2 Massless Weyl field	90	
	4.0	4.2.3 C, P, T	91	
	4.3	9	96	
		4.3.1 Quantization in the radiation gauge	96	
	a	4.3.2 Covariant quantization	101	
		mary of chapter	105	
	Exer	rcises	106	
5	Pert	turbation theory and Feynman diagrams	109	
	5.1	The S-matrix	109	
	5.2	The LSZ reduction formula	111	
	5.3	Setting up the perturbative expansion	116	
	5.4	The Feynman propagator	120	
	5.5	Wick's theorem and Feynman diagrams	122	
		5.5.1 A few very explicit computations	123	
		5.5.2 Loops and divergences	128	
		5.5.3 Summary of Feynman rules for a scalar field	131	
		5.5.4 Feynman rules for fermions and gauge bosons	132	
	5.6	Renormalization	135	
	5.7	7 Vacuum energy and the cosmological constant problem		
	5.8	The modern point of view on renormalizability		
	5.9	The running of coupling constants	146	
	Summary of chapter			
	Further reading			
	Exercises			

6	Cro	ss-sections and decay rates	155	
	6.1	Relativistic and non-relativistic normalizations	155	
	6.2	Decay rates	156	
	6.3	Cross-sections	158	
	6.4	Two-body final states	160	
	6.5	Resonances and the Breit-Wigner distribution	163	
	6.6	Born approximation and non-relativistic scattering	167	
	6.7	Solved problems	171	
		Three-body kinematics and phase space	171	
		Inelastic scattering of non-relativistic electrons on atoms	173	
	Sum	mary of chapter	177	
	Furt	her reading	178	
	Exer	cises	178	
7	Qua	Quantum electrodynamics		
	7.1	The QED Lagrangian	180	
	7.2	One-loop divergences	183	
	7.3	Solved problems	186	
		$e^+e^- \to \gamma \to \mu^+\mu^-$	186	
		Electromagnetic form factors	188	
		mary of chapter	193	
		her reading	193	
	Exer	cises	193	
8	The	low-energy limit of the electroweak theory	195	
	8.1	A four-fermion model	195	
	8.2	Charged and neutral currents in the Standard Model	197	
	8.3	Solved problems: weak decays	202	
		$\mu^- \to e^- \bar{\nu}_e \nu_\mu$	202	
		$\pi^+ ightarrow l^+ u_l$	205	
		Isospin and flavor $SU(3)$	209	
		$K^0 o \pi^- l^+ u_l$	212	
	Summary of chapter		216	
		Further reading		
	Exercises		217	
9	Patl	n integral quantization	219	
	9.1	Path integral formulation of quantum mechanics	220	
	9.2	Path integral quantization of scalar fields	224	
	9.3	Perturbative evaluation of the path integral	225	
	9.4	Euclidean formulation	228	
	9.5	QFT and critical phenomena	231	
	9.6	QFT at finite temperature	238	
	9.7	Solved problems	239	
		Instantons and tunneling	239 241	
	Summary of chapter			
	Further reading			

${\bf x}$ Contents

10 Non-abelian gauge theories					
10.	Non-abelian gauge transformations	243			
10.5	2 Yang-Mills theory	246			
10.	3 QCD	248			
10.4	Fields in the adjoint representation	250			
Sur	nmary of chapter	252			
Fur	ther reading	252			
11 Sp	Spontaneous symmetry breaking				
11.	Degenerate vacua in QM and QFT	253			
11.5	2 SSB of global symmetries and Goldstone bosons	256			
11.5	B Abelian gauge theories: SSB and superconductivity	259			
11.4	Non-abelian gauge theories: the masses of W^{\pm} and Z^0	262			
Sur	nmary of chapter	264			
Fur	ther reading	265			
12 Sol	12 Solutions to exercises				
12.	Chapter 1	266			
12.5	2 Chapter 2	267			
12.3	3 Chapter 3	270			
12.4	4 Chapter 4	272			
12.8	5 Chapter 5	275			
12.0	6 Chapter 6	276			
12.	7 Chapter 7	279			
12.8	3 Chapter 8	281			
Bibliography					
Index	Index				