
Some Applications of the 3 + 1 Formalism of General RelativityR. Durrer N. Straumann14 December 1987AbstractA variety of basic formulae of general interest are derived in a uniform manner within the 3 + 1 for-malism of GR. These include: (i) The 3 + 1 split of electrodynamics in terms of di�erential forms.(ii) Convenient forms of the Liouville operator for a geodesic spray. (iii) The 3 + 1 split of hydrody-namics. (iv) Applications of (ii) to spherical collaps and inhomogenous ination. (v) Gauge invariantcosmological perturbation theory. Many of the resulting equations are known, but some are new.Numerical solutions for the evolution of cosmological perturbations and inhomogenous inationarymodels are deferred to future publications.1 Introduction2 3 + 1 formalism, generalitiesWe assume that spacetime (M; g) admits a slicing by slices �t, that is, there is a di�eomorphism� : M ! � � I, I � R, such that the manifolds �t = ��1(� � ftg) are spacelike and the curves��1(fxg � I) are timelike. These curves are what we call preferred timelike curves. They de�ne avector �eld @t, which can be decomposed into normal and parallel components relative to the slicing(Figure 1):@t = �n+ � : (2.1)Here n is a unit normal �eld and � is tangent to the slices �t. � is the lapse function and � theshift vector �eld. A coordinate system fxig on � induces natural coordinates on M: ��1(m; t) hascoordinates (t; xi) if m 2 � has coordinates xi. The preferred timelike curves have constant spatialcoordinates. Let us set � = �i@i (@i = @@xi ). From g(n; @i) = 0 and (2.1) we �ndg(@t; @t) = �(�2 � �i�i) ; g(@t; @i) = �i :Thus in "comoving coordinates"g = �(�2 � �i�i)dt2 + 2�idxidt+ gijdxidxj (2.2)or g = ��2dt2 + gij(dxi + �idt)(dxj + �jdt) : (2.3)1



Figure 1: 3 + 1 slicing of spacetime M. it denotes the family of immersions of � into M, i.e.,it(m) = ��1(m; t).This shows that the forms dt and dxi + �idt are orthogonal.The tangent and cotangent spaces of M have two natural decompositions. One is de�ned by theslicingTp(M) = Hp � Vp ; (2.4)where the "horizontal" space Hp consists of the vectors tangent to the slice through p and the "vertical"subspace is the 1-dimensional space spanned by (@t)p (preferred direction). The dual decompositionof 2.4 isT �p (M) = H�p � V �p ; (2.5)with H�p = f! 2 T �p (M) : h!; @ti = 0g and V �p = f! 2 T �p (M) : h!;Hpi = 0g, which is spanned by(dt)p.The metric de�nes - through the normal �eld n - yet another decompositionTp(M) = Hp �H?p ; (2.6)where H?p is spanned by n, and duallyT �p (M) = (V �p )? � V �p ; (2.7)Equation (2.1) reects the fact that in general the two directions Vp and H?p do not agree. Dually thisimplies that H�P and (V �p )? do not coincide. We have for !? 2 (V �p )? the following decompositionrelative to (2.5)!? = hor(!?) + h!?;�idt : (2.8)2



The decompositions (2.4) to (2.7) induce two types of decompositions of arbitrary tensor �elds onM.We call a tensor �eld horizontal if it vanishes, whenever at least one argument is @t or dt. Relative toa comoving coordinate system such a tensor has the formS = Si1���irj1���js@i1 
 � � � 
 @ir 
 dxj1 
 � � � 
 dxjs :This shows that horizontal tensor �elds can naturally be identi�ed with families of tensor �elds on �t,or with time-dependent tensor �elds on � ("absolute" space). We shall denote them with boldfaceletters (except @i and dxi).As an often occuring example of a decomposition, we consider a horizontal p-form ! and its exteriorderivative d!. We haved! = d! + dt ^ @t! ;where d! is again horizontal. In comoving coordinates d involves only the dxi (d = dxi ^ @i) and@t! is the partial time derivative. d! and @t! are horizontal and can be interpreted as t-dependentforms on�. In this interpretation d! is just the exterior derivative of !. Similarly, other di�erentialoperators (covariant derivative, Lie derivative, etc) can be decomposed. We use two types of bases ofvector �elds and 1-forms which are adapted to (2.4) and (2.5), respectively (2.6) and (2.7). Obviously,the dual pair f@�g and fdx�g for comoving coordinates fx�g are adapted to (2.4) and (2.5). On theother hand, equations (2.1) and (2.3) show that the dual pairf@i; ng and fdxi + �idt; �dtg (2.9)is adapted to (2.6) and (2.7).Instead of f@ig we shall also use an orthonormal horizontal basis feig (g(ei; ej) = �ij), togetherwith the dual basis f#ig instead of fdxig. Then we have the following two dual pairs, which will beconstantly used:fei; @tg ; f#i; dtg (adapted to slicing), (2.10)fei; e0 = ng f��g (adapted to (2.6) and (2.7)) , (2.11)where the orthonormal tetrad f��g is given by�0 = �dt ; �i = #i + �idt ; (2.12)with �i de�ned by � = �iei . We note also the relatione0 = n = 1�(@t � �iei) :3 3 + 1 split of electrodynamicsAs a �rst example of a 3 + 1 split of physical laws we rewrite now Maxwell's equations on (M; g) interms of horizontal di�erential forms for electric and magnetic �elds. The resulting equations havebeen widely used in black-hole electrodynamics cite... . The following derivation is, however, valid3



for any slicing of an arbitrary spacetime. Using the general setup of section 2, we �rst decompose theMaxwell form F as in special relativity with respect to the orthonormal tetrad (2.11):F = E ^ �0 +B ;E = Ei�i ; B = 12Bij�i ^ �j : (3.1)Next we use (2.12) for a further decomposition into horizontal and vertical contributions:E = Ei(#i + �idt) = E + i�Edt ; (3.2)whereE = Ei#i (3.3)is the horizontal electric 1-form. Similarly, we haveB = B + dt ^ i�B (3.4)with B = 12Bij#i ^ #j : (3.5)We obtain thus the following decomposition of F into horizontal and vertical componentsF = B + (�E � i�B) ^ dt : (3.6)The homogenous Maxwell equation dF = 0 givesdB + dt ^ @tB + d(�E) ^ dt� d(i�B) ^ dt = 0and thusdB = 0 ; d(�E) + @tB = d(i�B) : (3.7)Here we have everywhere horizontal forms. We reemphasize that they can be interpreted as time-dependent forms on �. Using the Cartan formula for the Lie derivative L� = di� + i�d, they canalso be written asdB = 0 ; d(�E) + @tB = L�B : (3.8)Next we consider the inhomogenous Maxwell equation. From (3.6) we �nd for the Hodge dual �F :�F = D � (�H+ i�D) ^ dt (3.9)with H = �B ; E = �D (3.10)(� denotes the 3-dimensional Hodge dual). Now we also decompose the current 3-form S in d�F = 4�S.Its dual 1-form J = �S can �rst be decomposed as in special relativityJ = �el�0 + jk�k ; (3.11)4



where �el is the charge density and jk the electric current relative to the tetrad fekg. It is natural tointroduce the horizontal forms� = �el#1 ^ #2 ^ #3 ; j = jk#k ; J = �j : (3.12)Then one �nds with (2.12) easilyS = �+ (i��� �J ) ^ dt : (3.13)With this and (3.9) the inhomogenous Maxwell equation can be written asd � F = dD + dt ^ @tD � d(�H) ^ dt� d(i�D) ^ dt= 4��+ 4�(i��� �J ) ^ dt :From this we �nd the following 3 + 1 split of the inhomogenous Maxwell equationdD = 4�� ; d(�H) = (@t �L�)D + 4��J : (3.14)From (3.14) we obtain immediately the local law of charge conservation in the form(@t �L�)�+ d(�J ) = 0 : (3.15)We write also the Hodge-dual of this equation. Using equation (A.9) of Appendix A, i.e.,@tvol(g) = (div� � �trK)vol(g) ; (3.16)where K denotes the second fundamental form of the slices, we obtain(@t �L�)�el +r�(��J )� ��eltr(K) = 0 : (3.17)4 3 + 1 split of the Liouville operator for a geodesic sprayIn this section we derive a useful form of the Liouville operator for a geodesic spray for an arbitrary3 + 1 split. In later sections this will be worked out for spherical collaps and in a gauge invariantmanner in cosmological perturbation theory.We start with some generalities. The metric g of the spacetime manifold M de�nes a naturaldi�eomorphism between the tangent bundle TM and the cotangent bundle T �M, which can beused to pull back the natural symplectic form on T �M. In terms of natural bundle coordinates thedi�eomorphism is given by (x�; p�) 7! (x�; p� = g��p�) and those the induced symplectic 2-form onTM is! = dx� ^ d(g��p�) : (4.1)The Lagrangian L = 12g��p�p� on TM de�nes a Hamiltonian vector �eld Xg on TM, determined byiXg! = dL :In terms of natural bundle coordinates the geodesic spray Xg is given byXg = (p�;�����p�p�) ; (4.2)5



where ���� are the Christo�el symbols for (M; g). (For further details see [ ].)The one-particle phase space for particles of mass m, i.e., the subbundle fv 2 TM : g(v; v) =�m2g, is invariant under the geodesic ow and we denote the restriction of Xg to the one-particlephase space also by Xg.Let f be a distribution function on the one-particle phase space. The Vlasov and Boltzmannequations for f involve the Lie derivative LXgf . If we consider the spatial components pi, relativeto an orthonormal tetrad fe�g as independent variables of f , then the Liouville operator LXg can bewritten asLXgf = p�e�(f)� !i�(p)p� @f@pi ; (4.3)where !�� are the connection forms relative to the dual basis f��g.We derive now a more explicit expression of (4.3) for an arbitrary 3+1 slicing. In order to do this,we need the connection forms relative to the basis f��g introduced in section 2. These are derived indetail in Appendix A. They can be expressed in terms of �;�;!ij; cij , where !ij are the connectionforms of the slices �t belonging to the induced metric g and cij is de�ned by@t#i = cij#j : (4.4)Using equations (A.5), (A.3), (A.6) and (A.2) we �nd (p = piei , E = p0 = pp2 +m2):!i�(p)p� @@pi = !i0(p)p0 @@pi + !ij(p)pj @@pi= [!i0(e0)p0 + !i0(p)]p0 @@pi + [!ij(e0)p0 + !ij(p)]pj @@pi= E2��1�ji @@pi �KijEpj @@pi + !ij(p)pj @@pi + !ij(e0)Epj @@pi= E2��1�ji @@pi + !ij(p� ��1�E)pj @@pi � E� (� jij � c ij )pj @@pi :Here Kij are the components of the second fundamental form of �t, for which we also use equation(A.7) of Appendix A. (j denotes the covariant derivative on (�t;gt).This leads to the following useful 3 + 1 split of the Liouville operator:LXgf = [E� @t +Lp�E�� ]f � [!ij(p� E��)pj +E2(ln�)ji �EHijpj ] @f@pi ; (4.5)where we have introduced the horizontal tensor �eldHij = ��1(�ij � cij) : (4.6)5 3+1 Split of hydrodynamics. Equation of motion for a test particleCalculations similar to those in the last section lead quite rapidly to a 3 + 1 split of hydrodynamics.The resulting equations have been used, for instance, in black-hole physics [..]. We shall apply themin section 8 on cosmological perturbation theory. 6



Let us decompose the energy-momentum tensor into horizontal and vertical components:T = �e0 
 e0 + e0 
 S + S 
 e0 + T : (5.1)For an ideal uid withT = (�+ p)u
 u+ pg# (5.2)we �nd, setting as in special relativity u = (e0 + v),  = (1� v2)�1=2,� = 2(�+ pv2) ; (5.3)S = (�+ p)2v ; (5.4)T = (�+ p)2v 
 v + pg# : (5.5)Now we compute r � T for an arbitrary T . Fromre0(�e0 
 e0) = Le0(�)e0 
 e0 + �!i0(e0)ei 
 e0 + �e0 
 !i0(e0)eiand rek(�e0 
 e0) = Lek(�)e0 
 e0 + �!i0(ek)ei 
 e0 + �e0 
 !i0(ek)eiwe obtainr � (�e0 
 e0) = Le0(�)e0 + �!i0(e0)ei + �!i0(ei)e0 :In the same manner one �nds the other contributions with the result:(r � T )0 = Le0(�) + �!i0(ei) + !0j(e0)Sj + Skjk + !0j(e0)Sj + !0j(ei)T ijInserting the expressions for the connection forms given in Appendix A, leads to the following formof the energy conservation:1� (@t �L�)� = �r � S � 2grad(ln�) � S+ �tr(K) + tr(K � T ) : (5.6)Similarely one �nds(r � T )i = !i0(e0)�+ Le0(Si) + [!i0(ei) + !ij(e0)]Sj + !j0(ej)Si + !0j(e0)T ji + T ijjjand from this we obtain the momentum conservation1� (@t �L�)S = �grad(ln�)�+ 2K � S + tr(K)S � ��1r�(�T ) : (5.7)This forms of the conservation laws [..] will turn out to be very convenient in our treatment ofcosmological perturbation theory.Some of the terms on the right hand side of (5.7) appear also in the equation of motion for acharged test particle. Indeed, the horizontal component of rup ; p = mu; is similarely found to begiven by�1(rup)hor = 1�(@t �L�)p+rvp+mgrad(ln�)� 2K � p ; (5.8)7



where p is the horizontal part of p.In order to work out the Lorentz equationrup = eF# � u ; (5.9)we use(F# � u)[ = �iuF ; u = (e0 + v) = �(@t + �v � �)and (3.6), giving usiuF = ��(�E � i�B) + ivB � �i�B + terms prop. to dt :Thus �(iuF )hor = (E � ivB) ; (5.10)and hence(F# � u)hor = (E + v � B) ; (5.11)where E and B are the electric and magnetic vector ields belonging to E and B (via the metric g).Using (5.8) and (5.11) in (5.9) gives us the equation of motion in the form1� (@t �L�)p = �mgrad(ln�)�rup+ 2K � p+ e(E + v � B) (5.12)which shows some similarity of electromagnetic and gravitational "forces" (relative to "absolute"space).Let us �nally write the local baryon number conservation lawr � (�0u) = 0 (5.13)in a 3 + 1 splitting. Here �0 is the rest mass density of baryons and u the four-velocity of baryonnumber. With u = (e0 + v) and ~� := �0, we �nd as above(@t �L�)~� = �r�(�~�v) + �~�tr(K) : (5.14)Note the similarity of this equation with (3.17).6 3 + 1 split of Einsteins �eld equationsFor the sake of completeness and for later applications we discuss also the often used 3 + 1 split ofthe gravitational �eld equations. The calculation of the curvature forms relative to the basis (2.12)is presented in Appendix A. The reader will note that Cartan's calculus leads rather quickly to therequired results.We use the notation introduced in the previous section (5.1) for the various projections of theenergy-momentum tensor T into normal and horizontal components:T = �e0 
 e0 + e0 
 S + S 
 e0 + T : (6.1)8



From equations (A.14), (A.16) and (A.17) of Appendix A for the Einstein and Ricci tensors, Einsteins�eld equations can be written in the form (recall that boldface letters always refer to the slices �t):R+ (trK)2 � trK2 = 2� ; (6.2)r �K �r�tr(K) = S ; (6.3)@tK = L�K �Hess(�) + �[Ric(g)� 2K �K + (trK)K � T � 1=2g(�� trT )] : (6.4)In addition to (6.2), (6.3) and (6.4) we have the following relation (Appendix A, equation (A.8))between g and the second fundamental form K:@tg = �2�K +L�g : (6.5)Note that this decomposition into constraint equations (6.2), (6.3) and dynamical equations (6.4),(6.5) involves only horizontal quantities and those provides the 3 + 1 split of the gravitational �eldequations.Later we shall also use the following consequence of (6.4) and (6.2)@ttr(K) = �4�+L�tr(K) + �[tr(K2) + 1=2(� + trT )] : (6.6)Note that @t and tr do not commute. With (6.5) one shows easilytr(@tK�L�K) = @ttr(K)�L�tr(K) + 2�tr(K2) : (6.7)7 Applications to spherically symmetric spacetimesWe specialize now the previous results to spherically symmetric spacetimes. This will lead to usefulexpressions for relativistic collapse problems or inhomogenous inationary models.The shift vector � has only a radial component: � = �@r and the metric (2.2) can be put into theform g = �(�2 �A2�2)dt2 + 2A2�drdt+A2dr2 +B2r2(d�2 + sin2 �d�2) ; (7.1)where A and B are two functions of r and t.7.1 Field equations for maximal slicingFor a spherically symmetric con�guration the gravitational �eld is not dynamical (no radiation).Therefore, it must be possible to �nd a gauge in which the metric variables aredetermined instantanously in terms of the matter variables. Such a gauge can be constructed asfollows.First we can arrange � such that A = B, which means that the metric g on the slices �t isconformally at. Next we restrict � by imposing the "maximal slicing" condition [..] trK=0 forall times. It can be shown that this is indeed possible, because the dynamical equations guaranteethat this condition propagates. An obvious advantage can be seen from (6.6) which then becomes atime-independent equation:4� = �[tr(K2) + 1=2(�+ trT )] : (7.2)9



Now we work out the expression (A.7) of Appendix A for the second fundamental form relative to anorthonormal basis, which we repeat here:Kij = 12� (�ijj + �jji � cij � cji) : (7.3)In the present situation the basis f#ig of section 2 is#1 = Adr ; #2 = Ard� ; #3 = Ar sin �d� : (7.4)Those the coe�cients cij in (4.4) arecij = _AA�ij ( _A = @A@t ) : (7.5)The connection forms !ij of the slices �t are readily found to be (a prime denotes @@r ):!21 = �!12 = (rA)0ra2 #2 ; !31 = �!13 = (rA)0ra2 #3 : (7.6)From this one �nds for�ijj = ei(�j)� !kj(ei)�kthe expressions�1j1 = (A�)0A ; �2j2 = �3j3 = (rA)0rA2 A� ; �ijj = 0 for i 6= j : (7.7)Thus trK = 0 implies(3=A)(A0� � _A) + 2�=r + �0 = 0 : (7.8)We note alsoK22 = K33 = �12K11 ; tr(K2) = 32(K11 )2 : (7.9)Furthermore we �nd�K11 = (A�)0A � _AA= 23(�0 � �=r) ; (7.10)and thus,� = �32r Z 1r �K11r dr : (7.11)Next, we work out the constraint equations. First we need the Riemann scalar R for the spatial slices.Since these are conformally at one can write down the result immediatelyR = �8r�2A�5=2@r(r2@rA1=2) : (7.12)In addition, we need the covariant divergence of K ji (with respect to g). The absolute exteriordi�erential [..] isDKij = dKij + !ilK lj + !ljKil : 10



inserting the connection forms (7.6) gives in particularrjKj1 = r�2a�4@r(r3A3K11) : (7.13)Now we write down the constraint equations (6.2) and (6.3) :r�2@r(r2@rA1=2) = 1=4A�5=2[�+ 3=4(K11)2] ; (7.14)r�3A�4@r(r3A3K11) = S1 : (7.15)The explicit form of (7.2) becomesA�3r�2@r(r2A@r�) = �[1=2(� + trT ) + 3=2(K11)2] : (7.16)The last three equations together with (7.10) provide four equations for the functions �; �;A;K11 whichcontain only derivatives with respect to r! Thus the metric coe�cients are instantanously determinedby the source terms �; S1 and trT and we have thus found the gauge we were looking for. (See also[..].)For our choice of gauge (A = B , trK = 0) numerical simulations simplify very much. Numericalstudies are underway for spherically symmetric inhomogenous inationary models, where the sourceterms are given in terms of the energy momentum tensor of a Higgs �eld. The self-consistent set ofequations contains then only one partial di�erential equation. For the LagrangianLHiggs = 1=2(d�; d�) � V (�) (7.17)the source terms are� = 1=2[(��1 _�� ���0)2 +A�2(�0)2] + V (�) ;S1 = �A�1�0(��1 _�� ��0) ;trT = 32��2( _�� ��0)2 � 12A2 (�0)2 � 3V (�) :The �eld equation2g�� @V@� = 0reads explicitely���1(��1 _�� ���0)� + ���1(��1 _�� ���0)0+A�1(A�1�0)0 + a�1((�A)�1�0"2 (rA)0rA2 )�0 � @V@� = 0 : (7.18)One of the purposes of a numerical investigation of these coupled equations is to decide wether thechaotic scenario of ination [..] works for "generic" initial conditions.
11



7.2 Explicit form of the Liouville operatorIt is now very easy to work out the general formula (4.5) for the Liouville operator. Let us parametrizethe four momentum p of a massless particle asp = (E;E�;Eq1� �2 cos ��;Eq1� �2 sin ��) : (7.19)The distribution function f is considered as function of r; t; E and �. If we insert the expressions (7.6)in (4.5), we obtain in a �rst stepLXgf = E� @tf +A�1(E�� E�A�)@rf+ (rA)0rA2 [(p2)2 + (p3)2] @f@p1�[ (rA)0rA2 p1p2 + 1rA cot �(p3)2] @f@p2�[ (rA)0rA2 p1p3 + 1rA cot �p2p3] @f@p3�EA�1��1�0 @f@p1 +E��1[(�1j1 � c1j1)p1 @@p1 + � � �]f : (7.20)
From 0 = @f@ �� = � @f@p2 p3 + @f@p3 p2we see that the terms proportional to cot � in (7.20) cancel. Furthermore, the chain rule gives imme-diatelyE(1 � �2)@f@� = [(p2)2 + (p3)2] @f@p1 � p1p2 @f@p2 � p1p3 @f@p3 ;E @f@E = p1 @f@p1 + p2 @f@p2 + p3 @f@p3 ;and thus,E(1 � �2)@f@� + �E2 @f@E = E2 @f@p1 :This enables us to collect terms in (7.20) as follows:LXgf = E��1@tf +A�1(E��E��1A�)@rf + (rA)0rA2 E(1 � �2)@f@��A�1��1�0[E(1 � �2) @@� + �E2 @@E ]fE��1[(�1j1 � c11)p1 @@p1 + � � �]f :In the last row we insert now (7.7) and (7.5) to obtain(�1j1 � c11)p1 @@p1 + � � � = (A0A � + r�1� � _AA)Pi pi @f@pi+(�0 � r�1�)p1 @f@p1= (A0A � + r�1� � _AA)E @f@E + (�0 � r�1�)�[(1� �2 @f@� + �E @f@E ] :12



Finally we use the maximal slicing condition (7.8) and obtain after some rearrangementsE�1LXgf = ��1@tf +A�1(�� ��1A�)@rf+E @f@E [��A�1 �0� + ��1(r�1� � �0)(1=3 � �2)]+(1� �2)@f@� [(1� ��1��A)(1=Ar) � ��1( �A )0 + ���0] : (7.21)This equation can for example, be used for the Boltzmann equation describing the neutrino transportin a typ II supernova...?A similar calculation leads to an explicit expression for LXgf in the following gauge, which is sofar used mostly [..] in numerical simulations of supernovae explosionsg = �e2�dt2 + e2�dr2 + r2d
 : (7.22)One easily �nds the result given in [..].8 Gauge invariant cosmological perturbation theoryThe blackbody nature and the astonishing isotropy of the microwave background radiation providestrong evidence that the early universe can be described in good approximation by a Friedman model.Initial deviations from homogeneity and isotropy must have been very small (< 3 � 10�5, [10]) indeed.Thus there was a long period during which deviations from Friedman models can be studied pertur-batively, i.e., by linearizing the Einstein and matter equations around the solutions of the idealizedFriedman models.Until recently this perturbation analysis was always carried out in a coordinate dependent manner[5], [8], by �xing the gauge freedom in some convenient way (synchronous gauge, ect). This leads oftento misinterpretations of the growth of density uctuations - especially on super-horizon scales - andgave rise to incorrect conclusions in the literature.In recent years, Bardeen [4] and others [7] have developed a manifestly gauge invariant formal-ism, which eliminates ambiguities and problems of interpretation. In this section we give simpli�edderivations of the main equations of this formalism by using the tools developed in this paper. Wealso present some new results. These include gauge invariant equations for the entropy productionrate and gauge invariant perturbation equations for collisionless particles (neutrinos, etc). One of us(R.D.) has translated the resulting system of perturbation equations into computer programs. Theresult of this numerical investigation will be published in an accompagning paper [3].For the unperturbed Friedman model with metric g(0) we have, if t denotes the conformal time,�(0) = a(t) ; �(0) = 0 ; g(0) = a2(t) : (8.1)Here a(t) is the scale factor and  is a metric on � with constant curvature K = 0;�1. In addition,we have matter variables for the various components (baryons, radiation, neutrinos, axions, strings,etc).In the following we linearize all the basic equations around the unperturbed solution in the usualmanner. For the small-amplitude departures in g = g(0) + �g, etc, we have in the linearized apprixi-mation the gauge freedom�g 7! �g + L�g(0) , etc , (8.2)13



where � is any vector �eld. This transformation changes in particular the lapse function and the shiftvector �eld.8.1 Harmonic analysisThe unperturbed spaces (�;) of constant curvature K = 0;�1 are highly symmetric and thereforeinvite us to carry out a harmonic analysis of the perturbations. This is achieved in to steps.a) Decomposition into scalar, vector and tensor contributions:This decomposition of the quantities ��; ��; �g; �K ; etc, proceeds as follows. Consider �rst theset X (�) of vector �elds on �. This module can be decomposed as follows into "scalar" and "vector"contributionsX (�) = X S �X V ;where X S consists of all gradients and X V of all vector �elds with vanishing divergence. (Moregenerally, we have for the p-forms �p on � the decomposition �p = d�p�1�Ker�j�p, where � denotesthe codi�erential.) Similarely, we can decompose a symmetric tensor t 2 S(�) (= set of symmetrictensor �elds) into "scalar", "vector" and "tensor" contributions:t = tS + tV + tT ;where tSij = tr(t)ij + (rirj � 1=3�ij4)f ;tVij = (riXj +rjXi) ; with X 2 X V (�)and tr(tT ) = 0 ; r � tT = 0 : (8.3)
One can show [7] that these direct decompositions are respected by the covariant derivatives. Forexample, if X 2 X (�) ; X = X� + grad(f) ; r �X� = 0, then one �nds easily4X = 4X� + grad(4f + 2Kf)and r � (4X�) = 0. (A group theoretical discussion will be given in [2].)This observation implies a decoupling of scalar, vector and tensor modes. Only the scalar modesare interesting for the problems of galaxy formation, because only these contribute to density pertur-bations. In what follows we consider only the scalar modes. (For the other modes we refer to [7] and[2].)b) Decomposition into spherical harmonics:In a second step we decompose the scalar components of all functions, vector �elds and symmetrictensor �elds on � in terms of spherical harmonics on (�;) and their covariant derivatives. Thespherical harmonics Y are eigenfunctions of the Laplace-Beltrami operator on (�;)(4+ k2)Y = 0 : (8.4)14



The possible eigenvalues depend on the curvature K [7]. Indices, referring to the various modes, arealways suppressed. The scalar contributions of the vector and symmetric tensor �elds can be expandedin terms ofYi := �k�1riY ;Yij := k�2rirjY + 1=3ijY and Y ij : (8.5)The following properties are easily derived by computing covariant derivatives (using the Riemanntensor for (�;)):riY i = kY ;4Yi = �(k2 � 2K)Yi ;rjYi = �k(Yij � 1=3ijY ) ;rjYij = (2=3)k�1(k2 � 3K)Yi ;rjrmYim = (2=3)(3K � k2)(Yij � (1=3)ijY ) ;4Yij = �(k2 � 6K)Yij ;rmYij �rjYim = (k=3)(1 � (3K=k2))(imYj � ijYm) :
(8.6)

Clearly, di�erent modes in a harmonic expansion do not couple in the linearized aproximation. Henceit su�ces to consider a generic mode.For the metric perturbations ��; �� and �g we have, using the same notations as in [7],�� = aA(t)Y ;�� = �B(t)Y i@i and�g = a2[2HL(t)ijY + 2HT (t)Yij ]dxidxj : (8.7)Gauge transformations (8.2) a�ect scalar modes only for vector �elds of the "scalar" type:� = T (t)Y @t + L(t)Y i@i : (8.8)UsingL�dt = d(L�t) = d(TY ) = _TY dt� kTYidxi ; etc (8.9)one �nds the transformation lawsA ! A+ _T + (_a=a)T ;B ! B � _L� kT ;HL ! HL + (k=3)L + (_a=a)T ;HT ! HT � kL : (8.10)
15



Next we consider perturbations of the energy-momentum tensor T . The 4-velocity u is de�ned to bethe normalized timelike eigenvector of TTu = ��u ; g(u; u) = �1 : (8.11)We decompose T as followsT = �u
 u+ � ; (8.12)where � is orthogonal to u ,���u� = 0 : (8.13)For the unperturbed model we haveu(0) = a�1@t ; � (0)0� = 0 ; � (0)ij = p(0)�ij : (8.14)For a general mode the perturbations have the form�� = �(0)�Y ; (8.15)�u = a�1(�AY @t + vY i@i) : (8.16)The coe�cient in the �rst term for �u is �xed by the normalisation condition in (8.11). For the spatialcomponents of the stress tensor � we set�� ij = p(0)[�LY �ij + �TY ij] : (8.17)The other components are �xed by the condition (8.13):�00 = 0 ; � i0 = �p(0)vY i ; �0j = p(0)(v �B)Yj : (8.18)Under a gauge transformation de�ned by the vector �eld (8.8) we �nd� ! � � 3(1 + w)( _a=a)T ;v ! v � _L ;�L ! �L � 3(c2s=w)(1 + w)( _a=a)T ;�T ! �T ; (8.19)
where w = p(0)=�(0) and c2s = _p(0)= _�(0) is the velocity of sound. In deriving the substitution rules for� and �L use was made of the unperturbed equation_�(0) = ��(0)3(1 + w)( _a=a) : (8.20)

16



8.2 calculation of geometrical quantitiesFor scalar perturbations the 4-velocity �eld u is hypersurface orthogonal. Indeed, it can ealily be seenthat u is proportional to the gradient of the functiontm = t+ k�1(v �B)Y : (8.21)This function de�nes another foliation of spacetime, which plays a certain role in what follows. Wecompute �rst the second fundamental forms for the two families of slices ft = constg and ftm = constg.This is conveniently done with use of (6.5). For the original slicing ft = constg we obtain in zerothorderK(0) = � _aijdxidxj ; tr(K(0)) = �3 _a=a2 : (8.22)Using (8.7) and (8.6) one �nds in linearized approximationfK = �ak�gYijdxidxj ;tr(K) = �3 _a=a2(1 + �gY ) ; (8.23)where fK is the trace-free part of K and�g = �A+ 1=3( _a=a)�1kB + (_a=a)�1 _HL ; (8.24)�g = k�1 _HT �B : (8.25)Similarely we calculate the second fundamental form K(m) of the slices ftm = constg. It is easy tosee that one obtains the same expression as in (8.23), but with B replaced by v in (8.24) and (8.25).Thus fK(m) = �ak�mYijdxidxj ;tr(K(m)) = �3 _a=a2(1 + �mY ) ; (8.26)with �m = �A+ 1=3( _a=a)�1kv + (_a=a)�1 _HL ; (8.27)�m = k�1 _HT � v : (8.28)We need also the scalar Riemann curvature R of the slices ft =constg. This is derived in Appendix Bwith the result (B.10)�R = 4a�2(k2 � 3K)RY ; (8.29)whereR = HL + 1=3HT : (8.30)
17



8.3 Gauge invariant amplitudesFrom the transformation laws already written down we deduceR ! R+ (_a=a)T ;�g ! �g � ( _a=a)�1[( _a=a)2 + (k2=3) � @t( _a=a)]T ;�g ! �g + kT : (8.31)Therefore, the following combinations, [7], are gauge invariant:A = A� a�1(a2_a R)� ; (8.32)B = k( _a=a)�1R� �g ; (8.33)� = �T ; (8.34)� = �L � (c2s=w)� ; (8.35)V = ��m = v � k�1 _HT = v �B � �g ; (8.36)�s = � + n(1 + w)(a0=a)k�1�g : (8.37)Bardeen originally [4] introduced also the following combinations, which we have used in our numericalsimulations [3]:� = k�1(a0=a)B = R� k�1( _a=a)�g ; (8.38)	 = A+ (ka)�1(aB)� = A� (ka)�1(a�g)� ; (8.39)�g = � + 3(1 + w)R (8.40)= �s + 3(1 + w)� : (8.41)Another gauge invariant quantity is the acceleration of ua = ruu = �kAmY i@i ; (8.42)with Am = A� (ka)�1[a(v �B)]� = 	� (ka)�1(aV )� : (8.43)This result can be obtained by noting that for an arbitrary slicing one has (see Appendix A, (A.5))re0e0 = !i0(e0)ei = ��1�jiei :If this is used for the slicing ftm = constg one �nds the given result.Summarising, we have shown that each scalar mode is described by 2 gauge invariant metricamplitudes A, B (or �, 	) and four gauge invariant matter amplitudes that describe the source termsin Einstein's �eld equation. These are �g (density contrast), V (peculiar velocity), � (anisitropicstress) and �, which describes the entropy production, as will be shown in the next subsection.18



8.4 Perturbation Equations8.4.1 Gravitational �eld equationsThe perturbed �eld equations can be directly obtained from the general formulae (6.2) to (6.5).constraint equations: By compairing (8.14) and (8.16) with n = ��1(@t � �) one sees that uis equal to n up to a �rst order horizontal contribution. Hence, we obtain to �rst order from ourexpression for T in subsection 8.1 :T (n; n) = � = �(0)(1 + �Y ) ; T (n; @i) = �a(�(0) + p(0))(v �B)Yi :Indicating as before the traceless part of a tensor by a twidle, we have(trK)2 � tr(K2) = 2=3(trK)2 � tr(fK2) :Equation (8.23) shows that eK is of �rst order, and we �nd for the �rst order term[(trK)2 � tr(K2)](1) = 12( _aa2 )2�gY :Using also (8.29) we can write down the constraint equation (6.2)6( _a=a)2�g + 2a�2(k2 � 3K)R = 8�G�(0)� :With (8.40) and using the zeroth order relation4�G�(0)(1 + w) = a�2[( _a=a)2 � ( _a=a)� +K] (8.44)we can write this as4�G�(0)�g = 3( _a=a)2�g + [k2 + 3(( _a=a)2 � ( _a=a)�)]R :Expressing �nally the right hand side in terms of gauge invariant quantities, one �nds4�Ga2�(0)�g = �3( _a=a)2A+ k( _a=a)B : (8.45)In order to write down (6.3), we note that(trK)ji �Kjijj = 2=3(trK)ji � fKjijj= 2k( _a=a2)�gYi + 2=3a�1(k2 � 3K)�gYi :Thus (6.3) reads�8�G�(0)(1 + w)(v �B) = 2k( _a=a2)�g + 2=3a�1(k2 � 3K)�gor, with (8.36) and (8.44)�4�Ga2�(0)(1 + w)V = k( _a=a)�g + [3�1k2 + (_a=a)2 � ( _a=a)�]�g :Expressing again the right hand side in terms of A and B leads to4�G�(0)(1 + w)V = k( _a=a)A+ _a=a)2 � ( _a=a)�]B : (8.46)With the two constraint equations (8.45) and (8.46) one can express � algebraically in terms of V and�g : � = 4�Ga2�(0)k2 � 3K + 12�G(1 + w)a2�(0) (�g + 3(1 + w)( _a=a)k�1V ) : (8.47)19



dynamical equations: In order to work out the content of the dynamical equation (6.4), it isconvenient to start from the tracefree part of this equation. With help of (6.7 we obtain@tfK = L�fK � gHess�+ �[gRic � 2K � eK+ eKtr(K)� eT] : (8.48)Since eK is of �rst order, L� eK is of second order. If we use also gRic = k2RYij , (see Appendix B,equation (B.11) ) we �nd immediately8�Ga2p(0)� = k2[�(A� (ka)�1(a�g)�) + (( _a=a)k�1�g �R] ;or with(8.38) and (8.39)�8�Ga2k�2p(0)� = �+	 : (8.49)This enables us to express also 	 algebraically in terms of matter variables.8.4.2 Energy-momentum conservationThis "conservation" laws are of course a consequence of the �eld equation. In order to work them outwe start from the 3+1 split of r � T = 0 carried out in section 5.To �rst order the quantities in (5.6) and (5.7) are� = �(0)(1 + �Y ) ;S = (�(0) + p(0))vi@i ; vi = a�1(v �B)Y i ;T = a�2p(0)[(1 + �LY )ij + �TY ij ]@i 
 @j ;� = a(1 +AY ) ; � = �BY i@i :Inserting this in (5.6) and using the zeroth order relation_�(0) = �3 _a=a(�(0) + p(0)) ;gives (�(0) + p(0))3 _a=a(�m +A) + �(0) _� � p(0)3 _a=a(� � �L) = 0 :This can be expressed in terms of gauge invariant quantities. Making also use of the unperturbedrelation_w = �3(c2s �w)(1 + w) _a=a ; (8.50)we �nd_�g + 3(c2s � w)( _a=a)�g + (1 + w)kV + 3w( _a=a)� = 0 : (8.51)Similarely, equation (5.7) gives after a short calculation_V + (_a=a)(1 � 3c2s)V = k(	� 3c2s�) + c2s1 + wk�g + kw1 + w (�� 2=3(1 � 3Kk2 )�) : (8.52)If we substitute the algebraic expressions (8.47), (8.49) for � and 	 in terms of the matter variables�g ; V ; � and � into the last two equations, we obtain dynamical equations for �g and V , withsource terms determined by � and �. 20



8.4.3 Entropy production and heat uxIn the following discussion use is made of Appendix B in [9], where basic aspects of general relativisticthermodynamics are developed. Adopting the �tting procedure of Eckart for small departures fromequilibrium, one obtains for the energy-momentum tensor (see equation (B.12) of [9]):T �� = (�+ peq)U�U� + peqg�� + �T �� ; (8.53)where peq is the pressure of the equilibrium state which is �tted to the actual state, and �T �� is of�rst order and satis�es�T ��U�U� = 0 :We recall that U� is the four-velocity of the particle transport, i.e., the particle current N� is givenby N� = nU�.On the other hand, the matter four-velocity u� is de�ned by (8.11) and T �� can also be writtenin the form given by (8.12):T �� = (�+ p)u�u� + pg�� +��� ; (8.54)where we have set��� = p(u�u� + g��) + ��� ; ��� = 0 : (8.55)The tensor ��� is orthogonal to u� , ���u� = 0. De�ning Q� byu� = U� +Q�we can rewrite (8.54) in the following manner:T �� = (�+ p)U�U� + pg�� + U�q� + U�q� +���= (�+ peq)U�U� + peqg�� + U�q� + U�q� + [(p� peq)(U�U� � g��) + ��� ] ; (8.56)whereq� = (�+ p)Q� : (8.57)Since u2 = U2 = �1, we have to �rst order q � U = 0, q � u = 0. Comparison of (8.56) with (B.16) of[9] shows that q is the heat ux. In addition, we obtain with (8.53) up to �rst order�T �� = (p� peq)(u�u� + g��) + ��� + (u�q� + u�q�) : (8.58)From p = p(0)(1 + �LY ) and peq = p(0)(1 + c2sw �Y ) we �nd with (8.35)p� peq = p(0)(�L + c2sw �)Y = p(0)�Y : (8.59)hence�T �� = t�� + u�q� + u�q� ;with t�� = p(0)�Y (u�u� + g��) + ��� ; t��u� = 0 : (8.60)21



Finally we use this expression in (B.29) of [9],S�;� = �T�2(T;��Ta�)q� + T�1���t�� ;for the divergence of the entropy current. (T denotes the temperature.) Since T;� is in zeroth orderproportional to u� we have to �rst order T;� q� = u�q� = 0. Furthermore equation (8.42) shows thata� is also of �rst order. Thus there remainsS�;� = T�1���t�� : (8.61)Now ��� = �K�� , since in an orthonormal basis fe�g adapted to the slicing ftm =constg with u = e0we have�ij = 1=2[(ei;reje0) + (ej ;reie0)] = 1=2[!i0(ej) + !i0(ej)] = �Kij :In such a basis (8.61) becomes with (8.22)S�;� = �T�1K(0)ij tij = 3 _aaT�1p(0)�Y : (8.62)This demonstrates that the entropy production rate is proportional to �.8.5 The gauge invariant treatment of collisionless particlesIN this section we shall derive a gauge invariant version of the perturbed Liouville equation. for thatwe have to �nd �rst gauge invariant amplitudes which describe the perturbation of the distributionfunction. For the sake of simplicity, we specialize now to K = 0. The scalar harmonics are then givenby Y (x) = ek�x. This simpli�cation can always be made in applications, since the deviation of 
from 1 is very small in the regime where the deviations from homogeneity and isotropy can be treatedby linear perturbation theory.8.5.1 Gauge invariant perturbation amplitudes for the distribution functionWe split the perturbed distribution function, f , on the one-particle phase space Pm = f(x; p) 2 TM jg(x)(p; p) = �m2g into an unperturbed contribution f (0) and a perturbation f (1) in the followingmanner:f(p�e�) = f (0)(p�e0�) + f (1)(p�e0�) ; (8.63)where fe�g is the adapted orthonormal basis (2.11) and fe0�g is the corresponding basis for the unper-turbed metric. Under a gauge transformation given by a vector �eld � f transforms into �f = f+LT�f, where T� is the natural lift of � to TM. Similarely to (8.63) we set�f(p��e�) = f (0)(p�e0�) + �f (1)(p�e0�) ; (8.64)The subtraction of these two decomposition shows that the change ��f (1) of f (1) under a gaugetransformation is given by (ignoring higher order terms)��f (1)(p�e0�) = �f(p��e�)� f(p�e�)= (LT� � L(T�)?)f (0)(p�e0�)22



where(T�)? = p�(e� � �e�)� @@p� : (8.65)We write this resuls as follows:��f (1) = L(T�)kf (0) (8.66)with (T�)k = T� � (T�)? : (8.67)In order to work this out, we must calculate �e� � e� for a gauge transformation given by �. From thetransformation properties of the lapse function and the shift vector, equation (8.10), we �nd:�e0 = �n = ���1(@t � ��) = e0 + (�� ��)@t + ((�i � ��i)e(0)i= e0 � [( _�0 + (_a=a)�0)e(0)0 + ( _�i � �0ji)e(0)i ] : (8.68)For the horizontal basis vector �elds we have the following transformation law:�ei = ei + (L�ei)hor = ei + [�;e(0)i ]hor= ei + (�0(a�1)�ae(0)i � ��;ie(0)� )hor= ei � [( _a=a)�0e(0)i + �j;ie(0)j ] : (8.69)The second term on the right hand side of (8.69) is of �rst order. Therefore, it is su�cient that thesquare bracket is horizontal with respect to the background metric.With the help of (8.68) and (8.69), equation (8.65) yields(T�)? = (( _a=a)�0 + _�0)p0 @@p0 + ( _�i � �0;i)p0 @@pi + (_a=a)�0pi @@pi + �j;ipi @@pj :Furthermore, in a coordinate frame f@�g we haveT� = ��@� + ��;�p� @@p� :This leads to(T�)k = ��@� � (( _a=a)�0p0 � �0;ipi) @@p0 � (( _a=a)�0pi � �0;ip0) @@pi : (8.70)For a vector �eld of the form given in (8.8) we arrive at(T�)k = TY @t + LY i@i � T [(( _a=a)Y p0 + kYipi) @@p0 + (( _a=a)Y pi + Y ip0) @@pi : (8.71)Let us choose the variables (t;x; v;) on P (0)m , wherev = (a=mX)g(p; p)1=2 ; 23



and  denotes the unit vector in direction of p. Then f (0) is a function of v alone: Since collision-less particles in a Friedman universe move on geodesics with respect to the Friedman metric, theirdistribution function changes only by redshifting the momenta and we havef (0)(t;p) = f (0)(t0; (a=a0)p)for an arbitrary reference time t0. Because of its isotropy, f (0) is thus a function of v alone and weobtain(@tf (0))pi = 2( _a=a)vdf (0)dv ; (8.72)(@f (0)@pi )t = (v=p)i df (0)dv ; (8.73)where the variables which are kept constant are indicated by subscripts. Settingq = (a2=mX)p0 = (v2 + a2)1=2 ; (8.74)equation (8.71) yieldsL(T�)kf (0) = T df (0)dv [( _a=a)vY � kqiYi] : (8.75)For the sake of simplicity, we specialize now to K = 0. The scalar harmonics are then given byY (x) = ek�x. This simpli�cation can always be made in applications, since the deviation of 
 from1 is very small in the regime where the deviations from homogeneity and isotropy can be treated bylinear perturbation theory. Let us now perform the harmonic analisis also for f (1). For a speci�c modeY we setf (1) = F (t;p)Y :De�ning� = k�1kii ; (8.76)equations (8.66) and (8.75) lead �nally to the following transformation law for F :F ! �F = f + df (0)dv [( _a=a)v + ik�q]T : (8.77)If one compares (8.77) with the transformation properties of the geometrical quantities given in (8.31),one �nds that the �rst term in the bracket of (8.77) transforms like vR and the second term like iq��g.Thus, the combinationF = F � df (0)dv [vR+ iq��g] (8.78)is gauge invariant. Of course every linear combination of F with gauge invariant quantities is againinvariant, but (8.78) will turn out to be suitable for the calculation of the gauge invariant uid variablesin the next subsection. 24



8.5.2 Momentum integrals of FIn an orthonormal frame, the invariant volume element, �(x) of the mass shell Pm(x) looks like inspecial relativity:�(x) = p2p0dpd
 :Using the de�nitions of v and q, we therefore obtain�(x) = T 2X v2q dvd
 ; (8.79)where we have setTX = mX=a : (8.80)Since we are treating collisionless particles, they are not in thermodynamical equilibrium, and thus,TX is not a temperature in a strict thermodynamical sense. The connection of (8.80) to the temperaturof the particles before their decoupling is described for example in [3]. For the scope of this paper letus just treat TX as a parameter.Equation (8.79) leads to�(0) = T 4X4� Z f (0)v2qdv ; (8.81)p(0) = T 4X4�3 Z f (0)(v4=q)dv ; (8.82)The calculation of the energy momentum tensor from f yields the following equations for the gaugeinvariant uid variables de�ned in equations (8.40), (8.36), (8.34), and (8.35):�g = T 4X�(0) ZR3 v2qFdvd
 ; (8.83)V = iT 4X(�(0) + p(0)) Z v3�Fdvd
 ; (8.84)� = T 4X2p(0) Z v4=q(1 � 3�2)Fdvd
 ; (8.85)� = T 4Xp(0) Z (v4=3q � c2sv2q)Fdvd
 ; (8.86)where � is de�ned by (8.76).Let us derive the �rst two of the above identities. The energy momentum tensor is given by thesecond moments of the distribution function:T �� = T 2X Z p�p�f(t;x; v;)(v2=q)dvd
 :Here the p�'s and p� 's are considered as functions of (t;x; v;). An explicit calculation leads to:T 00 = �T 4X Z qv2(f (0) + FY )dvd
 : 25



With T 00 = ��(0)(1 + �Y ) ;we then �nd�(0)� = T 4X Z qv2Fdvd
 :Thus, using the isotropy of f (0), R �f (0)d
 = 0, we obtainT 4X Z qv2Fdvd
 = �(0)� +RT 4X Z ddv (qv3)f (0)dvd
 : (8.87)The integral on the right hand side of (8.87) yieldsT 4X Z ddv (qv3)f (0)dvd
 = 3(�(0) + p(0)) : (8.88)Using the de�nition of �g, (8.40), this leads to (8.83).Next we calculateT 0j = Y T 4X Z fjv3dvd
 : (8.89)In at space we obtaink�1kjT 0j = (�(0) + p(0))(v �B)Yjk�1kj = �i(�(0) + p(0))(v �B)Y ; (8.90)so that by the de�nition of V , equation (8.36),V Y = i(�(0) + p(0))�1k�1kjT 0j � �gY :On the other hand, using (8.89) and (8.90) we �ndT 4X Z v3�Fdvd
 = �(�(0) + p(0))(v �B) + i�gT 4X Z ddv (qv3)�2f (0)dvd
 :This together with (8.88) leads to (8.84). Equations (8.85) and (8.86) are derived in a similar way.8.5.3 Liouville's equationLiouville's equation provides the equation of motion for F . In this subsection we derive a compactgauge invariant form for it. Using equation (4.5) of section 4 we can write Liouvilles equation in theform Xgf = 0 ; (8.91)with Xg = p0� @t + p� p0� � � [!ij(p� p0� �)pj + (p0)2(ln�)ji + ��1(� jij � c ij )p0pj] @@pi : (8.92)Here the momentum components are those with respect to the tetrad fe0 = n;eig adapted to thesclicing ft = const.g. Let us consider f as a function of the variables (t;x; v;) as before. Sincev = (a=mX)p = T�1X p ; 26



we have(@f@t )p = (@f@t )v + (_a=a)v@f@v ;where the subscript p, v indicates which variable is kept constant while evaluating the t-derivative.Using furtherp = TXv ; p0 = TXq ;we can write (8.91) in the formq�(@t + (_a=a)v@v)f + (v � q��)f � TX [ !ij(v � q��)jv + (q)2(�ji=�)+��1(� jij � c ij )qvj ] @@pi f = 0 : (8.93)To �nd the background and the �rst order contribution to (8.93) we use the decompositionf = f (0) + FYand make use of the background quantities�(0) = 0 ; !(0) ij = 0 ; (8.94)�(0) = a ; (c(0))ij = (_a=a)�ij : (8.95)Taking into account the homogeneity and isotropy of f (0):@if (0) = 0 ; @f (0)@pi = i @f (0)@p = iT�1X @f (0)@v ;we obtain the background contribution to (8.93),@tf (0) = 0 : (8.96)Hence, f (0) is a function of of v alone as we already reasoned in subsection 8.5.3.To �nd the �rst order contribution we use (8.7) andcij = (_a=a)�ij + ( _HLY �ij + _HTY ik )as well as (8.94) and (8.95). (8.93) then yields the following �rst order equation:(q=a)(@tF + (_a=a)v@vF )Y + ivk�a�1FY � ( _a=a2)qvT�1X i @F@piY�[AY qv( _a=a2) + ia�1AY q2k�+ a�1BY k�2vq �AY qv( _a=a2)+a�1( _HLY �ij + _HTYij)ijvq]df(0)dv = 0 :After some rearrangements this leads to@tF + ik�vqF = [iAk�q +Bk�2v + _HL + (1=3 � �2) _HT ]df (0)dv : (8.97)27



Now we use_HL + 1=3 _HT = R ;B � k�1 _HT = ��g ;and add�i�[@t(q�g) + k(v2=q)R]df (0)dvon both sides. With the help of (8.78) we then �nd@tF + ik�vqF = ik�df (0)dv [qA� k�1q _�g � a2kq ( _a=a)�g � (v2=q)R] :Inserting q2 � v2 = a2 in the third term of the bracket, leads by (8.38) and (8.39) to@tF + ik�vqF = ik�df (0)dv [q	� v2q �] : (8.98)This perturbation of Liouville's equation together with the �eld equations (8.47) and (8.49) and themomentum integrals (8.83), (8.84) and (8.85) form a closed system of ordinary di�erential equationswhich we solved numerically for hot and cold dark matter, adding photons and massless neutrinos tothe matter content. A discussion of the numerical results is presented in [3].8.5.4 The nonrelativistic limitAt this place we give an integral representation of (8.98) and discuss its nonrelativistic limit, theGilbert equation. Let us de�ne�(t1; t2; v) = Z t2t1 (v=q)dt : (8.99)� denotes the comoving distance travelled by a particle of momentum v in the time intervall t1 to t2.With this notation (8.98) has the following integral representation:F(t; v; �) = df(0)dv [ik� R tt�(q	� (v2=q)�) exp(�ik��(t0; t; v))dt0+F(t�; v; �) exp(�ik��(t�; t; v)] : (8.100)F(t�; v; �) is the initial value .Let us proceed now to the nonrelativistic limit. We then can approximateq � a >> v ; (8.101)and therefore,�(t�; t; v) � v Z tt� a�1 =: vs : (8.102)We then obtainF(s; v; �) = F(0; v; �)eisk�v + ik�vv�1df (0)dv Z s0 a2	e�ik�vs� s0)ds0 : (8.103)28



Within the nonrelativistic approximation (p(0)� << �(0)�g , kt >> 1) we can seta2	 = �8�Ga4�(0)2k2 �g :Recalling further that �(0)a3 is constant, leads toF(s; v; �) = F(0; v; �)eisk�v + k�@f (0)@v 4�G�(0)a(0)3 Z s0 a�gk�2e�ik�vs� s0)ds0 : (8.104)( We ommit the superscript (0) in �.) After multiplication by q and integration over d3v we obtain�TX�g = a(s) R F(o; �; v)e�ik�vsd3v�a(s)4�G�(0)a3(0) R s0 a(s0)�g(s0)�(k(s� s0))(s� s0)ds0 ; (8.105)with �(x) = Z f (0)(v)e�iv � xd3v : (8.106)For the left hand side of (8.105) we used (8.83). On the right hand side we applied (8.101), and in thesecond term we integrated by parts. With the help of (8.80), we �nally bring (8.105) into the form�g = m4X�(0)a3(0) R F(o; �; v)e�ik�vsd3v�4�(m2X=mpl)2 R s0 a(s0)�g(s0)�(k(s� s0))(s� s0)ds0 : (8.107)(8.107) together with (8.106) coincide with Gilbert's equation which is just what we expect in thenonrelativistic limit. (Compare [6], equations (32) and (33).)
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Appendices
A The connection and curvature formsIn this Appendix we are going to calculate the connection and curvature forms in the orthonormalbasis introduced in section 2, equation (2.11).A.1 The connection formsFrom the �rst structure equation ,d�� + !�� ^ �� = 0 ;and the de�nition of the second fundamental form:Kij = �ni;j ; (A.1)where n denotes the normal �eld of the slicing, one �nds immediately the Gauss' formulas : (remembern = e0)!ik(ej) = !ik(ej) (A.2)!0i(ej) = �Kij : (A.3)We de�ne@t#i = cij#j : (A.4)Then we can calculate the following quantities :!0i(e0) = ��1�ji ; (A.5)!ij(e0) = ���1!ij(�) + 12� (�ijj � �jji � cij + cji) ; (A.6)Kij = 12� (�ijj + �jji � cij � cji) ; (A.7)and thus,K = 12� [L�g � @tg] ; (A.8)where the vertical bar j denotes covariant derivation with respect to g . Using the general relation@t(det g) = tr(@tg) detg ;we �nd from (A.8)@tvol(g) = (div� � �trK)vol(g) : (A.9)30



Let's derive (A.5), (A.6) and (A.7) shortly .d�0 = d(�dt) = d� ^ dt = �ji#i ^ dt = ��1�ji�i ^ �0 :This together with the �rst structure equation results in (A.5). (A.6) and (A.7) are obtained as follows:From the �rst structure equation and (A.3) we concludeielie0d�i = �ielie0(!i0 ^ �0 + !ij ^ �j)= �(Kil + !il(e0)) :We calculate the left hand side of this equation:iej ie0d�i = iej ie0d(#i + �idt)= iej ie0(d#i + dt ^ @tthi + d�i ^ dt)= ��1iej (i�(!il ^ #l) + @t#i � d�i)= ��1[!ij(�)� !ik(ej)�k � d�i(ej) + @t#i(ej)]= ��1[!ij(�)� �ijj + cij] :The symmetric and antisymmetric contribution of the last identity yield the formulas (A.7) and (A.6)for Kij and !ij(e0) respectively.A.2 The curvature formsFrom the second structure equation,
�� = d!�� + !�� ^ !�� ;and equations (A.2) to (A.7) one �nds immediately
ij(ek; el) = 
ij(ek; el) +KikKjl �KilKjk (Gauss) (A.10)
0j(ek; el) = Kjkjl �Kjljk (Mainardi) : (A.11)We need also the normal components of 
0j . By the second structure equation we know
i0 = �d(Kij�j) + d(��1�ji�0) + !il ^ (Klj�j + ��1�jl�0) :A straight forward calculation leads to
i0 = ��1�jij(�j ^ �0)� dKij ^ �j +Kij(!jl ^ �l �Kjl�l ^ �0) + !ijKjl ^ �l ;which yields (A.11) and the normal components of 
i0 :
i0(ej ; e0) = ��1�jijj + dKij(e0)�Kis!sj(e0) +K2ij � !is(e0)Ksj : (A.12)From equations (A.10) to (A.12) we can calculate the Ricci tensor with the result:R�� = 
��(e�; e�) ; 31



R00 = 1�4�+ ��1(@ttr(K)� L�tr(Kij)) + trK2 : (A.13)With help of (A.11) one �ndsR0i = (trK)ji �K ji jj : (A.14)For the spatial components we obtainRij = 
0i(e0; ej) + 
ki(ek; ej) :Using (A.12) and (A.10) for the curvature forms leads toRij = Rij + tr(K)Kij � 2K2ij � ��1�jij � ��1(@tKij �L�Kij) +Kis!sj(e0) +Kjs!si(e0) :(A.15)With help of (A.6), (A.7) and (A.8) one can bring (A.15) into the formRicci(g) = Ricci(g) + tr(K)K � 2K2 � ��1(@tK � L�K)� ��1Hess(�) : (A.16)Using (A.13) and (A.15) we �ndG00 = 1=2(R00 +PiRii)= 1=2[R + (tr(K))2 � tr(K2)] : (A.17)B The n-dimensional Ricci tensor of a perturbed Friedmann uni-verseTo make use of (A.16) we need the Ricci tensor Ricci(g) of the ft = const.g slices for the perturbedFriedmann universe. This is the Ricci tensor of the induced metricg = a2(�)[(1 + 2HLY )�ij + �2HTYij]� i 
 � j; (B.1)where the f� ig denote orthonormal 1-forms of the metric ij .Ricci(g) = (R(0)ij + �Rij)� i 
 � j ;whereR(0)ij = K(n� 1)�ij :By Palatini's identity (see for example [9] on page 217 )�Rij(g(0) + �g) = 12 [�gkijjk � �gkkjij + �gkjjik �4�gij ] : (B.2)The indices are moved up and down with respect to the background metric g(0) . To calculate (B.2)for a perturbation of the form (B.1) we make use of equations (8.4), (8.5) and (8.6) of section 8 .Further we have to apply the following identity which is derived like the equations (8.6)Y mijjm = (K(n� 1) + n� 1n k2)Yij � (n� 1)(n+ 1)n2 (nK � k2)Y �ij : (B.3)32



One then �nds�Ricci = [HLf2n� 1n k2Y �ij + (2� n)k2Yijg+HTf2n� 1n2 (k2 � nK)Y �ij + ((2� n)n k2 + 2(n� 1)K)Yijg]� i 
 � j ; (B.4)(B.5)so thatRicci(g) = [K(n� 1)�ij + (HL + 1nHT )(2n�1n k2Y �ij + (2� n)k2Yij)�HT (2n�1n KY �ij + 2(n� 1)KYij)]� i 
 � j : (B.6)We want to write Ricci(g) with respect to our adapted basis f#ig which is orthonormal with respectto the perturbed metric. The transformation matrix is given by� i = 1a [(1 �HL)#i �HTY ij#j ] : (B.7)A short calculation leads toRicci(g) = a�2[K(n� 1)�ij + (HL + 1nHT )(2n� 1n (k2 � nK)Y �ij + (2� n)k2Yij)]#i 
 #i :SettingR = HL + 1=nHT ; (B.8)we �nd the following perturbation of the Ricci curvature with respect to our perturbed orthonormalframe:�Ricci(g) = a�2[2n� 1n (k2 � nK)Y �ij + (2� n)k2Yij]R#i 
 #i : (B.9)From (B.9) we can extract the trace term and the traceless contribution :�R = a�22(n� 1)(k2 � nK)RY ; (B.10)� eR = a�2(2� n)k2RYij#i 
 #i : (B.11)
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