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{ 2 {ABSTRACTWe derive a simple closed-form expression, relating v12(r) { the mean relative velocity ofpairs of galaxies at �xed separation r { to the two-point correlation function of mass densityuctuations, �(r). We compare our analytic model for v12(r) with N-body simulations, and �ndexcellent agreement in the entire dynamical range probed by the simulations (0:1 <� � <� 1000).Our results can be used to estimate 
0:6�82 directly from redshift-distance surveys, like MarkIII or SFI. Combined with other observational constraints on � � 
0:6�8, such measurementscan be used to break the degeneracy between 
 and �8.Subject headings: Cosmology: theory { observation { peculiar velocities: large scale ows



{ 3 {1. IntroductionRecently, we have suggested a new method to determine pairwise velocities directly from peculiarvelocity surveys, containing galaxy redshifts as well as redshift-independent distances by a simple alternativemethod, which has never been tried before (Ferreira et al. 1998). In this Letter we derive an very accurateapproximate relation between the mean pairwise velocity and the amplitude of clustering, which can beused to extract cosmological parameters by comparing velocities and clustering amplitudes.2. An analytical model for v12(r)Most dynamical estimates of the cosmological density parameter, 
, use the gravitational e�ect ofdepartures from a strictly homogeneous distribution of objects which are considered as test particles. Onesuch dynamical estimator can be constructed by using an equation expressing the conservation of particlepairs in a self-gravitating gas. This equation was derived by Davis & Peebles (1977) from the BBGKYtheory (see also Peebles 1980, hereafter LSS). We will consider a pair of particles at a comoving separationvector ~x and cosmological time t, moving with a mean (pair-weighted) relative velocity v12(x; t) ~x =x. It'smagnitude is related to the two-point correlation function of density uctuations, �(x; t) , by the pairconservation equation (LSS), a3[1 + �(x; a)] @ ��(x; a)@a = � v12(x; a)Hr ; (1)where a(t) is the expansion factor, r = ax is the proper separation, H(a) is the Hubble parameter,while ��(x; a) is the two-point correlation function, averaged over a ball of comoving radius x :��(x; a) = 3x�3 R x0 �(y; a)y2dy : At the present cosmological time a = 1, x = r and H = 100 h�1kms�1Mpc�1 The exact solution of (1) is unknown. However, it can be solved approximately in two limitingcases: on very small scales, where � � 1 (stable clustering regime), and on very large scales, where j�j � 1(linear regime). The stable clustering solution is (LSS, x71) v12(x; a) = �Hr ; as expected for virializedclusters on su�ciently small scales. The linear solution is given by the �rst terms in perturbative expansionsfor v12 and �, which for the correlation is given by � = �(1) + �(2) + : : : ; with �(2) = O [�(1)]2, etc. Thegrowing mode of the linear solution is �(1)(x; a) = �1(x)D(t)2 ; where the spatial part is determined by theinitial spectrum of density uctuations while D(t) is the standard linear growing mode solution (see LSS,x11). Substituting the above expression into the linearized eq. (1), we getv12(x; a) = � 23Hrf(
;�)��(1)(x; a) + O[��(1)]2 ; (2)where f � d lnD=d ln a, and ��(1)(x; a) is �(1) averaged over a ball of comoving radius x. For models with avanishing cosmological constant (� = 0), and for zero curvature models with � 6= 0, f ' 
0:6 (e.g. Peebles1993). Since ��(1) is not a measurable quantity, it is more convenient to use �� instead,v12(x; a) = � 23 Hrf ��(x; a) + O[�� ]2 : (3)The di�erence between the above expression and equation (2) is of order ��2, so they are equivalent at largeseparations, in the � ! 0 limit.There are two obvious ways of improving the accuracy of the linear approximation solution above andextending its validity to smaller separations: (i) { by extending the perturbative series for v12 to higherorders and (ii) { by matching the linear solution with the stable clustering solution. The latter approachwas introduced by Peebles (LSS, x71). It amounts to replacing eq. (3) withv12(x; a) = � 23 Hrf ���(x; a) ; (4)



{ 4 {where ��� = ��(x; a)=[1 + �(x; a)]. In the limit of large separations, when � is small, eq. (4) is identical toeq. (3). However, at small separations the two expressions di�er signi�cantly and the latter agrees with thestable clustering result up to the factor 2f=3, which is of order unity for all meaningful choices of 
 and �,while the linear approximation overestimates jv12j by 2��f=3 � 1.Let us now discuss the perturbative approach. The general technique for deriving �(2) for densityuctuations with Gaussian initial conditions was introduced by Juszkiewicz et al. (1980, 1984) and Vishniac(1983). The second order term in the expansion for � can be written as �(2)(x; a) = D4 �2(x) ; where �2 isa function of x alone, while D(a;
;�) is the usual linear order growing mode solution. For 
 = 1, � = 0,this factorization of the t� and x� dependence is exact (Fry 1984; Juszkiewicz et al. 1984); for 
 6= 1and � 6= 0, it provides a good approximation of the exact (formally non-separable) solution (Bouchet et al.1992, 95; Juszkiewicz et al. 1993). Substituting �(2) = D4 �2 into eq. (1) and solving for v12 we get4v12 = � 23 Hrf � ��(1) � ��(1)�(1) + 2 ��(2) � + O [�(1)]3 : (5)For a scale-free correlation function with a constant logarithmic slope  � � d ln �(1)(x; a)=d lnx, ��(2) isrelated to ��(1) by a simple closed-form expression, ��(2) = �(��(1))2, where � is a constant ( Lokas et al.1996, Scoccimarro & Frieman 1996). For  in the range from 0 to 2, � can be expressed in terms of gammafunctions (Scoccimarro & Frieman 1996). The actual expression would however take half a page, so we willinstead use a �tting formula, valid in the range 0 <  < 2:� = 1:843 � 1:1 � 8:2� 10�410 : (6)Note that the Peebles approximation (4), expanded to second order reproduces all terms in eq. (5) exceptfor the factor of 2 in the term / ��(2). For  � 1:6, ��(2) vanishes, hence the error in the Peebles approximationis of order ��3, not ��2 as one might expect. This is important for practical applications because the slope ofthe observed galaxy correlation function is close to 1.6 over a wide range of separations.We now combine the second-order perturbative solution with the Peebles idea of replacing �� with ���. Weconsider the following ansatz: v12 = � 23 Hrf ��� h 1 + ���� i : (7)The above expression agrees with the perturbative expansion (5) when � ! 0, and it behaves like the stableclustering limit, v12 = �Hr on small scales up to the factor (2=3)f(
)(1 +�), which is of order unity in thereal universe and for the models considered here. In the following section, we compare our approximationwith N-body simulations. 3. N-body simulationsWe analyze high-resolution AP3M simulations of 2563 dark matter particles in periodic boxes ofcomoving volume (240h�1Mpc)3, kindly provided to us by the Virgo collaboration (Jenkins et al. 1998).We consider four variants with linear input spectra inspired by cold dark matter cosmologies: A `standardSCDM model with 
 = 1, Hubble parameter h = 0:5 and normalization �8 = 0:6, a variant of this modelwith more large-scale power (�CDM), and two low-density models with 
 = 0:3 and h = 0:7, one open(OCDM, �8 = 0:85), and one spatially at (�CDM, �8 = 0:9). The simulations have been normalized tothe observed abundance of rich clusters of galaxies (for details, see Jenkins et al. 1998).4Here and for the linear solution, derived earlier, we have used the boundary condition v12 = 0 at x = 0.This condition holds at every order of the expansion.



{ 5 {Since CDM-like models are not scale-free, we �rst need to address the problem of �nding an e�ectiveslope e� . In Fig. 1, we show the logarithmic slope of the linear theory correlation function, and compare itto the slope of the measured non-linear correlation function of the simulations. As expected, both curvesagree at large separations, apart from small di�erences arising from noise in the measurement (we useonly a �nite number of bins and pairs to measure �), and from �nite box-size and cosmic-variance e�ects(Jenkins et al. 1998). However, there is a well-de�ned scale at which the non-linear slope turns away fromthe linear theory prediction, marking the onset of the non-linear regime. We can hope to use perturbationtheory with success at most up to this scale, hence we take e� to be the logarithmic slope of ��(1) at thatscale. Judging from Fig. 1, we identify the points marked with an asterisk as these `turn-away' scales. Theycorrespond to e� = 1:53 (SCDM), e� = 1:46 (�CDM), e� = 1:46 (OCDM), and ef = 1:39 (�CDM),respectively. With the exception of SCDM model, where  becomes larger than 2 and our second orderperturbation theory formula (6) based on simple power law spectra do no longer apply, these values are ingood agreement with e� � �(d ln �=d lnx)j�=1. The advangage of the latter de�nition being that all of thequantities involved are observable.In Figure 2 we compare our N-body measurements of the mean relative velocity v12 with fourapproximate closed-form solutions of the pair conservation equation. We consider two versions of linearapproximation, eq. (2) and eq. (3), the Peebles approximation, (eq. 4), and �nally the ansatz (7) proposedin this paper. For the latter, we use the e�ective slopes given above. Based on these curves, we �nd that thedeviations from linear theory are small at large separations, as they should, but the linear approximationsbreak down completely in the strongly non-linear regime. The range of validity of the Peebles formula isalready considerably wider than that of linear theory. However, our new ansatz provides by the far the bestapproximation. In fact, it covers the entire dynamical range probed by the simulations.4. Velocity biasSo far we considered the dynamics of pairwise motions of dark matter particles. However, for practicalapplications, it is necessary to understand the relation between v12(r) and the relative pairwise velocity ofgalaxies, v12g(r). We de�ne the galaxy clustering bias as the square root of the ratio between the galaxyand the dark matter correlation functions: b(r)2 = �g(r)=�(r). In the simplest analytical toy model for bias,b is a time- and scale-independent constant, and it is usually assumed that b = 1=�8. Moreover, in thismodel, also known as linear biasing, the galaxy density contrast at position ~rA is simply given by �gA = b�A,where �A � �A=h�i � 1 is the mass density uctuation, and A = 1; 2; : : : enumerate galaxy positions. Forthe dark matter particles, the mean relative pairwise velocity is~v12(r) = h(~v1 � ~v2)(1 + �1)(1 + �2)i1 + �(r) ; (8)where ~vA is the peculiar velocity at a point ~rA, r = j~r1 � ~r2j is the separation, and �(r) = h�1�2i. Forthe galaxy pair density-weighted relative velocity, v12g, the matter density �eld in the above expression,�, has to be replaced by �g. In the limit of large separations (� ! 0), the linear biasing model then givesv12g(r) = bv12(r) and since v12 / �82
0:6 one obtains v12g / �8
0:6 (Fisher et al. 1994). On small scales,where 1 + � � � and 1 + � � �, the factors of b cancel and there is no velocity bias. This very unphysicalresult shows the limitations of the linear biasing model. It seems more natural that bias is scale andtime dependent. One can actually show that Newtonian clustering, which we assume to be the relevantmechanism on large scales, actually tends to erase bias (Fry 1984). Also large numerical simulations usingdi�erent biasing models �nd no signi�cant velocity bias (Kau�mann et al. 1998). The same result isobtained from actual data: Splitting the Mark III catalogue into subsamples of elliptical and spiral galaxieshas no e�ect on the velocities. We therefore conclude the velocities are not biased and v12g = v12. On large
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Fig. 1.| Logarithmic slope d ln �=d ln r of the linear theory correlation function (dashed), and the measurednon-linear correlation function (solid) for the four Virgo simulations which we have analyzed. The asterisksmark the e�ective slopes e� used in equations (6) and (7), respectively.
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Fig. 2.| The mean pairwise velocity v12 of the Virgo simulations (solid lines) compared with four closed-formapproximations to solutions of the pair conservation equation: the two versions of the linear approximation,eq. (2), and eq. (3), are plotted as thin and thick dashed curves respectively; the Peebles approximation,eq. (4), is shown as dot-dashed curve; and eq. (7) { the Ansatz proposed in this paper { is drawn asdot-dot-dot-dashed line.



{ 8 {scales we then obtain from the linearized pair conservation, eq. (3),v12(r) = �23Hr
0:6�2(r) : (9)which yields the combination 
0:6�28 from peculiar velocity measurements (Ferreira et al. 1998). If thegalaxy correlation function can be approximated by �g(r) = �(r)=�8, the non-linearity in relation (7)actually removes the degeneracy and allows the determination of 
 and �8 separately in the mildlynon-linear regime. 5. ConclusionsWe have found an analytic formula, (7), relating pairwise velocities of galaxies to an integral of thetwo-point correlation function. Our formula provides an excellent �t to numerical simulations on allscales from the strongly non-linear to the linear regime. Its comparison with observations can provide animportant test of the gravitational instability hypothesis as pairwise velocities clearly separate linear fromnon-linear scales.On very large scales, pairwise velocities measure the combination 
0:6�28 . On intermediate scales (themildly non-linear regime) the degeneracy is removed and 
 and �8 can be measured separately. This di�ersfrom other estimators: The POTENT method (Sigad et al. 1998) and the cluster abundances (Bahcall& Fan, 1998, Eke et al. 1998) are sensitive to 
0:6�8, the super-novae Ia (Riess et al. 1998, Perlmutteret al. 1998) distances measure 
matter � 
�, and the position of the acoustic peaks in the CMB powerspectrum (Doroshkevich et al. 1978) is sensitive to 
matter + 
�. The advantage of our estimator overthe last method is its model independence; and unlike the �rst method it is related to observations by astraight forward procedure (Ferreira et al. 1998). Our formula provides a new, independent and powerfulway to measure 
 and (together, e.g. with cluster abundances) the dark matter uctuation amplitude, �8.Finally, it may be worth investigating why our simple formula allows such an accurate prediction ofthe full curve of v12(r) based on the two-point correlation function of mass uctuations alone. This is dueto the generic shape of the non-linear correlation function in CDM cosmologies. Non-linearities develop akink in the e�ective spectral index (r) which allows an identi�cation of e� as the maximum slope of �(r)realized on scales 1h�1Mpc � r � 10h�1Mpc (see Fig. 1). A good approximation to e� is also (rnl),where rnl is de�ned by �(rnl) = 1. In addition, the fact that second order corrections are relatively weakand that the result is not very sensitive to the de�nition of e� , is related to the slope of the linear powerspectrum being close to  = 1:6.This work was supported by grants from the Polish Government (KBN grants No. 2.P03D.008.13 and2.P03D.004.13), the Tomalla Foundation and by the Poland-US M. Sk lodowska-Curie Fund.
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