
Skewness as a probe of non-Gaussian initial conditionsRuth Durrer1, Roman Juszkiewicz1;2 Martin Kunz1;3 and Jean{Philippe Uzan1;4(1) D�epartement de Physique Th�eorique, Universit�e de Gen�eve, 24 quai E. Ansermet, CH{1211 Geneva 4 (Switzerland).(2) Copernicus Center, Bartycka 18, 00 716 Warsaw (Poland).(3) Astrophysics Department, Oxford university, Keble road, Oxford OX1 3RH (England).(4) Laboratoire de Physique Th�eorique, CNRS-UMR 8627, Bât. 210, Universit�e Paris XI, F{91405 Orsay Cedex (France).(April 13, 2000)We compute the skewness of the matter distribution arising from non{linear evolution and fromnon{Gaussian initial perturbations. We apply our result to a very generic class of models withnon{Gaussian initial conditions and we estimate analytically the ratio between the skewness due tonon-linear clustering and the part due to the intrinsic non-Gaussianity of the models. We �nallyextend our estimates to higher moments.PACS numbers: 98.80.-k, 98.65.Dx, 98.80.CqThe source of the initial density uctuations whichhave led to the formation of structure, observed in theUniverse today is unknown. Determining its nature willcertainly be of utmost importance for the fruitful relationbetween high energy physics and cosmology.In models which presently attract most attention, ini-tial density uctuations are generated during an ina-tionary phase. In the simplest inationary models, theinitial uctuations obey Gaussian statistics. If this pic-ture is correct, the deviations from Gaussianity we ob-serve today were induced by nonlinear gravitational in-stability [1{4]. However, it is also conceivable thatthe present deviations from Gaussianity have two com-ponents: gravitationally induced and intrinsic, comingfrom the initial conditions rather than nonlinear dynam-ics [5{8]. Here, we investigate to what extent an intrinsiccomponent can be `washed out' by nonlinear dynamicsand on which scales it could be either detected or con-strained from above in future galaxy surveys.We start by deriving a general expression for theso-called skewness parameter, S3, including the e�ectof an initial non{Gaussianity, non{linear evolution andsmoothing. We then estimate the normalized N{pointcumulant, SN , for a wide class of models and compare itwith the result obtained in Gaussian models due to mildnon{linearities.If the galaxies trace the spatial mass distribution,galaxy surveys [9] can be used to estimate the cumu-lants of the mass density contrast �eld, given byMN (R) � 
(�R)N (x; �0)�c (1)of the smoothed density �eld �R(x; �) � R d3x0WR(jx �x0j)�(x0; �), where �(x; �) is the density �eld, � and �0the conformal time and its value today, and WR is awindow function (e.g. Gaussian or top{hat) of width R.The brackets in (1) denote an ensemble average and thesubscript c indicates that we deal with the connectedpart of the N{point function. For a Gaussian �eld, allcumulants of order N > 2 vanish: MN = 0. M2 is thevariance while M3 is a measure of the asymmetry of thedistribution, known as skewness. We will also use themore common normalized cumulant,

SN (R) = MN(R)=(M2(R))(N�1) :In the weakly-nonlinear regime, this ratio is time-independent to lowest nonvanishing order in perturba-tion theory for all models with Gaussian initial condi-tions [2{4]. To calculate the general expression forM3(R)in the weakly nonlinear regime, we follow the method de-veloped in [4]. Expanding �(x; �) in a perturbative series,�1 + �2 +O(3) and solving the system of coupled Euler,Poisson and continuity equations at second order leads,in Fourier space, to �1(�;k) = D(�;k) and�2(�;k) = (2�)�3=2 R d3qJ(q;k � q)D(�;q)D(�;k � q)where we consider only the fastest growing modes andwe use the convention�N (�;k) = (2�)�3=2 R �N (�;x)e�ik�xd3x :At late times where a possible source term or seed hasdecayed, the time and space dependence of the functionD can be factorized, D(�;k) = D+(�)"(k), where D+is the standard linear growing mode [1]. Perturbationtheory gives [4]J(k;q) = 23 (1 + �) + (q=k)P1(�) + 23 � 12 � ��P2(�); (2)where the P` is the Legendre polynomial of order `,� � k � q=kq. The quantity � is a weak function of
; for 
 > 0:01, � � (3=14)
�0:03 [3]. The smooth-ing applies order by order. In Fourier space, we have�R(�;k) = D(�;k)Wk ; Wk being the Fourier transformof the window function. To �fth order, the skewness isM3 = 
�3R;1�+ 3 
�2R;1�R;2�+O(5): (3)We introduce the two{,three{ and four{point power spec-tra as h12i � P2(k1)�(k1 + k2),h123i � P3(k1;k2)�(k1 + k2 + k3);h1234ic � P4(k1;k2;k3)�(k1 + k2 + k3 + k4): (4)(The Dirac � is a simple consequence of statistical homo-geneity which we assume throughout.) Here h12 : : :Ni �1



hD(�;k1)D(�;k2) : : : D(�;kN )i. The functions P2 andP3 are also known as the power spectrum and the bispec-trum, respectively. Inserting the Fourier transforms of �1and �2 after smoothing in (3), expressing the correlatorsof D in terms of the power spectra (4) and performingone integration using the Dirac function in (4), we obtainM3(R) = Z d3kd3q(2�)6 P3(k;q)WkWqWjk+qj+ Z d3kd3q(2�)6 P2(k)P2(q)WkWqWjk+qjJ(k;q) +Z d3kd3qd3p(2�)6 P4(k;q�k;p)WqWpWjq+pjJ(k;q�k) (5)For a Gaussian �eld, P4 = P3 = 0 and the only non-vanishing contribution comes from the second term in theabove expression. For a top hat window, this term givesM3 = (34=7�)M22 , with  = �d logM2(R)=d logR [4].Note also that (R) is the logarithmic slope of the two-point correlation function of the density uctuations -the Fourier transform of P2(k). It is usually assumedthat  > 0 (condition of hierarchical clustering, see e.g.[1]).The class of models we want to analyze are those whereuctuations in the dark matter are induced by the energyand momentum of an inhomogeneously distributed com-ponent which contributes only a small fraction to thetotal energy momentum tensor and which interacts onlygravitationally with the cosmic uid. Such a componentis denoted as `seed' [10]. As stressed above, we need tocompute theN{point power spectra of the density �eld atthe end of the linear regime. The comoving linear den-sity uctuation D of the cosmic matter{radiation uidevolves according to [11,10]�D +H �1� 6w + 3c2s� _D + k2c2sD� 32 �1 + 8w � 3w2 � 6c2s�H2D = S(k; �); (6)with S � (1 + w)4�G(f� + 3fP ), f� and fP being theinhomogeneous energy density and pressure of the seeds.When the seed is a scalar �eld � with vanishing potential,f�+3fP = _�2. G is Newton's constant, a denotes the cos-mic scale factor, a dot refers to the derivative with respectto conformal time, H � _a=a, w � P=� and c2s � _P= _� arerespectively the enthalpy and the adiabatic sound speedof the cosmic uid.Equation (6) can be solved by a Green's function, G,D(k; �) = Z ��i G(k; �; �0)S(k; �0)d�0; (7)where �i is some early initial time deep in the radiationera. For the linear part of the reduced N{point functionwe then obtainhD(k1; �) � � �D(kN ; �)ic = Z ��i d�1 � � � d�NG(k1; �; �1) � � � G(kN ; �; �N )hS(1) � � � S(N )ic; (8)

where (i) � (ki; �i). We de�ne the connected N{pointfunction of the source byhS(1) � � � S(N)ic � FN (k1; � � �kN ; �1 � � � �N )� �Xki� :Again, the � function of the sum of all momenta is aconsequence of the statistical homogeneity.We now assume that the reduced N -point function ofthe source can be replaced by its `perfectly coherent ap-proximation' given byFN (k1; : : : ;kN�1; �1; : : : ; �N ) ' sign(FN )�NpjFN (k1; : : : ;kN�1; �1; : : : ; �1) � � �FN (k1; : : : ;kN�1; �N ; : : : ; �N )j (9)(here and below, kN is always given by kN = �(k1 +� � �+kN�1)). This approximation is exact if the evolutionequation for S is linear and the randomness is entirelydue to initial conditions. Then the source term is of theform S(k; �) = R(k)s(k; �), where only R is a randomvariable and s is a deterministic solution to the linearevolution equation of S which can be taken out of theaverage hi. This is the key property which renders theN -point function decoherent. Then FN can be writtenas FN (k1; : : : ;kN�1; �1; : : : ; �N ) 's(1) � � � s(N)hR(k1) � � �R(kN )ic (10)which is clearly of the form (9).An important example are models with no sources butwith non-Gaussian initial conditions for D. Such mod-els, like e.g. the recent �2 Peebles model [12], are alwaysperfectly coherent and therefore included in our analy-sis: In this case D(k; �) = R(k)d(k; �), where R is anon-Gaussian random variable given by the initial con-dition and d is a deterministic homogeneous solution ofEq. (6). Clearly, if we choose S(k; �) = R(k)�(� � �in)and G(k; �; �0) = d(k; �), then D is of the form (7).Therefore, models where the non-Gaussianity is purelydue to initial conditions are always perfectly coherent.As the equation of motion for D is second order, thehomogeneous solution has in principle two modes, D =R1(k)d1(k; �) + R2(k)d2(k; �), but since we shall evalu-ate the N -point functions deeply in the matter era, thedecaying mode will have disappeared and may thus beneglected in our analysis.Models where the source term is due to a scalar �eldwhich evolves linearly in time are not perfectly coherent,since S is given by the components of the energy momen-tum tensor which are quadratic in the �elds. Numericalcalculations, however, have shown that this non-linearityis not severe and perfect coherence is a relatively goodapproximation [13,14]. One example of this kind are ax-ionic seeds in pre-big bang cosmology [15{17] for whichdecoherence has been tested and is found to be on thelevel of less than 5% for the CMB power spectrum. InFig. 1 the functions D2(k; �) and D3(k; k; �) as obtainedby a full numerical calculation are compared to their co-herent approximation (9) for the large-N limit of global2



O(N) symmetric scalar �elds. This is another examplewhere the scalar �eld evolution is linear and the onlynon-linearity in the source term is due to the energy mo-mentum tensor being quadratic in the �eld [18,14,13].

FIG. 1. The coherent approximation (dashed line) and thefull decoherent result (solid line) for the 2- (top) and 3-point(bottom) functions of the large-N limit of global O(N) sym-metric scalar �elds is shown at the end of the radiation era.The sign in the coherent approximation for the 3-point func-tion is chosen to agree with the sign for the decoherent 3-pointfunction.For topological defects, especially for cosmic strings,the perfectly coherent approximation misses several im-portant features (like the `smearing out' of secondaryacoustic peaks). However, we believe that our genericscaling result holds also in this case, as is indicated bynumerical simulations of global texture: even thoughglobal texture show considerable decoherence [13], thesame scaling law for higher moments which we derivehere has been discovered numerically [7].Under the perfectly coherent approximation Eq. (8)can be factorized as the product of the N solutions,DNj(k1; : : : ;kN�1; �) of the equations (6) with sourceterm [FN (k1; : : : ;kN�1; �; : : : ; �)]1=N , where kj is the

wave number k appearing in the term c2sk2 on the lefthand side of (6) and the other wave numbers have to beconsidered like parameters of the source term,hD(k1; �) � � �D(kN ; �)ic '24 NYj=1DNj(k1; : : : ;kN�1; �)35 �(Xki)� PN (k1; : : : ;kN�1; �)�(Xki): (11)To continue, we assume that FN is a simple power lawin the ki on super-Hubble scales and that it decays afterHubble crossing. This behavior is certainly correct for allexamples discussed in the literature so far. We can thenmake the following ansatzFN ' ( �QNi=1 k�ik�0 � (f(�)�)N��3 if ki� � 1;8i0 otherwise : (12)Here f is a dimensionless function and k0 is an arbitraryscale. For scale invariant seeds (e.g. topological defects)f is just a constant and � = 0. For axion seeds generatedduring a pre-big bang phase, � depends on the spectralindex of the axion �eld, which in turn is determined bythe evolution law of the extra dimension [16]. For thePeebles model � is given by the power spectrum of thescalar �eld � and f is a delta-function. Since FN is sym-metrical in the variables kj we can order them such thatk1 � k2 � � � � � kN .Let us discuss the temporal behavior of the variablesDNj . As long as k1� < 1, the term c2sk2jD can be ne-glected in Eq. (6) and the Green's function is a powerlaw. At k1� � 1 the source term decays and as long asa perturbation remains super horizon, it just grows like�2, so that for kj� < 1 < k1�,DNj � g(1=k1)k�2+3=N1 (�k1)2�Nn=1(kn=k0)�whereg(�) = 4�G�2�3=N Z ��in G(�; �0)f(�0)�0(2�3=N) d�0�0 ;and we have to take the part of the integral above whichremains �nite when �in ! 0.Once the perturbation enters the horizon it eitherstarts oscillating with roughly constant amplitude or con-tinues to grow / �2, depending on whether kj enters dur-ing the radiation or matter dominated era. At late time,� � �eq and k� � 1, we therefore obtainDNj � g(1=k1)k�2+3=N1 (k1=kj)2NYn=1(kn=k0)�( � ��eq �2 if kj�eq > 1(�kj)2 if kj�eq < 1where �eq is the time of equality between the matter andradiation densities. De�ning 0 � jeq � N so that kj�eq >3



1 for all j � jeq we obtain for the connected N -pointfunctionPN(k1; : : : ;kN�1; �) ' g(1=k1)Nk31�2NNYn=1�knk0�� jeqYj=1� 1kj�eq�2 (13)Using this result for the ordinary power spectrum, P2,we can express PN is terms of products of P2 asPN (k1; � � � ;kN�1; �) 'k3(1�N=2)1 NYj=1 qP2(kj ; �)g(1=k1)k3=2jg(1=kj)k3=21 ! : (14)For the class of models considered and under the assump-tion of perfect coherence, we have determined the con-nected N{point power spectra in the linear regime whichare the input of the skewness (5).M3 has two contributions: A linear one due to theinitial non{Gaussianity (contained in P3) and one dueto non{linear clustering which induces skewness even inan originally Gaussian distribution of perturbations; itcontains a Gaussian part (P22 ) and a non-Gaussian term(P4). We decompose the skewness asM3 =M (L)3 +M (NL)3We want to estimate the ratio of these two contributions.Under our approximation (14), the �rst term of (5) re-duces toM (L)3 = Z d3kd3k0(2�)6 WkWqWjk+k0jpP2(k)P2(q)P2(jk+ qj)k�3=2max " g(1=kmax)3(kqjk+ qj)3=2g(1=k)g(1=q)g(1=jk+ qj)k9=2max # ; (15)where kmax � maxfk; q; jk+ qjg. M (NL)3 is given by thesecond and third terms in (5).To estimate analytically the ratio M (L)3 =M (NL)3 =S(L)3 =S(NL)3 , we make the following approximations:- We assume that P2 is a simple power law within therange of scales of interest, namely all the modeswhich enter the horizon during the radiation era,this is 0:1h�1Mpc<� 2�=k <� 20h�2Mpc, name.P2(k) = k�3(k=k�) :- We also assume that g(�) / �r.- We replace the window function by a simple cut{o�at k = 1=R.- For symmetry reasons we may integrate over thetriangle q � k � R and then multiply the result by2.- Since in our integration region, q � k, we replacejk+ qj by k.

With these approximations the angular dependence ofthe integrand disappears and the integrals over k and qin (5) can be trivially performed leading toM (L)3 (R) ' 4(k�R)�3=2(2�)43(3 + =2 + r) (16)for  > 0 and 3 + =2 + r > 0M (NL)3 (R) ' (k�R)�2(2�)42 for  > 0;where we have just considered the Gaussian contribution,P22 to M (NL)3 .Since k� is just the scale beyond which the densitycontrast hD(x)2iR=1=k � P2(k)k3 is larger than unityand non-linearities become important, we de�ne the non{linearity scale Rlin = 1=k�. The ratio between the skew-ness due to the non{Gaussianity in the linear perturba-tion and the one due to dynamical nonlinearities is thenS(L)3S(NL)3 � 43(3 + =2� r) � RRlin�=2 : (17)This is our main result. It is readily checked that thenon-Gaussian contribution, P4, to M (NL)3 behaves justlike the contribution M (NL)3 and thus only modi�es thepre-factor in (17), which should not be taken too seriouslyin view of the relatively crude approximations which wehave employed to obtain our result.This computation of the skewness is easily generalizedto higher moments. As our computation shows, linearnon{Gaussianities scale likeM (L)N (R) / (R=Rlin)�N=2 : (18)The dominant non{linear contribution to the connectedN -point function which is also present in Gaussian theo-ries contains N � 2 second order terms D2 [2] and there-fore scales likeM (NL;Gauss)N (R) / (R=Rlin)�(N�1) : (19)The lowest order non-linearity for a generic non-Gaussianmodel, however just comes from the non-Gaussian termwith N + 1 factors of D. The non-Gaussian non-linearcorrections therefore generically scale likeM (NL;noGauss)N (R) / (R=Rlin)�(N+1)=2 : (20)Only for N = 3 the two terms (19) and (20) scale in thesame way. For all higher N 's the non-Gaussian contribu-tion dominates in the mildly non-linear regime, R � Rlin.From Eq. (20) we infer that in on large scales the ratiosfor all reduced N -point functions very generically scalelike S(L)N (R)S(NL)N (R) / � RRlin�=2 : (21)4



This expression agrees with other analytic predictions [5]as well as numerical simulations in a global texturemodel [7]. The agreement with the texture simulationswhich are decoherent suggests that the validity of our re-sult extends beyond the conditions under which Eq. (21)was derived. More important than decoherence is thatthe source term decays at late times and therefore thedensity perturbations just evolve according to the ho-mogeneous solution. This implies that at late times theN -point functions behave like the homogeneous growingmode to the Nth power, while the reduced N -point func-tion induced by non-linear clustering from Gaussian per-turbations scales like the growing mode to the 2(N�1)thpower. Since topological defect sources decay on sub-horizon scales, we conclude that the derived scaling be-havior is also valid for them (this argument will be ex-panded in our follow up publication [11]).Our result implies that on small scales (R <� Rlin), thedominant contribution to the cumulants comes from non-linear Newtonian gravitational clustering, and the Gaus-sian term actually dominates. Intrinsic deviations fromGaussianity are di�cult to detect on small scales. Hence,we should look for signs of intrinsic non-Gaussianity atlarge scales (R > Rlin). This suggestion was expressedearlier based on qualitative physical arguments [5]; how-ever, our present result is derived from �rst principles fora speci�c class of initial conditions { coherent seeds.If galaxies trace mass, the measurements of the two-point correlation function suggest Rlin � 10h�1Mpc and(R) � 1:8 for 10kpc <� hR <� 15 Mpc (here h is the usualparameterization for the Hubble constant in units of 100km s�1Mpc�1); the slope  becomes steeper at larger sep-arations R [1,9]. A frequently considered theoretical pos-sibility for long-wave tail of the initial P2(k), called theZel'dovich-Harrison spectrum, would give  = 4 at largeseparations. Hence, we can expect all SN s to \blow up"with increasing scale for the class of non-Gaussian modelsconsidered here, in contrast with models with Gaussianinitial conditions. The available measurements of S3(R)and S4(R) do not show such a rise with scale and havealready been used to constrain texture models [7]. Like-wise, there are indications that the existent data fromthe APM Galaxy Survey may may already extend to suf-�ciently large scales to constrain the �2 Peebles model[19,20]. With surveys presently underway like the SloanDigital Sky Survey [21], the prospects for using the ap-proach outlined here to probe the statistics of the cosmo-logical initial conditions will become even better.In this work we derived a scaling law for the \intrinsicto induced" skewness ratio (17) for coherent seeds. Wealso showed how to generalize this law to higher cumu-lants. We plan to follow these calculations with moredetailed predictions for coherent seed models and to con-front our analytic results with numerical simulations aswell as observational data from galaxy surveys [11]. Letus also repeat that the derived scaling laws seem to bemore general than their derivation as they have beenobtained numerically for global texture which are deco-

herent seeds. We actually believe that the origin of thescaling laws is not coherence but mainly the decay of thesources at late time and we therefore conjecture that theyhold also for topological defects.
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