Cosmology II

Problem sheet 3 Thermal History II

Exercise 1:

Suppose that there were no baryon asymmetry so that the number density of baryons exactly equaled that of anti-baryons.

(a) Determine the final relic density of baryons+anti-baryons.

(b) At what temperature is this asymptotic value reached?

Exercise 2:

Using the fact that our universe appears to be electrically neutral, obtain that the chemical potential μ for electrons and positrons has to be practically zero. What about the neutrinos?

Hints:

- 1. $n_{e^-} = n_{e^+} + n_p$,
- 2. electrons and positrons are kept in thermal equilibrium through the process $e^+ e^- \leftrightarrow 2\gamma$,
- 3. $n_p \sim 10^{-10} n_{\gamma}$.

Exercise 3:

The epoch at which the energy density in matter ρ_m equals that in radiation ρ_r is called *matter-radiation equality*.

(a) Find the value of the scale factor a_{eq} (in dependence on Ω_m) at which they were equal.

(b) Express this epoch in terms of the redshift z.

Hint: Assume the neutrinos to be massless $(m_{\nu} = 0)$, therefore $\rho_r = \rho_{\gamma} + \rho_{\nu}$.