
Tensor Microwave Anisotropies from a Stochastic Magnetic FieldR. Durrer1, P.G. Ferreira1;2;3 and T. Kahniashvili41D�epartement de Physique Th�eorique, Universit�e de Gen�eve, 24 quai Ernest Ansermet, CH-1211 Gen�eve 4, Switzerland2CERN Theory Division, CH-1211, Geneve 23, Switzerland3CENTRA, Instituto Superior T�ecnico, Av. Rovisco Pais, 1, 1096 Lisboa Codex, Portugal4Department of Astrophysics, Abastumani Astrophysical Observatory, Kazbegi Ave. 2a, 380060 Tbilisi, GeorgiaWe derive an expression for the angular power spectrum of cosmic microwave backgroundanisotropies due to gravity waves generated by a stochastic magnetic �eld and compare the resultwith current observations; we take into account the non-linear nature of the stress energy tensor ofthe magnetic �eld. For almost scale invariant spectra, the amplitude of the magnetic �eld at galacticscales is constrained to be of order 10�9 Gauss. If we assume that the magnetic �eld is dampedbelow the Alfv�en damping scale, we �nd that its amplitude at 0:1h�1Mpc, B�, is constrained to beB� < 7:9 � 10�6e3n Gauss, for n < �3=2, and B� < 9:5 � 10�8e0:37n Gauss, for n > �3=2, wheren is the spectral index of the magnetic �eld and H0 = 100hkm s�1Mpc�1 is the Hubble constanttoday.PACS Numbers : 98.80.Cq, 98.70.Vc, 98.80.HwI. INTRODUCTIONThe past few years have seen a tremendous surge ofinterest in the origin and evolution of galactic magnetic�elds [1]. A number of mechanisms have been proposedfor the origin of the seed �elds, ranging from inationarymechanisms [2], cosmological phase transitions [3] to as-trophysical processes [4]. Much progress has been madein trying to disentangle the various non-linear processeswhich may be responsible for the growth of such a seed�eld in the very early universe in particular the interplaybetween the magnetic �eld and the primordial plasma[5,6] and the importance of turbulence [7].Given a small seed �eld at late times, two di�erentmechanisms can cause its ampli�cation to magnetic �eldsof order 10�6 Gauss observed in galaxies: adiabatic com-pression of magnetic ux lines can amplify a seed �eldof order 10�9 Gauss to the present, observable values;the far more e�cient (and controversial) galactic dynamomechanism may be able to amplify seed �elds as smallas 10�20Gauss [4] or even 10�30Gauss in universe withlow mass density [8]. Clearly, to make some progress inidentifying which one of these mechanisms is responsiblefor galactic magnetic �elds, one would like to �nd a con-straint for the seed �eld before it has been processed bylocal, galactic dynamics.The obvious observable for such a constraint is thecosmic microwave background (CMB). It is interestingto note that a �eld strength of 10�8Gauss provides anenergy density of 
B = B2=(8��c) � 10�5
 , where
 is the density parameter in photons. We naively ex-pect a magnetic �eld of this amplitude to induce per-turbations in the CMB on the order of 10�5, which arejust on the level of the observed CMB anisotropies. It isthus justi�ed to wonder to what extent the isotropy ofthe CMB may constrain primordial magnetic �elds. Ourorder of magnitude estimate makes clear that we shallnever be able to constrain tiny seed �elds on the order of

10�13Gauss or less in this way, but primordial �elds of10�9Gauss may have left their traces in the CMB.A number of methods have been proposed in the pastfew years for measuring a cosmological magnetic �eld us-ing the CMB: the e�ect on the acoustic peaks [9], Faradayrotation on small [10] and large [11] scales and vorticity[12,13] can all lead to observable anisotropies in the CMBif the primordial magnetic �eld strength is of the order of10�9 to 10�8 Gauss. The most stringent bound from theCMB presented thus far was for the case of a homoge-neous magnetic �eld [14]; the authors use the COBE datato �nd the constraint B0 < 6:8 � 10�9(
0h2)1=2Gausswhere the Hubble constant is H0 = 100hkm s�1Mpc�1and 
0 is the energy density in units of the critical value.Although there is no fundamental reason to discard thepossibility of a homogeneous magnetic �eld, all physi-cal mechanisms proposed to date lead to the presenceof stochastic magnetic �elds with no homogeneous term;in this paper we consider such �elds. For these typesof con�guration one is allowed to have uctuations ona wide range of scales and the magnetic �eld will serveas a non-linear driving force to the metric uctuations;in the parlance of cosmological perturbation theory, themagnetic �eld evolves as a sti� source, without beinga�ected by the uid perturbations (back reaction) [15]which may be induced.Stochastic magnetic �elds have also been consideredin [12], where the CMB anisotropies due to the induceduid vorticity has been analyzed. Here we determinegravitational e�ects of the magnetic �eld. For simplicity,and to allow for a purely analytical analysis, we constrainourselves to tensor perturbations. Similar contributionsare also expected from vector and scalar perturbationswhich then would add to the �nal result. In this sensethe anisotropies computed here are a strict lower bound(underestimating the true e�ect probably by about a fac-tor of three).The main result of this work is that one can obtain1



reasonably tight constrains for scale invariant magnetic�elds; For causally generated magnetic �elds the con-straints are weaker and are strongly dependent on theevolution of the magnetic �eld in the radiation era onsmall scales.For simplicity we concentrate on the case 
0 = 1.Througout, we use conformal time which we denote by�. Greek indices run from 0 to 3, Latin ones from 1 to 3.We denote spatial (3d) vectors with bold face symbols.The value of the scale factor today is a(�0) = 1.II. THE STRESS TENSOR OF THE MAGNETICFIELDDuring the evolution of the universe, the conductiv-ity of the inter galactic medium is e�ectively in�nite. Inthis regime we can decouple the time evolution from thespatial structure: B scales like B(�;x) = B0(x)=a2 onsu�ciently large scales. On smaller scales the interac-tion of the magnetic �eld with the cosmic plasma be-comes important leading mainly to two e�ects: on in-termediate scales, the oscillates like cos(vAk�), wherevA = B2=(4�(� + p))1=2 is the Alfv�en velocity and onsmall scales, the �eld is exponentially damped due toshear viscosity [6].We will model B0(x) as a statistically homogeneousand isotropic random �eld. The transversal nature of Bleads us tohBi(k)B�j (q)i = �3(k� q)(�ij � k̂ik̂j)B2(k) : (1)where we use the Fourier transform conventionsBj(k) = Z d3x exp(ix � k)B0j(x) ;B0j(x) = 1(2�)3 Z d3k exp(�ix � k)Bj(k) :The Alfv�en oscillations modulate the initial power spec-trum by a factorB2(k) ! B2(k) cos2(vAk�) :This can be approximated by a reduction of a factor 2in the power spectrum on scales with vAk� >� 1. Butas we shall see, our most stringent constraints will comeeither from very small scales where the spectrum is ex-ponentially damped or from much larger scales whereoscillations can be ignored. We will incorporate the ex-ponential damping by a cuto� in the power spectrum atthe damping scale.Let us investigate the consequence of causality for thespectrum B2(k). If B is generated by some causal mech-anism, it is uncorrelated on super horizon scales,hBi(x; �)Bj(x0; �)i = 0 for jx� x0j > 2� : (2)

Here it is important that the universe is in a stage of stan-dard Friedmann expansion, so that the causal horizonsize is about �. During an inationay phase the causalhorizon diverges and our subsequent argument does notapply. In this somewhat misleading sense, one calles in-ationary perturbations 'a-causal'.According to Eq. (2), hBi(x; �)Bj(x0; �)i is a functionwith compact support and hence its Fourier transform isanalytic. The functionhBi(k)B�j (k)i � (�ij � k̂ik̂j)B2(k) (3)is analytic in k. If we in addition assume that B2(k)can be approximated by a simple power law, we mustconclude that B2(k) / kn, where n � 2 is a even integer.(A white noise spectrum, n = 0 does not work becauseof the transversality condition which has led to the non-analytic pre-factor �ij � k̂ik̂j .) By causality, there can beno deviations of this law on scales larger than the horizonsize at formation, �in.We assume that the probability distribution functionof B0 is Gaussian; although this is not the most generalrandom �eld, it greatly simpli�es calculations and givesus a good idea of what to expect in a more general case.The anisotropic stresses induced are given by the con-volution of the magnetic �eld,� (B)ij (k) = 14� Z d3qBi(q)B�j (k� q)�12Bl(q)B�l (k� q)�ij : (4)With the use of the projection operator, Pij = �ij � k̂ik̂jwe can extract the tensor component of Eq. (4),�(B)ij = (P ai P bj � (1=2)PijP ab)�ab ; (5)tracelessness, orthogonality and symmetry force the cor-relation function to be of the formh�(B)ij (k; t)�(B)�lm (k0; t)i = j�B(k; t)j2Mijlm�(k� k0)h�(B)ij (k; t)�(B)�ij (k0; t)i = 4j�B(k; t)j2�(k� k0); (6)were we make use of the tensor basis, M: The corre-lator on an isotropic tensor component has always thefollowing tensorial structure,Mijlm = �il�jm + �im�jl � �ij�lm + k�2(�ijklkm +�lmkikj � �ilkjkm � �imklkj � �jlkikm��jmklki) + k�4kikjklkm : (7)We now determine the function j�B(k; t)j2 in terms ofthe magnetic �eld. Using Wick's theorem we havehBi(k)B�j (q)Bn(s)B�m(p)i =hBi(k)B�j (q)ihBn(s)B�m(p)i +hBi(k)B�n(s)ihBj(q)B�m(p)i+hBi(k)B�m(p)ihBn(s)B�j (q)i : (8)2



The problem reduces itself to calculating self convolu-tions of the magnetic �eld. The power spectrum ofEq. (4) ish�Bij (k; �)�B�lm (k0; �)i =1(8�)2 Z d3qZ d3phBi(q)Bj((k� q))Bl(p)Bm((p� k0))i =�(k� k0) Z d3q B2(q)B2(jk � qj)�[(�il � q̂iq̂l)(�jm � d(k� q)j d(k� q)m) +(�im � q̂iq̂m)(�jl � d(k� q)j d(k� q)l)] : (9)Using Eqs. (8,5) and (6), this leads to j�B j2 = f(k)2=a8,wheref(k)2 = 1(8�)2 Z d3qB2(q)B2(jk� qj)(1 + 22 + 2�2) ;(10)with  = k̂ � q̂ and � = k̂ � dk� q.It remains to de�ne B(k) from Eq. (1). We shall pa-rameterize it in terms of an amplitude and a scale depen-dence throughB2(k) = ( (2�)54 �n+3�[n+32 ]B2�kn for k < kc0 otherwise (11)The normalization is such that hBi0(x)Bi0(x)ij� = B2�where the quantity in brackets represents the averagedmagnetic �eld smoothed over a comoving length scale �.Note that we have assumed that the cuto� scale today issmaller than �.We require n > �3 so as not to over-produce longrange coherent �elds; we shall see that for n = �3 weobtain a scale invariant spectrum of CMB anisotropies.We have included a short wavelength cuto� to take intoaccount the exponential damping due to shear viscosityin the cosmic plasma [6]. The mean energy density due tosuch a magnetic �eld, which is an appropriately weightedintegral of Eq. (11), will be strongly dependent on the cuto� when n > �3.Using Eqs. (11) and (10) we can calculate f . The inte-gral cannot be computed analytically, but the followingresult is a good approximation for all wave numbers kf2(k) ' (2�)916 �2n+6B4��2[n+32 ](2n+ 3) �k2n+3c + nn+ 3k2n+3� :(12)This result seems to have a singularity at n = �3=2which is however removable. The �rst term dominatesif n > �3=2 and while second term dominates if theopposite inequality is satis�ed. For n > �3=2, the grav-ity wave source is therefore white noise and its ampli-tude is determined by the upper cuto�, kc. Note that if

n > �3=2, the spectrum of the energy momentum ten-sor becomes white noise, independent of n. Only theamplitude which is proportional to (�kc)2n depends onthe spectral index. This is due to the fact that the inte-gral (10) is dominated by the contributions at very smallscales, kc � k. The induced C` spectrum from gravitywave will therefore be independent of n for n > �3=2,and obey the well known behavior C` / ` of a white noisesource.To simplify, we just consider the dominant term and,in order not to arti�cially produce a singularity at n =�3=2, we drop the factor 1=(2n+3). Given the intent ofthis paper (to constrain the amplitude of the magnetic�eld) we will include a factor of 10�1 in our �nal re-sult, guaranteeing that we are not overestimating CMBanisotropies. The singularity at n = �3 is real. It isthe usual logarithmic singularity of the scale invariantspectrum.III. THE CMB ANISOTROPIESArmed with the structure and evolution of the stochas-tic magnetic �eld we can now proceed to calculate its ef-fects on tensor CMB anisotropies. The metric element ofthe perturbed Friedman universe is given byds2 = a2(�)(�d�2 + (�ij + 2hij)dxidxj) ;where hii = 0 and hjiki = 0 for tensor perturbations. Themagnetic �eld will source the evolution equation for hijthrough �hij + 2 _aa _hij + k2hij = 8�G�(B)ij : (13)Such a gravity wave induces temperature uctuations inthe CMB due to the fact that the photons move alongthe perturbed geodesics [15]�TT (�0;x;n) = Z �0�� _hij(x(�); �)ninjd� : (14)Here �� denotes the (conformal) time of decoupling ofmatter and radiation due to recombination. We wantto compute the angular power spectrum of �TT , the C`,de�ned byh�TT (n)�TT (n0)in�n0=� = 14�Xl (2`+ 1)C`P`(�) :The C`s are solely determined by the power spectrum ofmetric uctuations. De�ningh _h(T )ij (k0; �) _h(T )�lm (k; �)i = j _H(k; �)j2Mijlm�(k� k0)one can derive a closed form expression for C` (see [17]):3



C` = 14�4 Z dkk2jI(`; k)j2`(`� 1)(`+ 1)(`+ 2) ; (15)I = Z �0�� d� _H(�; k)� j`(k(�0 � �))(k(�0 � �))2 � (16)where j` denotes the spherical Bessel function of order `.We solve equation (13) using the Wronskian method; interms of the dimensionless variable x = k�. The homoge-neous solutions are the spherical Bessel functions j0 ; y0in the radiation dominated era, and j1=x ; y1=x in thematter dominated era respectively. We assume that themagnetic �elds were created in the radiation dominatedepoch, at redshift zin. We then match the general in-homogeneous solutions of Eq. (13) at the time of equalmatter and radiation, �eq . Due to the rapid fallo� of thesource term in the matter dominated era, the perturba-tions created after �eq are sub-dominant, and we �nd forthe dominant contribution at � > �eq_H(k; t) ' 4�G�20zeq ln�zinzeq� kf(k)j2(k�)k� : (17)Inserting this result in Eq. (16), we obtainI = 4�G�20zeq ln(zin=zeq)f(k) Z x0x� dxj2(x)x j`(x0 � x)(x0 � x)2 ;(18)where x = k�, x� = k�� and x0 = k�0. For wave numberswhich are super-horizon at decoupling, x� < �, the lowerboundary in Eq. (18) can be set to 0. The remainingintegral cannot be expressed in closed form, but is wellapproximated by [20]:Z x00 dxj2(x)x j`(x0 � x)(x0 � x)2 =�2 Z x00 dxJ5=2(x)x3=2 J`+1=2(x0 � x)(x0 � x)5=2 '0:7�2 Z x00 dxJ5=2(x)x J`+1=2(x0 � x)(x0 � x)3= 7�25 p`x30 J`+3(x0)) : (19)The third integral above can be expressed in closed form( [21], number 6.581.2), and is reasonably well approx-imated by the last expression, we have checked the ap-proximation numerically for l � 200 and varying x0.We can now do the integrals in Eq. (15) analyticallyto obtain`2C` ' A� ��0�2n+6 23� (kc�0)2n+3`3 (20)for n > �3=2, and`2C` ' A� ��0�2n+6 �n(n+ 3) �[1� 2n]�2[1� n]2(1�2n) `6+2n (21)

for �3 < n < �3=2, whereA = 5� 10�4(2�)9z2eq ln2�zinzeq� B4�G2�40�2[n+32 ]= 3� 10�8� B�10�9Gauss�4 ln2(zin=zeq) 1�2[n+32 ] : (22)IV. RESULTSEqs. (20) and (21) are our main result. They allow usto limit a possible primordial magnetic �eld by requiringit not to over produce uctuations in the CMB. Sincethe uctuations induced grow with ` for all values of thespectral index �3 < n, we obtain the best limits forlarge values of `. We shall be conservative and assumean upper bound of `2C` j`=50< 8:5 � 10�9 [18]. Giventhat we are interested in galactic and cluster scales we�x � = 0:1 h�1Mpc for the remainder of this paper. InFig. 1 we show the limit on a stochastic magnetic �eldas a function of the spectral index n, using the dampingscale given below as cuto�.We now focus on a few particular cases of interest andin doing so we will derive an analytic expression which ap-proximates the upper bound of B� over the whole rangeof n.Scale invariant magnetic �eld: From Eq (21) we seethat the result is independent of the cuto�. In the limitwhere n! �3 we �nd thatB� <� 10�9Gauss (23)i.e. of the same level as other constraints [9{14].Causal magnetic �eld: For this scenario we have, asexplained above, n � 2; we shall consider the case of n =2. For instructive purposes let us �rst consider a kc whichis independent of the magnetic �eld. The constraint isthen B� <� ln� 12 �zinzeq� (kc�0)� 74Gauss : (24)The cuto� kc will depend on the plasma properties andevolution; even though the conductivity � of the cosmicplasma is very large, it is nevertheless �nite. One actually�nds [19] that � = �T , where the parameter 1 < � < 7is slowly temperature dependent. By Ohm's law, mag-netic �elds on small enough scales are exponentially sup-pressed, B / exp ��ak2�=4���, leading to a dampingscale, kd(�) = (4��a=�)1=2 = (��2�10�3cm)�1=2. Thisscale is smaller than the comoving horizon scale for alltemperatures below the Planck scale. On scales smallerthan 1=kd(�eq), the induced gravity waves have dampedaway even before matter and radiation equality. Since thesourcing of gravity waves after equality is negligible, thedamping scale relevant in our problem is kc = kd(�eq),4



kc ' 2� 1013h2Mpc�1 : (25)If we insert this this damping scale in Eq. (24), we obtainB� <� 10�29Gauss.A more realistic scenario is to assume that the mag-netic �eld will be damped by electron viscosity. Toproceed with the analysis we shall split the stochas-tic magnetic �eld into a high-frequency component anda low-frequency component; the scale which separatesthe two is the Alfven scale at equality, �A = VA�eqwhere VA is the Alfven velocity, V 2A = hB2i=(4�(�+ p)).From equation 4 of [12] we see that the inhomogeneousmagnetic �eld will obey a damped harmonic oscillatorequation, with a time dependent damping coe�cient,D = 0:2k2l(1 + z) (l is the physical photon mean freepath) and frequency !(�) = V 2Ak2 � ( _D=2) � (D=2)2.Within this setting we can estimate the damping scale ofthe magnetic �eld in the oscillatory regime of this sys-tem; the amplitude of the e�ective homogeneous mag-netic �eld, BA, which is responsible for the Alfv�en wavesis related to B� throughB2A ' B2� � �10�9Gauss3:8� 10�4BA�eq�n+3which leads toBA = � B�10�9Gauss� 2n+5 (13h�1)n+3n+5 10�9Gauss (26)We shall de�ne the damping scale to be the scale at whichone e-fold of damping has occured by equality. FromR �eq0 D2 d� = 1 one �ndskc = 4:5Mpc�1 (27)For this estimate to be valid, the system must be in thedamped oscillatory regime (as opposed to overdampingregime), i.e. !(�eq) > 0; this condition is satis�ed ifBA > 5:5h�2 � 10�9 Gauss. We �nd that indeed this isthe case in the range of interest.Combining Equations (26),(20), (21) and (27) and as-suming a formation redshift of zin = 1015 (although the�nal result is very weakly dependent zin) we �nd that anan approximation to the bound isB� < 7:9� 10�6e2:99nGauss; for n < �3=2;B� < 9:5� 10�8e0:37nGauss; for n > �3=2; (28)The upper bounds corresponding to Eq. 28 represent areasonable �t to Figure 1. As one can see, the constrainton a causal magnetic �eld is well above 10�9 Gauss.Throughout this derivation we have assumed that wecan estimate the damping scale of the magnetic �eld bylooking solely at the Alfven modes. A linear analysis ofthe remaining degrees of freedom also indicate that themagnetic �eld will be damped at the same scale as inEquation (27). It is possible that non-linear e�ects may

FIG. 1. The upper bound B� as a function of spectral in-dex, n. We assume zin=zeq = 109 and � = 0:1h�1Mpc.prevent the tangled magnetic �eld from damping at thisscale but an accurate quantitative analysis is still lacking.Inationary magnetic �elds: Broken conformal invari-ance allied with the an inationary period will createlarge scale magnetic �elds. Bertolami and Mota [2] es-timate the spectral index in such a mechanism to lie inthe range around 0. We are then clearly in the regimewhere the cuto� is important. Using the Alfv�en dampingscale at equality and assuming magnetic �eld generationat 1010GeV, we �nd B� <� (10�7�10�8)Gauss for n vary-ing from �0:5 to 0:5. A similar result can be obtainedfor the model of Gasperini et al [2].V. DISCUSSIONOur calculation di�ers from most of the recent work onthe impact of primordial magnetic �elds on structure for-mation: In estimating the CMB anisotropies we do notsplit the magnetic �eld into a 'large' homogenous modeand a 'small' uctuation. The magnetic �eld then a�ectsmetric perturbations quadratically. This has two e�ects.Firstly it allows us to consider the magnetic �eld as asti� source, and discard (within the MHD approxima-tion) the backreaction of the perturbations in the cosmo-logical uid. Indeed if we were to consider backreactionthen we would know a priori that we would be generat-ing unacceptable perturbations in the cosmological uid.Another way of phrasing this is that the magnetic �elditself is 1=2 order perturbation theory, while its energymomentum tensor and consequently the induced metricperturbations are �rst order perturbations. The MHDbackreactions on B would be 3=2 order and may thus beneglected in linear perturbation theory. We point out,5



however that, to obtain an estimate of the damping scaledue to the viscosity in the MHD we had to consider a splitbetween long wave length and short wavelength uctua-tions in B.Secondly, the stress energy tensor being quadratic inthe magnetic �eld, leads to a 'sweeping' of modes: largewavelength modes in T�� will in general be a�ected byall scales of the spectrum of B [12]. As we have seenin the causal case, the small wavelength behaviour ofthe magnetic �eld totally dominates the large wavelengthpertubations. In [5] the magnetic �eld is modeled asB = �B + B(1)(x) where �B is a homogeneous term; thestress energy tensor is then given by terms of the form�BiB(1)j , which are linear in the stochastic component.A few comments are in order with regards to our result.Note that we are considering a speci�c class of models,where the magnetic �eld seed is created at some wellde�ned moment in the early universe and then evolvesaccording to the MHD equations. If the magnetic �eldis being constantly sourced throughout the radiation era,then our calculation is not valid. An example of such ascenario was proposed by Vachaspati [3] where magentic�elds are sourced by vortical imprints from an evolvingnetwork of cosmic strings; although the scaling behaviourof source may lead to B / a�2, the e�ective dampingscale will be of order the horizon much larger than theAlfv�en damping scale. Another possibility has been putforward in [7], where the onset of turbulence induces anampli�cation of power on large scales but a supressionof power on small scales. This would further increasekc but the results are still too qualitative to be properlyincluded in an analysis such as ours.Acknowledgments: We thank John Barrow, Or-feu Bertolami, Kari Enqvist, Karsten Jedamzik, Jo~aoMagueijo, Evan Scannapiecco and Misha Shaposhnikovfor useful discussions. We thank one of the referees forpointing out the importance of Equation (26) and an-other for alerting us to the importance of reference [12].RD acknowledges the hospitality of the CfPA at U.C.Berkeley, where this work was initiated. TK acknowl-edges the hospitality of Geneva University.[1] P.P. Kronberg, Rep. Prog. Phys. 57, 57 (1994).[2] M.S.Turner and L.M. Widrow, Phys. Rev. D37, 2743(1988); B. Ratra, Ap. J. Lett. 391 L1 (1992);W.D.Garretson, G.B. Field and S.M.Carroll, Phys. Rev.D46 5346 (1992); M. Gasperini, M. Giovannini andG. Veneziano, Phys. Rev. Lett. 75, 3796 (1995); D.Lemoine and M. Lemoine Phys. Rev. D52, 1955 (1995);O.Bertolami and D.F.Mota, gr-qc/9901041.[3] T.W.B Kibble and A. Vilenkin Phys. Rev. D52 679(1995); J.T. Ahonen and K. Enqvist, Phys. Rev. D57664 (1998); T. Vachaspati, Phys. Lett. B265 258, (1991);M.Joyce and M.E.Shaposhnikov Phys. Rev. Lett. 79,1193 (1997).[4] Ya. B. Zeldovich, A.A. Ruzmaikin and D.D. Sokolo�,Magnetic Fields in Astrophysics, Gordon and Breach,
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