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I. INTRODUCTIONReently, it has been argued that a slowly ontrating universe whih transits smoothlyover to an expanding radiation dominated era may lead to a sale invariant spetrum ofadiabati density utuations [1, 2, 3, 4℄. There has been quite an intense debate on thequestion whether the resulting spetrum after the transition to the radiation era really issale invariant or whether it has a steep blue spetrum with n ' 3. The latter result hasbeen advoated mainly by [5, 6, 7℄, although Gratton et al. have now gone further arguingthat the ekpyroti/yli senario is the only robust ase where a sale-invariant spetra anbe found (along with ination for the ase of an expanding universe) [8℄.If the equations of motion governing the transition for the bakground and the perturba-tions were known, this problem ould be solved by integrating them numerially. Howeverit is likely that the evolution in this high urvature regime will ontain full string theory andwe do not even know whether the variables of the low energy theory are appropriate for thedesription of this regime. One possibility whih has been studied in the past is the inlusionof �rst order orretions in the string sale, �0 and/or the oupling onstant gs (see, e.g.[9, 10, 11, 12℄). In this ontext it has been shown that, within a ertain range of oeÆientsfor the terms added to the tree level Lagrangian, one an exit from the high urvature regimeand enter into a radiation dominated phase [12℄. In [13℄ the orretions of the perturba-tion equations have been derived and have been solved for dilaton-driven string osmology.Lately, Tsujikawa et al. [14℄ have used these equations to study the ekpyroti model [1, 4℄.Even though they have followed the perturbations through a regularized transition, we willargue that their method invariably leads to n ' 3 and does not allow for a deision whethera blue, n ' 3 or a sale-invariant, n ' 1 spetrum of perturbations is obtained. In thispaper we �rst study a general transition whih satis�es relatively mild riteria and we for-mulate onditions for the transition whih lead to either of the two spetral indies. We andeide under whih onditions either the spetral index n = 1 as advoated by Durrer andVernizzi [2℄ or n = 3 put forward in [15℄ and others is obtained in the ekpyroti model. Thismodel is a speial ase of the more general lass of ontrating universes disussed here.The rest of this paper is organized as follows: In the next setion we present the aspets ofosmologial perturbation theory needed in this paper. We then disuss the transition from aontrating to an expanding phase emphasizing the di�erenes between suh a transition andthat assoiated with the transition between a onventional inationary phase to radiation.We also formulate the problem enountered when inferring the perturbation spetrum afterthe transition from the one before the transition. In Setion III we study the behaviorof perturbations during a transition and �nd that the resulting spetral index depends onmutually exluding, simple regularity onditions for the transition, whih we formulate indetail.In Setion IV we study numerial toy models for the transition where we exemplify thegeneral results obtained in the previous setion and analyze the stability of the numeriallyobtained spetral indies. Then we formulate our regularity ondition as a theory and westudy the amplitude of perturbations. In the last setion we omment on the �ndings inprevious work and we summarize our results.
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II. BACKGROUND AND PERTURBATIONS IN SIMPLE CONTRACTINGANDEXPANDING UNIVERSESIn this setion we repeat the basi equations for the Friedmann bakground and adiabati�rst order perturbations. We then disuss initial onditions for perturbations in a ontratinguniverse and explain how a di�erent spetral index is obtained depending on the perturbationvariable used for the transition.A. The bakgroundWe onsider a Friedmann universe with negligible spatial urvature, whih is �rst on-trating for �1 < � < ��s and hene its (spaetime) urvature is growing. The variable �denotes onformal time and �s > 0 is the moment when we enter a high-urvature regime.We all this period the 'pre-big bang phase'. At � � ��s orretions oming from some un-derlying theory, whih redues to general relativity when the urvature is suÆiently small,beome important and we assume that they regularize the geometry and lead to an expand-ing universe at � > �s. We also assume that radiation is produed during the transitionso that for � > �s (the 'post-big bang' phase) the universe an be desribed as a radiationdominated Friedmann universe. In the pre- and post-big bang phases, j�j � �s, we haveH2 = �23 �a2 ; (1)H0 = ��26 (�+ 3P )a2 = �H2 1 + 3w2 ; (2)where the equation of state of the bakground uid is w = P=� and �2 = 8�G = 2=M2P .MP = 1=p4�G = 3:4 � 1018GeV is the redued Plank mass. H = a0=a = _a = Ha is theomoving Hubble parameter. A prime denotes derivative w.r.t. onformal time �, whereasa dot denotes derivative w.r.t. physial time t, de�ned by dt = ad�. We shall also usew0 = 3(w � 2s)(1 + w)H ; where 2s = P 0�0 (3)is the adiabati sound speed. We will be espeially interested in phases during whih P=� =w = onstant. Then 2s = onstant = w and the sale fator evolves like a power law,a = ���� ��s ����q ; q = 21 + 3w : (4)An inationary phase, de�ned by 1 + 3w < 0, is thus realized when q < 0. During theradiation dominated post-big bang phase w = 1=3, hene q = 1.We will onsider a salar �eld dominated pre-big bang phase. During this phase we have� = '022a2 + V (') ; P = '022a2 � V (') ; (5)so that w + 1 = '023H2 : (6)3



For a salar �eld, w is onstant only for the following possibilities:w = 8<: 1 if V = 0 ;�1 if '0 = 0 ;2=3� 1 if V = V0 exp(�') ; V0 6= 0 ; (7)and, orrespondingly, q = 8<: 1=2 if V = 0 ;�1 if '0 = 0 ;22�2 if V = V0 exp(�') ; V0 6= 0 : (8)B. PerturbationsWe now disuss perturbation theory in a Friedmann universe (negleting spatial urva-ture, K = 0) with a salar �eld or a perfet uid like radiation.We �rst onsider the linear perturbation equation for the Bardeen potential (see e.g. [16,17℄): 	00 + 3H(1 + 2s)	0 + �2H0 + (1 + 32s)H2 � ���	 = 0 : (9)This equation is valid for adiabati perturbations of a uid, with � = 2s, or for a simplesalar �eld, with � = 1 (see e.g. [16℄).If we de�ne the anonial variableu = MPapH2 �H0	 ; (10)u satis�es the equation [16℄ u00 + (�k2 � �00=�)u = 0 ; (11)for � = 8><>: �1 = Hap 23 (H2�H0) ;or�2 = �1 R d��21 : (12)If we restrit ourselves to the ase w = 2s = onstant, the mass term in Eq. (9), namely2H0 + (1 + 32s)H2, vanishes by the use of the bakground Einstein equations (1) and (2).For these bakgrounds whih have a / j�jq where q is given in Eq. (4), we �nd	00 + 2H1 + qq 	0 +�k2	 = 0 : (13)The u-equation then simply beomes a Bessel di�erential equation,u00 + ��k2 � q(q + 1)�2 � u = 0 : (14)The orret normalization to the inoming vauum at � ! �1 determines the initialonditions suh that (see e.g. [2℄) u = p�jk�jk3=2 H(2)� (k�) ; (15)4



with � = q + 1=2. Here H(2)� denotes the Hankel funtion of the seond kind and of order�. At 'late times' when jk�j � 1 but still � � ��s we may neglet the k2-term in Eq. (14)and �nd the super-Hubble sale solutionu = A� ���� ��s �����q +B� ���� ��s ����1+q = uA + uB : (16)The oeÆients A� and B� are determined by the initial solution (15),A� ' k�3=2(k�s)�q ; B� ' k�3=2(k�s)1+q ; (17)hene they have the spetra [2℄PA� = jA�j2k3 ' (k�s)�2q / knA��1 ; nA� = 1� 2q ; (18)PB� = jB�j2k3 ' (k�s)2+2q / knB��1 ; nB� = 3 + 2q : (19)Furthermore, juB=uAj ' jk�j1+2q. Hene for q > �1=2, the A-mode, uA, dominates at latetime over the B-mode, uB.Another perturbation variable often used is the urvature perturbation on uniform o-moving hypersurfaes [18℄ � = H	0 +H2	H2 �H0 +	 : (20)A simple substitution using Eq. (9) and the bakground equations yields� 0 = �k2 �HH2 �H0	 ; (21)hene on super-Hubble sales, jk=Hj � 1, this variable is onserved. For ordinary ina-tionary models, it is therefore usually suÆient to ompute � at the time of Hubble radiusrossing during ination to obtain its value in the radiation dominated era. Furthermore,sine during radiation � = (3=2)	, this simply gives the Bardeen potential.The evolution of � is losely related to the anonial variable v de�ned byv = �MPapH2 �H0p�H � : (22)This variable satis�es the equation [16℄v00 + (�k2 � z00=z)v = 0 ; (23)where z = 8><>: z1 = apH2�H0p�H ;orz2 = z1 R d�z21 : (24)Note that the relation between v and � is v = �MP z1�. Eq. (23) is invariant under the'duality' z1 ! z2, in the same way as Eq. (11) is invariant under �1 ! �2.In [16℄ it is shown that v appears in the perturbed ation as a anonial salar variable.Hene on sub-Hubble sales, jk=Hj � 1, it satis�es the initial ondition vin = exp(�ik�)=pk.5



As before, we now onentrate on the ase w = 2s = onstant, with sale fator given inEq. (4). Then z1 / a ; and v = onst�MPa� ; (25)the onstant of order unity depends on q and �.During the pre-big bang phase Eq. (23) then also beomes a Bessel di�erential equation,v00 + �k2 � q(q � 1)�2 � v = 0 : (26)We have set � = 1 throughout the evolution, whih should be �ne as we are onsideringmainly super-Hubble terms, whih satisfy k2�n V during the transition. We have on-�rmed in numerial simulations that allowing � to vary during the evolution does not a�etthe key results we present onerning the form of the inherited spetral index.The solution with the orret initial onditions isv = p�jk�jk1=2 H(2)� (k�) ; (27)with � = 1=2 � q. At 'late times' when jk�j � 1 but still � � ��s we may neglet the k2term in Eq. (26) and �nd the super-Hubble sale solutionv = C� ���� ��s ����1�q +D� ���� ��s ����q = vC + vD : (28)The oeÆients C� and D� are determined by the initial solution (27),C� ' (k�s)��1=2s ; D� ' (k�s)���1=2s : (29)The spetra obtained depend on the value of q. One �nds [2℄PC� = jC�j2k3 ' (k�s)4�2q��2s / knC��1 ; nC� = 5� 2q ; (30)PD� = jD�j2k3 ' (k�s)2+2q��2s / knD��1 ; nD� = 3 + 2q : (31)Here jvC=vDj ' jk�j1�2q, hene the D-mode dominates for q < 1=2, while the C-modedominates for q > 1=2. Finally we want to note that u and v are related viav = ��1p�(u=�1)0 ; (32)u = z1k2p�(v=z1)0 : (33)It is interesting to note that from the lowest order approximations for u and v given inEqs. (16,28) the equivalenes (32) and (33) of u and v annot be reovered. Only when wego to the next order in the term proportional to �1, or z1 respetively, (or when using thefull Bessel funtion solution) does the above equivalene give uA  ! vC and uB  ! vDalong with nA + 4 = nC ; nB = nD : (34)6



C. The problem of a transition from ontration to expansionLet us �rst onsider the ase where q is in the interval �1=2 6 q 6 1=2. Even thoughq < 0 does not represent a ontrating phase, no di�erene of the following arguments arisesfrom letting q derease until �1=2 (usual ination has q >� � 1).Comparing the amplitudes of the modes of u and v, we see that at the transition to theexpansion phase, j�j � �s, we have uA � uB and vD � vC for osmologially interestingsales with k � 1=�0 � 10�30=�P . Here �0 denotes the value of onformal time today and�P = M�1P . Naively, we therefore expet that immediately after the transitionu ' A� and v ' D� for � 1=2 6 q 6 1=2 : (35)Sine in the radiation dominated era u / �2 and v / � on super-Hubble sales, we expetduring the radiation phaseu ' A�(�=�s)2 and v ' D�(�=�s) for k� � 1 : (36)From the relations of u and 	 as well as v and � during the radiation dominated phase, thisgives 	 ' p2 A�=(�sMP ) and � ' D�=MP : (37)For q 6= �1=2, this naive result is learly in ontradition with the fat that during theradiation dominated era 	 and � di�er only by a onstant sine, aording to Eqs. (18) and(31), 	 would have the spetral index n	 = nA� = 1 � 2q while � would have the spetralindex n� = nD� = 3 + 2q.For q 6 �1=2 the B-mode of u, uB, dominates (for q = �1=2, uA and uB are of the sameorder) and we expet 	 to have the spetrum n	 = nB� = 3 + 2q = nD� = n� , hene weobtain the same spetrum as � in the radiation era, so that there is no ontradition.For q > 1=2 the C mode of v, vC dominates and hene � atually has the spetrumn� = nC� = 5�2q, whih is in even worse disagreement with the naively expeted spetrumfor 	. This ontraditory situation is shown on the right hand panel of Fig. 1. Sinefor ordinary ination q � �1, this problem has never been realized when studying usualination.The simplest possibility whih ould resolve the issue is to note that the deaying modeof u (q > �1=2) during the pre-big bang phase, uB, has the same spetrum as vD. Heneif the u-growing mode during the pre-big bang phase is entirely onverted into the deayingmode after the transition and therefore annot be seen late in the post-big bang era, weexpet the spetrum n = 3 + 2q in the radiation era. This argument has been put forwardin [5℄, where the authors have shown that this is exatly what happens if the transition isde�ned by a vanishing jump in the metri and the seond fundamental form on the onstantenergy hypersurfae. Similar arguments have also been presented in [6, 7℄. They led theseauthors to the onlusion that the orret spetrum, evaluated suÆiently long after the pre! post transition so that the deaying mode has died away, is n = n	 = n� = 3 + 2q. Ifthis is orret the spetrum of the ekpyroti model is very blue and in ontradition to theobserved lose-to-sale invariant spetrum.The same argument for the original pre-big bang model of Veneziano [19, 20℄, where thesalar �eld potential vanishes and hene q = 1=2, led to the onlusion that the dilatonperturbation spetrum is very blue with n = 4 [21, 22℄.In [2℄ this argument has been ritiized for two main reasons. First of all, the bakgroundseond fundamental form given byH=a has to jump, even to hange sign, in a transition from7



ontration to expansion. It then seems quite unnatural to require its perturbation to vanish.Seondly, if the mathing onditions are posed on an only slightly di�erent hypersurfae,the naively expeted spetral index, n	 = 1� 2q is obtained. This 'instability' of the indexn	 = 3 + 2q will also be illustrated in Setion IV with numerial studies of a simple toymodel.The above argument annot be used if q > 1=2, beause u has no mode with spetralindex 5� 2q. In this ase, agreement an only be ahieved if also the dominant ontributionto v, vD, is transferred entirely into the deaying mode so that late after the transition vand hene � still have the spetral index nD� = 3 + 2q. However, this is not possible: Asone easily onludes, e.g. from [5℄ or [6℄, a transition on the onstant energy hypersurfae,where the growing mode of u is transferred ompletely into the deaying mode, preserves �,hene � has the same spetrum after the transition as before, n� = 5 � 2q whih does notagree with the spetrum of 	 whih in this ase is n	 = 3 + 2q.Hene if the transition is suh that both 	 and � orrespond after the transition to oneof their modes before the transition, the obtained spetral index must be n = 3 + 2q. Aswe have shown, this annot happen for q > 1=2 if the transition is 'simple', i.e. does notmodify the spetrum of either 	 or �.If the spetral index after the transition is n = 1 � 2q as promoted in [2℄ for q > �1=2,the variable � makes a k-dependent jump at the transition. If n = 5 � 2q is obtained asin [15℄, 	 makes a k-dependent jump. Furthermore, if n = 3+ 2q is obtained for q > �1=2,the growing mode of 	 before the transition has to be onverted entirely into the deayingmode. For q > 1=2 also this no longer helps resolve the problem, and one of the two variables� or 	 must be modi�ed in a k-dependent way during the transition.III. GENERAL SOLUTIONS OF THE PERTURBATION EQUATIONSTHROUGH THE TRANSITIONHaving explained the problem, but before disussing possible resolutions, let us olletsome generi fats about a transition from ontration to expansion. Clearly, to have suha transition H, H0 and _H = (H=a)0=a = (H0 � H2)=a2 have to hange sign. Within theframework of general relativity (negleting spatial urvature) this requires � + P < 0 andtherefore annot be ahieved with a salar �eld (with standard kineti term). If a positivespatial urvature is added, the salar �eld initial ondition an be �ne tuned suh thatlose to the ollapse the urvature term dominates over the salar �eld ontributions, and atransition from ontration to expansion an be ahieved with a standard salar �eld [23℄.In this setion we want to disuss the problem outlined above without speifying anydetails of the transition. For this, we �rst disuss the linear seond order di�erential equationx00 + �k2 � Vx�x = 0 ; Vx = s00s ; (38)whih we have enountered in the previous setion. Here the variables (x; s) stand for either(u; �) or (v; z). The fator � in front of the k2 term is disregarded sine it is irrelevantfor our onsiderations whih mainly onern super-Hubble sales. We notie that Eq. (38)is invariant under the duality transformation s = s1 ! s1 R d�s21 � s2. If s is a power law,s1 = j�=�sj, we an set s2 = j�=�sj1� . The duality property of Eq. (38) been disussed in8



[24℄. If s and 1=s are bounded in the interval [�in; �℄, so that1 > C = maxf�in6�16�g (js(�1)2j; 1=s(�1)2) ; (39)this equation has the general solution [20, 25℄x = sh�Tos(s; k) + �Tsin(s; k)i ; (40)where Tos and Tsin are de�ned byTos(s; k) � 1� k2 Z ��in d�1s2(�1) Z �1�in d�2s2(�2)+k4 Z ��in d�1s2(�1) Z �1�in d�2s2(�2) Z �2�in d�3s2(�3) Z �3�in d�4s2(�4)� k6 � � � ; (41)Tsin(s; k) � k Z ��in d�1s2(�1)+k3 Z ��in d�1s2(�1) Z �1�in d�2s2(�2) Z �2�in d�3s2(�3) + k5 � � � : (42)When expressing a given solution in terms of Tos and Tsin the oeÆients � and � willdepend on the initial value �in hosen. But as long as s and 1=s are bounded, the sums (41)and (42) always onverge sine the terms in this sum are bounded, e.g. by the terms inthe series expansion for os (Ck(� � �in)) and sin (Ck(� � �in)) respetively. Here C is thebound from Eq. (39) above.To relate this solution with the results of setion IIC, we hoose �in suh that kj�inj � 1,but �in � ��s. If s obeys a simple power law, s = j�=�sj, hene s00=s = ( � 1)=�2, weobtain to lowest order Tos(s; k) = 1 ; and (43)Tsin(s; k) = k�s1� 2 "�����in�s ����1�2 � ���� ��s ����1�2# ; (44)so that x = "� + �k�s1� 2 �����in�s ����1�2# ���� ��s ���� � � k�s1� 2 ���� ��s ����1� : (45)(For  = 1=2 the powers in the Tsin-integral beomes a logarithm, but we shall neglet thislogarithmi orretion here.) There are several fats to note at this point:� Only two of the three parameters �in; �; � whih determine the initial onditions areindependent.� As in Eqs. (12, 24), two pump �elds s1 and s2 yield the same potential Vx in Eq. (38).If �in is hosen suh that the ontributions to the integrals from the lower boundaryan be negleted, hanging s from s1 to s2 transforms Tos into k�1Tsin and Tsin intokTos. 9



� If s / � is a pure power law and again the ontributions from the lower boundary anbe negleted, Tos / pkj�jJ�(jk�j) and Tsin / pkj�jY��(jk�j), where � =  � 1=2and J; Y are Bessel funtions.We now de�ne y � sk2 (x=s)0 : (46)Using Eq. (38), we �nd � yy0� = � 1k2 � s0s �1k2 � � s0s �2 s0s �� xx0 � ; (47)whih we an invert to obtain� xx0� = �� s0s 1�k2 + � s0s �2 s0s �� yy0� : (48)Using the latter and Eq. (38), the evolution equation for the variable y an be derivedy00 + "s00s � 2�s0s�2# y + k2y = 0 : (49)Let us now introdue r � s�1 �1 + 2 Z � s2d~�� ; (50)so that r0 = �s0s r + 2s ; r00 = �"s00s � 2�s0s �2# r : (51)Eq. (49) then takes the simple formy00 + �k2 � Vy� y = 0 ; Vy � r00r : (52)Note that the y-equation obtained from a given x-equation depends on our hoie of s.Sine s001=s1 = s002=s2 but s01=s1 6= s02=s2, Vy = �s00=s+2(s0=s)2 depends on this hoie. Suh a'dual variable' y an also be found if k2 is modi�ed into �(�)k2 the expressions just beomesomewhat more ompliated. Choosing x = v and s = z1, Eqs. (47,48) just reprodue therelations (32,33) where y = u and r = �. During a power law evolution of the sale fator,we have z1 = j�=�sjq, z2 = j�=�sj1�q, �1 = j�=�sj�q and �2 = j�=�sj1+q :As we have seen in the previous setion, on large sales, jk�j � 1, the general solution ofEq. (38) is to lowest order of the formx = A ���� ��s ���� + B ���� ��s ����1� +O(jk�j2) ; (53)where one obtains from (45) � = A+ B �����in�s ����1�2 ; (54)� = �B(1� 2)k�s : (55)10



To disuss what might happen during a transition we now assume that for a given s = s1or s2 the solution (40) an be ontinued through the transition to the radiation era, the onlye�et of the transition being a modi�ation of s whih interpolates froms = ( j�=�sj� for � � ��s ; toj�=�sj+ for � � �s ; (56)without passing through zero. At some time �s � � � 1=k in the radiation era, we still anapproximate the Tos and Tsin integrals by the �rst term in their series expansion, (41,42).Integrating the �rst term in Eq. (42), we obtainx = "� + �k�s1� 2�  �T � 2� 2� � 2+1� 2+ + �����in�s ����1�2�!#� ��s�++ �k�s1� 2+ � ��s�1�+ : (57)Here �T = 1� 2��s Z �s��s s�2d~� (58)omes from the ontribution to the integral during the transition. We always assume thatthe free normalization of s is hosen suh that s(��s) = 1. The dimensionless, k-independentonstant �T is then the only funtion that inorporates our ignorane of the true form ofthe transition. Although its typial order of magnitude is O(�T ) = O(1), we will mentionexpliit limits on �T as we go along. With the above expressions for � and � we havex = �A� B��T � 2� 2� � 2+1� 2+ ��� ��s�+ � B1� 2�1� 2+ � ��s�1�+ : (59)whih is independent of �in as it should be.In what follows we will study eight di�erent ases and ompute the resulting spetra. Forthe �rst four ases we shall assume that u remains regular throughout. Realling the notationthat �� refers to the ollapsing phase and �+ to the expanding phase in Eqs. (11,12), we shallonsider the following possibilities: �1� = j�=�sj�q goes over smoothly into �1+ = (�=�s)�1(ase 1); �1� goes over smoothly into �2+ = (�=�s)2 (ase 2); �2� = j�=�sj1+q goes oversmoothly into �1+ (ase 3) and �2� goes over smoothly into �2+ (ase 4). We shall thenstudy the equivalent ases for v with � replaed by z in Eqs. (23,24). We are mainlyinterested in a ontrating pre-big bang phase, q > 0, but the results derived here are validalso for �1=2 < q.Case 1: � = �q, + = �1.Here we have A = A� and B = B�, heneu ' k�3=2(�(k�s)�q � (k�s)1+q ��T � 2(2 + q)3 ��� ��s��1�1 + 2q3 (k�s)1+q � ��s�2) : (60)11



If �T is of order unity, or more preisely if�T <� (k�s)�(1+2q) ; (61)the resulting spetrum as well as the amplitude does not depend on �T and we havejuj2k3 ' 8<: (k�s)�2q � ��s��2 for k < ku(�) n = 1� 2q ;�1+2q3 �2 (k�s)2+2q � ��s�4 for k > ku(�) n = 3 + 2q ; (62)where ku(�) ' ��1� ��s� 2q�22q+1 (63)is the wave number where we see a kink in the spetrum. For a value of q in the regimeof our primary interest, �1=2 < q < 1, the exponent 2q�22q+1 is negative and ku(�) � ��1espeially at late times, � � �s. Hene, in this ase the spetral index relevant for theobserved anisotropies in the osmi mirowave bakground (CMB) is n = 3 + 2q, a steepblue spetrum. In reahing this onlusion, we have used the fat that in the radiation era,	 ' p2�sMP�2u ; (64)j	j2k2 ' �MsMP �2 (k�s)2+2q for k > ku(�) ; n = 3 + 2q ; (65)where we have introdued the transition mass sale, Ms = ��1s . For transitions from ontra-tion to expansion, q > 0, the amplitude of these utuations is therefore far too low to beof any relevane for osmologially interesting sales, k ' ��10 . (Furthermore, the spetralindex n = 3 + 2q is not onsistent with observations.)Case 2: � = �q, + = 2.Sine � is the same as in ase 1, A and B remain unhanged. From Eq. (59), we �ndu ' k�3=2(�(k�s)�q � (k�s)1+q ��T � 2(1� q)3 ��� ��s�2+1 + 2q3 (k�s)1+q � ��s��1) ; (66)so that juj2k3 ' (k�s)�2q � ��s�4 ; (67)j	j2k3 ' �MsMP �2 (k�s)�2q ; n = 1� 2q : (68)For this result to apply, the ondition on �T , Eq. (61)must be satis�ed. If this ase isrealized and if 0 < q � 1, a sale invariant spetrum will be obtained. Its amplitude is12



determined by the transition sale whih should be about 5 orders of magnitude below thePlank sale.Case 3: � = 1 + q, + = �1.Aording to equations (53) and (16), we now have A = B� and B = A�. This leads tou ' k�3=2(�(k�s)1+q � (k�s)�q ��T � 2(1� q)3 ��� ��s��1+1 + 2q3 (k�s)�q � ��s�2) : (69)We thus obtain juj2k3 ' (k�s)�2q � ��s�4 ; (70)j	j2k3 ' �MsMP �2 (k�s)�2q ; n = 1� 2q ; (71)as in ase 2. Here this spetrum is obtained without any ondition on �T having to besatis�ed, although for the orret amplitude to be obtained, we need �T <� (�=�s)3=3.Case 4: � = 1 + q, + = 2.Again, we have we have A = B� and B = A� and so we obtainu ' k�3=2(�(k�s)1+q � (k�s)�q ��T � 2(2 + q)3 ��� ��s�2�1 + 2q3 (k�s)�q � ��s��1) ; (72)with juj2k3 ' (k�s)�2q ��T � 2(2 + q)3 �2� ��s�4 ; (73)j	j2k3 ' �MsMP �2 (k�s)�2q ��T � 2(2 + q)3 �2 ; n = 1� 2q : (74)Again, we obtain a sale invariant spetrum if q � 1, but in this ase the amplitude dependson the details of the transition given by �T .We now repeat this analysis onsidering the alternative variable v with 'pump �eld' s = z1or z2.Case 1: � = q, + = 1.Aording to Eqs. (53) to (55) we have A = D� and B = C�, leading tov = p�s��(k�s)q�1=2 � (k�s)1=2�q (�T � 2q)�� ��s�+(1� 2q)(k�s)1=2�q	 ; (75)13



jvj2k3 ' 8<: ��2s (k�s)2+2q � ��s�2 ; for q 6 1=2 ;��2s (k�s)4�2q (�T � 2q)2 � ��s�2 ; for q > 1=2 ; (76)j�j2k3 ' 8<: �MsMP �2 (k�s)2+2q; n = 3 + 2q if q 6 1=2 ;�MsMP �2 (k�s)4�2q (�T � 2q)2 ; n = 5� 2q if q > 1=2 : (77)If q < 1=2 we must require �T <� (k�s)2q�1 for our result to apply. Note also that theamplitude of the spetrum depends on the details of the transition given by �T whenq > 1=2.Case 2: � = q, + = 0.Again, we have A = D� and B = C�, whih yieldsv = p�s ��(k�s)q�1=2 � (k�s)1=2�q (�T � 2 + 2q)��(1� 2q)(k�s)1=2�q � ��s�� ; (78)jvj2k3 ' ( ��2s (k�s)4�2q � ��s�2 ; if q > 1=2 or k > kv1(�) ;��2s (k�s)2+2q ; if q 6 1=2 and k < kv1(�) ; (79)j�j2k3 ' 8<: �MsMP �2 (k�s)4�2q ; n = 5� 2q if q > 1=2 or k > kv1 ;�MsMP �2 (k�s)2+2q � ��s��2 ; n = 3 + 2q if q 6 1=2 and k < kv1 : (80)For the result to apply when q > 1=2 it requires �T < �=�s. As in Case 1 of the u �eld,there is a kink in the spetrum with the wave number of the kink for the ase q 6 1=2 beingkv1(�) = ��1� ��s� �2q1�2q ; (81)whih is always smaller than the Hubble radius, ��1, for the relevant values of q, 0 < q < 1=2.Only for very small values of q, this kink in the spetrum lies very lose to the Hubble radiusand is not visible.Case 3: � = 1� q, + = 1.Here we have A = C� and B = D�, henev = p�s��(k�s)1=2�q � (k�s)q�1=2[�T � 2 + 2q℄�� ��s�� (k�s)q�1=2(1� 2q)	 ; (82)jvj2k3 ' 8<: ��2s (k�s)4�2q � ��s�2 ; if q > 1=2 ;��2s (k�s)2+2q � ��s�2 [�T � 2 + 2q℄2 ; if q 6 1=2 ; (83)j�j2k3 ' 8<: �MsMP �2 (k�s)4�2q ; n = 5� 2q if q > 1=2 ;�MsMP �2 (k�s)2+2q[�T � 2 + 2q℄2 ; n = 3 + 2q if q 6 1=2 : (84)14



For q > 1=2 the amplitude of the resulting utuations does not depend on the details ofthe transition while it does depend on it for q 6 1=2.Case 4: � = 1� q, + = 0.Here again we have A = C� and B = D�, so thatv = p�s �(k�s)1=2�q � (k�s)q�1=2[�T � 2q℄+(1� 2q)(k�s)q�1=2 � ��s�� ; (85)jvj2k3 ' ( ��2s (k�s)4�2q ; if q > 1=2 and k < kv2 ;��2s (k�s)2+2q � ��s�2 ; if q 6 1=2 or k < kv2 ; (86)j�j2k3 ' 8<: �MsMP �2 (k�s)4�2q � ��s��2 ; n = 5� 2q if q > 1=2 and k < kv2 ;�MsMP �2 (k�s)2+2q ; n = 3 + 2q if q 6 1=2 or k < kv2 ; (87)where here kv2(�) ' ��1� ��s� 2�2q1�2q : (88)For 1=2 < q < 1 and kv2 < ��1, a kink from n = 3 + 2q to the �nal spetrum n = 5� 2q ispresent in the spetral distribution.In Table I{III we summarize the results of our analysis:The spetral index for a transition with regular u and q > �1=2ase � + kink? stable? ampl. depends non transition?1 �q �1 yes no no 3 + 2q2 �q 2 no yes no 1� 2q3 1 + q �1 no yes no 1� 2q4 1 + q 2 no yes yes 1� 2qTABLE I: Here we summarize the post-big bang spetral indies as a funtion of the pre- and post-big bang exponent of the pump �eld, if u is regular through the transition. The mild requirementon the transition (�T ) for this to hold is mentioned in the text.From Eqs. (10) and (13) it is lear that during the radiation dominated era, inside theHubble radius, k� � 1, the Bardeen potential osillates and its amplitude deays like 1=�2,whereas during the matter dominated era, the Bardeen potential remains onstant also insidethe Hubble radius. Therefore, a hange in the spetral index lose to Hubble radius rossingis not visible for sales whih ross the Hubble radius in the radiation dominated era. Thisremark onerns mainly the kink in ase 2 of Table II.A kink in the spetral distribution arises only in the unlikely situation where the growingmode of the pre-big bang phase is fully onverted into the deaying mode after the transition,and one has to wait a suÆiently long time (� �(k)) for the deaying mode to deay and the�nal growing mode to dominate. It is only in suh a situation does the �nal spetral index15



The spetral index for a transition with regular v and q 6 1=2ase � + kink? stable? ampl. depends non transition?1 q 1 no yes no 3 + 2q2 q 0 yes no no 5� 2q3 1� q 1 no yes yes 3 + 2q4 1� q 0 no yes no 3 + 2qTABLE II: Here we summaries the post-big bang spetral indies as a funtion of the pre- andpost-big bang exponent of the pump �eld, if v is regular through the big bang and q 6 1=2. Thelogarithmi orretions at q = 1=2 are negleted. The mild requirement on the transition (�T ) forthis to hold is mentioned in the text.The spetral index for a transition with regular v and q > 1=2ase � + kink? stable? ampl. depends non transition?1 q 1 no yes yes 5� 2q2 q 0 no yes no 5� 2q3 1� q 1 no yes no 5� 2q4 1� q 0 yes no no 3 + 2qTABLE III: Here we summaries the post-big bang spetral indies as a funtion of the pre- andpost-big bang exponent of the pump �eld, if v is regular through the big bang and q > 1=2. Themild requirement on the transition (�T ) for this to hold is mentioned in the text.not orrespond to the naive expetation from the pre-big bang phase. Finally, we note thata kink is always assoiated with an instability of the spetrum. The issue of stability willbe disussed in Setion IV where we model the regular behavior of u and v through simpletoy models. There we shall see that a slight modi�ation in the transition an hange thespetral index n = 3 + 2q into n = 1 � 2q if u passes through the transition regularly and5�2q into 3+2q if v is regular and q 6 1=2, orrespondingly 3+2q into 5�2q if v is regularand q > 1=2.This brings us to one of the key results of this paper, a predition of the spetral indexarising from di�erent onditions on q and the regularity of the u and v �elds:n = 8>>><>>>: 1� 2q if q > �1=2 and u is regular and stable;3 + 2q if q 6 1=2 and v is regular and stable;5� 2q if q > 1=2 and v is regular and stable;3 + 2q if q 6 �1=2: (89)We have not treated expliitly the simple ase q < �1=2 above, but this an be done exatlyalong the same lines as the other ases. From Eq. (89), we see that a sale-invariant spetrumis obtained for q ' 1 (standard ination), or if u is regular and 0 < q � 1, or if v is regularand q = 2. For this latter ase however, we shall see in Setion VB that perturbations grow16
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FIG. 1: Here we illustrate the dominant spetral indies nu (solid) and nv (dashed) on super-Hubblesales whih are obtained after a 'stable', regular transition of the orresponding variable to theradiation era at suÆiently late time. This is also the resulting spetral index for the Bardeenpotential on osmologially relevant sales. The left panel shows the indies as a funtion of �,the exponent of the pump �eld during the pre-big bang phase. The right panel shows them as afuntion of q, the exponent of the ontration (expansion) law before the big bang. We have usedu� = �q and v� = q.large during the ontrating phase and therefore linear perturbation theory breaks down.Furthermore, suh a ollapsing universe with q = 2 has been shown unstable [26℄.Clearly, in a transition from ontration to expansion, it annot be that both u and vare regular and stable if q > �1=2. Only in an inationary transition with q 6 �1=2 dowe �nd n = 3 + 2q for both u and v. In this ase it is expeted that both variables transitin a regular stable fashion from ination to the radiation era. The resulting spetral indexdoes not depend on the variable with whih the alulation is performed. The situation forarbitrary values of q is shown in Fig. 1 below.IV. FAST TOY MODEL TRANSITIONSIn earlier work [12, 13, 14℄ a transition from ontration to expansion was ahieved viaa ombination of �rst order orretions in the string sale, �0 and/or the string ouplinggs. In [13℄ a modi�ed perturbation equation for v was derived using this framework, andin all ases a spetral index n = 3 + 2q was obtained. This yields n = 4 for the asedilaton-driven string osmology [13℄ where q = 1=2, and n = 3 for the ekpyroti model [14℄where q � 0. However, although alulations have been performed with v, it remains to beshown that u annot pass through the transition regularly (to �rst order). Unfortunately,even though the perturbation equations of [13℄ are very ompliated, they are probably notrealisti. It is lear that at a time where �rst order orretions beome important, higherorder orretions are likely to be relevant and the real behavior of the perturbations mightdi�er signi�antly from the results obtained in the work ited above. In this sense, pre-bigbang models inluding �rst order orretions are only toy models.In this setion we on�rm our generi �ndings onerning the spetral index assoiated17
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FIG. 2: This �gure illustrates the evolution of various bakground quantities saled in suh a waythat they are dimensionless (i.e., invariant under a hange in �s). As funtions of �=�s, they are:(1) the sale fator a(�), (2) the Hubble rate H�s and (3) its �rst time derivative H0�2s . On thebottom line, they are: (4) the pre-fator of the omoving wavenumber �, (5) the potential of theperturbation variable u, i.e., Vu�2s = �H2 �H0� �2s and (6) its resaled square root pjVuj=� �s.The parameters used for these �gures are � = 10�2 and q = 5 � 10�2.with the relevant u and v �elds by numerially solving a simple toy model. We do notinsist on a physially well motivated transition. Rather we arti�ially de�ne a regular salefator so that it agrees with a ontrating Friedmann universe with ontration exponent qat � � ��s and with a radiation dominated universe at � � �s. In the region in between,the sale fator smoothly evolves between ontration and expansion.A. The bakgroundFor the exat form of the regularized bakground sale fator we hoosea(�) = �(�=�s)2 + ��~q=2 ; (90)~q(�) = q�+ (1� �) ; (91)�(�) = 1=2� 1�artg(�=�s) ; (92)where 0 < � � 1. The funtion �(�) ould be replaed by any C1 funtion whih quiklyinterpolates between 1 for � � ��s to 0 for � � �s. Clearly, this universe ontrats like j�jqfor � � ��s and expands like a radiation dominated universe a / � for � � �s. Furthermore,a, H, H0 and H2 �H0 are all regular, even analyti in the viinity of the transition, � = 0.The behavior of the relevant bakground quantities for our model are shown in Fig. 2.
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B. A regular transition in the perturbation variable uWe �rst onsider a regular transition for u. In the regime where the sale fator is a simplepower law, j�j � �s, the u-equation is given by (14). During this regime, the u-potentialis simply Vu = q(q + 1)=�2. In order to regularize this potential during the transition, weimpose Vu = �00=� throughout, where�(�) = �(�=�s)2 + ��~=2 ; (93)~(�) = �� + (1� �)+ : (94)This ensures us that the pump �eld �(�) remains regular during the whole evolution andredues to the power law asymptoti regimes, � ! j�=�sj� for � � ��s and � ! (�=�s)+for � � �s.The prefator of the omoving wavenumber is � = 1 during the salar �eld dominatedpre-big bang phase and � = 2s = 1=3 in the radiation dominated era. We regularize �during the transition via �(�) = 13 (2�+ 1) : (95)It is worth mentioning at this point that the results we have obtained appear to be quiteinsensitive to how �(�) is modelled. To hoose the pump �eld of ase 1 of Setion IIB,� = �1, requires � = �q and + = �1. Similarly, setting � = �2 orresponds to ase 4, with� = 1 + q and + = 2. To obtain also the ases 2 and 3 we need � to interpolate from �1to �2 (ase 2) and from �2 to �1 (ase 3) respetively. We an ahieve these behaviors usingour fast interpolating funtion �(�) given in Eq. (92). The four ases are then obtained bythe following hoies:~(�) = 8>>><>>>: �(1� q)� 1 (ase 1: �1 ! �1 ; �q ! �1)��(2 + q) + 2 (ase 2: �1 ! �2 ; �q ! 2)�(2 + q)� 1 (ase 3: �2 ! �1 ; 1 + q ! �1)�(q � 1) + 2 (ase 4: �2 ! �2 ; 1 + q ! 2) (96)It is easy to verify that the given funtional forms have the orret asymptoti behavior.Furthermore, they are learly regular throughout. The numerial results for the u-spetraare shown in Figs. 3 to 6. The wave number k is given in units of the maximum ampli�edwave number de�ned by km = max(pjVuj=�) ; (97)whih is of the order of ��1s . More preisely we havekm ' 8>>><>>>: 8:9 ��1s in ase 1 ,12:2 ��1s in ase 2 ,3:7 ��1s in ase 3 ,15:1 ��1s in ase 4 . (98)
19



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

η/η
s

θ

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−100

−50

0

50

η/η
s

V / ϒ

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−5

10
0

10
5

k/k
m

P
u
 = |u|2 k3

P
u
 ∼  k−2q

P
u
 ∼  k2+2q

P
u
 ∼  k−2+2q

FIG. 3: Case 1, �1 ! �1, using ~(�) = �(1�q)�1. The u-potential (left) and spetrum, Pu = juj2k3(right) are shown for q = 5 � 10�2 and � = 10�2.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

η/η
s

θ

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−50

0

50

100

150

η/η
s

V / ϒ

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
0

10
5

10
10

k/k
m

P
u
 = |u|2 k3

P
u
 ∼  k−2q

P
u
 ∼  k−4−2qFIG. 4: Case 2, �1 ! �2, using ~(�) = ��(2 + q) + 2. The u-potential (left) and spetrum,Pu = juj2k3 (right) are shown for q = 5 � 10�2 and � = 10�2.

20



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.5

1

1.5

2

η/η
s

θ

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−10

0

10

20

η/η
s

V / ϒ

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
0

10
5

10
10

k/k
m

P
u
 = |u|2 k3

P
u
 ∼  k−2q

P
u
 ∼  k−4−2qFIG. 5: Case 3, �2 ! �1, using ~(�) = �(2+q)�1. The u-potential (left) and spetrum, Pu = juj2k3(right) are shown for q = 5 � 10�2 and � = 10�2.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

η/η
s

θ

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−100

0

100

200

300

η/η
s

V / ϒ

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
0

10
5

10
10

10
15

10
20

k/k
m

P
u
 = |u|2 k3

P
u
 ∼  k−2q

P
u
 ∼  k−4−2qFIG. 6: Case 4, �2 ! �2, using ~(�) = �(q�1)+2. The u-potential (left) and spetrum, Pu = juj2k3(right) are shown for q = 5 � 10�2 and � = 10�2.

21



It is very enouraging that the numerial simulations produe a spetra with preiselythe shape predited analytially in the previous setion. The spetra are evaluated at � =�end = 103�s. As an example, we see that the kink predited for ase 1 is there in the �gureand is found at the orret position,ku = ��1� ��s� 2q�22q+1 ' 8� 10�9��1s ' 10�9km : (99)One also sees that the spetrum has the orret sub-Hubble radius slope, nsub = n � 4 forsales k > 10�3��1s whih have already entered the Hubble radius at �end.It is interesting to note that the ases 2 and 3 have roughly the same amplitude whilethe amplitude of ase 4, whih we expet to depend on the transition, is muh higher.It is important to investigate the stability of the spetral index n = 3 + 2q of ase 1. Todo this we have slightly modi�ed the potential for this ase in the following way:1. For �=�s 2 [�0:5; 0:5℄, Vu ! Vu + 10�1, (urve (1) in Fig. 7).2. For �=�s 2 [�0:5; 0:5℄, Vu ! Vu + 10�3, (urve (2) in Fig. 7).3. For �=�s 2 [�0:1; 0:1℄, Vu ! Vu + 10�3, (urve (3) in Fig. 7).The result is shown in Fig 7. The plain urve represents the original ase, Vu = �001=�1.Adding a tiny onstant (� O(10�3)) to this potential during about a tenth of the durationof the transition (urve (3)) already modi�es signi�antly the ampli�ation on super-Hubblesales and the �nal spetral index beomes n = 1� 2q. Analyzing the growing and deayingmodes separately, we have seen that, due to the perturbation of the potential, a tiny portionof the growing mode during the pre-big bang phase is onverted into the growing modeduring the radiation era. This is already suÆient for the latter to inherit the naivelyexpeted spetrum n = 1 � 2q like the other ases. The later we evaluate the spetrumthe more pronouned beomes the di�erene from the \pure ase 1" spetrum. We expetthat at very late times, hene very large sales, extremely small di�erenes from the purease 1 potential will have lead to a sale invariant spetrum. We have also tested smoothmodi�ations of the potential, like Vu ! Vu + 10�3 exp[�102(�=�s)2℄. They also lead to thesame result. The spetra of the ases 2 to 4 however are stable under small modi�ationsof the orresponding potential.Finally, in Fig. 8 we show the orresponding spetra for dilaton-driven osmology. Theonly di�erene to the previous simulations is that we set q = 1=2 in this model whih, in theEinstein frame, is a ontrating universe with a salar �eld with vanishing potential. Againwe obtain preisely the spetra expeted aording to the arguments of the previous setion.C. A regular transition in the perturbation variable vIn this subsetion we repeat the analysis presented above for the ase of a regular equationfor the variable v. Sine the proedure is very lose to the one presented above, we an bebrief here. We again assume that there exists a regular potential Vv suh thatv00 + (k2�� Vv)v = 0 : (100)In the ase of a pure power law sale fator, a = j�=�sjq, we have Vv = q(q � 1)=�2 = z00=zwhere z is either z1 = a or z2 = a R a�2d�. To regularize the v-equation during the transition22
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The resulting spetra are shown in Fig. 9.
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and k̂j = kj=k.During a period governed by general relativity (and in the absene of anisotropi stresses)the Bardeen potential satis�es an equation of the form	00 + f(�)	0 + ��(�)k2 � g(�)�	 = 0 ; (110)where f , g and � are smooth funtions. If the sale fator obeys a simple power lawevolution, a / j�jq, we have f = 2(1+ q)=� and g = 0. If f and g remain smooth during thetransition, we an de�ne u = exp�12 Z fd��	 : (111)As one easily veri�es, this variable satis�esu00 + (�k2 � Vu)u = 0 (112)with Vu = g + 12f 0 + 14f 2 : (113)Vu is well de�ned, smooth and bounded in any �nite interval, so that the di�erential equation�00 = Vu� (114)has two well-de�ned solutions �1 and �2 whih are the pump �elds. Up to an irrelevantonstant the so-de�ned variable u oinides with the well known u given in Eq. (11) in theasymptoti past � � ��s and in the asymptoti future � � �s. Hene it is our regularizedvariable u. 2On the other hand, if � passes via a regular seond order equation through the transition,the same theorem leads to a regular v-equation and hene to a spetral index n = 3+2q forq 6 1=2.This shows again, that it is not possible for both, 	 and � to pass through the transitionregularly (if �1=2 < q). This is onsistent with the expressions Eq. (20) or Eq. (21) whihrelate � and 	. If these equations are also valid during the transition, � neessarily divergesif 	 is regular and vie versa sine H and H0 � H2 = aH 0 have to pass through zero ina transition from ontration to expansion (see also Fig. 2). Of ourse these relations willin general be modi�ed during the transition, but aording to our results the modi�ationsshould be suh that one of the two variables has to develop a singularity if the other isregular.B. Amplitude of the perturbationsDuring ontration the Bardeen potential grows like 	 / j�j�(1+2q) on super-Hubblesales. One atually hasj	j2k3 ' �MsMP �2 ���� ��s �����(2+4q) (k�s)�2q ; for q > �1=2 : (115)Hene 	 may beome muh larger than 1 for k � 1=�s and j�j � �s. Does this imply thatperturbation theory breaks down during the ontration phase? We show now that this is not26



the ase for q 6 1. First let us note that a quantity relevant to measure the deviation of thegeometry from Friedmann is, for example, the Weyl urvature whose bakground omponentvanishes. It is well known (see, e.g. [17℄) that the ratio between a typial omponent ofthe Weyl tensor to a typial omponent of the bakground Riemann tensor is given byjC=Rj ' (k�)2	. The geometrial deviation away from Friedmann is thus of the order ofjC=Rj2k3 ' �MsMP �2 ���� ��s �����4q (k�s)2�2q(k�)2 ; (116)whih is always muh smaller than 1 on super-Hubble sales for �1=2 6 q 6 1 and j�j>� �s.Only in a ontrating universe with q > 1 do the perturbations beome large and heneperturbation theory beomes invalid.To ensure that perturbations truly remain small, it is neessary to �nd a gauge in whihall the metri perturbations are small. We show now that this is so in the o�-diagonal gaugewhih also has been used in [21℄ for dilaton-driven string osmology. This gauge is de�nedby HT = HL = 0. Aording to Eq. (108), the Bardeen potential is then given by	 = A + k�1(HB +B0) : (117)The (ij) Einstein equation implies (see e.g. [17℄)	 = A+ k�1(HB +B0) = �k�1HB : (118)Before the transition, the Bardeen potential is given by	 = pH2 �H0MPa u =pq(q + 1)�MsMP � �����s� ����1+q u : (119)On super-Hubble sales this gives for q > �1=2, using Eq. (16),	 'pq(q + 1)�MsMP � k�3=2(k�s)�q �����s� ����1+2q : (120)With Eq. (118) we then obtainB ' rq + 1q �MsMP � k�3=2(k�s)1�q �����s� ����2q �1 +O �(k�)2�� ; (121)k3jBj2 ' �MsMP �2 (k�s)2�2q �����s� ����4q ; (122)whih is always small for q < 1. From A = �k�1(2HB + B0) and Eq. (121) we �ndthat O(A) = O(k�B), hene as with B, A also remains small on super-Hubble sales.Note that it is highly non-trivial that A is smaller than B. This is due to the fat thatB / a�2(1 +O(k�)2) and hene the lowest order ontribution to A anels!Sine the generi form of the perturbed Einstein equations is O(h + (k�)h + (k�)2h) =O(�) where h and � are typial metri and matter perturbation variables respetively (seee.g. [17℄), the matter perturbation variables in this gauge are also small on super-Hubblesales. 27



More preisely we �nd from the perturbed Einstein equations in the o�-diagonal gaugeÆ = 23kH�1B ' O(A) ; (123)� = B ; (124)�L = 2 + q2� qA ' O(A) : (125)Here Æ and �L are the density and pressure perturbations respetively and a2(�+ p)� is thesalar perturbation of the energy ux, T 0i . To obtain the above results we have used thefat that a / j�jq obeys a simple power law and B / j�j�2q as well as A / j�j1�2q.This result is in ontradition with the statement of Ref. [27℄ that perturbations in theekpyroti universe, 0 < q � 1 neessarily beome large for � ! ��s.VI. CONCLUSIONIn this work we have analyzed the behavior of salar perturbations in a transition from aontrating to an expanding Friedmann universe. We have shown that, if the perturbationequation during the transition an be formulated as seond order equations for either 	 or�, regular variables u and v respetively, an be found. The resulting spetral index in thelate radiation dominated universe depends on whih of these two variables passes regularly,and there are no stable ases where both u and v, (equivalently 	 and �), are regular duringthe transition.The resulting spetral index n is given byn = 8<: 1� 2q if 	 is regular;3 + 2q if � is regular and q 6 1=2;5� 2q if � is regular and q > 1=2: (126)Our numerial results for the spetral index obtained from a simple toy model are inperfet agreement with the more general arguments of Setion III.This result remains valid in an inationary universe with �1=2 < q < 0, but has neverraised any attention sine suh models annot produe the observed sale invariant spetrum.For q < �1=2 both variables, u and v lead to the same spetral index n = 3+2q. Therefore,this problem has not been notied in works on standard inationary models where q ' �1.We have also shown that, as long as q 6 1, perturbations remain small during ontrationin the sense that there exists a gauge in whih all the metri and matter perturbationvariables are small. Sine this point has been a matter of debate, we have written downexpliit expressions for all the variables in Eqs. (121) to (125).We have also argued that the v-equation derived from string orretions in [13℄ has to beonsidered as a toy model, sine higher order orretions annot be negleted in this ase.Our �ndings explain that all the literature based on the variable v predits n = 3+2q, seeespeially Refs. [13℄ and [14℄, while when mainly working with u one �nds that the spetralindex n = 3 + 2q is highly unstable and one typially expets n = 1� 2q.This work has the following important impliations:� If it an be shown in the ekpyroti model [1, 4℄ where 0 < q � 1, that the Bardeenpotential passes regularly through the transition, this model leads to a nearly saleinvariant spetrum with n = 1� 2q. 28
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