
Nature Physics

nature physics

https://doi.org/10.1038/s41567-025-02825-9Article

Enzymes as viscoelastic catalytic machines
 

Eyal Weinreb    1,15, John M. McBride    2,15, Marta Siek    3, Jacques Rougemont4, 
Renaud Renault5, Yoav Peleg    6, Tamar Unger6, Shira Albeck6, 
Yael Fridmann-Sirkis7, Sofya Lushchekina    8, Joel L. Sussman    9, 
Bartosz A. Grzybowski    3,10,11, Giovanni Zocchi12, Jean-Pierre Eckmann    4,13, 
Elisha Moses    1   & Tsvi Tlusty    2,14 

The catalytic cycle involves internal motions and conformational changes 
that allow enzymes to specifically bind to substrates, reach the transition 
state and release the product. Such mechanical interactions and motions 
are often long ranged so that mutations of residues far from the active 
site can modulate the enzymatic cycle. In particular, regions that undergo 
high strain during the cycle give mechanical flexibility to the protein, 
which is crucial for protein motion. Here we directly probe the connection 
between strain, flexibility and functionality, and we quantify how distant 
high-strain residues modulate the catalytic function via long-ranged 
force transduction. We measure the rheological and catalytic properties 
of wild-type guanylate kinase and of its mutants with a single amino acid 
replacement in low-/high-strain regions and in binding/non-binding 
regions. The rheological response of the protein to an applied oscillating 
force fits a continuum model of a viscoelastic material whose mechanical 
properties are significantly affected by mutations in high-strain regions, as 
opposed to mutations in control regions. Furthermore, catalytic activity 
assays show that mutations in high-strain or binding regions tend to reduce 
activity, whereas mutations in low-strain, non-binding regions are neutral. 
These findings suggest that enzymes act as viscoelastic catalytic machines 
with sequence-encoded mechanical specifications.

Protein function is the end-product of collective interactions that 
emerge from the particular sequence of amino acids encoded in 
the gene. In enzymes, evolutionary processes have fine-tuned the 
active-site geometry and composition1–10 such that the preorganized 
catalytic groups can stabilize the transition state11–16 and, consequently, 
accelerate reactions by many orders of magnitude17,18. However, beyond 
the local scale of the active site, the function of enzymes also relies on 
the evolution of multiscale motions that occur over the entire pro-
tein during the catalytic cycle19–26, even in regions distant from the 
active site27–33. These internal motions and rearrangements of amino 
acids facilitate substrate binding and alignment (apo to holo trans-
formation) and product release34–37, and underlie the basic biochemi-
cal mechanisms such as induced fit38–40, conformational selection41, 

conformational proofreading42–44 and allostery45–49. The flexibility 
of enzymes also affects the chemical steps50–53, and the influence of 
mutations may be long ranged29–31, although the motions involved 
are typically smaller.

Since dynamics and conformational changes are central to the 
function of many proteins, it is natural to investigate their mechanical 
properties within the physical frameworks developed to study viscoe-
lastic matter54 and amorphous solids55. Furthermore, these functional 
motions of the protein are often long-ranged ‘soft modes’56–61, which 
spread over many atoms and residues and depend on the global struc-
ture and surface patterns of the protein62–65. We, therefore, propose and 
demonstrate in this paper that the large-scale dynamics of the protein 
can be adequately treated within the continuum theory usually applied 
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and how mutating high-strain amino acids affects the enzyme’s flex-
ibility and dynamics compared with mutating low-strain amino acids, 
and whether it may also impact activity.

To test our hypothesis, we prepared 34 mutants with a single amino 
acid substitution (Methods). The amino acids chosen as substitutes 
were selected to have relatively similar physicochemical characteris-
tics, as estimated by their BLOSUM62 scores. Most substitutions have 
non-negative scores, implying that, on average, they are relatively 
common replacements among similar proteins.

To select the positions of amino acid substitutions, we use two 
complementary computational methods, allowing us to prelocate 
mechanically relevant residues. We first calculate the effective strain 
from the conformational change due to binding by comparing the 
apo (that is, unbound) and holo (that is, bound) forms of wild-type 
(WT) guanylate kinase in the Protein Data Bank (PDB)98, from which we 
identify high-strain regions in which deformation is substantial68. This 
is the binding strain, which, unless otherwise stated, is the one that we 
use throughout this paper to estimate the effective strain.

Independently, we utilize AF to quantify the local structural change 
resulting from a point mutation. We compare the apo structures pre-
dicted by AF for the unmutated and mutated enzymes, and measure the 
effective strain, that is, the mean relative change in atomic distances 
between neighbours, caused by the single amino acid replacement62,64. 
This ‘mutation strain’ is an independent, sensitive probe for local amino 
acid rearrangement in the equilibrium structure induced by mutations. 
Note that strain measures deformation that can result either from 
physical or evolutionary processes: the physical strain is the response 
to physical stresses, whereas the mutation strain reflects the modula-
tion of energy landscapes that results in a redistribution of protein 
conformations in the equilibrium ensemble58,99.

Next, we divide mutants of guanylate kinase into two groups 
according to their strain: those that are expected to be approximately 
‘as flexible as before’ (the control group of residues with strain below the 
given threshold; Methods) versus those expected to exhibit ‘changed 
flexibility’ (the high-strain group, with strain above the threshold). As 
a positive control for direct effects on the active site, we add a third 
group of residues involved in binding (the binding group). We rely on 
experiments to verify that both enzymatic activity and a direct measure 
of viscoelastic motion bear out this division into groups.

Specifically, we hypothesize the following: (1) mutants from the 
high-strain group will tend to hinder both viscoelastic motion and 
enzymatic activity; (2) the mutations in low-strain, non-binding loca-
tions will have minimal effects on viscoelasticity and activity. We have 
no a priori expectations about the effect of mutations in the binding 
sites on viscoelasticity.

We then apply the nano-rheology method (Fig. 1b) to measure the 
viscoelastic response to externally applied periodic mechanical pertur-
bation in a subset of nine mutants across the three groups. This method 
measures the internal motion of the protein when stretched and com-
pressed at biologically relevant driving frequencies of 5–120 Hz, which 
correspond to the large-scale slow motions of the protein81. The method 
relies on a response signal that is locked to the perturbation, and is 
averaged over 106–109 molecules, strongly suppressing thermal and 
other noise sources. This approach enables sub-ångström resolution 
for the resultant change in the protein extent along the stretching/
compression axis.

By observing the phase shift between the perturbation and 
response (that is, the phase between the applied electric field and 
the periodic motion of the charged gold nanoparticle attached to 
the protein molecule, as a function of the frequency), we model and 
confirm theoretical insights for the viscoelastic effect of mutations 
in the three examined regions of the enzyme. The guanylate kinase 
protein is shown to respond as a viscoelastic material, with particular 
contributions stemming from the relaxation of prestressed55,100 amino 
acid bonds when force is applied.

to model macroscopic objects. This requires special caution since, at 
the nanometric scale of proteins, thermal fluctuations are much more 
significant and should be appropriately averaged.

In examining how evolution shapes the mechanical properties 
of enzymes, we aim to probe and estimate the subtle displacements 
and rearrangement of amino acids that occur during conformational 
changes33,66–68. In particular, protein function relies on the existence 
of flexible regions that enable conformational changes and internal 
shearing, twisting and pivoting motions, such as in hinges45,47,48,69–73. 
A natural measure for such changes is the strain62,64,66, which probes 
the mechanical stresses and deformations propagating through the 
protein19,49,57,58,68,74–76. In continuum mechanics, one calculates the strain 
by measuring the displacement of the material with respect to a refer-
ence state and then taking a spatial derivative of the displacement, 
which yields the strain tensor77. When the displacement is spatially uni-
form, the strain vanishes, whereas high strain indicates variation in the 
displacement, that is, local deformation. Strain can also be computed 
at the atomic level, in ordered crystals or amorphous matter such as 
proteins57,58,62,64,66,68,74,78. The discrete, atomistic analogue of the spatial 
derivative is the relative change in distances between neighbouring 
atoms and amino acids, from which we derive the effective strain62,64 
(Methods).

The internal response to externally induced strain in proteins has 
recently been shown to be viscoelastic, that is, to include motion that 
is both spring-like and friction dominated79–82. The elastic response 
of the protein originates from bonds being stretched, compressed or 
twisted under the influence of forces. The resulting spring-like motion 
is atomistically understood by analysing the vibration spectrum of the 
protein, experimentally by infrared/Raman measurements, computa-
tionally by molecular dynamics (MD) simulations1,21,83,84 and by normal 
mode analysis25,58,68,74,85,86. During the motion of the protein, bonds can 
break and reform, and new bonds can be created. Such plastic defor-
mation induces ‘internal friction’ and effective viscous forces. In this 
paper, we link the atomistic measures of elasticity and viscosity to their 
coarse-grained continuum description and show that at the large scale, 
the effect of mutation can be accounted for as a variation in the effective 
continuum parameters, especially the spring constant34 and viscosity79.

As is often the case with emergent properties87, it is difficult to eval-
uate or measure the contribution of a single amino acid to the collective 
motion of a protein. Computationally, one may estimate the strain 
involved in functional motion by comparing how much each amino 
acid moves relative to its neighbouring residues between unbound and 
bound static conformations57,62,66. It has been theoretically proposed 
that mutations in high-strain regions would have a significant effect on 
function57,58,68. Yet, the degree to which a single amino acid replacement 
in a critical area can actually affect activity—not only by changing the 
chemical binding to substrate molecules and their transition states 
but also by modifying the large-scale mechanical properties of the 
protein88—remains an open and important question89–92.

Our hypothesis is that regions that experience high strain during 
the catalytic cycle give the protein mechanical flexibility crucial for 
protein motion during functionality57,58,68. Strain can, therefore, serve 
as a predictive tool for functionally relevant viscoelastic protein prop-
erties. A key obstacle in demonstrating this stems from the difficulty 
of measuring and analysing minute forces and displacements in the 
sub-nanometre regime. Therefore, to gain an insight into the internal 
viscoelastic dynamics of enzymes and their functional role, here we 
utilize two technological advances—the nano-rheological viscoelastic-
ity measurement81 and DeepMind’s AlphaFold2 (AF) software93.

Using these tools, we focus on the guanylate kinase enzyme94,95 
(from Mycobacterium tuberculosis), which is part of a large family 
of enzymes that undergo conformational changes as part of their 
function19,38,39,45,50,71,83,96,97. We test several theoretical ideas by measuring 
and linking the mechanical, structural and functional effects of single 
amino acid replacement mutants (Fig. 1a). In particular, we ask whether 
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Fig. 1 | Schematic and details of experiment. a, Schematic: probing the 
mechanics of guanylate kinase, through dynamics, activity and structure. Left: 
apo form of WT has an open structure98 and deforms on binding into the holo 
form94. Using this deformation, we locate high-strain regions, hypothesized to 
be important for mechanics. We measure the mechanical response to the applied 
oscillating force for a cysteine-substituted variant WT* and nine mutants in the 
‘high-strain’, ‘binding’ and ‘control’ groups. Middle: enzymatic activity assessed 
for WT* and 34 mutants. Right: protein structure is predicted using AF for WT* 
and 34 mutants to estimate the effect of mutations on structure. b–e, Nano-
rheology. b, Enzymes attached to a gold-coated glass slide, and on the other 
side, to a gold nanosphere bead covered with negatively charged single-strand 
DNA. A Dove prism creates an evanescent light field (red), emanating from the 
gold surface, falling off quickly with depth as the beads are illuminated, causing 
changes in the beads’ vertical position to induce changes in the intensity of 
light that the beads scatter. Alternating electric potential applied to the top 
and bottom of the sample induces electric forces, pulling the beads up and 

down (opposite to the voltage because of the negative charge). This stretches 
and compresses the proteins at the frequency of alternation. The resulting 
scattered light fluctuations were collected via a microscope, and analysed using 
the applied potential using a lock-in method. PC, personal computer. c, Atomic 
force microscopy and scanning electron microscopy images of the slide surface 
with enzyme-attached nanospheres for different samples. Scale bar, 200 nm. 
d, Example analysis images. Top: mean intensity (I) over the entire acquisition. 
Middle: response oscillations that are amplitude normalized by the mean 
intensity (ΔI/I). Bottom: phase difference (ϕ) between the response oscillations 
and applied potential. The middle and bottom images in this example are 
spatially averaged over 8 × 8 pixel blocks before the lock-in analysis. Potential 
applied at ω = 20 Hz in this case. Scale bar, 200 μm. e, Example ΔI/I for a single 
sample at all the applied frequencies. For each frequency, time is normalized 
by the stimulation rate, represented by the bottom trace showing the applied 
potential. The dashed line is a guide for the eye, representing the shift in phase 
over frequency.
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Finally, the enzymatic activity of all 34 mutants is measured using 
a fluorometric assay. Expectedly, we find that the largest disruption of 
activity is caused by mutations in the binding region. A more remark-
able result is that mutations in the high-strain regions have a more 
pronounced effect on activity than mutations in the control regions of 
the protein. Furthermore, we find a correlation of both mutation strain 
and binding strain with a reduction in enzymatic activity.

Several previous studies have substantiated that point mutations 
to residues far from the binding site may affect catalysis29–31,50–53. The 
present results provide the first direct experimental confirmation that 
such distal point mutations can also simultaneously and significantly 
alter the viscoelastic properties of an enzyme, and that the location 
of these pivotal residues can be predicted by theory. Thus, enzymes 
appear as deformable catalytic machines whose multiscale motions 
are governed by mechanical specifications encoded in the gene19,68,87.

Results
Evaluating the strain caused by binding in guanylate kinase
Binding of WT guanylate kinase to adenosine diphosphate (ADP) and 
guanosine monophosphate (GMP) is associated with a large-scale 
conformational change (Fig. 1a and Supplementary Video 1)98, 
where an intertwined pair of α-helices (the lid region) collectively 
moves to cover the bound substrates (Extended Data Fig. 1a)94. 
This kind of global motion—essential to the function of many 
enzymes27,28,36,46,50,51,66,78,101,102—was theoretically proposed to arise 
through evolution to facilitate low-energy, large-scale conformational 
change57,58,68. This motion typically generates regions of high strain 
(Methods), where a substantial local rearrangement of the structure 
occurs66. The effective strain measure we use (Methods) estimates the 
average relative change in distances due to this rearrangement62. We 
find three regions with high strain (Fig. 2): the lid region, a P-loop (a 
conserved phosphate-binding motif)103 and a region at the base of 
the lid that appears to act as a hinge-like pivot. We hypothesize that 
these high-strain residues are essential to the large-scale motion of 
the protein and, therefore, to its function.

Mutations in binding and non-binding regions
We chose 34 guanylate kinase mutants to cover a wide range of strains 
and distances from the binding sites. To choose mutations that are 
involved in binding, we took those residues that were found in silico 
to be in contact with one of the substrates or a metallic co-factor95. 
This group is labelled binding, and includes residues that are directly 
involved in the catalytic process4. Our model hypothesizes that residues 

that are far from the binding site will be important for binding only if 
they are in a high-strain region. To test this hypothesis, we chose to 
mutate high-strain residues that are mainly further from the binding 
site; these mutants are labelled as high strain. The remaining mutations, 
which are not involved in binding and have a low strain, are labelled 
control.

Nano-rheology
We applied an oscillating electrical potential at frequencies ranging 
from 5 Hz to 120 Hz to drive the motion of enzyme-tethered beads 
(Fig. 1b–e and Methods), and Fig. 3 shows the phase difference (ϕ) and 
amplitude (ΔI/I) of the generated oscillations in the light scattered by 
the beads. We performed these experiments on a cysteine-substituted 
variant of the WT enzyme (WT*; Extended Data Fig. 2) and nine mutants 
(four from the high-strain group, three from the binding group and 
two from the control group, where all of them contained the same 
cysteine substitutions). We first examine the phase of the response 
because it is a more robust measurement (Methods) and can be more 
reliably averaged across samples and mutants. The phase difference 
was measured relative to the phase of the applied electrical potential. 
As shown in Fig. 3a, there is a clear and strong dependence of the phase 
difference on the frequency of the applied potential, increasing from 
near 0° at 0 Hz and climbing towards saturation of 90° (and somewhat 
beyond) at 120 Hz.

The phase measurements (Fig. 3a) show a clear separation between 
the high-strain group and the other two groups, with the high-strain 
group deviating towards larger phase shifts across the full range of fre-
quencies ω measured. Note, however, that the three groups converge to 
0° at the lowest frequencies (ω < 10 Hz). The curves approximately take 
the shape of a simple second-degree polynomial ϕ = aω + bω2. Using 
the extra-sum-of-squares F-test, we find that the curve describing the 
high-strain group significantly differs from the curves of the control 
(P < 10−4) and binding (P < 10−6) groups, whereas the curves of the bind-
ing and control groups are statistically similar (P = 0.12).

Figure 3c shows the amplitude of the beads’ traversed distances, 
again averaged per mutant group. The separation of the high-strain 
group is clear, although with high error estimates. Here lower ampli-
tudes are indicative of a stiffer, more viscous response for mutations 
in the high-strain region.

In these analyses, WT* was included within the control group. 
Figure 3b shows a breakdown of the phase response for the individual 
mutants within that group. Evidently, the phase response of the WT is 
similar to that of the other mutants in the group.
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Fig. 2 | Strain computation and selection of mutants. a, Apo (1ZNW,  
M. tuberculosis)98 guanylate kinase has an open structure; residues are coloured 
according to the strain caused by deformation on binding, calculated using the 
apo and holo (GDP-bound) forms of guanylate kinase (Methods). Displacement 
due to GDP binding (1ZNZ) is shown by the yellow arrows; the arrows are enlarged 
for visibility, and the 1-Å scale is indicated. The hinge, lid and P-loop regions are 

approximately indicated. The locations of two cysteine substitutions (from WT 
to WT*) are highlighted in purple. b, Strain due to GDP binding. The green dashed 
lines indicate residues that form hydrogen bonds with a substrate or co-factor95. 
The locations of mutation sites are shown as black circles, with groups indicated 
by colour. The hinge, lid and P-loop regions are approximately indicated. The 
strain threshold delineating the high-strain and control groups is 0.04.

http://www.nature.com/naturephysics
https://www.wwpdb.org/pdb?id=pdb_00001znw


Nature Physics

Article https://doi.org/10.1038/s41567-025-02825-9

Fits to the viscoelastic model
We fit the mechanical response to a simple physical model that describes 
the protein as a viscoelastic material. Figure 3d shows a scheme of the 
model. The motion of the bead in response to the applied voltage, Δz, 
originates in a spring-like release of the frustration stress55, along with 
the elastic and viscous components that contribute in parallel.

As explained in the Methods, we fit the vectorially averaged ampli-
tude r = ΔI/I and phase ϕ to circles (Fig. 3e). Despite a larger uncertainty 
in the amplitude data (Methods), we obtain good circle fits to the model 
for the three groups. The extracted model parameters for the three 
different mutant groups are ω1 = κ1/2πγ = (56 ± 4) Hz, (64 ± 4) Hz and 
(46 ± 5) Hz and ω2 = κ2/2πγ = (170 ± 11) Hz, (183 ± 9) Hz and (111 ± 8) Hz 
for the control, binding and high-strain groups, respectively (95% con-
fidence interval). It is reassuring to note that ω1 and ω2 are comparable 
to the reported catalytic rate of guanylate kinase (kcat = 23 Hz)98. We see 
that the turnover rate (kcat) of the enzyme is located around the fre-
quency ω1 at which the elastic and viscous forces become comparable, 
and beyond which the resistance increases steeply. Thus, the working 
point of the protein may be optimized to be at as high a frequency as 
possible without incurring a prohibitive frictional cost that would 
hinder the motion. These ω1 and ω2 values also adequately describe 
the phase-only data (Supplementary Fig. 1).

To evaluate f/γ, we use δ = 100 nm, a reasonable estimate for the 
characteristic evanescence length δ in our geometry. This puts the 
total deformation of the protein at about 1 Å, and gives a characteristic 
velocity f/γ = (92 ± 8) nm s–1, (100 ± 8) nm s–1 and (58 ± 7) nm s–1 for the 
control, binding and high-strain groups, respectively (95% confidence 
interval). The resulting fit parameters of the circles are depicted as a 
bar graph in Fig. 3f.

From the viscoelastic model, we can evaluate the effect of the 
high-strain mutations on the model parameters. Such estimates are 
intended as an order-of-magnitude indication and the effects we look 
at are relative ones, that is, the ones in which we can show that the 
high-strain group is, on average, stiffer than the binding and con-
trol groups. Taking ratios, we eliminate f and evaluate the effective 
viscosity γhs, the spring constant κ1

hs and the prestress constant κ2
hs 

of the high-strain group in terms of the corresponding WT values 
γwt, κ1

wt and κ2
wt. We obtain γhs/γwt = (1.6 ± 0.2), κ1

hs/κ1
wt = (1.2 ± 0.1) and 

κ2
hs/κ2

wt = (1.5 ± 0.1), where the WT values are from the whole control 
group (± indicates the standard error). One clearly sees systematic 
stiffening and increased viscosity in the high-strain mutants.

To obtain rough order-of-magnitude estimates of the vis-
coelastic parameters, we assume a typical spring constant of pro-
tein κ1 ≈ 102 pN nm–1 (refs. 34,104), yielding a friction coefficient of 
γ ≈ 0.1 pN s nm–1 for a frequency of ω1 ≈ 102 Hz. This measure of internal 
friction reflects the forces involved in amino acid rearrangement during 
the catalytic cycles, which account for deformation, bond breaking and 
reformation, and local reconfiguration processes. Similar estimates of 
γ were obtained in previous guanylate kinase nano-rheology studies79,81 
and atomic force microscopy measurements of lysozyme105, and are 
much larger than the internal friction observed during folding106–109. 
The internal friction γ is also much larger than the Stokes friction coef-
ficient of the gold nanoparticle in water, that is, γhyd ≈ 10−7 pN s nm–1. 
Therefore, hydrodynamic drag forces can be safely neglected. Although 
such calculations can only give ballpark estimates, from the measured 
characteristic f/γ, we find that the force is substantial, f ≈ 10 pN, but 
weaker than the typical forces exerted to unfold proteins110–112.

Viscoelasticity in MD simulations
We performed MD simulations on WT*, E173N (high-strain group) and 
G62S (control group) variants to corroborate and understand the effect 
of mutations on dynamics. However, we were constrained by the fact 
that the typical timescales available in MD simulations are considerably 
shorter than those implicated in protein activity and the corresponding 
material properties of elasticity and viscosity. Thus, Supplementary 

Fig. 2 shows an analysis of the root-mean-square fluctuations over 1 μs, 
which showed practically no difference in large-scale dynamics between 
the variants in equilibrium simulations. Slightly clearer differences 
between variants were obtained using a longer simulation time (3 μs) 
with the normal mode (Supplementary Fig. 3) and network community 
(Supplementary Fig. 4) analyses.

To overcome this disparity in timescales, we used non-equilibrium 
simulations in which a constant force was applied to the two cysteine 
residues (C75 and C171), pulling them apart. This most closely mim-
ics the rheological experiment in which a time-oscillating force was 
applied to the cysteine residues. We find clear differences in the 
response to force in the high-strain variant, whereas the control is 
very similar to the WT protein (Fig. 4a). From the linear part (F > 0 pN) of 
this force–distance curve, we can estimate an effective spring constant 
for each protein, fitting to a purely elastic model. This measurement 
for the E173N variant (κ = 240 pN nm–1) is about 30% stiffer than WT* 
(κ = 180 pN nm–1) and about 15% stiffer than G62S (κ = 210 pN nm–1), con-
sistent with the rheology experiments. Errors on the fits are between 
10% and 20%. We also note that the spring constants calculated from 
the MD simulations are in the same order of magnitude of our earlier 
estimate of κ1 ≈ 102 pN nm–1.

Another way to overcome the problem of long timescales associ-
ated with energy barrier crossings is the accelerated weight histogram 
method (Methods). The resulting potential of mean force (PMF) curves 
is shown in Extended Data Fig. 4. The effective spring constants that 
can be estimated from the curvature are consistent with the results 
shown in Fig. 4a.

The rheology experiments also indicate that the high-strain vari-
ants are more viscous than the WT ones. In a given material, motion is 
viscous when bonds are not easily broken. In the context of the protein, 
we compare the number of hydrogen bonds that are created and lost. 
We find that compared with the WT and control variants, the high-strain 
variant has a concurrent lower rate of hydrogen-bond formation and 
breakage (Fig. 4b). Overall, these MD simulations support the findings 
from the rheology experiment and indicate that the high-strain variant 
is stiffer and more viscous than the WT one.

Mechanochemical determinants of enzymatic activity
After ascertaining that the high-strain mutants display a different vis-
coelastic response than those in the control group, we tested for the 
effect on enzymatic activity. This was measured using a fluorescence 
assay of the phosphorylation of GMP to guanosine diphosphate (GDP). 
Figure 5a summarizes the activity for each mutant, grouped by the loca-
tion of mutation. Most evident is the effect of mutation to evolutionarily 
conserved (Supplementary Fig. 5) residues directly involved in binding 
to the substrate or co-factor (binding)95 in which, perhaps unsurpris-
ingly, single amino acid replacements disrupted the enzymatic activity 
almost completely; all mutations in this group reduced the activity to 
below 50% of the cysteine-substituted WT* activity. We also observe 
significant activity disruption for mutations in the high-strain region; 
9 out of 11 of these mutations exhibited reduced activity below 50% of 
WT* activity. By contrast, only 2 out of 14 mutations in the control region 
had such an effect on enzymatic activity; the most noticable of these, 
I118F, is the only mutant with a large predicted effect on stability, ΔΔG 
(Supplementary Fig. 6). The activity differences between the groups 
are significant for the high-strain and control groups (two-sided t-test, 
P = 0.002, n = 25) but not between the high-strain and binding groups 
(two-sided t-test, P = 0.26, n = 20).

The arrangement of amino acids at the binding sites is essential to 
protein function. Fittingly, substitutions at these locations were found 
to strongly reduce the catalytic activity. However, substitutions located 
far from the binding sites may also affect activity27,28,69,113. To take into 
account binding interactions, we primarily rely on ref. 95, determining 
which guanylate kinase residues are in contact with either the substrate 
or the metal co-factor. Because this information was limited to a few 
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residues, we additionally calculated the Cα distance from GDP, ADP 
and Mg using an equilibrated structure (obtained from O. Delalande, 
S. Sacquin-More and M. Baaden (personal communication)). The mini-
mum distance to either substrate is shown in Extended Data Fig. 6. The 
impact of the control mutants on activity appears to be independent 
of distance from the binding site (Fig. 5b; Pearson’s r = −0.19, P = 0.51, 
n = 14), whereas the high-strain mutants have stronger effects closer to 
the binding site (Fig. 5b; Pearson’s r = −0.75, P = 0.008, n = 11).

Enzyme function depends not only on short-ranged binding but 
also on large-scale protein structure and dynamics21,50,52,114–117. In line 
with that, we find a negative correlation (Pearson’s r = −0.63, P = 0.001, 
n = 25) between the binding strain and enzymatic activity (Fig. 5c), 
which is independent of the strain threshold of 0.04 that we used to 
identify high-strain mutants. Furthermore, we show that mutation 
strain, which is measured by comparing the WT* and mutant struc-
tures predicted by AF (Fig. 5d), is also negatively correlated (Pearson’s 
r = −0.42, P = 0.043, n = 25) with enzymatic activity; larger structural 
changes are more likely to disrupt activity. In Fig. 5c,d, we exclude the 
binding residues because they would impact function due to chemical 
changes, regardless of how they affect the structure. Yet we still see 
significant correlations if they are included (binding strain, Pearson’s 
r = 0.52, P = 0.002; mutation strain, r = 0.35, P = 0.046; n = 34; Sup-
plementary Fig. 7).

Discussion
We have inspected the impact of single amino acid replacements in 
the guanylate kinase enzyme, at three classes of functionally differ-
ent locations of the enzyme, characterized into high-strain, binding 
and control (low-strain, non-binding) groups. We found evidence of 
location-dependent changes, evident in both mechanical compliance 
measured via nano-rheological response and in enzymatic activity.

Theory57,58,68 explains the evolution of the high-strain region 
as a functional unit and shows that, to some degree, the amino acid 
sequences that make up these regions co-evolve towards a phenotypic 
trait exhibiting high strain during conformational change. Thus, even a 
single change in a high-strain region may affect the collective mechani-
cal response of the protein. Our measurements indeed show that single 
amino acid replacements within the high-strain region significantly 

impact the viscoelasticity of the protein. We did not observe such 
an effect with mutations in the binding-site or control regions. This 
confirms that the high-strain region uniquely determines a substantial 
part of the viscoelastic behaviour. Results from nano-rheology experi-
ments (Fig. 3) and MD simulations (Fig. 4) show a reduced amplitude 
of motion for mutants in this group, indicating that the WT high-strain 
region is more flexible and less viscous.

A model of the enzyme as a Kelvin–Voigt element118,119 enhanced 
with additional prestress55, does a very good job at describing the 
experimental data. The inclusion of prestress is sensible given the 
constraints of a folded protein, where many bonds cannot be relaxed 
to their minimal energy configuration due to frustration100. It naturally 
explains the extension of the phase measurements beyond 90°, which 
cannot happen with only one spring and one dashpot.

Fitting the averaged group data to the model quantitatively shows 
the stiffening of the protein when amino acids along the high-strain 
areas are mutated. The averaged effective viscosity γ increased by 60%, 
whereas the averaged spring constants for the viscoelastic response 
and the stress release κ1 and κ2 increased by 20% and 50%, respectively. 
Note that these values represent the averaged viscoelastic behaviour 
of each group, whereas the impact of specific amino acid substitutions 
on the behaviour of individual mutants varies.

The enzymatic activity assay (Fig. 5) examines the effect of sin-
gle amino acid replacements on aspects other than the viscoelastic 
behaviour. Replacements in the binding region consistently reduced 
activity, presumably due to inflicted changes in aspects of the binding 
and catalysis processes. More impressive, perhaps, is the observation 
that mutations in the high-strain region locations are also correlated 
with a reduction in activity. Strain due to binding (estimated from 
the PDB) and strain due to mutation (estimated by AF) both correlate 
with activity, indicating that these independent quantitative theo-
retical measures of local deformation due to binding and mutation 
are important characteristics of the enzyme. Curiously, we found a few 
mutations that increased activity; following the general assumption 
that enzymes are adapted through evolution, we suspect that these 
mutations may simultaneously reduce specificity. This is consistent 
with a competitive activity assay we ran on five of the mutants, using 
adenosine monophosphate as a competitor for the native substrate 
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GMP (Supplementary Text 1), showing reduced specificity compared 
with the WT enzyme.

In perspective, our results are highly consistent with the theo-
retical explanation of the evolution of a high-strain region and the 
expected effect of single amino acid mutations in it. It confirms our 
main hypothesis that high-strain regions play an important role in 
determining the enzyme’s function.

Limitations and future work
Our findings differ in several aspects from previous reports on viscoe-
lastic behaviour120. First, the phase–frequency curve ϕ(ω) we observe 
(Fig. 3a) reflects the parallel actions of elasticity and viscosity (Kelvin–
Voigt model118,119), whereas a previous measurement suggests action 
in series (Maxwell model121). Second, the phase shift measured at the 
highest frequencies can attain values larger than 90°. This behaviour is 
beyond the simple Maxwell or Kelvin–Voigt models, and indicates the 
participation of additional internal degrees of freedom. Our measure-
ments are consistent with the idea that this additional physical compo-
nent is stress released from preconstrained bonds55 in the geometrically 
frustrated amino acid networks of proteins100,122.

The measurement of activity using the enzymatic assay typi-
cally yields a mixture of information on the enzymatic rate constant 
kcat and the Michaelis constant KM. It is, therefore, possible that the 
change in flexibility for some mutants affects the binding, either to 
GMP/GDP or to ATP/ADP45,50,83,102,123,124. By contrast, it could be that 
the mechanics affects the catalytic rate kcat, and that binding is not 
impaired, although theories linking kcat to protein dynamics are less 

well supported51,53,83,90,125,126. Indeed, future work measuring the dissocia-
tion constant KD (or KM) for both GMP and ATP, and for all 34 mutants, 
could help resolve the relative contribution of changes in kcat versus KD 
to decreased functionality.

The question of an appropriate sample size is always relevant 
in an experimental setting, and there are two ways to expand on our 
results. First, we could investigate more enzymes, perhaps those 
with even better characterized and larger changes during binding. 
Indeed, in ref. 62, we analyse a large number of mutations in three other 
proteins and relate the strain at the site of mutation to enzyme func-
tionality. However, here we focus on how the large-scale viscoelastic 
response of high-strain substitutions differs from that of the WT and 
control substitutions. Given that the nano-rheological experiments 
are time-consuming, the expansion of experiments to other enzymes 
is a goal of future work. Second, we could add more mutations to the 
existing guanylate kinase work. Our experimental measurement of 
enzymatic activity already exhibits very strong statistical significance 
(Fig. 5); therefore, enlarging the sample size is unlikely to alter our con-
clusions. By contrast, nano-rheology is a more demanding experiment, 
and the sample size is accordingly smaller. We expect that for these 
direct measurements of viscoelasticity, future work that will average 
over more mutants can improve on the (already significant) statistical 
result and arrive at a more precise estimate of the effect size. In both 
cases, we do not foresee a change in any of our conclusions with the 
growth in sample size.

The choice of the enzyme guanylate kinase from M. tuberculosis is 
mainly based on the possibility of comparing with previous results120. 
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This enzyme belongs to a large class of proteins whose function 
involves conformational changes19,38,39,45,50,71,83,96,97. Although one gen-
erally expects that a protein that does not move much during function 
will be less influenced by mechanical perturbations, even moder-
ate motions have been shown to be functionally relevant35,127,128. Such 
mechanical effects may be examined and generalized in future studies 
using the present combined methodology of identifying high-strain 
residues and then probing the effects of mutations by measuring 
tandem nano-rheology and chemical activity. Our imperfect proce-
dure of selecting mutations (Methods) was satisfactory in exhibiting 
a broad range of mechanical and chemical effects, which allowed us 
to examine the main hypothesis. However, it was clear that the noise 
and uncertainty in our results could be considerably improved by 
future studies with larger sets of systematically chosen mutations in 
additional proteins.

Our viscoelastic model complements and advances 
beyond the standard treatment of proteins in terms of elastic 
networks19,46,49,57,58,68,74,76,85,86, which are particularly useful in analysing 
the motions involved in binding34. The effective viscous forces describe 
the internal friction due to the breaking and reforming intramolecular 
bonds, the resulting local rearrangement and the interactions with 
surrounding water and ions. The interplay of friction and elasticity 
yields typical timescales for the motion (such as frequencies ω1 and 
ω2), which are absent from standard elastic network models. A natural 
future step will be the extension of our continuum model by formulat-
ing a viscoelastic network model that accounts for the dynamics and 
changing topology of the amino acid bond network.

Conclusions
On the basis of previous theoretical studies predicting that high-strain 
regions in proteins facilitate large-scale conformational change34,57,58,68, 
we hypothesized that mutations in these regions would impact the 
mechanical properties of the enzyme guanylate kinase. We find this 
to be true for mutations in the high-strain region but not in the bind-
ing and control regions. Furthermore, we find that these mutations 
also greatly restrict the enzymatic activity, strongly suggesting that 
mechanics determines function.

To test this hypothesis, we fit results from a nano-rheology experi-
ment to a viscoelastic model that decomposes protein motion into 
elastic (bond stretching and relaxation of the frustrated bonds) and 
viscous (bond breaking and reforming/friction) components. We find 
that mutations in high-strain regions make guanylate kinase slower 
and stiffer, which we conjecture disrupts the delicate balance between 
open and closed conformations, thereby affecting the transition rates 
and ultimately impacting the enzyme function. The characteristic 
mechanical frequencies of guanylate kinase are on the same order as its 
turnover rate, suggesting that viscoelasticity limits the catalytic rates 
of enzymes whose function relies on large-scale motion.

Our study demonstrates that computing binding strain by compar-
ing as few as two protein structures66,68,78 and, independently, using a 
folding algorithm (AF) to predict structural changes induced by single 
mutations62,64 (mutation strain) can identify amino acids critical for 
protein mechanics. Altogether, our findings demonstrate that proteins 
have evolved collective mechanical modes with high-strain deforma-
tions that facilitate their biological function. These viscoelastic modes 
are governed by a small number of effective parameters (spring con-
stants, viscosities and characteristic frequencies79,129) that emerge from 
the collective physical interactions among the amino acids encoded in 
the gene19,56,61,87,130. This is an example of the entanglement of material 
properties, evolutionary information and biochemical function that 
is a hallmark of living matter.
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Methods
Enzyme production and purification
We prepared 34 different mutants of the enzyme guanylate kinase 
from M. tuberculosis (Extended Data Table 1). Surface attachment to 
gold was enabled by cysteine replacements at locations 75 and 171 
(whose axis exits the protein and traverses through the binding pocket; 
Fig. 2a), whereas the two existing cysteines at locations 40 and 193 
of the original guanylate kinase were replaced by serines, to avoid 
unwanted attachment points. All the proteins produced have these 
substitutions; therefore, our WT, in fact, is a slightly changed enzyme 
that we label WT* (Extended Data Fig. 2). All the enzymes were pro-
duced using precisely the same procedure. Hence, when we report 
activity or nano-rheology of the WT, or compare with it, we always do 
so for this slightly mutated WT*. Each of these 34 mutants additionally 
had a single nucleic acid substitution. The 34 mutants were selected as 
described in the ‘Selection of mutants’ section.

Expression of guanylate kinase and its mutants was per-
formed using the expression vector K151, harbouring N-terminal 
14xHis-bdSumo fusion. The vector was generously obtained from 
D. Görlich, Max-Planck-Institute131. Cloning was performed by the 
restriction-free method132. Generation of guanylate kinase mutants’ 
clones was performed by Transfer-PCR133. For all the guanylate kinase 
construct expressions, a 500-ml culture of BL21(DE3) was induced 
with 200-mM IPTG and grown at 15 °C overnight. The cells were 
harvested and lysed by sonication in a lysis buffer (20-mM Tris 7.5, 
0.5-M NaCl, 1-mM DTT and 2-mM MgCl2) containing 200-KU/100-ml 
lysozyme, 20-μg ml–1 DNase, 1-mM phenylmethylsulfonyl fluoride 
and protease inhibitor cocktail. After clarification of the mixture by 
centrifugation, the cleared lysate was incubated with 1-ml washed 
Ni beads (Adar Biotech) for 1 h at 4 °C. After removing the unbound 
proteins, the beads were washed three times with 50-ml lysis buffer. 
Guanylate kinase (without tags) was eluted from the beads following 
on-column cleavage with 0.1-mg bdSumo protease for 2 h at room 
temperature in 1-ml lysis buffer. The soup containing the cleaved 
guanylate kinase was removed and applied to a size exclusion col-
umn (Superdex 75 10/300, Cytiva) equilibrated with 250-mM NaCl, 
50-mM Tris pH 7.5, 2-mM MgCl2 and 1-mM DTT. Guanylate kinase and 
its mutants migrated on the size exclusion column as well as folded 
globular monomers. Pure monomeric guanylate kinase, migrating 
as a single peak at 11.5 ml was pooled, concentrated to >1 mg ml–1 and 
frozen in aliquots at −80 °C.

Selection of mutants
The procedure for selecting the positions and amino acid substitutions 
in the 34 mutants was as follows. First, we classified all 207 positions 
in guanylate kinase into three groups: binding (17 positions according 
to ref. 98), high strain (22 positions whose effective strain is higher 
than a threshold of 0.04) and control (the remaining 168 positions). 
We chose this threshold to delineate the tail of the strain distribution, 
and grouping using any threshold value from 0.024 to 0.055 results in 
the same conclusions. We ignore the 25 disordered positions at the N 
and C termini (1ZNW). Then, 30 random positions were chosen (about 
one-sixth of the 182 ordered positions), such that the control group is 
somewhat larger (14 positions) to better sample this majority group 
of positions, whereas the binding and high-strain groups (8 positions 
each) were smaller since these are minority groups in the whole protein. 
To avoid possible bias, the positions within each group were selected 
randomly, without considering other characteristics. For example, the 
distances from the binding site of the high-strain and control residues 
are random; some are distant from the binding site, whereas others 
are close (Fig. 5b). At 4 of the 30 positions (P29, E173, L174 (high strain) 
and S30 (binding)), we introduced an additional mutation to probe 
the landscape of possible substitutions. Thus, altogether, there are 
34 substitutions: 14 in the control group, 9 in the binding group and 11 
in the high-strain group.

Obviously, the precise chemical properties of the replacement 
amino acid could have a strong effect on the function of the enzyme62,64. 
The substitutions were, therefore, chosen to have similar physico-
chemical characteristics and, consequently, to be relatively less dis-
ruptive according to their BLOSUM62 scores (Extended Data Table 1). 
To put our selection of substitutions in context, we note that out of 
the 190 possible amino acid exchanges in the BLOSUM62 matrix, 144 
have negative scores (76%); 25, zero (13%); and 21, positive (11%). The 
median score is −2 and the average score is −1.43. In comparison, most 
of the selected 34 exchanges have non-negative scores, with a median 
score of 0 and an average score of −0.09, and are, therefore, much less 
disruptive than average. The only two scores below −1 are −2 of P29V 
and −4 of L174G—both are additional mutations at these positions. 
Fittingly, all the purified mutants folded appropriately, as indicated 
by their migration in the size exclusion column as well-folded globular 
monomers, which is consistent with the melting temperature (Tm) 
measurements (Extended Data Fig. 7 and Extended Data Table 1) and 
ΔΔG predictions (Supplementary Fig. 6, where only I118F exhibits a 
substantial effect on stability).

The mutants chosen for the nano-rheology experiments were 
similarly chosen as a random subset of the 34 mutants. Although such 
a choice may not be optimal, it is the most likely to reduce bias. This is 
because there is, at present, no practical guidance from the literature 
on which substitution will have the maximum effect on the viscoelastic 
and mechanical properties of the protein.

Nano-rheology
We followed the methodology introduced earlier79,81,120 for periodically 
stretching and compressing proteins; Fig. 1b shows the schematic and 
describes the experimental setup. Force is applied to the protein by 
harnessing it at two opposing amino acids to two metallic surfaces, 
which are then periodically pushed together and pulled apart by an 
alternating-current electric field. In practice, one metallic side is a 
nanolayer of gold deposited on a glass microscope slide, and the other 
side is a free, charged gold nanobead. Since the forces applied are not 
much larger than those associated with thermal motion, the resulting 
motion of the protein is slight. For a protein with the size of 5 nm, the 
deformation is on the order of an ångström or less.

Observing this tiny motion is made possible by a combination of 
optical and statistical techniques. First, the gold nanobead moves up 
and down in an evanescent, exponentially decaying light field created 
by an internally reflected laser light. This creates a very strong depend-
ence of the intensity of light scattered by the nanobead on its distance 
from the surface. Second, the signal of the stimulation electric field 
itself is used to lock-in onto the signal from the generated motion, 
filtering out any motion noise created by other sources. Third, the 
signal is averaged both in space (over a range of millions of gold nano-
beads (that is, of proteins)) and in time (over many stimulation cycles). 
Since the thermal motion of the nanoparticles is independent of each 
other, it averages to zero, whereas the driven motion is collective and 
survives averaging.

In detail, the guanylate kinase enzymes were attached on one side 
using one cysteine to a glass slide (LK Lab Korea 0302-0002) coated 
with 3-nm chromium followed by 30-nm gold, and attached on the 
other side using the second cysteine to a 20-nm gold nanosphere bead 
(Nanocs GP01-20-100). This produced a layer of protein-attached gold 
beads with centres about 15 nm above the gold surface. The coverage 
of gold beads within the droplet is depicted in Fig. 1c. High-resolution 
images of the bead coverage from two different samples are shown: 
one from an atomic force microscope (Bruker JPK; left) and one from 
a scanning electron microscope (ZEISS Ultra 55; right), indicating that 
the bead coverage can reach values of 500 to 1,000 beads µm–2.

Gold beads were then covered with single-stranded thiol-modified 
DNA 32-mers (from Integrated DNA Technologies) bearing a negative 
charge. An evanescent field generated by a red laser light (647 nm, 
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from MPB Communications) emanated from the gold-covered sur-
face, illuminating the beads, causing any small change in the vertical 
position of the beads to generate a change in the intensity of light 
scattered by them. An indium-tin-oxide-coated microscope slide with 
an antireflection coating on the side opposite to the indium tin oxide 
(Diamond Coatings) sealed the top of the sample chamber, separated 
from the bottom by two spacers consisting of 150-µm glass coverslips. 
The chamber was filled with a diluted saline sodium citrate buffer at 
pH 7.0 (50-mM sodium chloride and 5-mM sodium citrate; Ambion).

An alternating electric potential was applied to the top and bottom 
conducting boundaries of the sample to create a peak-to-peak field of 
about 2 V/150 µm that was able to stretch or squeeze the proteins by 
pulling the negatively charged gold beads. The resultant motion of the 
beads is detectable by the scattered light of the evanescent field. The 
changes in scattered light intensity, normalized by the intensity itself 
(ΔI/I), are proportional to the change in the height of the beads from 
the gold surface: ΔI/I = Δz/δ, where δ is the characteristic length of the 
evanescent wave. This was shown for both blue and red laser light, with 
the red laser light generating additional plasmon resonance that not 
only enhances the signal but also complicates the simple scattering 
formula. The scattering occurs simultaneously from about a billion 
synchronized spheres, and the resolution for the average position of 
the beads is about a tenth of an ångström79,81,120,129.

We deviated from the protocol in refs. 79,81,120,134 in our meth-
ods for gathering the light and processing the signal. Rather than a 
photodiode and a lock-in amplifier, we used a fast camera (Hamamatsu 
ORCA-Flash4.0) and performed a lock-in procedure in software. We 
also used a lower-magnification ×5 objective so that we could simul-
taneously image together, on a single slide, three droplets from three 
different enzyme mutants. Droplets were manually spotted, typically 
0.5 µl per drop. We acquired the middle 256 rows of the camera’s field 
of view, which we positioned on the centre of the droplets.

To accumulate at least six frames per oscillation period, the frame 
rate was gradually increased from 200 frames per second at the minimal 
driving frequency ω of 5 Hz to 800 frames per second at the maximum 
driving frequency ω of 120 Hz. Figure 1d shows an example microscopy 
image from which we gathered data (cropped to a single droplet). The 
motion of the bead is in antiphase to the voltage (Fig. 1e), due to the 
positive electrical potential attracting the negatively charged DNA 
attached to the beads, pulling them farther away from the source of the 
evanescence field and, thus, decreasing the amount of light scattered.

The lock-in analysis yields the amplitude of the beads’ oscillation 
at the frequency of the driving potential and the phase difference of 
that oscillation from the phase of the driving potential. Figure 1d (top) 
depicts an example of the mean intensity during acquisition. Here the 
middle image shows the amplitude of the oscillations normalized by 
the mean intensity, whereas the bottom image shows the phase differ-
ence; both are obtained using the lock-in method. The values of the 
amplitude and phase differences we report in this study were obtained 
by first spatially averaging the intensity signal over 16 × 16 pixel blocks 
and then applying the lock-in method on that signal for each block and 
averaging over the amplitude and phase difference values obtained 
from each block. For the sake of visualization, in the example shown 
in Fig. 1d, spatial averaging is performed over 8 × 8 pixel blocks. Data 
were typically taken from the droplets over regions of interest that were 
annular in shape, reflecting the fact that the coverage is the highest at 
the circumference of the drop.

It was previously shown79–81,120 that the amplitude measured in 
this experimental system can vary between samples, possibly due to 
inconsistency in preparation. For instance, we do not control for the 
fact that two enzymes, rather than one, may attach to a single gold bead. 
If this occurs, the two enzymes will act as springs connected in paral-
lel, and the amplitude of the bead’s motion will be reduced in half. We, 
thus, use the phase of the beads’ motion to check if the groups behave 
differently, since the phase should be resistant to many of these effects.

Analysis and statistical evaluation of nano-rheology experiments
The large variability in the amplitude correlated, to some extent, with 
the sample preparation, leading us to average multiple measurements 
(M) of different samples of a specific mutant made over a single day as 
a single experiment. Multiple measurement days (D) of a mutant were 
then averaged, weighted by the inverse of the standard error within 
each day, to get the resulting phase difference and amplitude values 
for that mutant. In cases where a standard error was not defined due 
to at least one day with only one measurement, weighting was instead 
done by the number of measurements in each day. To get the values 
for each group of mutants, mutants were averaged similarly, weighted 
by the inverse of the standard error of each mutant across its measure-
ment days. In cases where a standard error was not defined due to a 
mutant with only one measurement day, weighting was instead done 
by the number of days for each mutant. Calculation of the average and 
standard error of the phase difference was done using the CircStat 
toolbox135. For Fig. 3e, the data were averaged vectorially, according 
to the protocol detailed above. The error bars represent the standard 
errors of the mean, as obtained from the last stage of averaging.

Approximately half the spotted samples were usable (had uncom-
promised coverage and an appreciable response to stimulation). Out of 
these, we restricted our analysis to droplets whose intensity and phase 
were mostly homogeneous, as estimated by a visual inspection. Each 
usable droplet’s quality was manually graded on a scale from 1 to 5. In 
the analysis, we include only droplets with grades of 2 and above, which 
allowed differentiation between the different groups and retaining 71% 
of the measurements.

To evaluate whether the mutant groups significantly differed, 
the phase difference curves of the groups were first fitted to a simple 
regression model and then compared using the extra-sum-of-squares 
F-test136. A second-order polynomial (constrained to pass through zero) 
was fitted to the phase difference values for all the mutants in a group, 
for the whole frequency range, using the same weights as described 
above. This was done first separately for each group, and then for all 
the mutants in each pair of groups joined together. The goodness of fit 
was compared between the joined and separate fits to assess whether 
the groups were indeed significantly different.

Parameters for the viscoelastic model (given below) were extracted 
for each mutant group. Fits to circles described by the amplitude r and 
phase ϕ were performed on the vectorially averaged polar data, yield-
ing estimates for the model parameters ω1, ω2 and f/γ.

Strain evaluation and AF analysis
To measure deformation due to physical binding and evolutionary 
mutations, we estimate the effective strain62. Strain is a concept bor-
rowed from continuum mechanics, which is defined as the physical 
deformation, or spatial derivative of displacement, in response to stress 
(or force). In a protein, strain is the average displacement of neigh-
bours relative to their initial distance, and is highly correlated with 
the un-normalized form of the local distance difference test, namely, 
the local distance difference62,64. Mathematically, it is very similar to 
the frame-aligned point error, which was used in the loss function of 
AF93. Force can be random (due to thermal motion) or specific (due 
to binding), and strain provides an estimate of the response to both 
these forces. Analogously, evolutionary changes can be thought of as 
an effective force that changes the ground state of a protein, and the 
response can be measured by (mutation) strain. Effective strain Si is 
defined for each residue i as the average relative change in the atomic 
positions of its neighbours j, from a reference to the target structure:

Si = ⟨
|Δrij|
|rij|

⟩ = 1
ni

∑
j∈Ni

|rij − r′ij|
|rij|

,

where rij is the distance between Cα positions of neighbour j to residue i 
in a reference structure; Ni is the set of neighbours j, defined as residues 

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-025-02825-9

with Cα positions within 11 Å of residue i, or |rij| < 11 Å; the number of 
neighbours is ni = |Ni|; and r′ij is the corresponding neighbour distance 
vector in a target structure that has been rotated using the Kabsch 
algorithm137 to maximize overlap with rij.

In this work, we use a method that has been shown to reduce the 
contribution of random fluctuations to strain, as the contributions of 
non-stochastic forces are preserved62,64. We take multiple structures 
that differ due to random fluctuations (for example, we combine mul-
tiple versions of apo guanylate kinase). For each residue, we get 3 × ni 
neighbourhood tensors (for each structure), and create an average 
neighbourhood tensor by rotating all the neighbourhoods to a ref-
erence neighbourhood and taking the mean. Supplementary Fig. 8 
shows that this method results in lower strain in specific regions in 
the protein, and the resulting strain is less strongly correlated with the 
B-factor (a measure of disorder in the protein crystal). Supplementary 
Fig. 9 shows that the results are not very sensitive to the choice of the 
neighbourhood cut-off radius.

We used all the available structures of WT M. tuberculosis gua-
nylate kinase deposited in the PDB to calculate the strain in response 
to binding to GDP. There are two apo structures (1S4Q and 1ZNW) and 
two holo structures bound to GDP (1ZNY and 1ZNZ); we omitted one 
structure (1ZNX) since it contains GMP instead of GDP. We note that the 
WT protein sequence differs from the WT* sequence by four cysteine 
substitutions.

To complement this strain calculation, we also studied the fol-
lowing: MD predictions of apo WT and WT bound to GDP, ADP and Mg 
(obtained from O. Delalande, S. Sacquin-More and M. Baaden (personal 
communication)); AF predictions of apo WT*; and AlphaFold3 (ref. 138) 
predictions of WT* bound to GDP, ADP and Mg (Supplementary Text 
5). Extended Data Figs. 8 and 9 show that the conclusions of the paper 
are robust to the choice of structures.

We predict the structures of WT* and WT* mutants using the Colab-
Fold implementation of AF93,139. We run ColabFold without templates, 
five models, use six recycles per model, and run energy minimization 
using the AMBER force field to obtain the relaxed structures. For each 
guanylate kinase variant, we generated 5 replicate predictions for 
each of the 5 models, resulting in 25 structures per variant. We aver-
age over all the 25 structures when calculating the mutation strain. 
Averaging leads to lower strain far from the mutated sites, but not at 
the mutated site; thus, averaging does not affect the correlation with 
activity since we measure the evolutionary strain at the mutated site 
(Supplementary Fig. 10). All the comparisons of AF-predicted WT* and 
PDB structures give high template modelling scores (>0.86) for each 
AF model (Supplementary Fig. 11)140, which verifies that AF-predicted 
WT structures closely match the experimental structures141. We note 
that, in principle, we could have used MD simulations to measure the 
effects of mutants on structure, but AF is faster to run by several orders 
of magnitude, and MD simulations are also limited by typical simulation 
times of microseconds.

Viscoelastic model
The forces exerted on the protein induce an internal rearrangement of 
the amino acids. The large-scale behaviour of these motions is treated 
here within a simplified coarse-grained theory: the elastic deforma-
tion, due to bonds stretched, compressed or twisted, is described 
as a harmonic spring with force κ1Δz1, where κ1 is the effective spring 
constant and Δz1 is the deformation (hereafter, deformations and 
forces are indicated as complex numbers that include phase factors). 
The plastic deformation, due to breaking bonds and reforming new 
ones, is described as a viscous damper (a dashpot), with a friction force 
γdΔz1/dt, where γ is the effective friction coefficient and dΔz1/dt is the 
deformation rate. The elastic and viscous elements are connected in 
a parallel Kelvin–Voigt architecture (Fig. 3d). In addition, many bonds 
in proteins are already deformed in the equilibrium configuration due 
to geometrical frustration typical to a dense amorphous material100. 

Therefore, when force is exerted, such stresses may be released. Fol-
lowing Alexander’s treatment of amorphous solids55, this is accounted 
for by an effective negative force –κ2Δz2, where Δz2 is the deformation 
and κ2 is the stress-release spring constant.

Combining the contributions from elasticity, viscosity and stress 
release, we find the overall deformation as a function of frequency ω, as 
probed by the change in nanoparticle height: Δz(ω) = Δz1 + Δz2 = (f/2πγ)
[1/(ω1 + iω) − 1/ω2]. Here the oscillatory force exerted on the protein is 
fe2πiωt, where i is the imaginary unit. The dynamics of this Kelvin–Voigt–
Alexander model is determined by the characteristic velocity (f/γ) 
and two frequencies ω1 = κ1/2πγ (the standard relaxation frequency) 
and ω2 = κ2/2πγ (the ‘prestress’ release frequency (frustration)). In 
the complex plane, the deformation Δz(ω) = reiϕ is a Möbius trans-
formation and, therefore, takes the form of a semicircle that is offset 
from zero along the x axis, where the amplitude of the deformation 
is r = |Δz(ω)| and the phase lag of the motion relative to the exerted 
force is ϕ = arg(Δz(ω)).

Enzymatic assay
We used a nicotinamide adenine dinucleotide fluorescence enzymatic 
assay to measure the ATP-consuming phosphorylation of GMP to GDP 
performed by the guanylate kinase mutants142. An initial concentra-
tion of 2-mM GMP and 1-mM ATP was used. The fluorescence output 
was monitored over 15 min at 37 °C using a microplate reader (Tecan 
Infinite 200 PRO or BioTek Synergy HT). The response was fitted to a 
sigmoid function (initiation, linear stage and saturation), or—in the 
case of no saturation—to a simple linear function. The relative activity 
of each mutant was then estimated by the maximum slope, normal-
ized by that of the WT enzyme. For a competitive assay, concentra-
tions of 5 mM, 10 mM and 50 mM of the GMP competitor adenosine 
monophosphate were added to the enzymatic solution, and the result-
ing activity was normalized by the no-adenosine-monophosphate 
case.

MD simulations
We performed MD simulations of guanylate kinase using GROMACS 
(v. 2021.5). We used the AMBER ff99SB-ILDN force field for the protein 
and the TIP3P water model. We initialized a single protein in a dodeca-
hedron box, with 1-nm distance between the protein and the box. We 
used 0.1-M concentration of Na and Cl ions, ensuring that the overall 
charge is zero. To get an equilibrated initial configuration, we succes-
sively performed energy minimization, a 100-ps simulation in the NVT 
ensemble and a 100-ps simulation in the NPT ensemble: temperature, 
300 K; pressure, 1 bar. Interaction cut-offs of 1 nm are used for electro-
statics. Velocity-rescale thermostat and Parrinello–Rahman barostat 
are used. Leapfrog integration (2-fs timestep) and Verlet neighbour 
lists were used.

To study the protein dynamics at zero force, we run simulations for 
10 × 100 ns (Supplementary Fig. 2) and 3 μs (Extended Data Fig. 4 and 
Supplementary Figs. 3 and 4) starting from equilibrated configurations 
for WT*, E173N and G62S. We used the AF-predicted structures as the 
initial configurations, and truncated the first 18 N-terminal residues 
that form an unstructured tail.

PMF calculations were performed using the accelerated weight 
histogram method143,144. Calculations for the three selected mutants 
were performed over five repeats. Each repeat started from evenly dis-
tributed snapshots selected after 2.5 μs of the unbiased MD simulation. 
The PMF calculation was performed until convergence, and five PMFs, 
separated by 10 ns, were averaged into the reported PMF. All five repeats 
were similar, and Extended Data Fig. 4 shows a representative one.

Network and normal mode analyses of the protein motions from 
the unbiased MD simulations were performed and visualized with 
Bio3D145, NetworkView146 and ProDy147 in interaction with VMD148. This 
analysis was performed on different 500-ns portions of the 3-μs unbi-
ased MD simulations to ensure robustness of the results.
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To study protein dynamics in response to force, we apply a con-
stant force between residues C75 and C171 (the two residues that were 
mutated to cysteine in the rheology experiments), and simulations 
were run for 10 × 100 ns at forces ranging from 1 to 10 kJ mol–1 nm–1 (1.7 
to 16.7 pN). A larger box size (2-nm distance between the protein and 
the box) was used for non-equilibrium simulations to avoid protein 
self-interactions due to partial unfolding.

Simulation trajectories are processed using GROMACS tools for 
further analysis: unwrapping the protein to remove breaks across 
periodic boundaries; translating and rotating the protein to match a ref-
erence (AF-predicted) configuration. Root-mean-square fluctuations 
are calculated as the variance of each residue’s Cα position. Hydrogen 
bonds are identified using GROMACS tools.

Melting temperatures
Stability of the proteins was evaluated by measuring their melting 
temperatures Tm using differential scanning fluorimetry. The NanoDSF 
Prometheus NT.48 instrument (from NanoTemper Technologies) was 
used to obtain temperature-dependent fluorescence curves of tryp-
tophan and tyrosine in response to excitation with light at 280 nm, 
rationing the emission at 350 nm to that at 330 nm. Capillaries with the 
samples were heated at a rate of 1 °C min–1 over the range of 20–95 °C. 
The melting temperatures Tm were determined as the inflection points 
of the melting curves, using the PR.ThermControl (v. 2.1.1) software 
package.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data for nano-rheology and enzymatic activity experiments are avail-
able in Supplementary Data. Additional data are available from the 
corresponding authors upon request.

Code availability
Code used to calculate the strain is available via GitHub at https://
github.com/mirabdi/PDAnalysis.
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Extended Data Fig. 1 | Strain analysis of alternate guanylate kinase structures. 
a - Comparison of guanylate kinase structures before and after binding, colored 
by strain (residues with strain lower than median are grey, otherwise red). The 
same apo structure (1ZNW) is shown for all cases (differences between WT and 
WT* are not observable by eye). The holo structures are: PDB (1ZNY), WT bound 
to GDP; MD, WT bound to GDP, ADP and Mg; AF3, WT* bound to GDP, ADP 

and Mg. b - Strain due to binding for PDB, MD and AF3 structures (see ‘Strain 
evaluation and AlphaFold2 (AF) Analysis’ section of the Methods, and ‘Alternative 
calculations of binding strain’ section of the Supplementary Information). 
Locations of mutated sites for our 34 mutants are shown with black circles, with 
the groups indicated by colored circles; strain thresholds delineating High-Strain 
and Control groups are 0.04, 0.125 and 0.07.
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Extended Data Fig. 2 | Sequences of wild-type (WT) guanylate kinase and the cysteine-substituted variant (WT*). Sequence alignment of the wild-type (WT) 
sequence with the sequence of the cysteine-substituted construct (WT*) which was used as the basis of all of our experiments and the 34 variants.
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Extended Data Fig. 3 | Nano-rheology for individual mutants. Same as in Fig. 3a 
(a: phase vs frequency) and Fig. 3c (b: amplitude vs frequency), with curves shown 
for the individual mutants. Each curve represents the mean over all measurement 
days for an individual mutant, as specified in the Methods. Error bars show the 

standard error of the mean (No error bars are shown where only one measurement 
day was used). Mutants from the High-Strain, Control, and Binding groups are 
shown in reds, blues, and greens respectively. The number of measurements 
averaged for each mutant is detailed in Extended Data Table 1.
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Extended Data Fig. 4 | Effective potential-of-force profiles of cysteine-cysteine 
distances. The potential of mean force (PMF) profiles for distance change 
between C75 and C171, calculated using the accelerated weight histogram 
method143,144 for the wild type (WT* - black), high-strain (E173N - red), and control 
(G62S - blue) mutants. Standard deviation is shown shaded and is calculated  
for 5 slices separated by 10 ns. The spring constants κ for the different mutants 

can be estimated using a second order fit to the PMF curves ΔG = ½ κ dx2 for  
small deviations from the minimum. The resultant spring constants are 200,  
260 and 500 pN/nm respectively for the WT, G62S and E173N mutants. Errors in 
the fits are ~10%. This is consistent with both the MD pulling simulations (Fig. 4a) 
and the experimentally observed stiffer response of the E173N mutant to the 
pulling force.
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Extended Data Fig. 5 | Enzymatic activity for each mutant - with data points. Same as shown in Fig. 5a, with individual data points added. Box-plot elements: center 
line, median; box-limits, upper and lower quartiles; whiskers, 1.5x interquartile range or the data range, whichever is lower. The number of measurements for each 
mutant is detailed in Extended Data Table 1.
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Extended Data Fig. 6 | Strain versus distance from binding sites. a - Shortest distance from each residue’s Cα position to GDP versus ADP; mutated residues are 
highlighted, and colored by group. b - Strain versus the minimum distance to either GDP, ADP or Mg.
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Extended Data Fig. 7 | Melting temperature Tm versus enzymatic activity. Enzymatic activity, normalized by wild type (WT*), versus melting temperature (Tm). We 
observe no dependence of activity on stability. Black line represents the fit to a power function. Pearson’s correlation coefficient r = 0.06 p = 0.83 (n = 17). Tm values for 
the individual mutants are detailed in Extended Data Table 1.
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Extended Data Fig. 8 | Enzymatic activity with different strain calculations. 
a - Activity of variants, depicted according to different High-Strain / Control 
groupings according to different strain calculations: PDB, MD, AF3 (Extended 
Data Fig. 1). b, c - Strain - activity regression plots for different strain calculations, 
with (b) and without (c) mutants from the Binding group for PDB (left), MD 

(middle), and AF3 (right) calculations. Pearson’s correlation coefficients and 
p-values are displayed on the graphs. Sample sizes are 25 (B) and 34 (C). The 
number of measurements averaged for each mutant is detailed in Extended 
Data Table 1. All error bars show mean ± standard error. Variants are grouped 
according to the thresholds given in the caption of Extended Data Fig. 1.
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Extended Data Fig. 9 | Nano-rheology with groups chosen using different 
strain calculations. a–c - Nano-rheology amplitude-phase response, as shown 
in Fig. 3e, depicted according to the different High-Strain / Control groupings 

generated by the different strain calculations (see also Extended Data Figs. 1 and 8). 
Groups, sample sizes, and error bar calculations same as in Fig. 3a. Error bars show 
mean ± standard error.
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Extended Data Table 1 | Mutant details and measurements

Table of the 34 mutants used, their respective grouping, properties derived using AF, measure of strain, enzymatic activity, rheology sample sizes, Tm, and sequence conservation (measured 
by entropy, Supplementary Information Fig. 5; low entropy indicates a conserved position). For those in the Binding group, the binding target is also given. Entries are ordered by descending 
enzymatic activity within each group.
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