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AbstractWe investigate the global texture model of structure forma-tion in cosmogonies with non-zero cosmological constant fordi�erent values of the Hubble parameter. We �nd that theabsence of signi�cant acoustic peaks and little power on largescales are robust predictions of these models. However, from acareful comparison with data we conclude that at present wecannot safely reject the model on the grounds of present CMBdata. Exclusion by means of galaxy correlation data, requiresassumptions on biasing and statistics. New, very stringentconstraints come from peculiar velocities.Investigating the large-N limit, we argue that our mainconclusions apply to all global O(N) models of structure for-mation.

I. INTRODUCTIONRecently, a lot of e�ort has gone into the determina-tion of cosmological parameters from measurements ofcosmic microwave background (CMB) anisotropies, es-pecially in view of the two planned satellite experimentsMAP and PLANCK [1]. However, we believe it is im-portant to be aware of the heavy modeling which entersthese results. In general, simple power law initial spectrafor scalar and tensor perturbations and vanishing vectorperturbations are assumed, as predicted from ination.To reproduce observational data, the composition of thedark matter and the cosmological parameters as well asthe input spectrum and the scalar to tensor ratio arevaried [2].We want to take a di�erent approach: We modify themodel for structure formation. We assume that cosmicstructure was induced by scaling seeds. Using a simpli�ed(and not very accurate) treatment for the photon prop-agation, we have already shown that some key observa-tions can be reproduced within a very restricted family ofscaling seed models [3]. Here we want to outline in detaila more accurate computation with a fully gauge-invariantBoltzmann code especially adapted to treat models withsources. In this paper we follow the philosophy of a gen-eral analysis of scaling seed models motivated in Ref. [4].Seeds are an inhomogeneously distributed form of mat-ter (like e.g. topological defects) which interacts with the

cosmic uid only gravitationally and which represents al-ways a small fraction of the total energy of the universe.They induce geometrical perturbations, but their inu-ence on the evolution of the background universe can beneglected. Furthermore, in �rst order perturbation the-ory, seeds evolve according to the unperturbed spacetimegeometry.Here, we mainly investigate the models of structure for-mation with global texture. This models (for 
matter =1) show discrepancies with the observed intermediatescale CMB anisotropies and with the galaxy power spec-trum on large scales [5]. Recently it has been arguedthat the addition of a cosmological constant leads to bet-ter agreement with data for the cosmic string model ofstructure formation [6]. We analyze this question for thetexture model, by using ab initio simulation of cosmictexture as described in Ref. [7]. We determine the CMBanisotropies, the dark matter power spectrum and thebulk velocities for these models. We also compare ourresults with the large-N limit of global O(N) models,and we discuss briey which type of parameter changesin the 2-point functions of the seeds may lead to betteragreement with data.We �nd that the absence of signi�cant acoustic peaksin the CMB anisotropy spectrum is a robust result forglobal texture as well as for the large-N limit for allchoices of cosmological parameters investigated. Further-more, the dark matter power spectrum on large scales,� >� 20h�1Mpc, is substantially lower than the measuredgalaxy power spectrum.However, comparing our CMB anisotropy spectra withpresent data, we cannot safely reject the model. On largeangular scales, the CMB spectrum is in quite good agree-ment with the COBE data set, while on smaller scales we�nd a signi�cant disagreement only with the Saskatoonexperiment. Furthermore, for non-satellite experimentsforeground contamination remains a serious problem dueto the limited sky and frequency coverage.The dark matter power spectra are clearly too low onlarge scales, but in view of the unresolved biasing prob-lem, we feel reluctant to rule out the models on thesegrounds. A much clearer rejection may come from thebulk velocity on large scales. Our prediction is by a fac-tor 3 to 5 lower than the POTENT result on large scales.Since global texture and the large-N limit lead to verysimilar results, we conclude that all global O(N) modelsof structure formation for the cosmogonies investigatedin this work are ruled out if the bulk velocity on scales of50h�1Mpc is around 300km/s or if the CMB primordial1



anisotropies power spectrum really shows a structure ofpeaks on sub-degree angular scales.This paper is the �rst of a series of analyses of mod-els with scaling seeds. We therefore fully present theformalism used for our calculations in the next section.There, we also explain in detail the eigenvector expan-sion which allows to calculate the CMB anisotropies andmatter power spectra in models with seeds from the twopoint functions of the seeds alone. This section can beskipped if the reader is mainly interested in the results.Section 3 is devoted to a brief description of the numeri-cal simulations. In Section 4 we analyze our results andin Section 5 we draw some conclusions. Two appendicesare devoted to detailed de�nitions of the perturbationvariables and to some technical derivations.Notation: We always work in a spatially at Fried-mann universe. The metric is given byds2 = a(t)2(dt2 � �ijdxidxj) ;where t denotes conformal time.Greek indices denote spacetime coordinates (0 to 3)whereas Latin ones run from 1 to 3. Three dimensionalvectors are denoted by bold face characters.II. THE FORMALISMAnisotropies in the CMB are small and can thus bedescribed by �rst order cosmological perturbation theorywhich we apply throughout. We neglect the non-linearevolution of density uctuations on smaller scales. Sincemodels with seeds are genuinely non-Gaussian, the usualnumerical N-body simulations which start from Gaussianinitial conditions cannot be used to describe the evolutionon smaller scales.Gauge-invariant perturbation equations for cosmolog-ical models with seeds have been derived in Refs. [8,9].Here we follow the notation and use the results presentedin Ref. [9]. De�nitions of all the gauge-invariant pertur-bation variables used here in terms of perturbations ofthe metric, the energy momentum tensor and the bright-ness are given in Appendix A for completeness.We consider a background universe with density pa-rameter 
0 = 
m + 
� = 1, consisting of photons, colddark matter (CDM), baryons and neutrinos. At veryearly times z � zdec � 1100, photons and baryons forma perfectly coupled ideal uid. As time evolves, and asthe electron density drops due to recombination of pri-mordial helium and hydrogen, Compton scattering be-comes less frequent and higher moments in the photondistribution develop. This epoch has to be described bya Boltzmann equation. Long after recombination, freeelectrons are so sparse that the collision term can be ne-glected, and photons evolve according to the collisionlessBoltzmann or Liouville equation. During the epoch ofinterest here, neutrinos are always collisionless and thusobey the Liouville equation.

In the next subsection, we parameterize in a completelygeneral way the degrees of freedom of the seed energy mo-mentum tensor. Subsection B is devoted to the pertur-bation of Einstein's equations and the uid equations ofmotion. Next we treat the Boltzmann perturbation equa-tion. In Subsection D we explain how we determine thepower spectra of CMB anisotropies, density uctuationand peculiar velocities by means of the derived pertur-bation equations and the unequal time correlators of theseed energy momentum tensor, which are obtained bynumerical simulations. In Subsection E we give the ini-tial conditions and a brief description of our Boltzmanncode. A. The seed energy momentum tensorSince the energy momentum tensor of the seeds,��� , has no homogeneous background contribution, it isgauge invariant by itself according to the Stewart-WalkerLemma [10].��� can be calculated by solving the matter equa-tions for the seeds in the Friedmann background geometry(Since ��� has no background component it satis�es theunperturbed \conservation" equations.). We decompose��� into scalar, vector and tensor contributions. Theydecouple within linear perturbation theory and it is thuspossible to write the equations for each of these contribu-tions separately. As always (unless noted otherwise), wework in Fourier space. We parameterize the scalar (S)vector (V ) and tensor (T ) contributions to ��� in theform �(S)00 =M2f� (1)�(S)j0 = iM2kjfv (2)�(S)jl =M2 �(fp + 13k2f�)�jl � kjklf�� (3)�(V )j0 =M2w(v)j (4)�(V )jl = iM2 12 �kjw(�)l + klw(�)j � (5)�(T )jl =M2� (�)ij : (6)Here M denotes a typical mass scale of the seeds. In thecase of topological defects we set M = �, where � is thesymmetry breaking scale [9]. The vectors w(v) and w(�)are transverse and � (�)ij is a transverse traceless tensor,k �w(v) = k �w(�) = ki� (�)ij = � (�) jj = 0 :From the full energy momentum tensor ��� which maycontain scalar, vector and tensor contributions, the scalarparts fv and f� of a given Fourier mode are determinedby ikj�0j = �k2M2fv ;2



�kikj(�ij � 13�ij�kl�kl) = 23k4M2f� :On the other hand fv and f� are also determined in termsof f� and fp by energy and momentum conservation,_f� + k2fv + _aa (f� + 3fp) = 0 ; (7)_fv + 2 _aafv � fp + 23k2f� = 0 : (8)Once fv is known it is easy to extract M2w(v)j = �0j �ikjM2fv. For w(�)i we useikj(�lj ��(S)lj ) = �k2M2w(�)l :Again, w(�)l can also be obtained in terms of w(v)l bymeans of momentum conservation,_w(v)l + 2( _aa )w(v)l + 12k2w(�)l = 0 : (9)The geometry perturbations induced by the seeds arecharacterized by the Bardeen potentials, �s and 	s, forscalar perturbations, the potential for the shear of the ex-trinsic curvature, �(s), for vector perturbations and thegravitational wave amplitude, H(s)ij , for tensor perturba-tions. Detailed de�nitions of these variables and theirgeometrical interpretation are given in Ref. [9] (see alsoAppendix A). Einstein's equations link the seed pertur-bations of the geometry to the energy momentum tensorof the seeds. De�ning the dimensionless small parameter� � 4�GM2 ; (10)we obtain k2�s = �(f� + 3 _aafv) (11)�s +	s = �2�f� (12)�k2�(s)i = 4�w(v)i (13)�H(s)ij + 2 _aa _H(s)ij + k2H(s)ij = 2�� (�)ij : (14)Eqs. (11) to (14) would determine the geometric pertur-bations if the cosmic uid were perfectly unperturbed.In a realistic situation, however, we have to add the uidperturbations in the geometry which are de�ned in thenext subsection. Only the total geometrical perturba-tions are determined via Einstein's equations. In thissense, Eqs. (11) to (14) should be regarded as de�ni-tions for �s ;	s ;�(s) and H(s)ij .A description of the numerical calculation of the energymomentum tensor of the seeds for global texture is givenin Section III.

B. Einstein's equations and the uid equations1. scalar perturbationsScalar perturbations of the geometry have two degreesof freedom which can be cast in terms of the gauge-invariant Bardeen potentials, 	 and � [11,12]. For New-tonian forms of matter 	 = �� is nothing else than theNewtonian gravitational potential. For matter with sig-ni�cant anisotropic stresses, 	 and �� di�er. In geo-metrical terms, the former represents the lapse functionof the zero-shear hyper-surfaces while the latter is a mea-sure of their 3-curvature [9]. In the presence of seeds, theBardeen potentials are given by	 = 	s +	m ; (15)� = �s +�m ; (16)where the indices s;m refer to contributions from a source(the seed) and the cosmic uid respectively. The seedBardeen potentials are given in Eqs. (11) and (12).To describe the scalar perturbations of the energy mo-mentum tensor of a given matter component, we use thevariables Dg, a gauge-invariant variable for density uc-tuations, V , the potential of peculiar velocity uctua-tions, and �, a potential for anisotropic stresses (whichvanishes for CDM and baryons). A de�nition of thesevariables in terms of the components of the energy mo-mentum tensor of the uids and the metric perturbationscan be found in Refs. [12] or [9] and in Appendix A.Subscripts and superscripts  , c, b or � denote the ra-diation, CDM, baryon or neutrino uids respectively.Einstein's equations yield the following relation for thematter part of the Bardeen potentials [13]�m = 4�Ga2k2 ��D()g + �cD(c)g + �bD(b)g +��D(�)g � f4� + 3�c + 3�b + 4��g�+3 _aak�1f43�V + �cVc+�bVb + 43��V�g� (17)	m = ��m � 8�Ga2k2 (p� + p���) : (18)Note the appearance of � = �s + �m on the r.h.s.of Eq. (17). Using the decompositions (15,16) we cansolve for � and 	 in terms of the uid variables and theseeds. With the help of Friedmann's equation, Eqs. (17)and (18) can then be written in the form� = 123 � _aa��2 k2+4x + 3xc + 3xb + 4x� �x�0 + xcD(c)g + xD(b)g + x��0 ++ _aak�1 (4xV + 3xcVc + 3xbVb3



+4x�V�) + 23k2� _aa��2 �s� (19)	 = ��� 2�f� �� _aa�2 k�2(x� + x���) : (20)Here we have normalized the scale factor such thata = 1 today. The density parameters 
� always repre-sent the values of the corresponding density parametertoday (Here � stands for c ;  ; b or � .). To avoid anyconfusion, we have introduced the variables x� for thetime dependent density parameters,x;� = 
;�
 +
ca+
ba+
� +
�a4 (21)xc;b = 
c;ba
 +
ca+
ba+
� +
�a4 : (22)The uid variables of photons and neutrinos are ob-tained by integrating the scalar brightness perturbations,which we denote by MS(t;k;n) and NS(t;k;n) respec-tively, over directions, n,D()g = 14� Z MSd
 = �0 (23)V = 3i16�k Z (k � n)MSd
 (24)= 34�(S)1 (25)� = �98�k2 Z ((k � n)2 � 13k2)MSd
 (26)= 3�(S)2 (27)D(�)g = 14� Z NSd
 = �0 (28)V� = 3i16�k Z (k � n)NSd
 (29)= 34�(S)1 (30)�� = �98�k2 Z ((k � n)2 � 13k2)NSd
 (31)= 3�(S)2 : (32)A systematic de�nition of the modes �j and �j is givenin the next subsection.The equation of motion for CDM is given by energyand momentum conservation,_D(c)g + kVc = 0 ; (33)_Vc +� _aa�Vc = k	 : (34)During the very tight coupling regime, z � zdec, we mayneglect the baryon contribution in the energy momentumconservation of the baryon-photon plasma. We then have

_D()g + 43kV = 0 ; (35)_V � k 14D()g = k(	��) ; (36)D(b)g = 34D()g (37)Vb = V : (38)The conservation equations for neutrinos are not veryuseful, since they involve anisotropic stresses and thusdo not close. At the temperatures of interest to us,T � 1MeV, neutrinos have to be evolved by means ofthe Liouville equation which we discuss in the next sub-section.Once the baryon contribution to the baryon-photonuid becomes non-negligible, and the imperfect couplingof photons and baryons has to be taken into account (fora 1% accuracy of the results, the redshift correspondingto this epoch is around z � 107), we evolve also thephotons with a Boltzmann equation. The equation ofmotion for the baryons is then_D(b)g + kVb = 0 ; (39)_Vb +� _aa�Vb = k	� 4�Tne
3
b [V � Vb] : (40)The last term in Eq. (40) represents the photon dragforce induced by non-relativistic Compton scattering, �Tis the Thomson cross section, and ne denotes the num-ber density of free electrons. At very early times, when�Tne � 1=t, the 'Thomson drag' just forces Vb = V ,which together with Eqs. (35) and (39) implies (37).An interesting phenomenon often called 'compensa-tion' can be important on super horizon scales, kt � 1.If we neglect anisotropic stresses of photons and neutri-nos and take into account that O(Dg) = O(ktV ) andO(V ) = O(kt	) for kt� 1, Eqs. (19) and (20) lead toO(�) = O �(kt)2�s � 2�f�� : (41)Hence, if anisotropic stresses are relatively small, �f� ��s, the resulting gravitational potential on super horizonscales is much smaller than the one induced by the seedsalone. One must be very careful not to over interpret this'compensation' which is by no means related to causality,but is due to the initial condition Dg ; V !t!0 0. Athorough discussion of this issue is found in Refs. [13{15].As we shall see in the next section, for textures �s and�f� are actually of the same order. Therefore Eq. (41)does not lead to compensation, but it indicates that CMBanisotropies on very large scales (Sachs-Wolfe e�ect) aredominated by the amplitude of seed anisotropic stresses.The quantities which we want to calculate and comparewith observations are the CDM density power spectrumand the peculiar velocity power spectrum today4



P (k) = hjD(c)g (k; t0)j2i (42)andPv(k) = hjVc(k; t0)j2i : (43)Here h� � �i denotes an ensemble average over models.Note that even though Dg and V are gauge invariantquantities which do not agree with, e.g., the correspond-ing quantities in synchronous gauge, this di�erence isvery small on subhorizon scales (of order 1=kt) and canthus be ignored.On subhorizon scales the seeds decay, and CDM per-turbations evolve freely. We then have, like in ination-ary models, Pv(k) = H20
1:2m P (k)k�2 : (44)2. vector perturbationsVector perturbations of the geometry have two degreesof freedom which can be cast in a divergence free vector�eld. A gauge-invariant quantity describing vector per-turbations of the geometry is�, a vector potential for theshear tensor of the ft =const.g hyper-surfaces. Like forscalar perturbations, we split the contribution to� into asource term coming from the seeds given in the previoussubsection, and a part due to the vector perturbations inthe uid, � = �s +�m : (45)The perturbation of Einstein's equation for �m is [9]k2�m = 6� _aa�2 [ 43x! + xc!c ++xb!b + 43x�!� ] : (46)Here !� is the uid vorticity which generates the vec-tor type shear of the equal time hyper-surfaces (see Ap-pendix A). By de�nition, vector perturbations are trans-verse, � � k = �m � k = �s � k = !� � k = 0 : (47)It is interesting to note that vector perturbations inthe geometry do not induce any vector perturbations inthe CDM (up to unphysical gauge modes), since no geo-metric terms enter the momentum conservation for CDMvorticity, _!c + _aa!c = 0 ;hence we may simply set !c = 0. This is also the casefor the tightly coupled baryon radiation plasma. But assoon as higher moments in the photon distribution buildup, they feel the vector perturbations in the geometry

(see next section) and transfer it onto the baryons viathe photon drag force,_!b +� _aa�!b = 4�Tne
3
b [! �!b] : (48)The photon vorticity is given by an integral over the vec-tor type photon brightness perturbation, MV ,! = 14� Z nMV d
 ; (49)where the integral is over photon directions, n. In termsof the development presented in the next section for kpointing in z-direction, we obtain! = ��(V )1;2 + �(V )1;0 ; �(V )2;2 + �(V )2;0 ; 0� : (50)Equivalently, we have for neutrinos!� = 14� Z nNV d
 ; (51)!� = ��(V )1;2 + �(V )1;0 ; �(V )2;2 + �(V )2;0 ; 0� : (52)The vector equations of motion for photons and neutrinosare discussed in the next section.3. tensor perturbationsMetric perturbations also have two tensorial degreesof freedom, gravity waves, which are represented by thetwo helicity states of a transverse traceless tensor (seeAppendix A). As before, we split the geometry perturba-tion into a part induced by the seeds and a part due tothe matter uids,Hij = H(s)ij +H(m)ij : (53)The only matter perturbations which generate gravitywaves are tensor type anisotropic stresses which arepresent in the photon and neutrino uids. The pertur-bation of Einstein's equation yields�H(m)ij + 2� _aa� _H(m)ij + k2H(m)ij =� _aa�2 (x�()ij + x��(�)ij ) : (54)The relation between the tensor brightness perturba-tions MT , NT and the tensor anisotropic stresses, �()ijand �(�)ij is given by�()ij = 34� Z (ninj � 13�ij)MT d
 ; (55)�(�)ij = 34� Z (ninj � 13�ij)NT d
 : (56)5



In terms of the development presented in the next sectionfor k pointing in z-direction, we have�()11 = ��()22 = 635�+;4 + 47�+;2 + 25�+;0 ; (57)�()12 = �()21 = 635��;4 + 47��;2 + 25��;0 ; (58)�(�)11 = ��(�)22 = 635�+;4 + 47�+;2 + 25�+;0 ; (59)�(�)12 = �(�)21 = 635��;4 + 47��;2 + 25��;0 : (60)We �nd that the e�ect of anisotropic stresses of photonsand neutrinos is less than 1% in the �nal result, andhence we have neglected them.C. The Boltzmann equationWhen particle interactions are less frequent, the uidapproximation is not su�cient, and we have to describethe given particle species by a Boltzmann equation, in or-der to take into account phenomena like collisional anddirectional dispersion. In the case of massless particleslike massless neutrini or photons, the Boltzmann equa-tion can be integrated over energy, and we obtain anequation for the brightness perturbation which dependsonly on momentum directions [9]. As before, we split thebrightness perturbation into a scalar, vector and tensorcomponent, and we discuss the perturbation equation ofeach of them separately,1M =MS +MV +MT (61)and (62)N = NS +NV +NT : (63)The functions M and N depend on the wave vector k,the photon (neutrino) direction n and conformal time t.Linear polarization of photons induced by Compton scat-tering is described by the variableM(Q) (the Stokes pa-rameter Q) depending on the same variables. We choosefor each k-mode a reference system with z-axis parallelto k. For scalar perturbations we achieve in this wayazimuthal symmetry | the left hand side of the Boltz-mann equation and therefore also the brightness M de-pend only on � = (k̂�n) and can be developed in Legendrepolynomials.The left hand side of the Boltzmann equation for vectorand tensor perturbations also determines the azimuthaldependence ofM for vector and tensor perturbations, aswe shall see in detail.1We could in principle add higher spin components to thedistribution functions. But they are not seeded by gravity andsince photons and neutrinos interact at high enough temper-atures, they are also absent in the initial conditions.

1. scalar perturbationsWe expand the brightness MS(k;n; t) in the form:MS(n;k; t) = 1X̀=0(�i)`(2`+ 1)�(S)` (t;k)P`(�); (64)where P` denotes the Legendre polynomial of order `and �(S)` is the associated multipole moment. An analo-gous decomposition also applies to the amplitude of po-larization anisotropy,MQS (n;k; t), and we denote the as-sociated multipole moment by q(S)` .The Boltzmann equation for scalar perturbations inthe photon brightness and polarization is [9,16]_MS + i�kMS = 4i�k(��	)+a�Tne[D()g �MS � 4i�Vb � 12P2(�)Q] ; (65)_M(Q)S + i�kM(Q)S =a�Tne[�M(Q)S + 12�1� P2(��)Q] ; (66)where Q = �(S)2 + q(S)0 + q(S)2 :The �rst term on the right hand side of Eq. (65) repre-sents the gravitational interaction (photons without col-lisions move along lightlike geodesics of the perturbedgeometry), while the term in square brackets is the colli-sion integral for non-relativistic Compton scattering.Inserting expansion (64) into Eqs. (65) and (66) usingthe standard recursion relations for Legendre polynomi-als, we obtain the following series of coupled equations:_�(S)0 + k�(S)1 = 0 ; (67)_�(S)1 � k3 [�(S)0 � 2�(S)2 ] =43k(	��) + a�Tne[ 43Vb � �(S)1 ] ; (68)_�(S)2 � k5 [2�(S)1 � 3�(S)3 ] =�a�Tne[�(S)2 � 110Q] ; (69)_�(S)` � k2`+1 h`�(S)`�1 � (`+ 1)�(S)`+1i=�a�Tne�(S)` ; for ` � 3 : (70)and6



_q(S)` � k2`+ 1 h`q(S)`�1 � (`+ 1)q(S)`+1i =+a�Tne[�q(S)` + 12Q(�`0 + 15�`2)]: (71)For the neutrinos we obtain the same equations justwithout collision integralNS(n;k; t) = 1X̀=0(�i)`(2`+ 1)�(S)` (t;k)P`(�); (72)and_�(S)` � k2`+1 h`�(S)`�1 � (`+ 1)�(S)`+1i=43k(	��)�`1: (73)We are interested in the power spectrum of CMBanisotropies which is de�ned by��TT (n)�TT (n0)� ��� (n�n0=cos#) = 14� X̀(2`+ 1)C`P`(cos#) :(74)Here h� � �i denotes the ensemble average over models.We assume that an 'ergodic hypothesis' is satis�ed andwe can interchange spatial and ensemble averages. Theproblem that actual observations can average at best overone horizon volume is known under the name 'cosmicvariance'. It severely restricts the accuracy with which,for example, low multipoles of CMB anisotropies ob-served in our horizon volume can be predicted for a givenmodel.Using the addition theorem of spherical harmonics, oneobtains, with the Fourier transform conventions adoptedhere, (for details see Appendix B)C(S)` = 18� Z k2dkhj�(S)` (t0; k)j2i ; (75)where the superscript (S) indicates that Eq. (75) givesthe contribution from scalar perturbations.2. vector perturbationsVector perturbations are very small on angular scalescorresponding to ` >� 500, where Compton scattering andthus polarization become relevant. We therefore neglectpolarization in this case. The Boltzmann equation forvector perturbations then reads_MV + ik � nMV = �4i(n � k)(n ��)+a�Tne[4(n �!b)�MV + 12nijMij ] ; (76)where

nij � ninj � 13�ij andMij = 38� Z nijMV d
 :We use coordinates for which k is parallel to the z-axis.Then � = (�1;�2; 0) ; ! = (!1; !2; 0)and n = (p1� �2 cos';p1� �2 sin'; �) :With the ansatzMV (k;n; t) =p1� �2[M(V )1 (k; �; t) cos'++M(V )2 (k; �; t) sin'] ; (77)the equations forM1;2 decouple and the right hand sideof Eq. (76) depends only on �. Like for scalar perturba-tions, we expand M1;2 in Legendre polynomialsM(V )� (�;k; t) = 1X̀=0(�i)`(2`+ 1)�(V )�;` (t;k)P`(�); (78)where � = 1; 2.Eq. (76) then leads to_M(V )� + i�kM(V )� = �4i�k��+a�Tne[4!(b)� �M(V )� � i� 310(�(V )�;1 + �(V )�;3 )] : (79)With Eq. (78), this can be expressed as the following setof coupled equations for the variables �(V )�;` ._�(V )�;0 + k�(V )�;1 = a�Tne[4!(b)� � �(V )�;0 ] ; (80)_�(V )�;1 � k3 [�(V )�;0 � 2�(V )�;2 ] =+43k�� � a�Tne[ 910�(V )�;1 � 110�(V )�;3 ] ; (81)and_�(V )�;` � k2`+ 1 h`�(V )�;`�1 � (`+ 1)�(V )�;`+1i =�a�Tne�(V )�;` for ` � 2: (82)For neutrino perturbations we obtain the same equa-tions up to the collision term. We repeat them here forcompleteness._�(V )�;` � k2`+ 1 h`�(V )�;`�1 � (`+ 1)�(V )�;`+1i =+ 43��k�`1: (83)As for scalar perturbations, the CMB anisotropy powerspectrum is obtained by integration over k-space. One�nds (see Appendix B),7



C(V )` = `(`+ 1)8� Z k2dk hj�(V )1;`+1(t0; k) + �(V )1;`�1(t0; k)j2i(2`+ 1)2 :(84)Here the fact that there are two equal contributions fromboth polarization states, � = 1; 2 (statistical isotropy) istaken care of. 3. tensor perturbationsFor tensor perturbations, and a wave vector k pointinginto the 3-direction, the only non vanishing componentsof the perturbed metric tensor are H11 = �H22 = H+and H12 = H21 = H�. Neglecting polarization, theBoltzmann equation for tensor perturbations is [9]_MT + ik�MT = �4ninj _Hij�a�Tne[MT � 12nijMij ] : (85)With the ansatzMT (k;n; t) = (1� �2)[M(T )+ (k; �; t) cos 2'++M(T )� (k; �; t) sin 2'] ; (86)the two modes M(T )+;� decouple completely and the righthand side of Eq. (85) depends only on �. We can thenexpand the modes in terms of Legendre polynomialsM(T )� (�; k; t) = 1X̀=0(�i)`(2`+ 1)�(T )�;` (t;k)P`(�); (87)where � = +;�. Eq. (85) now becomes_M(T )� + i�kM(T )� = 4 _H�++a�Tne[�M(T )� + 110�(T )�;0 + 17�(T )�;2 + 370�(T )�;4 ] ; (88)leading to the series of coupled equations for the coe�-cients �(T )�;`_�(T )�;0 + k�(T )�;1 = 4 _H�++a�Tne[� 910�(T )�;0 + 17�(T )�;2 + 370�(T )�;4 ] ; (89)_�(T )�;` � k2`+ 1 h`�(T )�;`�1 � (`+ 1)�(T )�;`+1i =�a�Tne�(T )�;` ; for ` � 1 : (90)As before, the CMB anisotropy power spectrum is ob-tained by integration over k-space (see Appendix B),C(T )` = 18� (`+ 2)!(`� 2)! Z k2dk hj�(T )` j2i(2`+ 1)2 ; (91)where�(T )` = �(T )�;`�22`� 1 � 2(2`+ 1)�(T )�;`(2`� 1)(2`+ 3) + �(T )�;`+22`+ 3 : (92)

D. Eigenvector expansion of the source correlatorsIn the previous subsections we have derived a closedsystem of linear di�erential equations with source terms.The source terms are linear combinations of the seed en-ergy momentum tensor which is determined by numericalsimulations. A given realization of our model has randominitial conditions; the seed energy momentum tensor is arandom variable. In principle we could calculate the in-duced random variables D(c)g (k; t0), Vc(k; t0), �(�)` (k; t0)etc for 100 to 1000 realizations of our model and de-termine the expectation values P (k), Pv(k) and C` byaveraging. This procedure has been adapted in Ref. [17]for a seed energy momentum tensor modeled by a fewrandom parameters.In the case of a seed energy momentum tensor comingentirely from numerical simulations, this procedure is notfeasible. The �rst and most important bottleneck is thedynamical range of the simulations which is about 40in our largest (400)3 simulation, taking around 5 hoursCPU time on a NEC SX-4 supercomputer. To determinethe C`'s for 2 � ` � 1000 we need a dynamical range ofabout 10'000 in k-space (this means kmax=kmin � 100000,where kmax and kmin are the maximum and minimumwave numbers which contribute to the C`'s within ouraccuracy ( � 10%).With brute force, this problem is thus not tractablewith present or near future computing capabilities. Butthere are a series of theoretical observations which reducethe problem to a feasible one:For each wave vector k given, we have to solve a systemof linear perturbation equations with random sources,DX = S : (93)Here D is a time dependent linear di�erential operator,X is the vector of our matter perturbation variables spec-i�ed in the previous subsections (photons, CDM, baryonsand neutrini; total length up to 2000), and S is the ran-dom source term, consisting of linear combinations of theseed energy momentum tensor.For given initial conditions, this equation can be solvedby means of a Green's function (kernel), G(t; t0), in theform Xj(t0;k) = Z t0tin dtGjl(t0; t;k)Sl(t;k) : (94)We want to compute power spectra or, more generally,quadratic expectation values of the formhXj(t0;k)X�l (t0;k)i ;which, according to Eq. (94) are given byhXj(t0;k)X�l (t0;k)i =Z t0tin dtGjm(t0; t;k) Z t0tin dt0G�ln(t0; t0;k)�hSm(t;k)S�n(t0;k)i : (95)8



The only information about the source random variablewhich we really need in order to compute power spectraare therefore the unequal time two point correlatorshSm(t;k)S�n(t0;k)i : (96)This nearly trivial fact has been exploited by many work-ers in the �eld, for the �rst time probably in Ref. [18]where the decoherence of models with seeds has beendiscovered, and later in Refs. [5,19,20,13] and others.To solve the enormous problem of dynamical range, wemake use of 'scaling', statistical isotropy and causality.We call seeds 'scaling' if their correlation functionsC���� de�ned by���(k; t) =M2���(k; t) ; (97)C����(k; t; t0) = h���(k; t)����(k; t0)i (98)are scale free; i.e. the only dimensional parametersin C���� are the variables t; t0 and k themselves. Upto a certain number of dimensionless functions Fn ofz = kptt0 and r = t=t0, the correlation functions are thendetermined by the requirement of statistical isotropy,symmetries and by their dimension. Causality requiresthe functions Fn to be analytic in z2. A more detailedinvestigation of these arguments and their consequencesis presented in Ref. [4]. There we show that statisticalisotropy and energy momentum conservation reduce thecorrelators (98) to �ve such functions F1 to F5.In cosmic string simulations, energy and momentumare not conserved. Strings loose their energy by radiationof gravitational waves and/or massive particles. In thiscase 14 functions of z2 and r are needed to describe theunequal time correlators [21].Since analytic functions generically are constant forsmall arguments z2 � 1, Fn(0; r) actually determines Fnfor all values of k with z = kptt0 <� 0:5. Furthermore,the correlation functions decay inside the horizon and wecan safely set them to zero for z >� 40 where they havedecayed by about two orders of magnitude (see Figs. 1to 11). Making use of these generic properties of thecorrelators, we have reduced the dynamical range neededfor our computation to about 40, which can be attainedwith the (256)3 to (512)3 simulations feasible on presentsupercomputers.For the scalar part we need the correlatorsh�s(k; t)��s(k; t0)i = 1k4ptt0C11(z; r) ; (99)h�s(k; t)	�s(k; t0)i = 1k4ptt0C12(z; r) ; (100)h	s(k; t)	�s(k; t0)i = 1k4ptt0C22(z; r) ; (101)as well as C21(z; r) = C�12(z; 1=r). The functions Cij areanalytic in z2. The pre-factor 1=(k4ptt0) comes from thefact that the correlation functions hf�f�� i, k4hf�f��i and

hfvf�v i have to be analytic and from dimensional consid-erations (see Ref. [4]).The functions Cij are shown in Figs. 1 to 3. Panels (a)are obtained from numerical simulations. Panels (b) rep-resent the same correlators for the large-N limit of globalO(N)-models (see [22,20]).
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FIG. 1. The two pointcorrelation function C11(z; r) = k4ptt0h�s(k; t)��s(k; t0)i isshown. Panel (a) represents the result from numerical sim-ulations of the texture model; panel (b) shows the large-Nlimit. For �xed r the correlator is constant for z < 1 andthen decays. Note also the symmetry under r! 1=r.In Fig. 4 we show Cij(z; r = 1), and in Fig. 5 the'constant' of the Taylor expansion for Cij is given as afunction of r, i.e., Cij(0; r).Vector perturbations are induced by �(s) which isseeded by w(v). Transversality and dimensional argu-ments require the correlation function to be of the formhw(v)i (k; t)w(v)�j (k; t0)i = ptt0(k2�ij � kikj)W (z; r) :(102)Again, as a consequence of causality, the function W isanalytic in z2 (see [4]). The function W (z; r) is plottedin Fig. 6. In Figs. 7 and 8 we graphW (z; 1) andW (0; r).9
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FIG. 2. The same as Fig. 1 but forC22(z; r) = k4ptt0h	s(k; t)	�s(k; t0)i.Symmetry, transversality and tracelessness, togetherwith statistical isotropy require the tensor correlator tobe of the form (see [4])h� (�)ij (t)� (�)�lm (t0)i =1ptt0T (z; r)[�il�jm + �im�jl � �ij�lm + k�2(�ijklkm +�lmkikj � �ilkjkm � �imklkj � �jlkikm � �jmklki) +k�4kikjklkm] : (103)The functions T (z; r) as well as T (z; 1) and T (0; r) areshown in Figs. 9 to 11.Clearly, all correlations between scalar and vector,scalar and tensor as well as vector and tensor pertur-bations have to vanish.The scalar source correlation matrix C and the func-tions W and T can be considered as kernels of positivehermitian operators in the variables x = kt = zr1=2 andx0 = kt0 = z=r1=2, which can be diagonalized.Cij(x; x0) =Xn �(S)n v(S)in (x)v(S) �jn (x0) ; (104)W (x; x0) =Xn �(V )n v(V )n (x)v(V ) �n (x0) ; (105)
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FIG. 3. The unequal time correla-tor, jC12(z; r)j = k4ptt0jh�s(k; t)	�s(k; t0)ij is shown. Notethat the r ! 1=r symmetry is lost in this case.T (x; x0) =Xn �(T )n v(T )n (x)v(T ) �n (x0) ; (106)where the series �v(S)in �, �v(V )n � and �v(T )n � are orthonor-mal series of eigenvectors (ordered according to the am-plitude of the corresponding eigenvalue) of the operatorsC, W and T respectively for a given weight function w.We then have2Z Cij(x; x0)v(S)jn (x0)w(x0)dx0 = �(S)n v(S)in (x) ; (107)Z W (x; x0)v(V )n (x0)w(x0)dx0 = �(V )n v(V )n (x) ; (108)Z T (x; x0)v(T )n (x0)w(x0)dx0 = �(T )n v(T )n (x) : (109)The eigenvectors and eigenvalues depend on the weightfunction w which can be chosen to optimize the speed of2Here the assumption that the operators C, W and T aretrace-class enters. This hypothesis is veri�ed numerically bythe fast convergence of the sums (104) to (106).10



FIG. 4. The correlators Cij(z; 1) are shown. The solid,dashed and dotted lines represent C22 ; C11 and jC12j respec-tively. Panel (a) is obtained from numerical simulations of thetexture model and panel (b) shows the large-N limit. A strik-ing di�erence is that the large-N value for jC12j is relativelywell approximated by the perfectly coherent resultpjC11C22jwhile the texture curve for jC12j lies nearly a factor 10 lower.convergence of the sums (104) to (106). In our models wefound that scalar perturbations typically need 20 eigen-vectors whereas vector and tensor perturbations need �veto ten eigenvectors for an accuracy of a few percent (seeFig. 12).Inserting Eqs. (104) to (106) in Eq. (95), leads tohXi(k; t0)X�j (k; t0)i =Xn �nX(n)i (kt0)X(n)�j (kt0) ;(110)where X(n)i (t0) is the solution of Eq. (93) with determin-istic source term v(n)i .X(n)j (t0;k) = Z t0tin dtG(t0; t;k)jlv(n)l (x;k) : (111)For the CMB anisotropy spectrum this givesC` = nSXn �(S)n C(Sn)` + nVXn �(V )n C(V n)` + nTXn �(T )n C(Tn)` :(112)C(�n)` is the CMB anisotropy induced by the determinis-tic source vn, and n� is the number of eigenvalues whichhave to be considered to achieve good accuracy.

FIG. 5. The correlators Cij(0; r) are shown in the sameline styles as in Fig. 4, but for z = 0 as function of r = t0=t.The stronger decoherence of the texture model is even moreevident here.Instead of averaging over random solutions of Eq. (94),we can thus integrate Eq. (94) with the deterministicsource term v(n) and sum up the resulting power spectra.The computational requirement for the determination ofthe power spectra of one seed model with given sourceterm is thus on the order of nS inationary models. Thiseigenvector method has �rst been applied in Ref. [5].A source is called totally coherent [23,13] if the unequaltime correlation functions can be factorized. This meansthat only one eigenvector is relevant. A simple totallycoherent approximation, which however misses some im-portant characteristics of defect models, can be obtainedby replacing the correlation matrix by the square root ofthe product of equal time correlators,hSi(t)S�j (t0)i ! �qhjSi(t)j2ihjSj(t0)j2i : (113)This approximation is exact if the source evolution is lin-ear. Then the di�erent k modes do not mix and the valueof the source term at �xed k at a later time is given by itsvalue at initial time multiplied by some transfer function,S(k; t) = S(k; tin)T (k; t; tin). In this situation, (113) be-comes an equality and the model is perfectly coherent.Decoherence is due to the non-linearity of the source evo-lution which induces a 'sweeping' of power from one scaleinto another. Di�erent wave numbers k do not evolve in-dependently.It is interesting to note that the perfectly coherent ap-11
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FIG. 6. The vector correlator W (z; r) is shown. The tex-ture simulations, panel (a), and the large-N limit, panel (b),give very similar results.proximation, (113), leaves open a choice of sign which hasto be positive if i = j, but which is undetermined oth-erwise. According to Schwarz inequality the correlatorhSi(t)S�j (t0)i is bounded by�qhjSi(t)j2ihjSj(t0)j2i � hSi(t)S�j (t0)i �qhjSi(t)j2ihjSj(t0)j2i: (114)Therefore, for scales/variables for which the Greens func-tion is not oscillating (e.g. Sachs Wolfe scales) the fullresult always lies between the 'anti-coherent' (minus sign)and the coherent result. We have veri�ed this behaviornumerically.The �rst evidence that Doppler peaks are suppressedin defect models has been obtained in the perfectly co-herent approximation in Ref. [24]. In Fig. 13 we show thecontributions to the C`'s from more and more eigenvec-tors. A perfectly coherent model has only one non-zeroeigenvalue.A comparison of the full result with the totally coher-ent approximation is presented in Fig. 14. There onesees that decoherence does smear out the oscillationspresent in the fully coherent approximation, and doessomewhat damp the amplitude. Decoherence thus pre-vents the appearance of a series of acoustic peaks. The

FIG. 7. The vector correlator W (z; 1) is plotted. The solidline represents the texture simulations and the dashed line isthe large-N result. Up to a slight di�erence in amplitude, thetwo results are very similar.

FIG. 8. The vector correlator W (0; r) is shown. The solidline represents the texture simulations and the dashed line isthe large-N result. Also here, the two results are very similar.The 'wings' visible in the texture curve are probably not dueto a resolution problem but the beginning of oscillations.absence of power on this angular scale, however, is nota consequence of decoherence but is mainly due to theanisotropic stresses of the source which lead to pertur-bations in the geometry inducing large scale C`'s (SachsWolfe), but not to density uctuations. Large anisotropicstresses are also at the origin of vector and tensor uctu-ations. Our results are in agreement with Refs. [24] and[5] but we disagree with Ref. [25], which has found acous-tic peaks with an amplitude of about six in the coherentapproximation.In the real universe, perfect scaling of the seed corre-lation functions is broken by the radiation{matter tran-sition, which takes place at the time of equal matter andradiation, teq ' 20h�2
�1=2m Mpc. The time teq is anadditional scale which enters the problem and inuencesthe seed correlators. Only in a purely radiation or mat-ter dominated universe are the correlators strictly scaleinvariant. This means actually that the k dependence ofthe correlators C, W and T cannot really be cast intoa dependence on x and x0, but that these functions de-pend on t; t0 and k in a more complicated way. We have12
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FIG. 9. As Fig. 6, but for the tensor source function T (z; r).to calculate and diagonalize the seed correlators for eachwave number k separately and the huge gain of dynami-cal range is lost as soon as scaling is lost.In the actual case at hand, however, the deviation fromscaling is weak, and most of the scales of interest to usenter the horizon only in the matter dominated regime.The behavior of the correlators in the radiation domi-nated era is of minor importance. To solve the problem,we calculate the correlator eigenvalues and eigenfunctionstwice, in a pure radiation and in a pure matter universeand we interpolate the source term from the radiation tothe matter epoch. Denoting by �m; vm and �r; vr a givenpair of eigenvalue and eigenvector in a matter and radia-tion universe respectively, we choose as our deterministicsource functionv(t) = y(t)p�rvr(kt) + (1� y(t))p�mvm(kt) (115)with, e.g.,y(t) = teqt+ teq or y(t) = exp(�t=teq) ; (116)or some other suitable interpolation function. In Fig. 15we show the results for scalar, vector and tensor pertur-bations respectively using purely radiation dominated era

FIG. 10. As Fig. 7, but for the tensor source functionT (z; 1).

FIG. 11. As Fig. 8, but for the tensor source functionT (0; r).and from interpolated source terms.Clearly the e�ect of the radiation dominated earlystate of the universe is relatively unimportant for thescales considered here. The di�erence between the purematter era result and the interpolation is barely visibleand thus not shown on the plot. This seems to be quitedi�erent for cosmic strings where the uctuations in theradiation era are about twice as large as those in the mat-ter era [26]. The radiation dominated era has very littlee�ect on the key results which we are reporting here;namely the absence of acoustic peaks and the missingpower on very large scales.In models with cosmological constant, there is actuallya second break of scale invariance at the matter{� tran-sition. There we proceed in the same way as outlinedabove. Since defects cease to scale and disappear rapidlyin an exponentially expanding universe, the eigenvaluesfor the � dominated universe all vanish.E. Initial conditions and numerical implementationWe numerically integrate our system of equationsfrom redshift z = 107 up to the present with the goalto have one percent accuracy up to ` � 1000, for agiven source term. We use the integration method de-13



FIG. 12. The sum of the �rst few eigenfunctions of T (x; x)is shown for two di�erent weight functions, (a) logarithmic,w = 1=x and (b) linear, w = 1. The �rst (long dashed), �rstand second (short dashed), �rst ten (dotted) and �rst thirty(solid) eigenfunctions are summed up. The open circles repre-sent the full correlation function. Clearly, the eigenfunctionsobtained by linear weighting converge much faster. Here weonly show the equal time diagonal of the correlation matrix,but the same behavior is also found in the C` power spectrumwhich is sensitive to the full correlation matrix.scribed in Refs. [16] and [27]. We sample the interval�5 � log10 kh�1Mpc � �0:75 with minimum step size� log10 = 0:04, for the scalar case and use a smooth-ing algorithm to suppress high frequency sampling noise.In order to save computing time, we start the inte-gration of the �`(k)'s with 10 harmonics, adding newharmonics in the course of the integration. We �ndthat typically � 40 harmonics are su�cient for smallk values (log10 kh�1Mpc <� �3), while for higher k(log10 kh�1Mpc >� �1), up to � 1500 harmonics forthe scalar case, � 200 for the tensor case are needed toachieve the desired accuracy. Including more than 40 har-monics for neutrinos corrects our results by less than onepercent. We obtain � algebraically using Eq. (19). Withthis choice of variables we avoid the numerical di�cultiespresent in conformal gauge [28], where � is determinedby numerical integration.The abundance of free electrons, ne, is calculated fol-
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FIG. 13. The scalar, vector and tensor contributions for thetexture model of structure formation are shown. The dashedlines show the contributions from single eigenfunctions whilethe solid line represents the sum. Note that the single con-tributions to the scalar and tensor spectrum do show oscil-lations which are however washed out in the sum. (Vectorperturbations do not obey a wave equation and thus do notshow oscillations.)lowing a standard recombination scheme [29] for H and4He, for a helium abundance by mass of 23%. At highredshift z � 105, the Thomson opacity is very large,and photons and baryons are tightly coupled. Due tothe large Thomson drag term, Eqs.(40) and (48) becomesti� and di�cult to solve numerically. Therefore, in thislimit we follow the method of Ref. [30], which is accurateto second order in (�Tne)�1 (see also [28]). Assuminga standard inationary model, we obtain a single scalarpower spectrum in few minutes (� 30 seconds for thetensor case) on a PC class workstation, which di�ers byless than one percent from the C`'s computed with othercodes [31], [28].Summing the scalar C`'s from the largest 15 eigenvec-tors (5 in the tensor case, 10 for vector perturbations)typically reproduces the total sum to better than 5% (seeFig. 13).III. THE NUMERICAL SIMULATIONSAs in previous work [7], we consider a spontaneouslybroken scalar �eld with O(N) symmetry. We use the�-model approximation, i.e., the equation of motion2� � (� � 2�)� = 0; (117)14
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FIG. 16. The ETCs C11(z; 1) = hj�j2i(kt) (panel a) andC22(z; 1) = hj	j2i(kt) (panel b) are shown for di�erent times.In grid units the times are t = 4 (dashed), t = 8 (dotted),t = 12 (long dashed), t = 16; 20 (dash dotted, long dashdotted) and t = 24 (solid). Clearly C22 scales much soonerthan C11. To safely arrive in the scaling regime one has towait until t � 16 and Cij(kt = 0) is best determined at t � 20but kt < 1.comoving time t = 2�x. Di�erent grid points are uncor-related at all earlier times [33].The use of �nite di�erences in the discretized actionas well as in the calculation of the energy momentumtensor introduce immediately strong correlations betweenneighboring grid points. This problem manifests itself inan initial phase of non-scaling behaviour, the length ofwhich varies between 10�x and 20�x, depending on thevariable considered. It is very important to use resultsfrom the scaling regime only (cf. Fig. 16).In order to reduce the time necessary to reach scalingand to improve the overall accuracy, we try to choose the�nite di�erences in an optimal way. Our current codecalculates all values in the center of each cubic cell de�nedby the lattice. The additional smoothing introduced bythis improves energy-momentum conservation by several
15



percent.3To calculate the unequal time correlator (UTC), thevalue of the observable under consideration is saved oncescaling is reached at time tc (we checked this by using dif-ferent correlation times) and then correlated at all follow-ing time steps. While there is some danger of contaminat-ing the equal time correlator (ETC), which contributesmost strongly to the C`'s, with non-scaling sources, thismethod ensures that the constant for kt ! 0 is deter-mined with maximal precision for the ETCs. This isvery important as the constants Cij(0; 1); W (0; 1) andT (0; 1) �x the relative size of scalar, vector and tensorcontributions of the Sachs-Wolfe part and severely inu-ence the resulting C`'s. In contrast, the CMB spectrumseems quite stable under small variations of the shape ofthe UTCs.The resulting UTCs are obtained numerically as func-tions of the variables k, t and tc with t � tc and tc �xed.They are then linearly interpolated to the required range.We construct a hermitian 100�100 matrix in kt and kt0,with the values of kt chosen on a linear scale to maximizethe information content, 0 � kt � xmax. The choiceof a linear scale ensures good convergence of the sumof the eigenvectors after diagonalization (see Fig. 12),but still retains enough data points in the critical region,O(x) = 1, where the correlators start to decay. In prac-tice we choose as the endpoint xmax of the range sampledby the simulation the value at which the correlator decaysby about two orders of magnitude, typically xmax � 40.The eigenvectors that are fed into the Boltzmann codeare then interpolated using cubic splines with the condi-tion vn(kt)! 0 for kt� xmax.We use several methods to test the accuracy of thesimulation: energy momentum conservation of the de-fects code is found to be better than 10% on all scaleslarger than about 4 grid units, as is seen in Fig. 17. Acomparison with the exact spherically symmetric solutionin non-expanding space [32] shows very good agreement.The resulting CMB spectrum on Sachs Wolfe scales isconsistent with the line of sight integration of Ref. [7].Furthermore, the overall shape and amplitude of the un-equal time correlators are quite similar to those found inthe analytic large-N approximation [35,20,4] (see Figs. 1to 11). The main di�erence of the large-N approxima-tion is that there the �eld evolution, Eq. (117), is ap-proximated by a linear equation. The non-linearities inthe large-N seeds which are due solely to the energy mo-3Julian Borrill suggested to introduce \spherical derivatives"that take into account the fact that the vacuum manifold is aN-sphere and therefore curved, and that this curvature shouldbe important at least in the initial stages of the simulationand for unwinding events [34]. So far we haven't investigatedthis idea su�ciently to include it into our production code.
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scale [fraction of total size]FIG. 17. Energy momentum conservation of our numericalsimulations is shown. The lines represent the sum of the termswhich has to vanish if energy (solid) respectively momentum(dashed) is conserved, divided by the sum of the absolutevalue of these terms. The abscissa indicates the wavelengthof the perturbation as fraction of the size of the entire grid.mentum tensor being quadratic in the �elds, are muchweaker than in the texture model where the �eld evolu-tion itself is non-linear. Therefore, decoherence which isa purely non-linear e�ect, is expected to be much weakerin the large-N limit. This is actually the main di�erencebetween the two models as can be seen in Fig. 18.IV. RESULTS AND COMPARISON WITH DATAA. CMB anisotropiesThe C`'s for the 'standard' global texture model areshown in Fig. 14, bottom panel.
� h � �80.0 0.5 (1:66� 0:17)10�5 0.240.0 0.8 (1:67� 0:17)10�5 0.340.0 1.0 (1:68� 0:17)10�5 0.440.4 0.5 (1:64� 0:16)10�5 0.220.8 0.5 (1:59� 0:16)10�5 0.16TABLE I. The value of the normalization constant � andthe uctuation amplitude �8 are given for the di�erent mod-els considered. The error in � comes from a best �t normal-ization to the full CMB data set. Cosmological parameterswhich are not indicated are identical in all models or givenby 
0 = 
cdm +
� +
b = 1. We consider only spatially atmodels with 
b = 0:05 and a helium fraction of 23%. Theparameter choice indicated in the top line is referred to asstandard texture model in the text.Vector and tensor modes are found to be of the sameorder as the scalar component at COBE-scales. For the'standard' texture model we obtain C(S)10 : C(V )10 : C(T )10 �16
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FIG. 18. Top panel: the f� = 0 model. Bottom panel: TheC` power spectrum is shown for the large-N limit (bold line)and for the texture model. The main di�erence is clearly thatthe large-N curve shows some acoustic oscillations which arenearly entirely washed out in the texture case.
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FIG. 19. The C` power spectrum is shown for di�erent val-ues of cosmological parameters. In the top panel we choose
� = 0, 
CDM = 0:95, 
b = 0:05 and vary h. In the bot-tom panel we �x h = 0:5, 
b = 0:05 and vary 
�. We onlyconsider spatially at universes, 
0 = 1.

0:9 : 1:0 : 0:3, in good agreement with the predictions ofRefs. [19], [5,19,17] and [4]. Due to tensor and vector con-tributions, even assuming perfect coherence (see Fig. 14,top panel), the total power spectrum does not increasefrom large to small scales. Decoherence leads to smooth-ing of oscillations in the power spectrum at small scalesand the �nal power spectrum has a smooth shape witha broad, low isocurvature 'hump' at ` � 100 and a smallresidual of the �rst acoustic peak at ` � 350. There is nostructure of peaks at small scales. The power spectrumis well �tted by the following fourth-order polynomial inx = log `:`(`+ 1)C`110C10 = 1:5� 2:6x+ 3:3x2 � 1:4x3 + 0:17x4 :(119)The e�ect of decoherence is less important for thelarge-N model, where oscillations and peaks are still vis-ible (see Fig 18, bottom panel). This is due to thefact that the non-linearity of the large-N limit is onlyin the quadratic energy momentum tensor. The scalar�eld evolution is linear in this limit [35], in contrast tothe N = 4 texture model. Since decoherence is inher-ently due to non-linearities, we expect it to be strongerfor lower values of N . COBE normalization leads to� = (0:92� 0:1)10�5 for the large-N limit.In Fig. 19 we plot the global texture C` power spectrumfor di�erent choices of cosmological parameters. Thevariation of parameters leads to similar e�ects like in theinationary case, but with smaller amplitude. At smallscales (` � 200), the C`'s tend to decrease with increas-ing H0 and they increase when a cosmological constant
� = 1� 
m is introduced. Nonetheless, the amplitudeof the anisotropy power spectrum at high `s remains inall cases on the same level like the one at low `s, withoutshowing the substantial peak found in inationary mod-els. The absence of acoustic peaks is a stable predictionof global O(N) models. The models are normalized tothe full CMB data set, which leads to slightly larger val-ues of the normalization parameter � = 4�G�2 than pureCOBE normalization. In Table I we give the cosmologi-cal parameters and the value of � for the models shownin Fig. 19.In order to compare our results with current exper-imental data, we have selected a set of 31 di�erentanisotropy detections obtained by di�erent experiments,or by the same experiment with di�erent window func-tions and/or at di�erent frequencies. Theoretical predic-tions and data of CMB anisotropies are usually comparedby plotting the theoretical C` curve along with the CMBmeasurements converted to band power estimates. We dothis in the top panel of Fig. 20. The data points show anincrease in the anisotropies from large to smaller scales,in contrast to the theoretical predictions of the model.This fashion of presenting the data is surely correct, butlacks informations about the uncertainties in the theoret-ical model. Therefore we also compare the detected mean17
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FIG. 20. The C` spectrum obtained in the standard texturemodel is compared with data. In the top panel experimen-tal results and the theoretical curve are shown as functionsof `. In the two lower panels we indicate the value of eachof the 31 experimental data points with 1-� error bars andthe corresponding theoretical value with its uncertainty. Theexperiments corresponding to a given number are given inTable II. In the middle panel the 8 COBE data points areshown. In the bottom panel other experiments are presented.square anisotropy, �(Exp) and the experimental 1-� er-ror, �(Exp)2, directly with the corresponding theoreticalmean square anisotropy, given by�(Th) = 14� X̀(2`+ 1)C`W` ; (120)where the window function W` contains all experimentaldetails (chop, modulation, beam, etc.) of the experiment.The theoretical error in principle depends on the statis-tics of the perturbations. If the distribution is Gaussian,one can associate a sample/cosmic variance�(Th)2 = 1f 18�2 X̀(2`+ 1)W 2̀C 2̀ ; (121)where f represents the fraction of the sky sampled by agiven experiment.Deviation from Gaussianity leads to an enhancementof this variance, which can be as large as a factor of7 (see [36]). Even if the perturbations are close to

Gaussian (which has been found by simulations on largescales [7,37]), the C`'s, which are the squares of Gaus-sian variables, are non-Gaussian. This e�ect is, howeveronly relevant for relatively low `s. Keeping this caveatin mind, and missing a more precise alternative, we nev-ertheless indicate the minimal, Gaussian error calculatedaccording to (121). We add a 30% error from the CMBnormalization. The numerical seeds are assumed to beabout 10% accurate.In Table II, the detected mean square anisotropy,�(Exp), with the experimental 1-� error are listed foreach experiment of our data set. The corresponding skycoverage is also indicated. In Fig. 20 we plot these datapoints, together with the theoretical predictions for a tex-ture model with h = 0:5 and 
� = 0.We �nd that, apart from the COBE quadrupole, onlythe Saskatoon experiment disagrees signi�cantly, morethan 1�, with our model. But also this disagreement isbelow 3� and thus not su�cient to rule out the model.In the last column of Table II we indicate�2j = (�(Th)j ��(Exp)j )2=(�(Th)2j +�(Exp)2j )for the j-th experiment, where the theoretical modelis the standard texture model with 
� = 0 and h =0:5. The major discrepancy between data and the-ory comes from the COBE quadrupole. Leaving awaythe quadrupole, which can be contaminated and leadsto a similar �2 also for inationary models, the dataagrees quite well with the model, with the exceptionof three Saskatoon data points. Making a rough chi-square analysis, we obtain (excluding the quadrupole) avalue �2 = Pj �2j � 30 for a total of 30 data pointsand one constraint. An absolutely reasonable value, butone should take into account that the experimental datapoints which we are considering are not fully indepen-dent. The regions of sky sampled by the Saskatoonand MSAM or COBE and Tenerife, for instance, over-lap. Nonetheless, even reducing the degrees of freedomof our analysis to N = 25, our �2 is still in the range(N �1)�p2(N � 1) � 24�7 and hence still compatiblewith the data.This shows that even assuming Gaussian statistics, themodels are not convincingly ruled out from present CMBdata. There is however one caveat in this analysis: Achi-square test is not sensitive to the sign of the discrep-ancy between theory and experiment. For our modelsthe theoretical curve is systematically lower than the ex-periments. For example, whenever the discrepancy be-tween theory and data is larger than 0:5�, which hap-pens with nearly half of the data points (13), in all casesexcept for the COBE quadrupole, the theoretical value issmaller than the data. If smaller and larger are equallylikely, the probability to have 12 or more equal signs is2(13 + 1)=213 ' 3:4 � 10�3. This indicates that eitherthe model is too low or that the data points are system-atically too high. The number 0:003 can however not18



be taken seriously, because we can easily change it byincreasing our normalization on a moderate cost of �2.B. Matter distributionIn Table I we show the expected variance of the totalmass uctuation �R in a ball of radius R = 8h�1Mpc,for di�erent choices of cosmological parameters. We�nd �8 = (0:44 � 0:07)h (the error coming from theCMB normalization) for a at model without cosmolog-ical constant, in agreement with the results of Ref. [5].From the observed cluster abundance, one infers �8 =(0:50 � 0:04)
�0:5 [50] and �8 = 0:59+0:21�0:16 [51]. Theseresults, which are obtained with the Press-Schechter for-mula, assume Gaussian statistics. We thus have to takethem with a grain of salt, since we do not know how non-Gaussian uctuations on cluster scales are in the texturemodel. According to Ref. [52], the Hubble constant liesin the interval h ' 0:73 � 0:06 � 0:08. Hence, in a atCDM cosmology, taking into account the uncertainty ofthe Hubble constant, the texture scenario predicts a rea-sonably consistent value of �8.As already noticed in Refs. [17] and [5], unbiased globaltexture models are unable to reproduce the power ofgalaxy clustering at very large scales, >� 20h�1 Mpc. Inorder to quantify this discrepancy we compare our pre-diction of the linear matter power spectrum with the re-sults from a number of infrared ( [53], [54]) and optically-selected ( [55], [56]) galaxy redshift surveys, and with thereal-space power spectrum inferred from the APM pho-tometric sample ( [57]) (see Fig. 22). Here, cosmologicalparameters have important e�ects on the shape and am-plitude of the matter power spectrum. Increasing theHubble constant shifts the peak of the power spectrumto smaller scales (in units of h=Mpc), while the inclusionof a cosmological constant enhances large scale power.We consider a set of models in 
� { h space, with linearbias [58] as additional parameter. In Table III we reportfor each survey and for each model the best value of thebias parameter obtained by �2-minimization. We alsoindicate the value of �2 (not divided by the number ofdata points). The data points and the theoretical predic-tions are plotted in Fig. 21. Our bias parameter stronglydepends on the data considered. This is not surprising,since also the catalogs are biased relative to each other.Models without cosmological constant and with h �0:8 only require a relatively modest bias b � 1:3 � 3.But for these models the shape of the power spectrumis wrong as can be seen from the value of �2 which ismuch too large. The bias factor is in agreement with ourprediction for �8. For example, our best �t for the IRASdata, for h � 0:8 is b � 1:3. With �IRAS8 = (0:69�0:05),this gives �8 � 0:48 � 0:04, compatible with the directcomputationWhether IRAS galaxies are biased is still under debate.Published values for the � parameter, de�ned as � =


0:6=b, for IRAS galaxies, range between �I = 0:9+0:2�0:15[59] and �I = 0:5 � 0:1 [60]. Biasing of IRAS galaxiesis also suggested by measurements of bias in the opticalband. For example, Ref. [61] �nds �o = 0:40 � 0:12, inmarginal agreement with [62], which obtains �o = 0:35�0:1. A bias for IRAS galaxies is not only possible buteven preferred in at global texture models.But also with bias, our models are in signi�cant con-tradiction with the shape of the power spectrum at largescales. As the values of �2 in Table III and Fig. 22 clearlyindicate, the models are inconsistent with the shape ofthe IRAS power spectrum, and they can be rejected witha high con�dence level. The APM data which has thesmallest error bars is the most stringent evidence againsttexture models. Nonetheless, these data points are notmeasured in redshift space but they come from a de-projection of a 2 � D catalog into 3 � D space. Thismight introduce systematic errors and thus the errors ofAPM may be underestimated.Models with a cosmological constant agree much betterwith the shape of the observed power spectra, the valueof �2 being low for all except the APM data. But thevalues of the bias factors are extremely high for thesemodels. For example, IRAS galaxies should have a biasb � 3 � 6, resulting in �8 � 0:25, and in a �I � 0:2which is too small, even allowing for big variances due tonon-Gaussian statistics.The power spectra for the large-N limit and for the co-herent approximation are typically a factor 2 to 3 higher(see Fig. 22), and the biasing problem is alleviated forthese cases. For 
� = 0 we �nd �8 = 0:57h for the large-N limit and �8 = 0:94h for the coherent approximation.This is no surprise since only one source function, 	s,the analog of the Newtonian potential, seeds dark matteructuations and thus the coherence always enhances theunequal time correlator. The second inequality in (114)applies. The dark matter Greens function is not oscil-lating, so this enhancement translates directly into thepower spectrum.Models which are anti-coherent in the sense de�ned inSection IID reduce power on Sachs-Wolfe scales and en-hance the power in the dark matter. Anti-coherent scal-ing seeds are thus the most promising candidates whichmay cure some of the problems of global O(N) models.The simple analysis carried out here does not take intoaccount the e�ects of non-linearities and redshift distor-tions. Redshift distortions in the texture case shouldbe less important than in the inationary case since thepeculiar velocities are rather low (see next paragraph).Non-linearities typically set in at k � 0:5hMpc�1 andshould not have a big e�ect on our main conclusionswhich come from much larger scales. Inclusion of thesecorrections will result in more small-scale power and ina broadening of the spectra, which even enhances theconict between models and data. Furthermore, varia-tions of other cosmological parameters, like the additionof massive neutrinos, hot dark matter, which is not con-19
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1:2m2�2 Z P (k)W (kR)dk ; (122)in spheres of radii R = 10 to 60h�1Mpc. These dataare derived after reconstructing the 3�dimensional ve-locity �eld with the POTENT method (see [63] and ref-erences therein).As we can see from Table IV, the COBE normalizedtexture model predicts too low velocities on large scaleswhen compared with POTENT results. Recent measure-ments of the bulk ow lead to somewhat lower estimates
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like �v(R) � (230 � 90) at R = 60h�1Mpc ( [64]), butstill a discrepancy of about a factor of 2 in the best caseremains.Including a cosmological constant helps at large scales,but decreases the velocities on small scales.If the observational bulk velocity data is indeed reliable(there are some doubts about this [66]), all global O(N)models are ruled out.V. CONCLUSIONSWe have developed a self contained formalism to de-termine CMB anisotropies and other power spectra formodels with causal scaling seeds. We have applied it toglobal O(N) models which contain global monopoles andtexture. Our main results can be summarized as follows:� Global O(N) models predict a at spectrum(Harrison-Zeldovich) of CMB anisotropies on largescales which is in good agreement with the COBEresults. Models with vanishing cosmological con-stant and a large value of the Hubble parametergive �8 � 0:4 to 0:5 which is reasonable.� Independent of cosmological parameters, thesemodels do not exhibit pronounced acoustic peaksin the CMB power spectrum.� The dark matter power spectrum from global O(N)models with 
� = 0 has reasonable amplitudebut does not agree in its shape with the galaxypower spectrum, especially on very large scales> 20h�1Mpc.� Models with considerable cosmological constantagree relatively well with the shape of the galaxypower spectrum, but need very high bias b � 4� 6even with respect to IRAS galaxies.� The large scale bulk velocities are by a factor ofabout 3 to 5 smaller than the value inferred from[63].In view of the still considerable errors in the CMB data(see Fig. 20), and the biasing problem for the dark mat-ter power spectrum, we consider the last argument asthe most convincing one to rule out global O(N) mod-els. Even if velocity data is still quite uncertain, ob-servations generally agree that bulk velocities on thescale of 50h�1Mpc are substantially larger than the (50{ 70)km/s obtained in texture models.However, all our constraints have been obtained as-suming Gaussian statistics. We know that global defectmodels are non-Gaussian, but we have not investigatedhow severely this inuences the above conclusions. Sucha study, which we plan for the future, requires detailedmaps of uctuations, the resolution of which is alwayslimited by computational resources. Generically we can

just say that non-Gaussianity can only weaken the aboveconstraints.Our results naturally lead to the question whetherall scaling seed models are ruled out by present data.The main problem of the O(N) model is the missingpower at intermediate scales, ` � 300 � 500 or R �(20�100)h�1Mpc. We have briey investigated whetherthis problem can be mitigated in a scaling seed modelwithout vector and tensor perturbations. In this case,also scalar anisotropic stresses are reduced by causalityrequirements (see Ref. [4]), and the compensation mech-anism mentioned in Section II is e�ective. For simplicity,we analyze a model with purely scalar perturbations andno anisotropic stresses at all, f� = 0. The seed func-tion �s is taken from the texture model (numerical sim-ulations) and we set 	s = ��s. The resulting CMBanisotropy spectrum is shown in Fig. 18, top panel. Asmeared out acoustic peak with an amplitude of about2:2 does indeed appear in this model. This is mainly dueto the fact that uctuations on large scales are smallerin this model, as is also evident from the higher value of� = (2:2 � 0:2) � 10�5. But also here, the dark matterdensity uctuations and bulk velocities are substantiallylower than observed galaxy density uctuations or thePOTENT bulk ows.Clearly, this simple example is not su�cient and amore thorough analysis of generic scaling seed modelsis presently under investigation. So far it is just clearthat contributions from vector and tensor perturbationsare severely restricted.AcknowledgmentIt is a pleasure to thank Andrea Bernasconi, Paolo deBernardis, Roman Juszkiewicz, Mairi Sakellariadou, PaulShellard, Andy Yates and Marc Davis for stimulating dis-cussions. Our Boltzmann code is a modi�cation of a codeworked out by the group headed by Nicola Vittorio. Wealso thank Michael Vogeley who provided us with thegalaxy power spectra shown in our �gures. The numer-ical simulations have been performed at the Swiss supercomputing center CSCS. This work is partially supportedby the Swiss National Science Foundation.
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Experiment Data point �T 2(�K)2 +(�K)2 �(�K)2 Sky Coverage Reference �2jCOBE1 1 25.2 183 25.2 0.65 [38] 125.29COBE2 2 212 126 128 0.65 [38] 0.02COBE3 3 256 96.5 96.9 0.65 [38] 0.49COBE4 4 105.5 48.3 48.2 0.65 [38] 0.74COBE5 5 101.9 26.5 26.4 0.65 [38] 0.1COBE6 6 63.4 19.11 18.9 0.65 [38] 1.11COBE7 7 39.6 14.5 14.5 0.65 [38] 2.55COBE8 8 42.5 12.7 12.8 0.65 [38] 0.04ARGO Hercules 1 360 170 140 0.0024 [39] 0.001MSAM93 2 4680 4200 2450 0.0007 [40] 0.74MSAM94 3 4261 4091 2087 0.0007 [41] 0.51MSAM94 4 1960 1352 858 0.0007 [41] 0.01MSAM95 5 8698 6457 3406 0.0007 [42] 1.47MSAM95 6 5177 3264 1864 0.0007 [42] 0.30MAX HR 7 2430 1850 1020 0.0002 [43] 0.001MAX PH 8 5960 5080 2190 0.0002 [43] 0.41MAX GUM 9 6580 4450 2320 0.0002 [43] 0.73MAX ID 10 4960 5690 2330 0.0002 [43] 0.17MAX SH 11 5740 6280 2900 0.0002 [43] 0.25Tenerife 12 3975 2855 1807 0.0124 [44] 0.64South Pole Q 13 480 470 160 0.005 [45] 0.52South Pole K 14 2040 2330 790 0.005 [45] 0.01Python 15 1940 189 490 0.0006 [46] 0.37ARGO Aries 16 580 150 130 0.0024 [47] 0.78Saskatoon 17 1990 950 630 0.0037 [48] 0.79Saskatoon 18 4490 1690 1360 0.0037 [48] 3.83Saskatoon 19 6930 2770 2140 0.0037 [48] 4.60Saskatoon 20 6980 3030 2310 0.0037 [48] 4.01Saskatoon 21 4730 3380 3190 0.0037 [48] 1.32CAT1 22 934 403 232 0.0001 [49] 1.36CAT2 23 577 416 238 0.0001 [49] 0.62TABLE II. The CMB anisotropy detections used in our analysis. The 3., 4. and 5. column denote the value of the anisotropyand the upper and lower 1-� errors respectively. The references are: Tegmark and Hamilton 1997 [38]; de Bernardis et al. 1994[39]; Cheng et al. 1994 [40]; Cheng et al. 1996 [41]; Cheng et al. 1997 [42]; Tanaka et al. 1996 [43]; Gutierrez et al. 1997 [44];Gundersen et al. 1993 [45]; Dragovan et al. 1993 [46]; Masi et al 1996 [47]; Netter�eld et al. 1996 [48]; Scott et al. 1997 [49].
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Catalog h 
� Best �t bias b �2 Data pointsCfA2-SSRS2 101 Mpc 0.5 0.0 3.4 29 24CfA2-SSRS2 101 Mpc 0.8 0.0 2.0 40 24CfA2-SSRS2 101 Mpc 1.0 0.0 1.9 44 24CfA2-SSRS2 101 Mpc 0.5 0.4 3.9 17 24CfA2-SSRS2 101 Mpc 0.5 0.8 9.5 4 24CfA2-SSRS2 130 Mpc 0.5 0.0 5.3 8 19CfA2-SSRS2 130 Mpc 0.8 0.0 3.4 15 19CfA2-SSRS2 130 Mpc 1.0 0.0 3.4 16 19CfA2-SSRS2 130 Mpc 0.5 0.4 5.6 5 19CfA2-SSRS2 130 Mpc 0.5 0.8 11.1 4 19LCRS 0.5 0.0 3.0 71 19LCRS 0.8 0.0 1.8 96 19LCRS 1.0 0.0 1.6 108 19LCRS 0.5 0.4 3.7 33 19LCRS 0.5 0.8 8.7 40 19IRAS 0.5 0.0 2.3 102 11IRAS 0.8 0.0 1.3 131 11IRAS 1.0 0.0 1.3 140 11IRAS 0.5 0.4 2.8 70 11IRAS 0.5 0.8 6.3 9 11IRAS 1.2 Jy 0.5 0.0 4.2 56 29IRAS 1.2 Jy 0.8 0.0 2.9 92 29IRAS 1.2 Jy 1.0 0.0 2.9 99 29IRAS 1.2 Jy 0.5 0.4 4.3 39 29IRAS 1.2 Jy 0.5 0.8 6.7 28 29APM 0.5 0.0 3.3 1350 29APM 0.8 0.0 1.8 1500 29APM 1.0 0.0 1.7 1466 29APM 0.5 0.4 3.5 1461 29APM 0.5 0.8 6.2 1500 29QDOT 0.5 0.0 4.3 32 19QDOT 0.8 0.0 2.9 44 19QDOT 1.0 0.0 2.9 46 19QDOT 0.5 0.4 4.3 25 19QDOT 0.5 0.8 7.3 14 19TABLE III. Analysis of the matter power spectrum. In the �rst column the catalog is indicated. Cols. 2 and 3 specify themodel parameters. In cols. 4 and 5 we give the bias parameter inferred by �2 minimization as well as the value of �2. Col. 6shows the number of 'independent' data points assumed in the analysis.R �v (R) �v h = 0:5 h = 1:0 
� = 0:810 494 170 145 205 8620 475 160 100 134 7830 413 150 80 98 7040 369 150 67 78 6550 325 140 57 65 6160 300 140 50 56 57TABLE IV. Bulk velocities: Observational data from [63] and theoretical predictions. �v estimates the observationaluncertainty. The uncertainties on the theoretical predictions are around � 30%. The models 
� = 0 with h = 0:5 and h = 1as well as 
� = 0:8; h = 0:5 are investigated. 23



APPENDIX A: COMPLETE DEFINITIONS OFGAUGE-INVARIANT PERTURBATIONVARIABLESIn this Appendix we give precise de�nitions of all thegauge-invariant perturbation variables used in this pa-per. These de�nitions, their geometrical interpretationand a short derivation of the perturbation equations canbe found in [9,13]. We restrict the analysis to the spa-tially at case, K = 0. We de�ne the perturbed metricby g = �g + a2h ; (A1)where �g denotes the standard Friedmann background, ais the scale factor and h denotes the metric perturbation.1. Scalar perturbationsScalar perturbations of the metric are of the formh(S) = �2A(dt)2 + 2iBkjdtdxj + 2(HL + 13HT )�ijdxidxj�2k�2HT kikjdxidxj : (A2)Computing the perturbation of the Ricci curvature scalarand the shear of the equal time slices, we obtain�R = 4a�2k2R , with R = HL + 13HT ; (A3)K(aniso) = a�(kikjk2 � 13�ji )dxi 
 @j ; (A4)with� = k�1 _HT � B : (A5)The Bardeen potentials are the combinations� = R� ( _a=a)k�1� (A6)	 = A� k�1[( _a=a)� � _�] : (A7)They are invariant under in�nitesimal coordinate trans-formations (gauge transformations).To de�ne perturbations of the most general energy mo-mentum tensor, we introduce the energy density � andthe energy ux u as the time-like eigenvalue and normal-ized eigenvector of T �� ,T �� u� = ��u� ; u2 = �1 :We then de�ne the perturbations in the energy densityand energy velocity �eld by� = �(1 + �) ; (A8)u = u0@t + ui@i ; (A9)

u0 is �xed by the normalization condition, u0 = a�1(1�A). In the 3{space orthogonal to u we de�ne the stresstensor by ��� � P ��P � �T�� ; (A10)where P = u
u+g is the projection onto the sub{spaceof TM normal to u. It is�00 = �0i = � i0 = 0 :The perturbations of pressure and anisotropic stressescan be parameterized by� ji = �p[(1 + �L)� ji + � ji ] , with �ii = 0 : (A11)For scalar perturbations we setu0 = (1�A) ; u(S)ju0 = �ikjk vand�(S)ij = (�k�2kikj + 13�ij)� :Studying the behavior of these variables under gaugetransformations, one �nds that the anisotropic stress po-tential � is gauge invariant. A gauge invariant velocityvariable is the shear of the velocity �eld,�(Sm)ij = (k�2kikj � 13�ija3V , with V = v � k�1 _HT :(A12)There are several di�erent useful choices of gauge in-variant density perturbation variables,Ds = � + 3(1 + w)( _a=a)k�1� (A13)Dg = � + 3(1 + w)R = Ds + 3(1 + w)� (A14)D = Ds + 3(1 + w)( _a=a)k�1V : (A15)In this work we mainly use Dg . Here w = p=� denotesthe enthalpy. Clearly, these matter variables can be de-�ned for each matter component separately. For idealuids like CDM or the baryon photon uid long before de-coupling, anisotropic stresses vanish and �L = (c2s=w)�,where cs is the adiabatic sound speed.Also scalar perturbations of the photon brightness, �(S)are not gauge invariant. It has been show [9] that thecombinationM(S) = �(S) + 4R+ 4ik�1njkj� (A16)is gauge invariant. This is the variable which we usehere. In other work [67] the gauge invariant variable� �M+� has been used. Since � is independent of thephoton direction n this di�erence in the de�nition showsup only in the monopole, C0. But clearly, as can be seenfrom Eq. (A16), also the dipole, C1, is gauge dependent.The brightness perturbation of the neutrinos is de�nedthe same way and will not be repeated here.24



2. Vector perturbationsVector perturbations of the metric are of the formh(V ) = 2Bjdxjdt+ ik�1(klHj + kjHl)dxldxj ; (A17)where B andH are transverse vector �elds. The simplestgauge invariant variable describing the two vectorial de-grees of freedom of metric perturbations is �,�j = k�1 _Hj �Bj : (A18)Vectorial anisotropic stresses are gauge invariant. Theyare of the form�(V )lj = ik�1(kj�l + kl�j) : (A19)The vector degrees of freedom of the velocity �eld arecast in the vorticityul:j � uj;l = ia(kj!l � kl!j) (A20)with !j = vj �Bj : (A21)Vector perturbations of the photon brightness are gauge-invariant. To maintain a consistent notation, we denotethem by M(V ).3. Tensor perturbationsWe de�ne tensor perturbations of the metric byh(T ) = 2Hijdxidxj ; (A22)where Hij is a traceless transverse tensor �eld.The only tensor perturbations of the energy momen-tum tensor are anisotropic stresses,�(T )lj = �lj : (A23)Tensor perturbations of the photon brightness are de-noted M(T ).Clearly, all tensor perturbations are gauge-invariant(there are no tensor type gauge transformations).APPENDIX B: THE CMB ANISOTROPYPOWER SPECTRUMHere we derive in some detail Eqs. (75), (84) and (91).CMB anisotropies are conveniently expanded in spher-ical harmonics: �T (n)=T0 = Plm almY lm(n). The coe�-cients alm are random variables with zero mean and ro-tationally invariant variances, C` � hj alm j2i. The mean(over the ensemble) correlation function of the anisotropypattern has the standard expression:��TT0 (n1)�TT0 (n2)� = 14� X̀(2`+ 1)C`P`(cos �) (B1)

where cos � = n1 �n2. To �nd Eq. (75) we use the Fouriertransform normalizationf̂(k) = 1V Z f(x) exp(ik � x)d3x ; (B2)with some normalization volume V . Assuming that en-semble average can be replaced by volume average thenimplies��TT0 (n1)�TT0 (n2)� = 1V Z d3x�TT0 (x;n1)�TT0 (x;n2)= 1(2�)3 Z d3k �TT0 (k;n1)�TT0 (k;n2) : (B3)Inserting our ansatz (64) for �TT0 = 14M, and using theaddition theorem for spherical harmonics, we have��TT0 (n1)�TT0 (n2)� =18� X`;`0;m;m0(�1)(`�`0)Y`m(n1)Y �̀0m0(n2)�Z k2dkd
k̂Y �̀m(k̂)Y`0m0(k̂)h�`��̀0i(k) == 132�2 X̀(2`+ 1)P`(n1 � n2) Z k2dkh�`��̀i(k) ; (B4)from which we can read of Eq. (75).For vector and tensor uctuations, the ansatz (77) and(86) must be taken into account. With the same ma-nipulations as above the correlation function of CMBanisotropies induced by vector modes reads:��TT0 (n1)�TT0 (n2)� =1128�3 Z d3k X̀1`2�`1;`2(k;n01;n02)P`1(�01)P`2(�02) (B5)where the primes indicate that the quantity is consideredin the reference system where k is parallel to the z axisand ( [68], [16])�`1;`2 = (�i)(`1�`2)(2`1 + 1)(2`2 + 1)q(1� (�02)2)(1� (�02)2)�[h�(V )1;`1�(V )�1;`2 i cos(�01) cos(�02) ++h�(V )2;`1�(V )�2;`2 i sin(�01) sin(�02)] : (B6)Assuming statistical isotropy which implieshj�(V )1;` j2i = hj�(V )2;` j2i and h�(V )1;` ��(V )2;` i = 0 ;we obtain25



��T (n1)T0 �T (n2)T0 � =1128�3 X̀1`2(2`1 + 1)(2`2 + 1)(�i)(`1�`2) � (B7)Z �(n01;n02)h�(V )1;`1�(V )�1;`2 iP`1(�01)P`2(�02)d3k ; (B8)where � = n1 � n2 � �01�02 : (B9)Using the recursion formula for Legendre polynomialsand the addition theorem for spherical harmonics, we�nd after some manipulationsC(V )` = `(`+ 1)8� Z k2dk hj�(V )1;`+1(t0; k) + �(V )1;`�1(t0; k)j2i(2`+ 1)2 :(B10)For the correlation function of the CMB anisotropiesfrom tensor modes our ansatz (86) gives��TT0 (n1)�TT0 (n2)� =1128�3 Z X̀1`2�`1;`2(k;n01;n02)P`1(�01)P`2(�02)d3k (B11)with�`1;`2 = (�i)`1�`2(2`1 + 1)(2`2 + 1)(1� (�01)2)�(1� (�02)2)[h�(T )�;`1�(T )��;`2i cos(2�01) cos(2�02) ++h�(T )+;`1�(T )�+;`2 i sin(2�01) sin(2�02)]: (B12)Here, statistical isotropy leads to��T (n1)T0 �T (n2)T0 � =1128�3 X̀1`2(2`1 + 1)(2`2 + 1)(�i)(`1�`2) �Z �(n01;n02)h�(T )+;`1�(T )�+;`2iP`1(�01)P`2(�02)d3k (B13)where� = [2(n1 � n2 � �01�02)2 � (1� (�01)2)(1� (�02)2)] :(B14)With straightforward but somewhat cumbersome manip-ulations, applying the recursion formula for Legendrepolynomials and the addition theorem for spherical har-monics, we then obtainC(T )` = 18� (`+ 2)!(`� 2)! Z 10 j �(T )` (k) j2(2`+ 1)2 k2dk ; (B15)

with�(T )` = �(T )�;`�22`� 1 � 2(2`+ 1)�(T )�;`(2`� 1)(2`+ 3) + �(T )�;`+22`+ 3 : (B16)The formulas (B4),(B10) and (B15) are used to determinethe CMB anisotropy spectrum.
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