Cosmology II

Problem sheet 2 Thermal history I

Exercise 1:

For the Robertson-Walker metric compute the scale factor a as a function of conformal time η for

(a) a radiation dominated, (b) a matter dominated, and (c) a Λ dominated universe.

Exercise 2:

(a) Compute the pressure p of a gas of particles.

hint: Consider the change of momentum per time in a gas of particles.

(b) Using the relation derived in (a) show that

$$\frac{\partial p}{\partial T} = \frac{\rho + p}{T}.\tag{1}$$

Exercise 3:

Derive the number of relativistic degrees of freedom g_* (defined in the lecture) above the electroweak scale T > 300 GeV by counting all standard model particles.

Exercise 4:

- (a) How many neutrinos are contained in a volume of 1 cm³ today? (How does this compare to photons?)
- (b) Assume that one neutrino is heavy, $1 \text{keV} > m_{\nu} \geq 10^{-2} \text{ eV}$. Show that

$$\Omega_{\nu} = \frac{m_{\nu}}{94 \, h^2 \, \text{eV}}.\tag{2}$$

hint: $\zeta(3) = 1.20$