Contents

Notation

\mathbf{P}_{i}	art I	Gravi	tational-wave theory	1
1	The	The geometric approach to GWs		
	1.1	Expansio	on around flat space	4
	1.2	The tran	nsverse-traceless gauge	$\overline{7}$
	1.3 Interaction of GWs with test masses			13
		1.3.1 (Geodesic equation and geodesic deviation	13
		1.3.2 I	Local inertial frames and freely falling frames	15
		1.3.3	ΓT frame and proper detector frame	17
	1.4	The ener	rgy of GWs	26
		1.4.1	Separation of GWs from the background	27
		1.4.2 I	How GWs curve the background	29
		1.4.3	Γhe energy–momentum tensor of GWs	35
	1.5	Propaga	tion in curved space-time	40
		1.5.1 (Geometric optics in curved space	42
		1.5.2 A	Absorption and scattering of GWs	46
	1.6	Solved p	roblems	48
		1.1. Lin	earization of the Riemann tensor in curved space	48
		1.2. Gau	uge transformation of $h_{\mu\nu}$ and $R^{(1)}_{\mu\nu\rho\sigma}$	49
	Furtl	er readin	g	51
2	The	field-the	eoretical approach to GWs	52
	2.1	Linearize	ed gravity as a classical field theory	53
		2.1.1 I	Noether's theorem	53
		2.1.2	The energy–momentum tensor of GWs	58
		2.1.3	The angular momentum of GWs	61
	2.2	Gravitor	lS	66
		2.2.1 V	Why a spin-2 field?	66
		2.2.2	The Pauli–Fierz action	70
		2.2.3 I	From gravitons to gravity	74
		2.2.4 I	Effective field theories and the Planck scale	79
	2.3	Massive	gravitons	81
		2.3.1 I	Phenomenological bounds	82
		2.3.2 I	Field theory of massive gravitons	84
	2.4	Solved p	roblems	95
		2.1. The	e helicity of gravitons	95
		001	1 1 1 1 1 1 1	00

xvi

3	\mathbf{Gen}	eration	of GWs in linearized theory	101
	3.1	Weak-fi	eld sources with arbitrary velocity	102
	3.2	Low-vel	ocity expansion	105
	3.3	Mass qu	adrupole radiation	109
		3.3.1	Amplitude and angular distribution	109
		3.3.2	Radiated energy	113
		3.3.3	Radiated angular momentum	114
		3.3.4	Radiation reaction on non-relativistic sources	116
		3.3.5	Radiation from a closed system of point masses	121
	3.4	Mass oc	ctupole and current quadrupole	125
	3.5	Systema	atic multipole expansion	131
		3.5.1	Symmetric-trace-free (STF) form	134
		3.5.2	Spherical tensor form	139
	3.6	Solved 1	problems	156
		3.1. Qu	adrupole radiation from an oscillating mass	156
		3.2. Qu	adrupole radiation from a mass in circular orbit	158
		3.3. Ma	ass octupole and current quadrupole radiation from	
			a mass in circular orbit	161
		3.4. De	composition of $\dot{S}^{kl,m}$ into irreducible representa-	
			tions of $SO(3)$	163
		3.5. Co	mputation of $\int d\Omega (\mathbf{T}_{lm}^{E2,B2})_{ij}^* n_{i_1} \cdots n_{i_{\alpha}}$	165
	Furth	ner readin	ng	166
4	App	lications	5	167
4	App 4.1	lication s Inspiral	s of compact binaries	167 167
4	App 4.1	lications Inspiral 4.1.1	s of compact binaries Circular orbits. The chirp amplitude	167 167 169
4	App 4.1	lications Inspiral 4.1.1 4.1.2	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency	167 167 169
4	App 4.1	lications Inspiral 4.1.1 4.1.2	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted	167167169176
4	App 4.1	lications Inspiral 4.1.1 4.1.2 4.1.3	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted Elliptic orbits. (II) Evolution of the orbit under	167 167 169 176
4	App 4.1	lications Inspiral 4.1.1 4.1.2 4.1.3	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted Elliptic orbits. (II) Evolution of the orbit under back-reaction	 167 167 169 176 184
4	App 4.1	lications Inspiral 4.1.1 4.1.2 4.1.3 4.1.4	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted Elliptic orbits. (II) Evolution of the orbit under back-reaction Binaries at cosmological distances	 167 167 169 176 184 190
4	App 4.1 4.2	lications Inspiral 4.1.1 4.1.2 4.1.3 4.1.4 Radiatio	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted Elliptic orbits. (II) Evolution of the orbit under back-reaction Binaries at cosmological distances on from rotating rigid bodies	 167 167 169 176 184 190 200
4	App 4.1	lications Inspiral 4.1.1 4.1.2 4.1.3 4.1.4 Radiatio 4.2.1	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted Elliptic orbits. (II) Evolution of the orbit under back-reaction Binaries at cosmological distances on from rotating rigid bodies GWs from rotation around a principal axis	 167 167 169 176 184 190 200 201
4	App 4.1 4.2	lications Inspiral 4.1.1 4.1.2 4.1.3 4.1.4 Radiation 4.2.1 4.2.2	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted Elliptic orbits. (II) Evolution of the orbit under back-reaction Binaries at cosmological distances on from rotating rigid bodies GWs from rotation around a principal axis GWs from freely precessing rigid bodies	 167 167 169 176 184 190 200 201 204
4	App 4.1 4.2 4.3	lications Inspiral 4.1.1 4.1.2 4.1.3 4.1.4 Radiatio 4.2.1 4.2.2 Radial i	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted Elliptic orbits. (II) Evolution of the orbit under back-reaction Binaries at cosmological distances on from rotating rigid bodies GWs from rotation around a principal axis GWs from freely precessing rigid bodies infall into a black hole	 167 169 176 184 190 200 201 204 215
4	App 4.1 4.2 4.3	lications Inspiral 4.1.1 4.1.2 4.1.3 4.1.4 Radiatio 4.2.1 4.2.2 Radial i 4.3.1	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted Elliptic orbits. (II) Evolution of the orbit under back-reaction Binaries at cosmological distances on from rotating rigid bodies GWs from rotation around a principal axis GWs from freely precessing rigid bodies infall into a black hole Radiation from an infalling point-like mass	 167 169 176 184 190 200 201 204 215 215
4	App 4.1 4.2 4.3	lications Inspiral 4.1.1 4.1.2 4.1.3 4.1.4 Radiation 4.2.1 4.2.2 Radial io 4.3.1 4.3.2	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted Elliptic orbits. (II) Evolution of the orbit under back-reaction Binaries at cosmological distances on from rotating rigid bodies GWs from rotation around a principal axis GWs from freely precessing rigid bodies infall into a black hole Radiation from an infalling point-like mass Tidal disruption of a real star falling into a black	 167 167 169 176 184 190 200 201 204 215 215
4	App 4.1 4.2 4.3	lications Inspiral 4.1.1 4.1.2 4.1.3 4.1.4 Radiatio 4.2.1 4.2.2 Radial i 4.3.1 4.3.2	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted Elliptic orbits. (II) Evolution of the orbit under back-reaction Binaries at cosmological distances on from rotating rigid bodies GWs from rotation around a principal axis GWs from freely precessing rigid bodies infall into a black hole Radiation from an infalling point-like mass Tidal disruption of a real star falling into a black hole. Coherent and incoherent radiation	 167 167 169 176 184 190 200 201 204 215 215 219
4	App 4.1 4.2 4.3 4.4	lications Inspiral 4.1.1 4.1.2 4.1.3 4.1.4 Radiatio 4.2.1 4.2.2 Radiatio 4.3.1 4.3.2 Radiatio	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted Elliptic orbits. (II) Evolution of the orbit under back-reaction Binaries at cosmological distances on from rotating rigid bodies GWs from rotation around a principal axis GWs from freely precessing rigid bodies infall into a black hole Radiation from an infalling point-like mass Tidal disruption of a real star falling into a black hole. Coherent and incoherent radiation on from accelerated masses	 167 167 169 176 184 190 200 201 204 215 215 219 224
4	App 4.1 4.2 4.3 4.4	lications Inspiral 4.1.1 4.1.2 4.1.3 4.1.4 Radiatio 4.2.1 4.2.2 Radiatio 4.3.1 4.3.2 Radiatio 4.4.1	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted Elliptic orbits. (II) Evolution of the orbit under back-reaction Binaries at cosmological distances on from rotating rigid bodies GWs from rotation around a principal axis GWs from freely precessing rigid bodies infall into a black hole Radiation from an infalling point-like mass Tidal disruption of a real star falling into a black hole. Coherent and incoherent radiation on from accelerated masses GWs produced in elastic collisions	 167 167 169 176 184 190 200 201 204 215 215 219 224 224 224
4	App 4.1 4.2 4.3 4.4	lications Inspiral 4.1.1 4.1.2 4.1.3 4.1.4 Radiation 4.2.1 4.2.2 Radiation 4.3.1 4.3.2 Radiation 4.4.1 4.4.2	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted Elliptic orbits. (II) Evolution of the orbit under back-reaction Binaries at cosmological distances on from rotating rigid bodies GWs from rotation around a principal axis GWs from freely precessing rigid bodies infall into a black hole Radiation from an infalling point-like mass Tidal disruption of a real star falling into a black hole. Coherent and incoherent radiation on from accelerated masses GWs produced in elastic collisions Lack of beaming of GWs from accelerated	 167 167 169 176 184 190 200 201 204 215 215 219 224 224 224
4	App 4.1 4.2 4.3 4.4	lications Inspiral 4.1.1 4.1.2 4.1.3 4.1.4 Radiation 4.2.1 4.2.2 Radial in 4.3.1 4.3.2 Radiation 4.4.1 4.4.2	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted Elliptic orbits. (II) Evolution of the orbit under back-reaction Binaries at cosmological distances on from rotating rigid bodies GWs from rotation around a principal axis GWs from freely precessing rigid bodies infall into a black hole Radiation from an infalling point-like mass Tidal disruption of a real star falling into a black hole. Coherent and incoherent radiation on from accelerated masses GWs produced in elastic collisions Lack of beaming of GWs from accelerated masses	 167 167 169 176 184 190 200 201 204 215 215 219 224 224 227
4	App 4.1 4.2 4.3 4.4 4.5	lications Inspiral 4.1.1 4.1.2 4.1.3 4.1.4 Radiation 4.2.1 4.2.2 Radiation 4.3.1 4.3.2 Radiation 4.4.1 4.4.2 Solved p	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted Elliptic orbits. (II) Evolution of the orbit under back-reaction Binaries at cosmological distances on from rotating rigid bodies GWs from rotation around a principal axis GWs from freely precessing rigid bodies infall into a black hole Radiation from an infalling point-like mass Tidal disruption of a real star falling into a black hole. Coherent and incoherent radiation on from accelerated masses GWs produced in elastic collisions Lack of beaming of GWs from accelerated masses problems	 167 167 169 176 184 190 200 201 204 215 215 219 224 224 227 230
4	App 4.1 4.2 4.3 4.4 4.5	lications Inspiral 4.1.1 4.1.2 4.1.3 4.1.4 Radiation 4.2.1 4.2.2 Radiation 4.3.1 4.3.2 Radiation 4.4.1 4.4.2 Solved p 4.1. For	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted Elliptic orbits. (II) Evolution of the orbit under back-reaction Binaries at cosmological distances on from rotating rigid bodies GWs from rotation around a principal axis GWs from freely precessing rigid bodies infall into a black hole Radiation from an infalling point-like mass Tidal disruption of a real star falling into a black hole. Coherent and incoherent radiation on from accelerated masses GWs produced in elastic collisions Lack of beaming of GWs from accelerated masses problems <i>urier transform of the chirp signal</i>	 167 167 169 176 184 190 200 201 204 215 215 219 224 224 227 230 230
4	 App 4.1 4.2 4.3 4.4 4.5 	lications Inspiral 4.1.1 4.1.2 4.1.3 4.1.4 Radiatio 4.2.1 4.2.2 Radiatio 4.3.1 4.3.2 Radiatio 4.3.1 4.3.2 Radiatio 4.4.1 4.4.2 Solved J 4.1. For 4.2. For	s of compact binaries Circular orbits. The chirp amplitude Elliptic orbits. (I) Total power and frequency spectrum of the radiation emitted Elliptic orbits. (II) Evolution of the orbit under back-reaction Binaries at cosmological distances on from rotating rigid bodies GWs from rotation around a principal axis GWs from freely precessing rigid bodies infall into a black hole Radiation from an infalling point-like mass Tidal disruption of a real star falling into a black hole. Coherent and incoherent radiation on from accelerated masses GWs produced in elastic collisions Lack of beaming of GWs from accelerated masses problems <i>urier transform of the chirp signal</i> <i>urier decomposition of elliptic Keplerian motion</i>	 167 167 169 176 184 190 200 201 204 215 215 219 224 224 227 230 230 233

5	GW	genera	ation by post-Newtonian sources	236
	5.1	The p	ost-Newtonian expansion	237
		5.1.1	Slowly moving, weakly self-gravitating sources	237
		5.1.2	PN expansion of Einstein equations	239
		5.1.3	Newtonian limit	240
		5.1.4	The 1PN order	242
		5.1.5	Motion of test particles in the PN metric	245
		5.1.6	Difficulties of the PN expansion	247
		5.1.7	The effect of back-reaction	249
	5.2	The re	elaxed Einstein equations	250
	5.3	The B	lanchet–Damour approach	253
		5.3.1	Post-Minkowskian expansion outside the source	253
		5.3.2	PN expansion in the near region	259
		5.3.3	Matching of the solutions	263
		5.3.4	Radiative fields at infinity	266
		5.3.5	Radiation reaction	275
	5.4	The D	JIRE approach	279
	5.5	Strong	g-field sources and the effacement principle	282
	5.6	Radia	tion from inspiraling compact binaries	289
		5.6.1	The need for a very high-order computation	290
		5.6.2	The 3.5PN equations of motion	292
		5.6.3	Energy flux and orbital phase to 3.5PN order	294
		5.6.4	The waveform	296
	Furtl	her read	ling	299
6	\mathbf{Exp}	erimen	tal observation of GW emission in	
	com	pact bi		302
	6.1	The H	ulse-Taylor binary pulsar	302
	6.2	The p	ulsar timing formula	305
		6.2.1	Pulsars as stable clocks	305
		6.2.2	Roemer, Shapiro and Einstein time delays	306
		6.2.3	Relativistic corrections for binary pulsars	314
	6.3	The d	ouble pulsar, and more compact binaries	326
	Furti	ner read	ling	331
Р	art I	I: Gra	avitational-wave experiments	333
-		1	•	0.0 5
7		a analy	sis recimiques	335 225
	(.1 7.0	The ne	oise spectral density	330 220
	(.2	Patter	n functions and angular sensitivity	339
	1.3	Match	lea nitering	343 240
	1.4	Proba	Dility and statistics	340 240
		1.4.1	requentist and Bayesian approaches	340 250
		(.4.2	Parameters estimation	35U 250
		7.4.3	Matched filtering statistics	356

9.01

\mathbf{x} Contents

		7.5.2	Time–frequency analysis	365
		7.5.3	Coincidences	369
	7.6	Period	lic sources	371
		7.6.1	Amplitude modulation	373
		7.6.2	Doppler shift and phase modulation	375
		7.6.3	Efficient search algorithms	381
	7.7	Coales	scence of compact binaries	387
		7.7.1	Elimination of extrinsic variables	388
		7.7.2	The sight distance to coalescing binaries	390
	7.8	Stocha	astic backgrounds	392
		7.8.1	Characterization of stochastic backgrounds	393
		7.8.2	SNR for single detectors	397
		7.8.3	Two-detector correlation	400
	Furth	her read	ling	413
8	Reso	onant-i	mass detectors	415
	8.1	The ir	nteraction of GWs with an elastic body	415
		8.1.1	The response to bursts	415
		8.1.2	The response to periodic signals	420
		8.1.3	The absorption cross-section	421
	8.2	The read-out system: how to measure extremely small		
		displa	cements	427
		8.2.1	The double oscillator	428
	0.0	8.2.2	Resonant transducers	432
	8.3	Noise	sources	436
		8.3.1	Thermal noise	437
		8.3.2	Read-out noise and effective temperature	443
		8.3.3	Back-action noise and the quantum limit	440
		8.3.4 0.2 E	Quantum non-demonstron measurements	449
	0 1	0.3.3 Decem	experimental sensitivities	455
	0.4	Reson	The interaction of a sphere with CWs	459
		0.4.1 8 4 9	Suboros as multi mode detectors	459
	Furth	0.4.2	ling	400
	r ur u	iei ieac	ing	403
9	Inte	rferom	leters	470
	9.1	A sim	ple Michelson interferometer	470
		9.1.1	The interaction with GWs in the TT gauge	471
		9.1.2	The interaction in the proper detector frame	476
	9.2	Interfe	erometers with Fabry–Perot cavities	480
		9.2.1	Electromagnetic fields in a FP cavity	480
		9.2.2	Interaction of a FP cavity with GWs	489
	0.0	9.2.3	Angular sensitivity and pattern functions	494
	9.3	Towar	a real GW interferometer	497
		9.3.1	Diffraction and Gaussian beams	497
		9.3.2	Detection at the dark iringe	504

9.4	Noise	sources	515
	9.4.1	Shot noise	516
	9.4.2	Radiation pressure	519
	9.4.3	The standard quantum limit	522
	9.4.4	Displacement noise	524
9.5	Existin	ng and planned detectors	528
	9.5.1	Initial interferometers	528
	9.5.2	Advanced interferometers	532
Furt	her read	ling	535
Bibliography			537
Index			549