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{ 2 {The determined osmologial parameters from the CMB aousti ex-trema data show good agreement with other determinations, espeially withthe baryon ontent as dedued from standard nuleosynthesis onstraints(Burles et al. 2001). These data supplemented by the onstraints from diretmeasurements of some osmologial parameters and data on large sale stru-ture (LSS) lead to a best-�t model whih agrees with pratially all the usedexperimental data within 1�. The best-�t parameters are: 
� = 0:64+0:14�0:27,
m = 0:36+0:21�0:11, 
b = 0:047+0:093�0:024, ns = 1:0+0:59�0:17, h = 0:65+0:35�0:27 and � = 0:15+0:95�0:15.The best-�t values of 
� and T=S are lose to zero, their 1� upper limits are 0:17and 1:7 respetively.Subjet headings: osmology: mirowave bakground anisotropies { aoustipeaks { osmologial parameters1. IntrodutionThe new data on the osmi mirowave bakground (CMB) temperature anisotropyobtained in the Boomerang (de Bernardis et al. 2000; Netter�eld et al. 2001), Maxima I(Hanany et al. 2000; Lee et al. 2001) and DASI (Halverson et al. 2001) experiments pro-vide relatively aurate measurements of the CMB anisotropies up to ` � 1000. Boomerangis a long duration balloon (LDB) ight around the South Pole, MAXIMA is a balloon ightfrom Palestine, Texas, and DASI is an interferometer experiment. The mutual agreement ofsuh divers experiments within statistial unertainties is very reassuring.After a orretion of the �rst results from Boomerang (de Bernardis et al. 2000), byNetter�eld et al. (2001) these measurements are in astounding agreement with the simplestat adiabati purely salar model of struture formation. The best �t osmologial param-eters obtained oinide with other, ompletely independent determinations, like e.g. thebaryon density parameter predited by nuleosynthesis (Burles et al. 2001).CMB anisotropies an be alulated within linear perturbation theory in a multi-omponentuniverse. These alulations are very well established and allow aurate preditions of theCMB power spetrum for a given model of initial perturbations and given osmologial pa-rameters. All the alulations are linear and very well ontrolled. Publily available odes,e.g. CMBfast (Seljak & Zaldarriaga 1996) provide 1% aurate results for a given modelwithin two minutes of CPU time on an ordinary PC. Due to these advantages, CMB tem-perature utuation data are extremely valuable for testing theoretial models of strutureformation and for the determination of osmologial parameters.



{ 3 {Nevertheless, the eÆieny of parameter determination using odes like CMBfast toompute the temperature anisotropy spetrum for eah model has several problems: 1) Theomplete set of observational data of the urrent state and the early history of the Universe isdesribed by models with at least six parameters. The implementation of CMBfast-like odesinto searh proedures for best �ts in high dimensional parameter spaes onsumes too muhCPU time even for the most advaned omputers due to the neessity to arry out numerialintegration of the Einstein-Boltzmann system of equations whih desribe the evolution oftemperature and density perturbations of eah omponent through the deoupling epoh. 2)The CMB power spetrum alone has several more or less exat degeneraies in parameterspae (see e.g. Efstathiou & Bond (1999)) whih an only be redued substantially orremoved ompletely if other data sets, e.g. galaxy lustering data, orresponding to di�erentsales and redshifts, are ombined with CMB measurements. The results and espeially theerror bars whih are obtained from searh proedures using di�erent lasses of osmologialobservations with di�erent quality and di�erent statistial properties are diÆult to interpret.Several groups have overome the �rst problem by omputing a grid of CMB anisotropyspetra in the spae of models and interpolating between them to obtain the spetra forintermediate values of the parameters (see Tegmark et al. (2001); Lange et al. (2001); Balbiet al. (2000); de Bernardis et al. (2001); Wang et al. (2001) and referenes therein).Here we propose an alternative method: The CMB angular power spetrum obtained byCOBE (Smoot et al.1992), Boomerang, MAXIMA-1 and DASI has well de�ned statistialand systemati errors in the range of sales from quadrupole up to the spherial harmoni` � 1000 and the present data an be represented by a few dozen unorrelated measurements.Pratially the same information is ontained in a few harateristis suh as the amplitudeand inlination of the power spetrum at COBE sale and the amplitudes and loations of theobserved aousti peaks and dips. The �rst three aousti peaks and the two dips indiatedby the above mentioned experiments and the COBE large sale data an be presented bynot more than 12 experimental points. If we use the approah by Bunn & White (1997)for the four year COBE data and the data on aousti peaks, we have 7 experimentalvalues to ompare with theoretial models. Eah of them an be alulated by analytial orsemi-analytial methods. This enables us to study present CMB data in a very fast searhproedure for multiomponent models.The goal of this paper is to use these main harateristis of the CMB power spetrumto determine osmologial parameters. To do this we have to aomplish the following steps:1) to loate the positions and amplitudes of three peaks and two dips as well as their errorbars from experimental data, 2) to derive aurate analytial approximations to alulatethese positions and amplitudes and test them by full numerial alulations. We also derive



{ 4 {an aurate and fast semi-analytial method to normalize the power spetrum to the 4-yearCOBE data. Suh analytial approximations have been derived in the past for the mat-ter power spetrum (Eisenstein & Hu 1998; Eisenstein & Hu 1999; Novosyadlyj et al. 2000)and for the Sahs-Wolfe part of the CMB anisotropy spetrum (Kofman & Starobinsky1985; Apunevyh & Novosyadlyj 2000). Here we derive an analogous approximation for theaousti part of the CMB anisotropy spetrum by improving an approximation proposed byEfstathiou & Bond (1999).The outline of the paper is as follows. In Setion 2 we determine the loations andamplitudes of the 1st, 2nd and 3rd aousti peak as well as 1st and 2nd dip and their on�-dene levels using the published data on the CMB angular power spetrum from Boomerang(Netter�eld et al. 2001), MAXIMA-1 (Lee et al. 2001) and DASI (Halverson et al., 2001).Analytial approximations for the positions and amplitudes of the aousti peaks and dipsare desribed in Setion 3. A new method for an aurate and fast COBE normalization isalso presented in this setion. Details are given in two Appendies. Our searh proedure todetermine osmologial parameters along with the disussion of the results is presented inSetion 4. Conlusions are drawn in Setion 5.2. Peaks and dips in the CMB power spetrum: experimental dataWe have to determine the loations and amplitudes of aousti peaks and dips as wellas their unertainties in the data of the angular power spetrum of CMB temperature utu-ations obtained in the Boomerang (Netter�eld et al. 2001), MAXIMA-1 (Lee et al. 2001)and DASI (Halverson et al. 2001). We arry out model-independent analyses of the peaksand dips in the power spetra for eah experiment separately, as well as using all data pointsjointly. 2.1. Boomerang-2001A model-independent determination of peak and dip loations and amplitudes in theBoomerang data (Netter�eld et al. 2001) has been arried out reently by de Bernardis etal. (2001). Our approah is based on a oneptually somewhat di�erent method, espeiallyin the determination of statistial errors.At �rst, mainly for omparison of our results with de Bernardis et al. (2001), we �tthe peaks in the Boomerang CMB power spetrum by urves of seond order (parabolas) asshown in Fig. 1. The six experimental points (Nexp = 6) in the range 100 � ` � 350, whih



{ 5 {trae the �rst aousti peak, are well approximated by a three parameter urve (Npar = 3).Hene, the number of degrees of freedom Nf = Nexp � Npar for the determination of theseparameters is Nf = 3. The best-�t parabola has �2min = 2:6. Its extremum, loated at`p1 = 212 and Ap1 = 5426 �K2, is the best-�t loation and amplitude of the �rst aoustipeak. We estimate the statistial error in the following way. Varying the 3 parameters ofthe �tting urve so that �2 � �2min � 3:53 the maxima of the parabolas de�ne the 1� rangeof positions and amplitudes of the �rst aousti peak in the plane (`; `(` + 1)C`=2�). Theboundary of this region determines the statistial 1� errors for the loation and amplitudeof the �rst aousti peak. We obtain`p1 = 212+13�20; Ap1 = 5426+540�539 �K2:In Fig. 1 the 1�, 2� (the boundary of the region with �2��2min � 8:02) and 3� (�2��2min �14:2) ontours are shown in the plane (`; `(` + 1)C`=2�). All ontours for the �rst aoustipeak are losed. This shows that the Boomerang-2001 data prove the existene of a �rst peakat a on�dene level higher than 3�. The values ��2 = 3:53, 8.02 and 14.2, given by theinomplete Gamma funtion, Q(Nf ;��2=2) = 1�0:683; 1�0:954 and 1�0:9973, orrespondto 68.3%, 94.5% and 99.73% on�dene levels respetively for a Gaussian likelihood of Nf = 3degrees of freedom. These levels whih depend on Nf and thus on the number of independentdata points (whih we just took at fae value from Netter�eld et al. (2001)) de�ne the regionswithin whih the maxima of parabolas leading to the data points lie with a probability � p,where p = 0:68; 0:954 and 0:9973 for 1-, 2- and 3-� ontours respetively. The same methodfor the seond peak using the eight experimental points in the range 400 � ` � 750, heneNf = 5, gives `p2 = 541+40�102; Ap2 = 2225+231�227 �K2:For the third peak (750 � ` � 1000, 6 experimental points, Nf = 3) we obtain`p3 = 843+25�42; Ap3 = 2077+426�412 �K2:For the seond and third peaks, the 2- and 3-� ontours are open as shown in Fig. 1.This means that the Boomerang experiment indiates the 2nd and 3rd aousti peaks at aon�dene level higher than 1- but lower than 2-�. This is in disagreement with the resultobtained by the same method in (de Bernardis et al. 2001). Formally the disagreementonsists in the fat that de Bernardis et al. (2001) set Nf = 2 for all peaks and dips (seeparagraph 3.1.2 of their paper) leading to di�erent values of ��2 for the 2- and 3-� ontours.They argue that there are two free parameters, namely the height and the position of thepeak. The 'philosophy' of the two approahes is somewhat di�erent: While our ontourslimit the probability that the given data is measured if the orret theoretial urve has thepeak position and amplitude inside the ontour, in their approah the ontours limit the



{ 6 {probability that the given best �t parabola leads to data with peak position and amplitudeinside the ontour. In other words, while they ompare a given parabola to the best �turve, we ompare it to the data. In that sense we think that the losed 2-� ontours of deBernardis et al.(2001) do not prove the existene of the seondary peaks at the 2-� level. Ofourse our approah has a problem as well: It relies on the data points being independent.If they are not, the number of degrees of freedom should be redued.The same proedure an be applied for the amplitudes and positions of the two dipsbetween the peaks.There is also a slight logial problem with the results presented in Fig. 2 of de Bernardiset al.(2001): If 2nd and 3rd peaks are established at 2� C.L., then the 2nd dip should bedetermined at the same C.L.; but even the 1� ontour for the position of the seond dipis not losed. Also the position of the �rst dip is atually �xed by a single data pointat ` = 450 as an be seen from Fig. 3 in (de Bernardis et al. 2001). In order to removethese problems we approximate the experimental points in the range 250 � ` � 850 (12experimental points) by one single �fth order polynomial (6 free parameters). The numberof degrees of freedom Nf = 6. The best-�t urve with �2min = 3:26 is presented in Fig. 2. Its6 oeÆients are a0 = 1:13 �105, a1 = �944:7, a2 = 3:106, a3 = �4:92 �10�3, a4 = 3:75 �10�6,a5 = �1:099 � 10�9. This method allows us to determine the loations and amplitudes ofboth dips and of the seond peak by taking into aount the relatively prominent raises tothe third and espeially to the �rst peak. The loal extrema of the polynomial best-�t givethe following loations and amplitudes of the 1st and 2nd dip (positive urvature extrema)and the 2nd peak (negative urvature) between them. The 1� error bars are determined asabove: `d1 = 413+54�27; Ad1 = 1960+272�282 �K2;`p2 = 544+56�52; Ap2 = 2266+275�274 �K2;`d2 = 746+114�63 ; Ad2 = 1605+373�436 �K2:All results disussed here are presented in Table 1 and shown in Figs. 1 and 2. In Fig. 2also the 1� (��2 = 7:04), 2� (��2 = 12:8) and 3� (��2 = 20:1) on�dene ontours areshown. The 1-� ontours for all peaks and dips are now losed. The 2� ontour for the 2ndpeak has a 'orridor' onneting it with the 3rd peak. As we have noted before (see Fig. 1),the 2� on�dene ontour for the 3rd peak is also open towards low `. This implies that wean not establish the seond peak at 2� C.L. The probability of its loation is spread outover the entire range 450 � ` � 920. Therefore at 2� C.L. we an not state whether theBoomerang-2001 results indiate a seond peak without a third, or third without a seond orboth. We only an state at 2� C.L. that there are one or two negative urvature extrema ofthe funtion `(`+1)C`=2� situated in the range 450 � ` � 920 with amplitude in the range



{ 7 {1500 � `(` + 1)C`=2� � 2700�K2. Now, the ontours for the dips are in logial agreementwith the information about the seond and third peaks. If at 2� C.L. the 2nd peak an beat the range of the loation of 3rd one, then the 1st dip will move to ` � 520. Its 2� ontouris losed sine the 3rd peak has a losed 2� C.L. ontour at the high ` side. On the ontrary,the 2nd dip is open at high ` as it disappears when the 'seond' peak disappears and the'third' peak beomes the seond. The 3� ontours for the 2nd and 3rd peak as well as for1st and 2nd dips are open in the diretion of high `.So far we disussed only the statistial errors. The Boomerang LDB measurements havetwo systemati errors: 20% alibration unertainty and beam width unertainty leading tosale-dependent orrelated unertainties in the determination of the power spetrum (Net-ter�eld et al. 2000). The alibration error results in the same relative error for all datapoints and an be taken into aount easily. The beam width unertainty whih indues anerror whih beomes larger at higher values of `, needs more are.We estimate the beam width unertainty as follows: Using the data of Netter�eld etal. (2001) for the 1� dispersion of the CMB power spetrum due to beam width unertainty,we have to estimate its e�et on determination of peak and dip loations and amplitudes. Totake into aount the e�et of a 1� overestimated beam width we have lowered the entralpoints of the CMB power spetrum presented in Table 3 of (Netter�eld et al. 2001) bymultiplying them by the `{dependent fatorfo(`) = 1 � 1:1326 � 10�4` � 2:72 � 10�7`2:To take into aount the e�et of a 1� underestimated beam width we raise the entralpoints of CMB power spetrum all by multipliation with the fatorfu(`) = 1� 6:99 � 10�5`+ 5:53 � 10�7`2:(fo(`) and fu(`) are best �ts to the Boomerang-2001 data and are shown in Fig. 3). Forboth ases we have repeated the peak and dip determination proedure. Best-�t valuesdetermined for the entral points of CMB power spetrum give us the 1� errors of thepeak/dip harateristis due to beam width unertainties. The results are presented inTable 1. They show that error bars of all peak and dip loations aused by the beam widthunertainty are substantially less than the statistial errors. But they dominate for theamplitude of the 3rd peak and are omparable with the statistial error for the amplitudesof the 1st dip, the 2nd peak and the 2nd dip. However, the beam size errors are signi�antlysmaller than statistial errors for the 1st aousti peak.Sine all soures of errors have di�erent nature and are statistially independent theyadd in quadrature. The resulting symmetrized total errors are shown in the before last and



{ 8 {last olumns of Table 1. They are used in the osmologial parameter searh proeduredesribed in Setion 4.[ht℄ 2.2. Adding DASI and MAXIMA-1 dataWe have repeated the determination of peak and dip loations and amplitudes with thedata of two other experiments, DASI (Halverson et al. 2001) and MAXIMA-1 (Lee et al. 2001),released simultaneously with Boomerang-2001. Both on�rm the main features of theBoomerang CMB power spetrum: a dominant �rst aousti peak at ` � 200, DASI showsa seond peak at ` � 540 and MAXIMA-1 exhibits mainly a 'third peak' at ` � 840. Theresults presented in Figs. 4,5 and 6 are quantitative �gures of merit for their mutual agree-ment and/or disagreement. In Fig. 4 the 1; 2 and 3� ontours for the �rst peak loation andamplitude for eah experiment as well as the ontours for the ombined data are presented.In Fig. 4 one sees that MAXIMA, like Boomerang, indiates on the existene of the�rst aousti peak at approximately 3� C.L. But its 1� ontour for loation of this peakin the (`; `(` + 1)C`=2�) plane does not interset the Boomerang 1� ontour, though theirprojetions on ` and `(`+1)C`=2� axes do. This an be aused by systemati (normalization)errors inherent in both experiments. Approximately a quarter of the area outlined by theBoomerang 2� ontour falls within the MAXIMA 2� ontour. The experiments show thesame level of agreement in the data on 3rd aousti peak (Fig. 5). In the range of the 1stdip - 2nd peak - 2nd dip, the MAXIMA data have no signi�ant extrema, even 1� ontoursare open in both diretions of the ` axis.The DASI experiment establishes the loation and amplitude of the �rst aousti peakat somewhat more than 1� but less than 2�. The remarkable feature is the intersetion ofthe 1� ontours of DASI and Boomerang. Approximately 1/5 of the area outlined by theMAXIMA 2� ontour is within the orresponding DASI ontour.Our analysis has also shown that the DASI data on the seond aousti peak agree verywell with Boomerang; the 1� ontours nearly superimpose. The agreement of these twoexperiments is impressive.We have repeated the determination of peak and dip loations and amplitudes usingthe data of all experiments jointly. The ontours for the ombined data are shown by thethiker blak lines in Figs. 4 and 5. The C.L. ontours for the 1st dip, 2nd peak and2nd dip determined as regions of loations of negative and positive extrema of a 5-th order



{ 9 {

Fig. 1.| Best-�t parabolas for the aousti peaks of the Boomerang-2001 CMB powerspetrum (�2min = 2:59 for the 1st peak, �2min = 0:92 for the 2nd peak and �2min = 0:65 forthe 3rd peak) as well as 1 (solid), 2 (dotted) and 3� (dashed) ontours for their loations andamplitudes are shown. The rosses indiate the top of the best-�t parabolas. The ontourslimit the regions in the (`; `(` + 1)C`=2�) plane whih ontain the tops of parabolas with��2 = 3:53; 8:02; 14:2 for the 1st and 3rd peaks (Nf = 3) and ��2 = 5:89; 11:3; 18:2 forthe 2nd peak (Nf = 5).



{ 10 {

Fig. 2.| The best polynomial �t for the Boomerang-2001 CMB power spetrum in therange of the 1st dip, 2nd peak and 2nd dip (�2min = 3:26), and the 1; 2 and 3� ontours fortheir loations and amplitudes. The rosses indiate the positive (dips) and negative (peak)urvature extrema. The ontours limit the regions in the (`; `(` + 1)C`=2�) plane ontainingthe orresponding extrema of polynomial �ts with ��2 = 7:04; 12:8; 20:1 (Nf = 6).
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Fig. 3.| The orretion fators fo(`) (upward pointing triangles) and fu(`) (downwardpointing triangles) for the orrelated CMB power spetrum error aused by the unertaintyof the e�etive beamwidth of the Boomerang experiment as given in Netter�eld et al. (2001).The solid lines are the �tting funtions fo and fu given in the text.polynomial �t are shown in Fig. 6. The omparison with the orresponding �gure for theBoomerang data alone (Fig. 2) shows their agreement.The best-�t values of `pi, Api (i = 1; 2; 3) and `dk , Adk (k = 1; 2) as well as their 1�statistial errors are given in Table 2.The peak loations and amplitudes from the Boomerang-2001 CMB data presented inthe Table 1 show good quantitative agreement in the loations and, somewhat less good,in the amplitudes obtained from the orresponding data of the other experiments and allthe data together. The agreement an be improved when other error soures (alibration,beam width unertainty, osmi variane et) of eah experiment are taken into aount.With some luk, the new mission MAP, whih has been launhed suessfully this June, will



{ 12 {Table 1. Best �t values for loations (`p) and amplitudes (Ap, [�K2℄) of the peaks and dipsin the CMB temperature utuation power spetrum measured by Boomerang (Netter�eldet al. 2001). Statistial errors (1st upper/lower values) and errors aused by beam widthunertainties (2nd upper/lower values) are shown in olumns 2 and 3. The 20% alibrationunertainty is inluded in the symmetrized total errors presented in the last olumn.Features `p Ap `p Ap1st peak 212+13+2�20�3 5426+540+112�539�135 212� 17 5426� 12181st dip 413+54+6�27�6 1960+272+142�282�158 413� 50 1960� 5032nd peak 544+56+14�52�14 2266+275+309�274�283 544� 56 2266� 6072nd dip 746+114+9�63�9 1605+373+422�436�362 746� 89 1605� 6503rd peak 843+26+5�42�7 2077+426+720�411�573 843� 35 2077� 876Table 2. Best �t values for the loations and amplitudes of peaks and dips in the CMBtemperature utuation power spetrum from the DASI and MAXIMA-1 experiments.Statistial errors are determined as desribed in the text. In the last olumn the resultsobtained from the data of all three experiments together are presented.DASI MAXIMA-1 All three experimentsFeatures `p Ap `p Ap `p Ap1st peak 193+24�45 4716+376�351 236+20�17 4438+743�743 213+35�59 5041+1017�11961st dip a 378+15�11 1578+170�178 475+264�83 1596+427�443 406+97�32 1843+385�4052nd peak a 536+30�24 2362+176�176 435� 739b 1500� 2800 b 545+204�89 2266+397�6092nd dip a 709+45�46 1799+221�308 435� 739 b 1000� 2700 b 736+163�117 1661+517�6633rd peak { { 813+286�112 2828+1880�1584 847+252�146 2175+897�836aThe extrema were determined by approximating the experimental CMB power spetrumby 5-th order polynomialbJust the ranges where the probability to �nd the peak or dip is > 68:3% are indiated
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Fig. 4.| The loation of the �rst aousti peak in the plane (`; `(` + 1)C`=2�) for theBoomerang-2001 (blue diamond), DASI (green triangle), MAXIMA-1 (red square) data andfor all experiments together (blak ross) determined as maxima of orresponding best-�tparabola. The 1; 2; 3� on�dene ontours are also shown. �2min, Nf and ��2 for the �rstpeak of the Boomerang-2001 data are given in the aption of Fig. 1, for the other ases wehave: DASI { �2min = 1:8, Nf = 1 and ��2 = 1; 4; 9 for the 1; 2; 3� on�dene ontoursaordingly, MAXIMA-1 { �2min = 4:22, Nf = 2 and ��2 = 2:3; 6:17; 11:8, all experimentstogether { �2min = 15:3, Nf = 9 and ��2 = 10:43; 17:18; 25:26. The dominant ontributionto �2min omes from the MAXIMA-1 data.
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Fig. 5.| The loation of the third aousti peak in the plane (`; `(` + 1)C`=2�) for theBoomerang-2001 (blue diamond) and MAXIMA-1 (red square) data and for both experi-ments together (blak ross), determined as maxima of the orresponding best-�t parabola.The 1; 2; 3� on�dene ontours are also shown. �2min, Nf and ��2 for the Boomerang-2001third aousti peak is given in the aption of Fig. 1, for the other ases we have: MAXIMA-1{ �2min = 0:67, Nf = 1 and ��2 = 1; 4; 9, all experiments together { �2min = 3:0, Nf = 6 and��2 = 7:04; 12:82; 20:06. The dominant ontribution to �2min omes from the MAXIMA-1data.



{ 15 {

Fig. 6.| The loations of the seond aousti peak and the two dips in the (`; `(` + 1)C`=2�)plane are shown together with the best-�t 5-th order polynomial. All points in this rangefrom Boomerang, MAXIMA-1 and DASI have been used jointly. The seond peak and thedips are determined as extrema of negative and positive urvature of the orrespondingbest �t polynomial. The 1; 2; 3� on�dene ontours are also shown. For all experimentstogether, the best-�t gives �2min = 17:8 for Nf = 18 degrees of freedom.



{ 16 {remove many of the urrent problems and will onsiderably improve the data on CMB powerspetrum.3. Analyti determinations of the loations and amplitudes of the aoustipeaks and dipsIn order to use the data in Tables 1 and 2 to determine osmologial parameters, we needa fast algorithm to alulate the peak and dip positions for a given model. Here we improvethe analytial approximations of peak/dip positions and amplitudes whih have been derivedin several papers (Efstathiou & Bond 1999; Hu et al. 2001; Durrer & Novosyadlyj 2001; Doran & Lilley 2001).We start by disussing the normalization proedure.3.1. Normalization of the density power spetrumThe 4-year COBE data, whih establish the amplitude and the form of the CMB powerspetrum at the largest angular sales (` � 20), are taken into aount via the approximationfor C10 proposed by Bunn & White (1997). This requires aurate alulations of C` in therange ` � 12. The dominant ontribution on these angular sales is given by ordinary Sahs-Wolfe (SW) e�et. However, the Doppler (D) e�et and the ross-orrelation term Sahs-Wolfe { adiabati (SW-A) in the general expression for the orrelation funtion h�TT (n1) ��TT (n2)i have to be taken into aount as well if we want to ahieve an auray better than20% (see Appendix A). For � dark matter models and models with non-zero 3-urvature,also the integrated Sahs-Wolfe e�et (ISW) ontributes. We use the fators K` (� 1)introdued and alulated by Kofman & Starobinsky (1985) and improved by Apunevyh& Novosyadlyj (2000), so that CSW+ISW` = K 2̀CSW` (for details see Appendix A).The normalization of the power spetrum of salar perturbations then onsist in twosteps:i) We alulate C` = CSW+ISW` + CD̀ + C À + CSW�A` (1)(for ` = 2; 3; 5; 7; 10; 11; 12) by the analytial formulae given in Appendix A witharbitrary normalization. This determines the shape of the CMB power spetrum in therange of the COBE data, and hene the best-�t parameter CCOBE10 to 4-year COBE andthe �rst and seond derivatives as de�ned in Bunn & White (1997) for models with givenosmologial parameters;



{ 17 {ii) Sine eah term in the expression (1) is / Æ2h, where Æh is the present matter densityperturbations at horizon sale, we an now determine Æh and along with it the value of thenormalization onstant for salar perturbations As = 2�2Æ2h(3000Mp=h)3+ns for a modelwith given osmologial parameters. Here ns is the spetral index for primordial salar den-sity perturbations and h is dimensionless Hubble parameter (in units of 100 km/se/Mp).Both these steps are also performed in CMBfast. Hene, our normalization proedurefor the power spetrum is equivalent to normalization with CMBfast. Calulations show thatour value CCOBE10 never di�ers from the result of CMBfast by more than 3%. The auray ofthe overall normalization onstant Æh for �DM models with appropriate values of parametersis better then 5%. This has been ontrolled by omparing the value of �8 from CMBfastwith our semi-analytial approah. This error simply reets the auray of the analytialapproximation of the transfer funtion for density utuations by Eisenstein & Hu (1999)whih we have used.3.2. Positions and amplitudes of CMB extrema: analyti approahOne of the main ingredients for our searh proedure is a fast and aurate alulation ofthe positions and amplitudes of the aousti peaks and dips, whih depend on osmologialparameters.The dependene of the position and amplitude of the �rst aousti peak of the CMBpower spetrum on osmologial parameters has been investigated using CMBfast. As ex-peted, the results are, within sensible auray, independent of the hot dark matter on-tribution (
�). This was also shown by Novosyadlyj et al. (2000). For the remainingparameters, ns, h, 
b, 
dm and 
�, we determine the resulting values `p1 and Ap1 using theanalytial approximation given by Efstathiou & Bond (1999) and Durrer & Novosyadlyj(2001). In these papers the CMB anisotropy spetrum is approximated in the viinity of the�rst aousti peak by `(` + 1)2� C` = `(` + 1)2� (CSW` + 0:838CSW2 �A(
b;
dm;
k; ns; h) exp ��(`� `p1)22(�`p1)2 �) ; (2)where �`p1 = 0:42`p1 , CSW` is the Sahs-Wolfe approximation for the C`s derived in theAppendix A, Eq. (A9), and A(
b;
dm;
k; ns; h) =exp [a1 + a2!2dm + a3!dm + a4!2b + a5!b+



{ 18 {+a6!b!dm + a7!k + a8!2k + a9(ns � 1)℄: (3)Here !b � 
bh2, !dm � 
dmh2, !k � (1 � 
m � 
�)h2. The position of the aous-ti peaks is determined as in (Efstathiou & Bond 1999) for open and at models and in(Durrer & Novosyadlyj 2001) for losed models. The oeÆients ai are de�ned by �ttingto the numerial CMBfast amplitudes of the �rst aousti peak on a suÆiently wide gridof parameters. We �nd: a1 = 2:503, a2 = 8:906, a3 = �7:733, a4 = �115:6, a5 = 35:66,a6 = �7:225, a7 = 1:96, a8 = �11:16, a9 = 4:439. The auray of the approximation isbetter than 5% in the parameter range 0:2 � 
m � 1:2, 0 � 
� � 0:8, 0:015 � 
b � 0:12,0:8 � ns � 1:2 and 0:4 � h � 1:0. The approximation for the amplitude breaks downin the models with large urvature (
k � �0:2 and 
k � 0:6) and low baryon density,(!b � 0:006).To alulate the amplitudes of the 2nd and 3rd peaks, we use the analyti relations forthe relative heights of these peaks w.r.t the �rst peak as given by (Hu et al. 2001).Ap2 = Ap1H2(
m;
b; ns);Ap3 = Ap1H3(
m;
b; ns); (4)where the funtions H2 and H3 are given in Eqs. (B16) and (B17) respetively. For theloations of 2nd and 3rd peaks we use the analyti approximations given by Hu et al. (2001)and Doran & Lilley (2001) (see also Appendix B).Unfortunately, we have no analyti approximation for amplitudes of the dips and henewe an not use their experimental values to determine osmologial parameters. But asuÆiently aurate analyti approximation for the loation of the 1st dip is given in Doran& Lilley (2001). We use it here.Hene, we have analytial approximations for the dependenes of the positions andamplitudes of three aousti peaks and the loation of the 1st dip on osmologial parameters`pi(
m;
�;
k;
b; h);Api(
m;
�;
k;
b; ns; h); (i = 1; 2; 3)`d1(
m;
�;
k;
b; h):Comparing the analytial values for di�erent sets of parameters with numerial alulationsusing CMBfast, shows that the auray is about 5% for all loations and amplitudes of 1stand 3rd peaks in the ranges of osmologial parameters indiated above. The auray foramplitude of the 2nd peak is always better than 9% in the same ranges. For some parametervalues the seond peak is underestimated.For the onveniene of reader we present all analyti approximations used here in Ap-pendix B.



{ 19 {4. Cosmologial parameters from the CMB peak amplitudes and loationsWe now use the results of Setions 2 and 3 to determine the osmologial parameters
m, 
�, 
� (one sort of massive neutrino), 
b, ns, h, T=S (� C tensor10 =Csalar10 ) and � (op-tial depth to deoupling). We use the method desribed in detail in the previous paper(Durrer & Novosyadlyj 2001). We inlude 8 experimental points from the CMB power spe-trum (COBE C10, the amplitudes and loations of three aousti peaks and the loation ofthe �rst dip). In order to have a positive number of degrees of freedom, Nf � 1 we add aweak onstraint for the Hubble onstant, 0:5 � h � 0:8 when searhing for 8 parameters.In order to establish 1� on�dene intervals for eah parameter we have applied themarginalization proedure desribed in (Durrer & Novosyadlyj 2001). Then results are pre-sented in Table 3.At �rst we hek how the best �t parameters depend on the auray of the peak/diploations and amplitudes. For this we ompare the resulting osmologial parameters fromthe data given in Table 1 if we onsider only statistial errors and with total errors. Theresults are given in the �rst two rows of Table 3. In spite of the di�erent errors of theexperimental values and their relations (the total errors of peak amplitudes inrease fasterwith the peak number than the statistial error) the best �t osmologial parameters aresimilar.In order to estimate the sensitivity of osmologial parameters to experimental valueswe substitute the Boomerang data on peak/dip loations and amplitudes by the values fromTable 2, obtained from all three experiments ombined. The omparison of the results in thethird row with those above shows that the results are pratially unhanged. We believe thatthe Boomerang data on peak/dip loations and amplitudes are best studied and establishedstatistis and we use them in the following determinations.The neutrino ontents for this three data sets an be rather large, 
� � 0:3. The reasonfor that is the low sensitivity of the CMB anisotropy spetrum to 
� . When 
� = 0 andis �xed the best-�t values for the rest parameters remain pratially unhanged and also�2 inreases only very little. The CMB doesn't are whether dark matter should be hotor old. In order to distinguish between old and hot dark matter data whih is sensitiveto the density power spetrum on smaller sales needs to be added. In the Table 3 wetherefore exlude 
� from the determination proedure and �x its value to 0 in the �rst �verows. Contrary, for T=S and � we obtain 0, but with large 1� on�dene limits due to thedegeneray in T=S, � and ns (Efstathiou & Bond 1999).A remarkable result is the good agreement of the best-�t ontent of baryons 
bh2 �0:02 with the onstraint from standard nuleosynthesis and the observed intergalati on-



{ 20 {tent of light elements (Burles et al. 2001). The large 1� on�dene limits for 
m and
� are due to the well known degeneray of CMB power spetrum in these parameters(Efstathiou & Bond 1999). However, the sum of their best �t values, 
m + 
� = 1 � 
k isalways very lose to 1 whih implies that spatial urvature is small for the best �t model.We repeat the searh proedure for di�erent ombinations of the CMB power spetrumextrema data (Table 1) with other osmologial data sets. The LSS data set used here rangesfrom the Lyman alpha forest, determining amplitude and spetral index of the matter powerspetrum at very small sales, to large sale bulk veloities, luster abundanes and Abellluster atalogues whih determine �8 and the position of the 'knee' in the matter powerspetrum. All of this is extensively disussed in (Durrer & Novosyadlyj 2001).The results for osmologial parameters from di�erent ombinations of observationaldata are shown in the lines 4 to 8 of Table 3.Adding a stronger onstraint on the Hubble parameter, h = 0:65 � 0:10, and the bigbang nuleosynthesis (BBN) onstraint hanges the best �t osmologial parameters onlyslightly. The SNIa onstraint on the relation between 
� and 
m (Perlmutter et al. 1999)substantially redues the errors of these parameters (5th line in Table 3) as it removes thedegeneray between them. This degeneray is also removed when we ombine CMB and LSSdata.The osmologial parameters obtained from the Boomerang CMB power spetrum ex-trema data ombined with all other osmologial measurements (a detailed list an be foundin Durrer & Novosyadlyj 2001) are presented in lines 6th, 7th and 8th of Table 3. The best�t values for the tensor mode amplitude T=S de�ned as CT10=CS10 in the last two ases arepratially zero but the 1� on�dene limits are wide due to the degeneray of the CMBextrema in ns; T=S and �. Even when ombining the CMB with LSS data, the degenerayin ns and T=S is not signi�antly removed. This is so, sine a blue spetrum, whih allowsfor a high tensor ontribution to the CMB, an be ompensated with a neutrino omponentwhih leads to damping of the matter power spetrum on small sales. If massive neutrinosare not allowed, the degeneray between ns and T=S is lifted as soon as small sale LSS datais inluded.The best-�t values of spetral index ns in all ases are in the 1� range of the valueobtained from the COBE 4-year data, ns = 1:2�0:3 (Bennett et al. 1996; Gorski et al. 1996).When using the best �t model to alulate the data used to �nd it, pratially all resultsare within the 1� error range of the orresponding experimental data. Only two of 31experimental points are slightly outside. Namely the best-�t value of 
m � 0:75
� in thelast determination is at 1:1� lower of its experimental value followed from SNIa test and �8



{ 21 {
Table 3. Cosmologial parameters from the extrema of the CMB angular power spetrumin ombination with other osmologial data sets. The upper/low values show 1�on�dene limits whih are obtained by maximizing the (Gaussian) 68 perent on�deneontours over all other parameters. The LSS data set is the same as in(Durrer & Novosyadlyj 2001).Observable data set �2min=Nf 
� 
m 
� 
b ns h T=S �CMB(Boom;stat:) 1.01/2 0:69+0:23�0:56 0:31+0:61�0:21 0�) 0:055+0:13�0:028 0:89+0:81�0:08 0:65+0:23�0:24 0+27 0+1:65CMB(Boom;total) 0.95/2 0:64+0:31�1:42 0:36+1:04�0:35 0�) 0:057+0:18�0:047 0:89+0:97�0:14 0:65+0:23�0:23 0+44 0+1:90CMB(All;stat:) 0.09/2 0:63+0:35�1:35 0:37+1:04�0:36 0�) 0:051+0:29�0:05 0:90+1:30�0:11 0:65+0:23�0:24 0+20 0+1:75CMB(Boom;total)+h & BBNa 1.11/3 0:69+0:26�1:30 0:31+1:05�0:24 0�) 0:047+0:048�0:018 0:90+0:56�0:10 0:65+0:20�0:19 0+2:7 0+0:90h, BBN & SNIab 1.11/4 0:72+0:17�0:21 0:29+0:15�0:13 0�) 0:047+0:048�0:02 0:90+0:60�0:12 0:65+0:22�0:19 0+3:5 0+1:1h, BBN & LSS 8.22/11 0:46+0:31�0:46 0:48+0:52�0:22 0:06+0:20�0:06 0:047+0:12�0:026 1:03+0:59�0:23 0:66+0:31�0:31 0+3:5 0:15+0:95�0:15h, BBN, SNIa & LSSd 10.4/12 0:64+0:14�0:27 0:36+0:21�0:11 0:00+0:17 0:047+0:093�0:024 1:0+0:59�0:17 0:65+0:35�0:27 0+1:7 0:15+0:95�0:15the samee 11.6/14 0:61+0:16�0:26 0:37+0:21�0:13 0:00+0:11 0:041+0:043�0:023 0:95+0:17�0:14 0:70+0:34�0:20 0�) 0�)�)This parameter is �xed to 0.aThe big bang nuleosynthesis onstraint on baryon ontent℄
bh2 = 0:02� 0:001 from Burles et al. (2001) is inluded.bThe onstraint on the 
� �
m relation from SNIa distane measurements (Perlmutter et al. 1999), ^[
m � 0:75
�℄ = �0:25� 0:125is added.In addition to the parameters given in the di�erent olumns, we have also to determine the Abell-ACO biasing parameter, bl. Theresult is: bl = 2:64� 0:27dFor this data set we obtain bl = 2:47� 0:19ebl = 2:5� 0:2



{ 22 {onstraint established by (Bahall & Fan 1998) from the existene of three massive lustersof galaxies is at 1:18� higher than model predited value. But the value of �8 in our best-�tmodel, �8 = 0:91, is in the range of urrent estimates from the Sloan Digital Sky Survey�(SLOAN)8 = 0:915� 0:06, (SDSS Collaboration 2001)), whih is not inluded in our data set.The high degree of onsisteny within ompletely independent osmologial data sets is veryenouraging.Moreover, all parameters of our best-�t model agree well with those extrated from thefull Boomerang data (Netter�eld et al. 2001) ombined with LSS and SNIa priors.Finally, to ompare with the osmologial parameters obtained in our previous paper(Durrer & Novosyadlyj 2001, Table 4), where the same LSS data set was used, we haverepeated the searh proedure with �xed T=S = � = 0. The best-�t values of the parameterswith 1� errors obtained by maximizing the on�dene ontours over all other parameters aregiven in the last row of Table 3. Comparing them with values in the last olumn of Table4 from (Durrer & Novosyadlyj 2001) shows that both determinations have best-�t valuesin the 1� on�dene limits of eah other. There the best �t model has a slight positiveurvature, here a slightly negative. The 1� on�dene ranges here are somewhat wider thanthose obtained in the previous determination. These di�erenes are due to the di�erentCMB observable data set and the di�erent normalization proedure. Even though in ourprevious analysis we have only taken into aount the �rst peak. The errors in its loationand amplitude were signi�antly underestimated, leading to smaller error bars.5. ConlusionsWe have arried out a model-independent analysis of reent CMB power spetrum mea-surements in the Boomerang (Netter�eld et al. 2001), DASI (Halverson et al. 2001) andMAXIMA (Lee et al. 2001) experiments and have determined the loations and amplitudesof the �rst three aousti peaks and two dips as well as their on�dential levels (Table 1-2,Fig. 1-7).In the Boomerang experiment the seond and third aousti peaks are determined at aon�dene level somewhat higher than 1�. Experimental errors whih inlude statistis andsystematis are still too large to establish the seondary peak loations and amplitudes at2� C.L. Only the position of one (the third ) seondary peak an be bounded from above`p3 � 900, at 2� C.L. The same situation is enountered when determining the loations andamplitudes of the �rst and seond dips. However, the loation and amplitude of the �rstpeak, are well established with on�dene level, higher than 3�.



{ 23 {The MAXIMA experiment also shows the existene of the �rst aousti peak at approx-imately the same on�dene level as Boomerang. But the 1� ontours for the peak positionin the plane (`; `(` + 1)C`=2�) do not interset. However, their projetions onto the ` and`(` + 1)C`=2� axes do. Approximately one quarter of the area inside the Boomerang 2�ontour falls within the orresponding MAXIMA ontour. The same level of agreement ofthese experiments is found in the data on the 3rd aousti peak. In the range of 1st dip -2nd peak - 2nd dip the MAXIMA data give no signi�ant information. Even the 1� ontoursare open in both diretions of the ` axis.The DASI experiment establishes the loation and amplitude of the �rst aousti peakat somewhat higher than 1� C.L. but less than 2�. The 1� ontours for the position of the�rst peak of the DASI and Boomerang experiments interset. Approximately 1/5 of the areaoutlined by the MAXIMA 2� ontour is within the DASI 2� ontour. The DASI data onseond aousti peak is in exellent agreement with the Boomerang results - the 1� ontourspratially oinide.We have also determined the loations and amplitudes of the aousti peaks and dips us-ing the data of all three experiments. The results are very lose to those from the Boomerangdata alone.To determine osmologial parameters from these data, we have improved the analyt-ial approximations for the peak positions and amplitudes to an auray (determined byomparing the approximations with the results of CMBfast) better than 5% in a suÆientlywide range of parameters. We have also developed a fast and aurate analytial method tonormalize the power spetrum to the 4-year COBE data on C10. Our analytial approxima-tion is aurate to a few perent (in omparison to CMBfast) when all main e�ets (ordinarySahs-Wolfe e�et, integrated Sahs-Wolfe e�et, adiabati term, Doppler term and theirmutual ross-orrelations) are taken into aount. For example, in the model with parame-ters presented in the last row of Table 3 the relation of ontribution from these omponentsat ` = 10 are CSW10 : CA10 : CSW�A10 : CD10 = 1 : 0:098 : �0:24 : 0:42.The osmologial parameters extrated from the data on loations and amplitudes ofthe �rst three peaks and the loation of the �rst dip are in good agreement with otherdeterminations (Netter�eld et al. 2001; de Bernardis et al. 2001; Pryke et al. 2001; Wanget al. 2001; Durrer & Novosyadlyj 2001). That shows also that present CMB data anessentially be ompressed into the height and slope of the Sahs-Wolfe plateau (at ` = 10)and the positions and amplitudes of the �rst three aousti peaks and the �rst two dips.A remarkable feature is the oinidene of the baryon ontent obtained from the CMBdata, 
bh2 � 0:02 with the value from standard nuleosynthesis (0:02�0:001) (Burles et al. 2001).



{ 24 {Moreover, the CMB data together with onstraints from diret measurements of the Hubbleonstant, the SNIa data, the baryon ontent and the large sale struture of the Universe(the power spetrum of galaxies or rih lusters, the luster mass funtion, the peuliar ve-loity �eld of galaxies, Ly-� absorption lines as seen in quasar spetra) selet a best-�t modelwhih gives preditions within about 1� error bars of all measurements. The osmologialparameters of this model are 
� = 0:64+0:14�0:27, 
m = 0:36+0:21�0:11, 
b = 0:047+0:083�0:024, ns = 1:0+0:59�0:17,h = 0:65+0:35�0:27 and � = 0:15+0:95�0:15. The best-�t values of 
� and T=S are lose to zero, their1� upper limits are 
� � 0:17, T=S � 1:7.The osmologial parameters determined from the CMB aousti peak/dip loations andamplitudes data show good agreement with other osmologial measurements and indiatethe existene of a simple (adiabati) best-�t model for all the disussed osmologial datawithin the auray of present experiments.It is a pleasure to aknowledge stimulating disussions with Alessandro Melhiorri andRoman Juszkiewiz. BN is grateful to the Tomalla foundation for a visiting grant and toGeneva University for hospitality. RD thanks the Institute for Advaned Study for hospitalityand aknowledges support from the Monell Foundation.APPENDIXA. An analyti approximation for the CMB power spetrum at large angularsalesOn suÆiently large angular sales (larger than the Silk damping sale) temperatureutuations in the CMB an be related to density, veloity and metri perturbations at thelast sattering surfae and at later times by integrating the geodesi equation, similar to thelassial paper by Sahs and Wolfe (1967). Here we disuss only salar perturbations. Tensorperturbations an be simply added to the result and do not pose any signi�ant diÆulty.Salar perturbations generate CMB temperature utuations whih an be written in gauge-invariant form as a sum of four terms { the ordinary Sahs-Wolfe e�et, the integratedSahs-Wolfe term, the Doppler term and the aousti term (Durrer 1990).��TT �(s) (�0;x0;n) = 14Dr(�de;xde) + Vi(�de;xde)ni + (��	)(�de;xde)�Z �0�de(�0 �	0)(�;x(�))d� : (A1)



{ 25 {Here � and 	 are the Bardeen potentials (Bardeen 1980), Vi is the baryon veloity and Dris a gauge invariant variable for the radiation density utuations. A prime denotes thepartial derivative w.r.t. onformal time �. For perfet uids and for dust we have 	 = ��.In Newtonian limit the Bardeen potentials just redue to the ordinary Newtonian potential.For adiabati perturbations 14Dr = 13Æm � 53� (see e.g.Durrer & Straumann (1999)), whereÆm is the usual matter density perturbation. The variables � and x are onformal time andomoving position.In realisti models, osmologial reombination and deoupling of radiation from mattertake plae when �m > �r. Hene the large angular sale CMB power spetrum an beexpressed in the terms of solutions of Einstein's equations for adiabati linear perturbationsin a dust Universe. The CMB anisotropies on angular sales � � 10o (` � 20) are generatedmainly by the linear perturbations of matter density, veloity and the gravitational potentialat sales muh larger than the partile horizon at deoupling. Our approximation makes useof these fats.We use the solutions of Einstein's equations for linear density perturbations in at mod-els of a Universe with dust and a osmologial onstant whih an be found in (Kofman & Starobinsky 1985;Apunevyh & Novosyadlyj 2000). The growing mode of density, veloity and gravitationalpotential perturbations, using the gauge-invariant variables introdued by Bardeen (1980)and normalizing the sale fator a(t0) = a0 = 1, are�(t; k) = KÆ(t)C(k); Æm(t; k) = �2C(k)k2a(t)KÆ(t)3H20
m ; V �(t; k) = �i2C(k)k�a(t) _a(t)KV (t)3H20
m :(A2)C(k) is (up to the time dependent fator KÆ) the Fourier transform of the Bardeen potential,so that �(t;x) = (2�)�3=2 R �(t;k)eikxd3k, Æm(t;x) = (2�)�3=2 R Æ(t;k)eikxd3k (Our variableÆm orresponds to �m in Bardeen's notation) and V �(t;x) = (2�)�3=2 R V �(t;k)eikxd3k. ThefatorsKÆ(t) � 53 �1� _a=a2 R t0 adt� andKV (t) � 53 ( _a=a2 � �a=a _a) R t0 adt are both in the range0 < K� � 1 and reet the redution of growth of perturbations aused by the osmologialonstant. The sale fator of the bakground model is given bya(t) = � 
m1 �
m�13 sinh 23 �3H0tp1� 
m2 �Here H0 � ( _a=a)(t0) = _a(t0) is the Hubble onstant today. The K�-fators go to 1 when t�t0 or when 
m ! 1 (
� ! 0). At deouplingKÆ = KV = 1. An analytial approximation forKÆ(t)=
m with suÆient auray an be found in (Carroll et al. 1992) and for KV (t0)=
min (Lahav et al. 1991).



{ 26 {The power spetrum of density utuations is given byP (k; t) � < Æ(t; k)Æ�(t; k) >= AsknsT 2m(k; t)a2(t)K2Æ (t)=
2m; (A3)As = 2�2Æ2h(3000Mp=h)3+ns ;where Tm(k; t) is transfer funtion (divided by the growth fator) and Æh is the present matterdensity perturbation at horizon sale. We use the analytial approximation of Tm(k; t) in thespae of osmologial parameters h, 
m, 
b, 
�, 
� and N� (number of speies of massiveneutrino) by Eisenstein & Hu (1999).From Eq. (A1), taking into aount adiabatiity and setting x0 = 0, we obtain�TT (n) = 13�(�de;n�0) + 2Z !e0 ��A(�0 � !;n!)�� d! + n�V �(�de;n�0) + 13Æm(�de;n�0);(A4)where n is the unit vetor in diretion of the inoming photon and we have used x(�) =n(�0��), xde ' n�0. The variable ! is the aÆne parameter along the geodesi whih beginsat the observer and ends in the emission point at the last sattering surfae. The presentvalue of onformal times, �0 gives also the present partile horizon or the distane to thelast-sattering surfae. The �rst term in (A4) is the well known Sahs-Wolfe e�et (SW), theseond term is the integrated Sahs-Wolfe e�et (ISW) whih is important only at late times,where KÆ(t) starts to deviate from 1 and ���� 6= 0, the third is the Doppler term (D) and thelast is the aousti term (A). At large angular sales (� 10o), where anisotropies have beenmeasured by COBE (Bennett et al. 1996), the SW and ISW e�ets dominate. However, ifwe want to alulate C10 with good auray, we must to also take into aount the otherterms. The angular orrelation funtion of �T=T an be written symbolially as< �TT (n1) � �TT (n2) >= < SW � SW > +2 < SW � ISW > + < ISW � ISW >+ < A �A > +2 < SW �A > + < D �D > : (A5)The ross-orrelators < D � SW > and < D �A > are omitted beause they are strongly sup-pressed on large angular sales. Indeed, if one uses Fourier presentations for the variables(A2) in the equations (A4-A5) one �nds that the k-integrand of these terms ontains a spher-ial Bessel funtion j1(k�0(n1 � n2)) whih osillates for large angular separations, stronglyreduing the integral if ompared to the < SW �A > term where the integrand has a de�nitesign. The terms < ISW �A > and < ISW �D > are also omitted beause the ISW e�etgives the maximal ontribution to �T=T at the largest angular sales of the range of interest(at lowest spherial harmonis) where A and D are nearly zero. At 'smaller' angular sales(` � 10) where ontribution of A and D are not negligible, the ISW e�et is very small.Therefore, their ross-orrelation terms are very small.



{ 27 {We develop the n-dependene of �TT (n) in spherial harmonis�TT (n) = X̀;m a`m(�0)Y`m(n); < a`ma�̀0m0 >= Æ`mÆ`0m0C` :The CMB power spetrum, C`, has the same omponents as the orrelation funtion:C` = CSW` + CSW�ISW` + C ISW` + C À + CSW�A` + CD̀ (A6)Eah omponent on the right hand side omes from the orresponding ontribution to �Tabove and is proportional to Æ2h. Using the solutions (A2) we obtain analyti approximationsfor them.We �rst approximate the SW and ISW ontributions in the formCSW+ISW` � CSW` + CSW�ISW` + C ISW` = K 2̀CSW` ; (A7)where the fatorsK` (� 1) take into aount the ontribution of the ISW e�et for eah spher-ial harmoni. They have been alulated in (Kofman & Starobinsky 1985) and (Apunevyh & Novosyadlyj 2000)for di�erent �-models. Instead of the diret time onsuming alulations of the ISW ontri-bution, we use the following analyti approximations:K22 = 1 + 8:20423 � exp(�
m=0:01157) + 3:75518 � exp(�
m=0:13073);K23 = 1 + 2:25571 � exp(�
m=0:03115) + 2:35403 � exp(�
m=0:15805);K24 = 1 + 1:80309 � exp(�
m=0:0323) + 1:88325 � exp(�
m=0:16163)and K 2̀ = 1 + [23:46523 � exp(�
m=0:0122) + 11:03227 � exp(�
m=0:14558)℄=(` + 0:5)for ` � 5. These approximation formulae are determined from the data presented in thetables of (Kofman & Starobinsky 1985) and (Apunevyh & Novosyadlyj 2000).Using solutions (A2) and the de�nition of the density power spetrum (A4) we obtainthe following general expression for the SW ontribution of the CMB power spetrum:CSW` = ��ns�10 Æ2h2ns�1D2(t0) Z 10 dkkns�2T 2m(tde; k)j 2̀(k�0); (A8)where T 2m(tde; k) is the transfer funtion of matter density perturbations at deoupling,D(t0) � KÆ(t0)=
m is the value of the growth fator at the urrent epoh, and j` is thespherial Bessel funtion of order `. For reasonable values of spetral index �3 � ns � 3 themain ontribution to the integral (A8) omes from very small k where Tm(tde; k) � 1 andan be omitted. Then integral an be performed analytially and the result an be expressedin terms of �-funtions: CSW` = �2Æ2h8D2(t0) �(3 � ns)�(` + ns�12 )�2(2 � ns=2)�(` + 5�ns2 ) : (A9)



{ 28 {In the same way we obtain the expressions for the other omponents of equation (A6):C À = ��ns+30 Æ2ha2(tde)18 � 2nsD2(t0)
2m Z 10 dkkns+2T 2b (tde; k)j 2̀(k�0); (A10)CSW�A` = � ��ns+10 Æ2ha(tde)3 � 2ns�1D2(t0)
m Z 10 dkknsTm(tde; k)Tb(tde; k)j 2̀(k�0); (A11)CD̀ = ��ns+10 Æ2ha(tde)2ns�1D2(t0)
m Z 10 dkknsT 2b (tde; k)j 02` (k�0); ; (A12)where Tb(tde) is transfer funtion for density perturbations of baryons (Eisenstein & Hu 1998)and (0) is the derivative w.r.t the argument x = k�0. The minus sign in the expressionfor CSW�A` reets the anti-orrelation of the gravitational potential and density utua-tions: large positive density utuations generate deep negative potential wells. If we setTm = Tb = 1, the integrals (A11 {A12) diverge for all ` for ns � 1 beause the main ontri-bution to integrals of the D and A terms omes from small sales. Hene here the transferfuntions must be kept and the integrals have to be alulated numerially. Fortunately, theintegrands deay rapidly for large wave numbers and 99.9% of the ontribution omes fromthe range 0:001 � k�de � 0:1, so that the integration is not very time onsuming.In Fig.7 the CMB power spetrum C` at large angular sales (� � 20o; ` � 20) togetherwith the ontributions from the di�erent terms given in (A9-A12) is shown for a pure matterand a �� dominated model. The relation of the ontributions from di�erent terms at ` = 10are CSW` : C À : CSW�A` : CD̀ = 1 : 0:04 : �0:11 : 0:22for the matter dominated at model (
m = 1) andCSW` : C À : CSW�A` : CD̀ = 1 : 0:08 : �0:23 : 0:39:for the � dominated model with the osmologial parameters shown in the �gure. Therefore,a few perent auray of the normalization to 4-year COBE C10 data an be ahieved onlyif all these e�ets are taken into aount.In Fig. 8 the CMB power spetrum at large sales alulated using the analyti for-mulae (A9-A12) and using CMBfast are shown for omparison. In the left panel we alsopresent the power spetrum alulated by the analytial approah of (Hu & Sugiyama 1995)(renormalized to the CMBfast value of C10).The alulations show that value of C10 alulated by our method deviates from thevalue alulated with CMBfast by 0.5% for the matter dominated at model (
m = 1) and2.7% for the � dominated model (
m = 0:2). Therefore, our analyti approah is suÆientto normalize fast the power spetrum of salar perturbations to the 4-year COBE data with



{ 29 {virtually the same preision as CMBfast, the di�erene is less than 3%. (Remember, thatthe experimental errors of the COBE data are about 14%, so that the best-�t normalizationparameter CCOBE10 has the same error.)Another omparison of our normalization proedure with CMBfast omes from thevalue of �8. For the at model (left panel of Fig. 8) our approximation for the normalizationtogether with the analytial transfer funtion of Eisenstein & Hu (1998; 1999) leads to�8 = 1:58, the orresponding value alulated from CMBfast is 1.53. For the � dark mattermodel (right panel) our �8 = 0:62, while CMBfast gives �8 = 0:64. The agreement of bothapproahes is quite well (the 5% di�erene inludes also the errors in the approximation ofthe transfer funtion whih is atually of this order).The slight deviation of C10 as alulated by our ode from the value obtained with CMB-fast (� 3%) in spite of using the same analyti best-�t formula for CCOBE10 by (Bunn & White 1997)is due to a di�erene in the form of the spetra as shown in the Fig. 8. This di�erene growswhen 
m dereases. There are several possible reasons for this deviation in the form of theCMB power spetrum in our analyti approah from the exat numerial alulation: 1)We have used the solutions for the evolution of density, veloity and gravitational potentialperturbations in the �- dust Universe. In reality, at deoupling the role of radiation is notompletely negligible, this slightly inuenes the dynamis of the sale fator and the evolu-tion of perturbations. It also results in additional time dependene of gravitational potential(early integrated Sahs-Wolfe e�et) whih is not taken into aount here. 2) Our approahdoes not take into aount the e�ets of the ollisionless dynamis of photons and neutrinosafter deoupling. Espeially, the indued anisotropi stresses lead to � 10% di�erene of thegravitational potentials in the radiation-dominated epoh whih results into a orretions ofa few perent in the C`'s. 3) Instantaneous reombination and tight oupling whih wereassumed, also ause slight inauraies. They should, however, be extremely small on theangular sales onsidered here. 4) To alulate the terms C À, CSW�A` and CD̀ we haveused the analyti approximations for the transfer funtions, Tm(tde; k) and Tb(tde; k), byEisenstein & Hu (1998; 1999) whih have an auray � 5%.More details on the theory of CMB anisotropies an be found in the reviews by Durrer& Straumann (1999) and Durrer (2001).



{ 30 {
Fig. 7.| The CMB power spetrum and the di�erent ontributions disussed in the text(formulae A9-A12) for a pure matter model (left panel) and a � dominated model (rightpanel).
Fig. 8.| The CMB power spetrum at COBE sales alulated by CMBfast (solid line) andby our analytial formulae (A9-A12) (dotted line). For the pure matter model we also showthe spetrum alulated with the analyti approah of (Hu & Sugiyama 1995) (dashed line)(this approah does not allow a osmologial onstant). All spetra are normalized to thebest �t for C10 from the 4-year COBE data given in (Bunn & White 1997).



{ 31 {B. Analyti formulae for the amplitudes and loations of aousti peaks anddips in the CMB power spetrumFor ompleteness, we repeat here the formulas used in our parameter searh whih analso be found in the ited literature.We assume the standard reombination history and de�ne the redshift of deouplingzde as the redshift at whih the optial depth of Thompson sattering is unity. A useful�tting formula for zde is given by (Hu & Sugiyama 1996):zde = 1048[1 + 0:00124!�0:738b ℄[1 + g1!g2m ℄; (B1)where g1 = 0:0783!�0:238b [1 + 39:5!0:763b ℄�1; g2 = 0:56[1 + 21:1!1:81b ℄�1;!b � 
bh2 and !m � 
mh2. B.1. LoationsThe loations of the aousti peaks in the CMB power spetrum depend on the value ofsound horizon at deoupling epoh rs(�de) � R �de0 d�0s and the angular diameter distane tothe last sattering surfae, dA(zde). Comparing with numerial alulations it was shown (see(Efstathiou & Bond 1999; Hu et al. 2001; Doran & Lilley 2001) and referenes therein) thatthe spherial harmoni whih orresponds to the m-th aousti peak is well approximatedby the relation `pm = (m� �m)�dA(zde)rs(zde) ; (B2)where �m take into aount the shift of m-th peak from its loation in the idealized modelwhih is aused by driving e�ets from the deay of the gravitational potential. Doran andLilley (2001) give an aurate analyti approximation in the form�m = ��� Æ�m ; (B3)where �� is overall phase shift of spetrum (or �rst peak) and Æ�m is a relative shift of eahpeak and dip aused by the Doppler shift of the osillating uid. For the overall phase shiftof the spetrum they �nd �� = (1:466 � 0:466ns)a1ra2� ; (B4)where r� � �rad(zde)=�m(zde) = 0:0416!m �1 + ��=�1:6813 �� T02:726�4 � zde1000�



{ 32 {is the ratio of radiation to matter at deoupling, anda1 = 0:286 + 0:626!b ; a2 = 0:1786 � 6:308!b + 174:9!2b � 1168!3bare �tting oeÆients. Here and below the numbers in the expressions are obtained for apresent CMB temperature of T0 = 2:726K and the ratio of densities of massless neutrinos andphotons ��=� = 0:6813 for three massless neutrino speies (orrespondingly f� � ��=(� +��) = 0:405). All values an be easily saled to other values of T0 and f� .The relative shift of the 1st aousti peak is zero, Æ�1 = 0. For the 2nd one it isÆ�2 = 0 � 1r� � 2=r3� + 0:05(ns � 1) ; (B5)with0 = �0:1+0:213e�52!b; 1 = 0:015+0:063e�3500!2b ; 2 = 6�10�6+0:137(!b�0:07)2; 3 = 0:8+70!b;and for the 3rd peak Æ�3 = 10 � d1rd2� + 0:08(ns � 1) ; (B6)with d1 = 9:97 + 3:3!b; d2 = 0:0016 + 0:196!b + 2:25 � 10�5!�1b :The formula (B2) is orret also for the loation of dips if we set m = 3=2 for the 1st dipandm = 5=2 for the 2nd dip. The relative shift of the �rst dip given by (Doran & Lilley 2001)is Æ�3=2 = b0 + b1r1=3� exp b2r� + 0:158(ns � 1) (B7)withb0 = �0:086�2:22!b�140!2b ; b1 = 0:39�18:1!b+440!2b ; b2 = �0:57�3:8 exp(�2365!2b ) :The angular diameter distane to the last sattering surfae is given bydA(zde) = H0pj
kj�(�0 � �de) ; (B8)where �(x) = x; sinx or sinhx for at, losed or open models respetively, and�0 � �de =pj
kjZ zde0 dzp
rad(z + 1)4 + 
m(z + 1)3 + 
� + 
k(z + 1)2 : (B9)Sine, the sound speed in the pre-reombination plasma iss = =p3(1 +R) with R � 3�b=4� = 30315(T0=2:726)�4!ba (B10)



{ 33 {and sale fator is well approximated bya(�) = aeq � ��1 + ( �2�1 )2� ; (B11)with aeq = 4:16 � 10�5!m �1 + ��=�1:6813 �� T02:726�4 ; �1 � �eq2(p2 � 1) ;the integral for sound horizon an be redued to the analyti formulars(�de) = 19:9p!b!m � T02:726�2 ln p1 +Rde +pRde +Req1 +pReq Mp: (B12)The deviation of the aousti extrema loations alulated using formulae (B2-B12) fromthe values obtained by CMBfast ode is < 3% for a suÆiently wide range of parameters.B.2. AmplitudesThe amplitude of the 1st aousti peak an be approximated by the following expressionAp1 = `p1(`p1 + 1)2� hCSW`p1 + CSW2 ~A(
b;
dm;
k; ns; h)i ; (B13)where~A � 0:838A = exp [~a1 + a2!2dm + a3!dm + a4!2b + a5!b + a6!b!dm + a7!k + a8!2k + a9(ns � 1)℄(B14)and CSWlp1 is given by (A9). We have re-determined the best-�t oeÆients ai using the valuesof the 1st aousti peak amplitudes from CMBfast for the grid of parameters given below.Their values are~a1 = 2:326; a2 = 8:906; a3 = �7:733; a4 = �115:6; a5 = 35:66;a6 = �7:225; a7 = 1:96; a8 = �11:16; a9 = 4:439: (B15)The deviations of this approximation from the numerial value obtained by CMBfast are� 5% within the range of osmi parameters, 0:2 � 
m � 1:2, 0 � 
� � 0:8, 0:015 � 
b �0:12, 0:8 � ns � 1:2 and 0:4 � h � 1:0.To alulate the amplitudes of the 2nd and 3rd peaks we use the relations H2 ��`p2(`p2 + 1)C`p2 � = �`p1(`p1 + 1)C`p1 � and H3 � �`p3(`p3 + 1)C`p3 � = �`p1(`p1 + 1)C`p1 � given



{ 34 {by Hu et al. (2001). This leads to the following amplitudesAp2 = Ap1H2(
m;
b; ns); with H2 = 0:925!0:18m 2:4ns�1h1 + (!b=0:0164)12!0:52m i1=5 ;(B16)Ap3 = Ap1H3(
m;
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