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h exhibit a smooth transition from a 
ontra
ting to an expanding Friedmann universe.If the perturbation equations during the transition 
an be formulated as se
ond order equations foreither the Bardeen potential, 	 or the 
urvature perturbation on uniform 
omoving hypersurfa
es,�, then regular variables u or v respe
tively 
an be found. We �nd that the resulting spe
tral indexin the late radiation dominated universe depends on whi
h of these two variables passes regularlythrough the transition. The results 
an be parameterized through the exponent q de�ning therate of 
ontra
tion of the universe, or equivalently through the equation of state w = 2�q3q of theba
kground 
uid. For q > �12 we �nd that there are no stable 
ases where both 	 and �, are regularduring the transition. In parti
ular, for 0 < q � 1, we �nd that the resulting spe
tral index is
lose to s
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I. INTRODUCTIONRe
ently, it has been argued that a slowly 
ontra
ting universe whi
h transits smoothlyover to an expanding radiation dominated era may lead to a s
ale invariant spe
trum ofadiabati
 density 
u
tuations [1, 2, 3, 4℄. There has been quite an intense debate on thequestion whether the resulting spe
trum after the transition to the radiation era really iss
ale invariant or whether it has a steep blue spe
trum with n ' 3. The latter result hasbeen advo
ated mainly by [5, 6, 7℄, although Gratton et al. have now gone further arguingthat the ekpyroti
/
y
li
 s
enario is the only robust 
ase where a s
ale-invariant spe
tra 
anbe found (along with in
ation for the 
ase of an expanding universe) [8℄.If the equations of motion governing the transition for the ba
kground and the perturba-tions were known, this problem 
ould be solved by integrating them numeri
ally. Howeverit is likely that the evolution in this high 
urvature regime will 
ontain full string theory andwe do not even know whether the variables of the low energy theory are appropriate for thedes
ription of this regime. One possibility whi
h has been studied in the past is the in
lusionof �rst order 
orre
tions in the string s
ale, �0 and/or the 
oupling 
onstant gs (see, e.g.[9, 10, 11, 12℄). In this 
ontext it has been shown that, within a 
ertain range of 
oeÆ
ientsfor the terms added to the tree level Lagrangian, one 
an exit from the high 
urvature regimeand enter into a radiation dominated phase [12℄. In [13℄ the 
orre
tions of the perturba-tion equations have been derived and have been solved for dilaton-driven string 
osmology.Lately, Tsujikawa et al. [14℄ have used these equations to study the ekpyroti
 model [1, 4℄.Even though they have followed the perturbations through a regularized transition, we willargue that their method invariably leads to n ' 3 and does not allow for a de
ision whethera blue, n ' 3 or a s
ale-invariant, n ' 1 spe
trum of perturbations is obtained. In thispaper we �rst study a general transition whi
h satis�es relatively mild 
riteria and we for-mulate 
onditions for the transition whi
h lead to either of the two spe
tral indi
es. We 
ande
ide under whi
h 
onditions either the spe
tral index n = 1 as advo
ated by Durrer andVernizzi [2℄ or n = 3 put forward in [15℄ and others is obtained in the ekpyroti
 model. Thismodel is a spe
ial 
ase of the more general 
lass of 
ontra
ting universes dis
ussed here.The rest of this paper is organized as follows: In the next se
tion we present the aspe
ts of
osmologi
al perturbation theory needed in this paper. We then dis
uss the transition from a
ontra
ting to an expanding phase emphasizing the di�eren
es between su
h a transition andthat asso
iated with the transition between a 
onventional in
ationary phase to radiation.We also formulate the problem en
ountered when inferring the perturbation spe
trum afterthe transition from the one before the transition. In Se
tion III we study the behaviorof perturbations during a transition and �nd that the resulting spe
tral index depends onmutually ex
luding, simple regularity 
onditions for the transition, whi
h we formulate indetail.In Se
tion IV we study numeri
al toy models for the transition where we exemplify thegeneral results obtained in the previous se
tion and analyze the stability of the numeri
allyobtained spe
tral indi
es. Then we formulate our regularity 
ondition as a theory and westudy the amplitude of perturbations. In the last se
tion we 
omment on the �ndings inprevious work and we summarize our results.
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II. BACKGROUND AND PERTURBATIONS IN SIMPLE CONTRACTINGANDEXPANDING UNIVERSESIn this se
tion we repeat the basi
 equations for the Friedmann ba
kground and adiabati
�rst order perturbations. We then dis
uss initial 
onditions for perturbations in a 
ontra
tinguniverse and explain how a di�erent spe
tral index is obtained depending on the perturbationvariable used for the transition.A. The ba
kgroundWe 
onsider a Friedmann universe with negligible spatial 
urvature, whi
h is �rst 
on-tra
ting for �1 < � < ��s and hen
e its (spa
etime) 
urvature is growing. The variable �denotes 
onformal time and �s > 0 is the moment when we enter a high-
urvature regime.We 
all this period the 'pre-big bang phase'. At � � ��s 
orre
tions 
oming from some un-derlying theory, whi
h redu
es to general relativity when the 
urvature is suÆ
iently small,be
ome important and we assume that they regularize the geometry and lead to an expand-ing universe at � > �s. We also assume that radiation is produ
ed during the transitionso that for � > �s (the 'post-big bang' phase) the universe 
an be des
ribed as a radiationdominated Friedmann universe. In the pre- and post-big bang phases, j�j � �s, we haveH2 = �23 �a2 ; (1)H0 = ��26 (�+ 3P )a2 = �H2 1 + 3w2 ; (2)where the equation of state of the ba
kground 
uid is w = P=� and �2 = 8�G = 2=M2P .MP = 1=p4�G = 3:4 � 1018GeV is the redu
ed Plan
k mass. H = a0=a = _a = Ha is the
omoving Hubble parameter. A prime denotes derivative w.r.t. 
onformal time �, whereasa dot denotes derivative w.r.t. physi
al time t, de�ned by dt = ad�. We shall also usew0 = 3(w � 
2s)(1 + w)H ; where 
2s = P 0�0 (3)is the adiabati
 sound speed. We will be espe
ially interested in phases during whi
h P=� =w = 
onstant. Then 
2s = 
onstant = w and the s
ale fa
tor evolves like a power law,a = ���� ��s ����q ; q = 21 + 3w : (4)An in
ationary phase, de�ned by 1 + 3w < 0, is thus realized when q < 0. During theradiation dominated post-big bang phase w = 1=3, hen
e q = 1.We will 
onsider a s
alar �eld dominated pre-big bang phase. During this phase we have� = '022a2 + V (') ; P = '022a2 � V (') ; (5)so that w + 1 = '023H2 : (6)3



For a s
alar �eld, w is 
onstant only for the following possibilities:w = 8<: 1 if V = 0 ;�1 if '0 = 0 ;
2=3� 1 if V = V0 exp(�
') ; V0 6= 0 ; (7)and, 
orrespondingly, q = 8<: 1=2 if V = 0 ;�1 if '0 = 0 ;2
2�2 if V = V0 exp(�
') ; V0 6= 0 : (8)B. PerturbationsWe now dis
uss perturbation theory in a Friedmann universe (negle
ting spatial 
urva-ture, K = 0) with a s
alar �eld or a perfe
t 
uid like radiation.We �rst 
onsider the linear perturbation equation for the Bardeen potential (see e.g. [16,17℄): 	00 + 3H(1 + 
2s)	0 + �2H0 + (1 + 3
2s)H2 � ���	 = 0 : (9)This equation is valid for adiabati
 perturbations of a 
uid, with � = 
2s, or for a simples
alar �eld, with � = 1 (see e.g. [16℄).If we de�ne the 
anoni
al variableu = MPapH2 �H0	 ; (10)u satis�es the equation [16℄ u00 + (�k2 � �00=�)u = 0 ; (11)for � = 8><>: �1 = Hap 23 (H2�H0) ;or�2 = �1 R d��21 : (12)If we restri
t ourselves to the 
ase w = 
2s = 
onstant, the mass term in Eq. (9), namely2H0 + (1 + 3
2s)H2, vanishes by the use of the ba
kground Einstein equations (1) and (2).For these ba
kgrounds whi
h have a / j�jq where q is given in Eq. (4), we �nd	00 + 2H1 + qq 	0 +�k2	 = 0 : (13)The u-equation then simply be
omes a Bessel di�erential equation,u00 + ��k2 � q(q + 1)�2 � u = 0 : (14)The 
orre
t normalization to the in
oming va
uum at � ! �1 determines the initial
onditions su
h that (see e.g. [2℄) u = p�jk�jk3=2 H(2)� (k�) ; (15)4



with � = q + 1=2. Here H(2)� denotes the Hankel fun
tion of the se
ond kind and of order�. At 'late times' when jk�j � 1 but still � � ��s we may negle
t the k2-term in Eq. (14)and �nd the super-Hubble s
ale solutionu = A� ���� ��s �����q +B� ���� ��s ����1+q = uA + uB : (16)The 
oeÆ
ients A� and B� are determined by the initial solution (15),A� ' k�3=2(k�s)�q ; B� ' k�3=2(k�s)1+q ; (17)hen
e they have the spe
tra [2℄PA� = jA�j2k3 ' (k�s)�2q / knA��1 ; nA� = 1� 2q ; (18)PB� = jB�j2k3 ' (k�s)2+2q / knB��1 ; nB� = 3 + 2q : (19)Furthermore, juB=uAj ' jk�j1+2q. Hen
e for q > �1=2, the A-mode, uA, dominates at latetime over the B-mode, uB.Another perturbation variable often used is the 
urvature perturbation on uniform 
o-moving hypersurfa
es [18℄ � = H	0 +H2	H2 �H0 +	 : (20)A simple substitution using Eq. (9) and the ba
kground equations yields� 0 = �k2 �HH2 �H0	 ; (21)hen
e on super-Hubble s
ales, jk=Hj � 1, this variable is 
onserved. For ordinary in
a-tionary models, it is therefore usually suÆ
ient to 
ompute � at the time of Hubble radius
rossing during in
ation to obtain its value in the radiation dominated era. Furthermore,sin
e during radiation � = (3=2)	, this simply gives the Bardeen potential.The evolution of � is 
losely related to the 
anoni
al variable v de�ned byv = �MPapH2 �H0p�H � : (22)This variable satis�es the equation [16℄v00 + (�k2 � z00=z)v = 0 ; (23)where z = 8><>: z1 = apH2�H0p�H ;orz2 = z1 R d�z21 : (24)Note that the relation between v and � is v = �MP z1�. Eq. (23) is invariant under the'duality' z1 ! z2, in the same way as Eq. (11) is invariant under �1 ! �2.In [16℄ it is shown that v appears in the perturbed a
tion as a 
anoni
al s
alar variable.Hen
e on sub-Hubble s
ales, jk=Hj � 1, it satis�es the initial 
ondition vin = exp(�ik�)=pk.5



As before, we now 
on
entrate on the 
ase w = 
2s = 
onstant, with s
ale fa
tor given inEq. (4). Then z1 / a ; and v = 
onst�MPa� ; (25)the 
onstant of order unity depends on q and �.During the pre-big bang phase Eq. (23) then also be
omes a Bessel di�erential equation,v00 + �k2 � q(q � 1)�2 � v = 0 : (26)We have set � = 1 throughout the evolution, whi
h should be �ne as we are 
onsideringmainly super-Hubble terms, whi
h satisfy k2�n V during the transition. We have 
on-�rmed in numeri
al simulations that allowing � to vary during the evolution does not a�e
tthe key results we present 
on
erning the form of the inherited spe
tral index.The solution with the 
orre
t initial 
onditions isv = p�jk�jk1=2 H(2)� (k�) ; (27)with � = 1=2 � q. At 'late times' when jk�j � 1 but still � � ��s we may negle
t the k2term in Eq. (26) and �nd the super-Hubble s
ale solutionv = C� ���� ��s ����1�q +D� ���� ��s ����q = vC + vD : (28)The 
oeÆ
ients C� and D� are determined by the initial solution (27),C� ' (k�s)��1=2s ; D� ' (k�s)���1=2s : (29)The spe
tra obtained depend on the value of q. One �nds [2℄PC� = jC�j2k3 ' (k�s)4�2q��2s / knC��1 ; nC� = 5� 2q ; (30)PD� = jD�j2k3 ' (k�s)2+2q��2s / knD��1 ; nD� = 3 + 2q : (31)Here jvC=vDj ' jk�j1�2q, hen
e the D-mode dominates for q < 1=2, while the C-modedominates for q > 1=2. Finally we want to note that u and v are related viav = ��1p�(u=�1)0 ; (32)u = z1k2p�(v=z1)0 : (33)It is interesting to note that from the lowest order approximations for u and v given inEqs. (16,28) the equivalen
es (32) and (33) of u and v 
annot be re
overed. Only when wego to the next order in the term proportional to �1, or z1 respe
tively, (or when using thefull Bessel fun
tion solution) does the above equivalen
e give uA  ! vC and uB  ! vDalong with nA + 4 = nC ; nB = nD : (34)6



C. The problem of a transition from 
ontra
tion to expansionLet us �rst 
onsider the 
ase where q is in the interval �1=2 6 q 6 1=2. Even thoughq < 0 does not represent a 
ontra
ting phase, no di�eren
e of the following arguments arisesfrom letting q de
rease until �1=2 (usual in
ation has q >� � 1).Comparing the amplitudes of the modes of u and v, we see that at the transition to theexpansion phase, j�j � �s, we have uA � uB and vD � vC for 
osmologi
ally interestings
ales with k � 1=�0 � 10�30=�P . Here �0 denotes the value of 
onformal time today and�P = M�1P . Naively, we therefore expe
t that immediately after the transitionu ' A� and v ' D� for � 1=2 6 q 6 1=2 : (35)Sin
e in the radiation dominated era u / �2 and v / � on super-Hubble s
ales, we expe
tduring the radiation phaseu ' A�(�=�s)2 and v ' D�(�=�s) for k� � 1 : (36)From the relations of u and 	 as well as v and � during the radiation dominated phase, thisgives 	 ' p2 A�=(�sMP ) and � ' D�=MP : (37)For q 6= �1=2, this naive result is 
learly in 
ontradi
tion with the fa
t that during theradiation dominated era 	 and � di�er only by a 
onstant sin
e, a

ording to Eqs. (18) and(31), 	 would have the spe
tral index n	 = nA� = 1 � 2q while � would have the spe
tralindex n� = nD� = 3 + 2q.For q 6 �1=2 the B-mode of u, uB, dominates (for q = �1=2, uA and uB are of the sameorder) and we expe
t 	 to have the spe
trum n	 = nB� = 3 + 2q = nD� = n� , hen
e weobtain the same spe
trum as � in the radiation era, so that there is no 
ontradi
tion.For q > 1=2 the C mode of v, vC dominates and hen
e � a
tually has the spe
trumn� = nC� = 5�2q, whi
h is in even worse disagreement with the naively expe
ted spe
trumfor 	. This 
ontradi
tory situation is shown on the right hand panel of Fig. 1. Sin
efor ordinary in
ation q � �1, this problem has never been realized when studying usualin
ation.The simplest possibility whi
h 
ould resolve the issue is to note that the de
aying modeof u (q > �1=2) during the pre-big bang phase, uB, has the same spe
trum as vD. Hen
eif the u-growing mode during the pre-big bang phase is entirely 
onverted into the de
ayingmode after the transition and therefore 
annot be seen late in the post-big bang era, weexpe
t the spe
trum n = 3 + 2q in the radiation era. This argument has been put forwardin [5℄, where the authors have shown that this is exa
tly what happens if the transition isde�ned by a vanishing jump in the metri
 and the se
ond fundamental form on the 
onstantenergy hypersurfa
e. Similar arguments have also been presented in [6, 7℄. They led theseauthors to the 
on
lusion that the 
orre
t spe
trum, evaluated suÆ
iently long after the pre! post transition so that the de
aying mode has died away, is n = n	 = n� = 3 + 2q. Ifthis is 
orre
t the spe
trum of the ekpyroti
 model is very blue and in 
ontradi
tion to theobserved 
lose-to-s
ale invariant spe
trum.The same argument for the original pre-big bang model of Veneziano [19, 20℄, where thes
alar �eld potential vanishes and hen
e q = 1=2, led to the 
on
lusion that the dilatonperturbation spe
trum is very blue with n = 4 [21, 22℄.In [2℄ this argument has been 
riti
ized for two main reasons. First of all, the ba
kgroundse
ond fundamental form given byH=a has to jump, even to 
hange sign, in a transition from7




ontra
tion to expansion. It then seems quite unnatural to require its perturbation to vanish.Se
ondly, if the mat
hing 
onditions are posed on an only slightly di�erent hypersurfa
e,the naively expe
ted spe
tral index, n	 = 1� 2q is obtained. This 'instability' of the indexn	 = 3 + 2q will also be illustrated in Se
tion IV with numeri
al studies of a simple toymodel.The above argument 
annot be used if q > 1=2, be
ause u has no mode with spe
tralindex 5� 2q. In this 
ase, agreement 
an only be a
hieved if also the dominant 
ontributionto v, vD, is transferred entirely into the de
aying mode so that late after the transition vand hen
e � still have the spe
tral index nD� = 3 + 2q. However, this is not possible: Asone easily 
on
ludes, e.g. from [5℄ or [6℄, a transition on the 
onstant energy hypersurfa
e,where the growing mode of u is transferred 
ompletely into the de
aying mode, preserves �,hen
e � has the same spe
trum after the transition as before, n� = 5 � 2q whi
h does notagree with the spe
trum of 	 whi
h in this 
ase is n	 = 3 + 2q.Hen
e if the transition is su
h that both 	 and � 
orrespond after the transition to oneof their modes before the transition, the obtained spe
tral index must be n = 3 + 2q. Aswe have shown, this 
annot happen for q > 1=2 if the transition is 'simple', i.e. does notmodify the spe
trum of either 	 or �.If the spe
tral index after the transition is n = 1 � 2q as promoted in [2℄ for q > �1=2,the variable � makes a k-dependent jump at the transition. If n = 5 � 2q is obtained asin [15℄, 	 makes a k-dependent jump. Furthermore, if n = 3+ 2q is obtained for q > �1=2,the growing mode of 	 before the transition has to be 
onverted entirely into the de
ayingmode. For q > 1=2 also this no longer helps resolve the problem, and one of the two variables� or 	 must be modi�ed in a k-dependent way during the transition.III. GENERAL SOLUTIONS OF THE PERTURBATION EQUATIONSTHROUGH THE TRANSITIONHaving explained the problem, but before dis
ussing possible resolutions, let us 
olle
tsome generi
 fa
ts about a transition from 
ontra
tion to expansion. Clearly, to have su
ha transition H, H0 and _H = (H=a)0=a = (H0 � H2)=a2 have to 
hange sign. Within theframework of general relativity (negle
ting spatial 
urvature) this requires � + P < 0 andtherefore 
annot be a
hieved with a s
alar �eld (with standard kineti
 term). If a positivespatial 
urvature is added, the s
alar �eld initial 
ondition 
an be �ne tuned su
h that
lose to the 
ollapse the 
urvature term dominates over the s
alar �eld 
ontributions, and atransition from 
ontra
tion to expansion 
an be a
hieved with a standard s
alar �eld [23℄.In this se
tion we want to dis
uss the problem outlined above without spe
ifying anydetails of the transition. For this, we �rst dis
uss the linear se
ond order di�erential equationx00 + �k2 � Vx�x = 0 ; Vx = s00s ; (38)whi
h we have en
ountered in the previous se
tion. Here the variables (x; s) stand for either(u; �) or (v; z). The fa
tor � in front of the k2 term is disregarded sin
e it is irrelevantfor our 
onsiderations whi
h mainly 
on
ern super-Hubble s
ales. We noti
e that Eq. (38)is invariant under the duality transformation s = s1 ! s1 R d�s21 � s2. If s is a power law,s1 = j�=�sj
, we 
an set s2 = j�=�sj1�
 . The duality property of Eq. (38) been dis
ussed in8



[24℄. If s and 1=s are bounded in the interval [�in; �℄, so that1 > C = maxf�in6�16�g (js(�1)2j; 1=s(�1)2) ; (39)this equation has the general solution [20, 25℄x = sh�T
os(s; k) + �Tsin(s; k)i ; (40)where T
os and Tsin are de�ned byT
os(s; k) � 1� k2 Z ��in d�1s2(�1) Z �1�in d�2s2(�2)+k4 Z ��in d�1s2(�1) Z �1�in d�2s2(�2) Z �2�in d�3s2(�3) Z �3�in d�4s2(�4)� k6 � � � ; (41)Tsin(s; k) � k Z ��in d�1s2(�1)+k3 Z ��in d�1s2(�1) Z �1�in d�2s2(�2) Z �2�in d�3s2(�3) + k5 � � � : (42)When expressing a given solution in terms of T
os and Tsin the 
oeÆ
ients � and � willdepend on the initial value �in 
hosen. But as long as s and 1=s are bounded, the sums (41)and (42) always 
onverge sin
e the terms in this sum are bounded, e.g. by the terms inthe series expansion for 
os (Ck(� � �in)) and sin (Ck(� � �in)) respe
tively. Here C is thebound from Eq. (39) above.To relate this solution with the results of se
tion IIC, we 
hoose �in su
h that kj�inj � 1,but �in � ��s. If s obeys a simple power law, s = j�=�sj
, hen
e s00=s = 
(
 � 1)=�2, weobtain to lowest order T
os(s; k) = 1 ; and (43)Tsin(s; k) = k�s1� 2
 "�����in�s ����1�2
 � ���� ��s ����1�2
# ; (44)so that x = "� + �k�s1� 2
 �����in�s ����1�2
# ���� ��s ����
 � � k�s1� 2
 ���� ��s ����1�
 : (45)(For 
 = 1=2 the powers in the Tsin-integral be
omes a logarithm, but we shall negle
t thislogarithmi
 
orre
tion here.) There are several fa
ts to note at this point:� Only two of the three parameters �in; �; � whi
h determine the initial 
onditions areindependent.� As in Eqs. (12, 24), two pump �elds s1 and s2 yield the same potential Vx in Eq. (38).If �in is 
hosen su
h that the 
ontributions to the integrals from the lower boundary
an be negle
ted, 
hanging s from s1 to s2 transforms T
os into k�1Tsin and Tsin intokT
os. 9



� If s / �
 is a pure power law and again the 
ontributions from the lower boundary 
anbe negle
ted, T
os / pkj�jJ�(jk�j) and Tsin / pkj�jY��(jk�j), where � = 
 � 1=2and J; Y are Bessel fun
tions.We now de�ne y � sk2 (x=s)0 : (46)Using Eq. (38), we �nd � yy0� = � 1k2 � s0s �1k2 � � s0s �2 s0s �� xx0 � ; (47)whi
h we 
an invert to obtain� xx0� = �� s0s 1�k2 + � s0s �2 s0s �� yy0� : (48)Using the latter and Eq. (38), the evolution equation for the variable y 
an be derivedy00 + "s00s � 2�s0s�2# y + k2y = 0 : (49)Let us now introdu
e r � s�1 �
1 + 
2 Z � s2d~�� ; (50)so that r0 = �s0s r + 
2s ; r00 = �"s00s � 2�s0s �2# r : (51)Eq. (49) then takes the simple formy00 + �k2 � Vy� y = 0 ; Vy � r00r : (52)Note that the y-equation obtained from a given x-equation depends on our 
hoi
e of s.Sin
e s001=s1 = s002=s2 but s01=s1 6= s02=s2, Vy = �s00=s+2(s0=s)2 depends on this 
hoi
e. Su
h a'dual variable' y 
an also be found if k2 is modi�ed into �(�)k2 the expressions just be
omesomewhat more 
ompli
ated. Choosing x = v and s = z1, Eqs. (47,48) just reprodu
e therelations (32,33) where y = u and r = �. During a power law evolution of the s
ale fa
tor,we have z1 = j�=�sjq, z2 = j�=�sj1�q, �1 = j�=�sj�q and �2 = j�=�sj1+q :As we have seen in the previous se
tion, on large s
ales, jk�j � 1, the general solution ofEq. (38) is to lowest order of the formx = A ���� ��s ����
 + B ���� ��s ����1�
 +O(jk�j2) ; (53)where one obtains from (45) � = A+ B �����in�s ����1�2
 ; (54)� = �B(1� 2
)k�s : (55)10



To dis
uss what might happen during a transition we now assume that for a given s = s1or s2 the solution (40) 
an be 
ontinued through the transition to the radiation era, the onlye�e
t of the transition being a modi�
ation of s whi
h interpolates froms = ( j�=�sj
� for � � ��s ; toj�=�sj
+ for � � �s ; (56)without passing through zero. At some time �s � � � 1=k in the radiation era, we still 
anapproximate the T
os and Tsin integrals by the �rst term in their series expansion, (41,42).Integrating the �rst term in Eq. (42), we obtainx = "� + �k�s1� 2
�  �T � 2� 2
� � 2
+1� 2
+ + �����in�s ����1�2
�!#� ��s�
++ �k�s1� 2
+ � ��s�1�
+ : (57)Here �T = 1� 2
��s Z �s��s s�2d~� (58)
omes from the 
ontribution to the integral during the transition. We always assume thatthe free normalization of s is 
hosen su
h that s(��s) = 1. The dimensionless, k-independent
onstant �T is then the only fun
tion that in
orporates our ignoran
e of the true form ofthe transition. Although its typi
al order of magnitude is O(�T ) = O(1), we will mentionexpli
it limits on �T as we go along. With the above expressions for � and � we havex = �A� B��T � 2� 2
� � 2
+1� 2
+ ��� ��s�
+ � B1� 2
�1� 2
+ � ��s�1�
+ : (59)whi
h is independent of �in as it should be.In what follows we will study eight di�erent 
ases and 
ompute the resulting spe
tra. Forthe �rst four 
ases we shall assume that u remains regular throughout. Re
alling the notationthat �� refers to the 
ollapsing phase and �+ to the expanding phase in Eqs. (11,12), we shall
onsider the following possibilities: �1� = j�=�sj�q goes over smoothly into �1+ = (�=�s)�1(
ase 1); �1� goes over smoothly into �2+ = (�=�s)2 (
ase 2); �2� = j�=�sj1+q goes oversmoothly into �1+ (
ase 3) and �2� goes over smoothly into �2+ (
ase 4). We shall thenstudy the equivalent 
ases for v with � repla
ed by z in Eqs. (23,24). We are mainlyinterested in a 
ontra
ting pre-big bang phase, q > 0, but the results derived here are validalso for �1=2 < q.Case 1: 
� = �q, 
+ = �1.Here we have A = A� and B = B�, hen
eu ' k�3=2(�(k�s)�q � (k�s)1+q ��T � 2(2 + q)3 ��� ��s��1�1 + 2q3 (k�s)1+q � ��s�2) : (60)11



If �T is of order unity, or more pre
isely if�T <� (k�s)�(1+2q) ; (61)the resulting spe
trum as well as the amplitude does not depend on �T and we havejuj2k3 ' 8<: (k�s)�2q � ��s��2 for k < ku(�) n = 1� 2q ;�1+2q3 �2 (k�s)2+2q � ��s�4 for k > ku(�) n = 3 + 2q ; (62)where ku(�) ' ��1� ��s� 2q�22q+1 (63)is the wave number where we see a kink in the spe
trum. For a value of q in the regimeof our primary interest, �1=2 < q < 1, the exponent 2q�22q+1 is negative and ku(�) � ��1espe
ially at late times, � � �s. Hen
e, in this 
ase the spe
tral index relevant for theobserved anisotropies in the 
osmi
 mi
rowave ba
kground (CMB) is n = 3 + 2q, a steepblue spe
trum. In rea
hing this 
on
lusion, we have used the fa
t that in the radiation era,	 ' p2�sMP�2u ; (64)j	j2k2 ' �MsMP �2 (k�s)2+2q for k > ku(�) ; n = 3 + 2q ; (65)where we have introdu
ed the transition mass s
ale, Ms = ��1s . For transitions from 
ontra
-tion to expansion, q > 0, the amplitude of these 
u
tuations is therefore far too low to beof any relevan
e for 
osmologi
ally interesting s
ales, k ' ��10 . (Furthermore, the spe
tralindex n = 3 + 2q is not 
onsistent with observations.)Case 2: 
� = �q, 
+ = 2.Sin
e 
� is the same as in 
ase 1, A and B remain un
hanged. From Eq. (59), we �ndu ' k�3=2(�(k�s)�q � (k�s)1+q ��T � 2(1� q)3 ��� ��s�2+1 + 2q3 (k�s)1+q � ��s��1) ; (66)so that juj2k3 ' (k�s)�2q � ��s�4 ; (67)j	j2k3 ' �MsMP �2 (k�s)�2q ; n = 1� 2q : (68)For this result to apply, the 
ondition on �T , Eq. (61)must be satis�ed. If this 
ase isrealized and if 0 < q � 1, a s
ale invariant spe
trum will be obtained. Its amplitude is12



determined by the transition s
ale whi
h should be about 5 orders of magnitude below thePlan
k s
ale.Case 3: 
� = 1 + q, 
+ = �1.A

ording to equations (53) and (16), we now have A = B� and B = A�. This leads tou ' k�3=2(�(k�s)1+q � (k�s)�q ��T � 2(1� q)3 ��� ��s��1+1 + 2q3 (k�s)�q � ��s�2) : (69)We thus obtain juj2k3 ' (k�s)�2q � ��s�4 ; (70)j	j2k3 ' �MsMP �2 (k�s)�2q ; n = 1� 2q ; (71)as in 
ase 2. Here this spe
trum is obtained without any 
ondition on �T having to besatis�ed, although for the 
orre
t amplitude to be obtained, we need �T <� (�=�s)3=3.Case 4: 
� = 1 + q, 
+ = 2.Again, we have we have A = B� and B = A� and so we obtainu ' k�3=2(�(k�s)1+q � (k�s)�q ��T � 2(2 + q)3 ��� ��s�2�1 + 2q3 (k�s)�q � ��s��1) ; (72)with juj2k3 ' (k�s)�2q ��T � 2(2 + q)3 �2� ��s�4 ; (73)j	j2k3 ' �MsMP �2 (k�s)�2q ��T � 2(2 + q)3 �2 ; n = 1� 2q : (74)Again, we obtain a s
ale invariant spe
trum if q � 1, but in this 
ase the amplitude dependson the details of the transition given by �T .We now repeat this analysis 
onsidering the alternative variable v with 'pump �eld' s = z1or z2.Case 1: 
� = q, 
+ = 1.A

ording to Eqs. (53) to (55) we have A = D� and B = C�, leading tov = p�s��(k�s)q�1=2 � (k�s)1=2�q (�T � 2q)�� ��s�+(1� 2q)(k�s)1=2�q	 ; (75)13



jvj2k3 ' 8<: ��2s (k�s)2+2q � ��s�2 ; for q 6 1=2 ;��2s (k�s)4�2q (�T � 2q)2 � ��s�2 ; for q > 1=2 ; (76)j�j2k3 ' 8<: �MsMP �2 (k�s)2+2q; n = 3 + 2q if q 6 1=2 ;�MsMP �2 (k�s)4�2q (�T � 2q)2 ; n = 5� 2q if q > 1=2 : (77)If q < 1=2 we must require �T <� (k�s)2q�1 for our result to apply. Note also that theamplitude of the spe
trum depends on the details of the transition given by �T whenq > 1=2.Case 2: 
� = q, 
+ = 0.Again, we have A = D� and B = C�, whi
h yieldsv = p�s ��(k�s)q�1=2 � (k�s)1=2�q (�T � 2 + 2q)��(1� 2q)(k�s)1=2�q � ��s�� ; (78)jvj2k3 ' ( ��2s (k�s)4�2q � ��s�2 ; if q > 1=2 or k > kv1(�) ;��2s (k�s)2+2q ; if q 6 1=2 and k < kv1(�) ; (79)j�j2k3 ' 8<: �MsMP �2 (k�s)4�2q ; n = 5� 2q if q > 1=2 or k > kv1 ;�MsMP �2 (k�s)2+2q � ��s��2 ; n = 3 + 2q if q 6 1=2 and k < kv1 : (80)For the result to apply when q > 1=2 it requires �T < �=�s. As in Case 1 of the u �eld,there is a kink in the spe
trum with the wave number of the kink for the 
ase q 6 1=2 beingkv1(�) = ��1� ��s� �2q1�2q ; (81)whi
h is always smaller than the Hubble radius, ��1, for the relevant values of q, 0 < q < 1=2.Only for very small values of q, this kink in the spe
trum lies very 
lose to the Hubble radiusand is not visible.Case 3: 
� = 1� q, 
+ = 1.Here we have A = C� and B = D�, hen
ev = p�s��(k�s)1=2�q � (k�s)q�1=2[�T � 2 + 2q℄�� ��s�� (k�s)q�1=2(1� 2q)	 ; (82)jvj2k3 ' 8<: ��2s (k�s)4�2q � ��s�2 ; if q > 1=2 ;��2s (k�s)2+2q � ��s�2 [�T � 2 + 2q℄2 ; if q 6 1=2 ; (83)j�j2k3 ' 8<: �MsMP �2 (k�s)4�2q ; n = 5� 2q if q > 1=2 ;�MsMP �2 (k�s)2+2q[�T � 2 + 2q℄2 ; n = 3 + 2q if q 6 1=2 : (84)14



For q > 1=2 the amplitude of the resulting 
u
tuations does not depend on the details ofthe transition while it does depend on it for q 6 1=2.Case 4: 
� = 1� q, 
+ = 0.Here again we have A = C� and B = D�, so thatv = p�s �(k�s)1=2�q � (k�s)q�1=2[�T � 2q℄+(1� 2q)(k�s)q�1=2 � ��s�� ; (85)jvj2k3 ' ( ��2s (k�s)4�2q ; if q > 1=2 and k < kv2 ;��2s (k�s)2+2q � ��s�2 ; if q 6 1=2 or k < kv2 ; (86)j�j2k3 ' 8<: �MsMP �2 (k�s)4�2q � ��s��2 ; n = 5� 2q if q > 1=2 and k < kv2 ;�MsMP �2 (k�s)2+2q ; n = 3 + 2q if q 6 1=2 or k < kv2 ; (87)where here kv2(�) ' ��1� ��s� 2�2q1�2q : (88)For 1=2 < q < 1 and kv2 < ��1, a kink from n = 3 + 2q to the �nal spe
trum n = 5� 2q ispresent in the spe
tral distribution.In Table I{III we summarize the results of our analysis:The spe
tral index for a transition with regular u and q > �1=2
ase 
� 
+ kink? stable? ampl. depends non transition?1 �q �1 yes no no 3 + 2q2 �q 2 no yes no 1� 2q3 1 + q �1 no yes no 1� 2q4 1 + q 2 no yes yes 1� 2qTABLE I: Here we summarize the post-big bang spe
tral indi
es as a fun
tion of the pre- and post-big bang exponent of the pump �eld, if u is regular through the transition. The mild requirementon the transition (�T ) for this to hold is mentioned in the text.From Eqs. (10) and (13) it is 
lear that during the radiation dominated era, inside theHubble radius, k� � 1, the Bardeen potential os
illates and its amplitude de
ays like 1=�2,whereas during the matter dominated era, the Bardeen potential remains 
onstant also insidethe Hubble radius. Therefore, a 
hange in the spe
tral index 
lose to Hubble radius 
rossingis not visible for s
ales whi
h 
ross the Hubble radius in the radiation dominated era. Thisremark 
on
erns mainly the kink in 
ase 2 of Table II.A kink in the spe
tral distribution arises only in the unlikely situation where the growingmode of the pre-big bang phase is fully 
onverted into the de
aying mode after the transition,and one has to wait a suÆ
iently long time (� �(k)) for the de
aying mode to de
ay and the�nal growing mode to dominate. It is only in su
h a situation does the �nal spe
tral index15



The spe
tral index for a transition with regular v and q 6 1=2
ase 
� 
+ kink? stable? ampl. depends non transition?1 q 1 no yes no 3 + 2q2 q 0 yes no no 5� 2q3 1� q 1 no yes yes 3 + 2q4 1� q 0 no yes no 3 + 2qTABLE II: Here we summaries the post-big bang spe
tral indi
es as a fun
tion of the pre- andpost-big bang exponent of the pump �eld, if v is regular through the big bang and q 6 1=2. Thelogarithmi
 
orre
tions at q = 1=2 are negle
ted. The mild requirement on the transition (�T ) forthis to hold is mentioned in the text.The spe
tral index for a transition with regular v and q > 1=2
ase 
� 
+ kink? stable? ampl. depends non transition?1 q 1 no yes yes 5� 2q2 q 0 no yes no 5� 2q3 1� q 1 no yes no 5� 2q4 1� q 0 yes no no 3 + 2qTABLE III: Here we summaries the post-big bang spe
tral indi
es as a fun
tion of the pre- andpost-big bang exponent of the pump �eld, if v is regular through the big bang and q > 1=2. Themild requirement on the transition (�T ) for this to hold is mentioned in the text.not 
orrespond to the naive expe
tation from the pre-big bang phase. Finally, we note thata kink is always asso
iated with an instability of the spe
trum. The issue of stability willbe dis
ussed in Se
tion IV where we model the regular behavior of u and v through simpletoy models. There we shall see that a slight modi�
ation in the transition 
an 
hange thespe
tral index n = 3 + 2q into n = 1 � 2q if u passes through the transition regularly and5�2q into 3+2q if v is regular and q 6 1=2, 
orrespondingly 3+2q into 5�2q if v is regularand q > 1=2.This brings us to one of the key results of this paper, a predi
tion of the spe
tral indexarising from di�erent 
onditions on q and the regularity of the u and v �elds:n = 8>>><>>>: 1� 2q if q > �1=2 and u is regular and stable;3 + 2q if q 6 1=2 and v is regular and stable;5� 2q if q > 1=2 and v is regular and stable;3 + 2q if q 6 �1=2: (89)We have not treated expli
itly the simple 
ase q < �1=2 above, but this 
an be done exa
tlyalong the same lines as the other 
ases. From Eq. (89), we see that a s
ale-invariant spe
trumis obtained for q ' 1 (standard in
ation), or if u is regular and 0 < q � 1, or if v is regularand q = 2. For this latter 
ase however, we shall see in Se
tion VB that perturbations grow16
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FIG. 1: Here we illustrate the dominant spe
tral indi
es nu (solid) and nv (dashed) on super-Hubbles
ales whi
h are obtained after a 'stable', regular transition of the 
orresponding variable to theradiation era at suÆ
iently late time. This is also the resulting spe
tral index for the Bardeenpotential on 
osmologi
ally relevant s
ales. The left panel shows the indi
es as a fun
tion of 
�,the exponent of the pump �eld during the pre-big bang phase. The right panel shows them as afun
tion of q, the exponent of the 
ontra
tion (expansion) law before the big bang. We have used
u� = �q and 
v� = q.large during the 
ontra
ting phase and therefore linear perturbation theory breaks down.Furthermore, su
h a 
ollapsing universe with q = 2 has been shown unstable [26℄.Clearly, in a transition from 
ontra
tion to expansion, it 
annot be that both u and vare regular and stable if q > �1=2. Only in an in
ationary transition with q 6 �1=2 dowe �nd n = 3 + 2q for both u and v. In this 
ase it is expe
ted that both variables transitin a regular stable fashion from in
ation to the radiation era. The resulting spe
tral indexdoes not depend on the variable with whi
h the 
al
ulation is performed. The situation forarbitrary values of q is shown in Fig. 1 below.IV. FAST TOY MODEL TRANSITIONSIn earlier work [12, 13, 14℄ a transition from 
ontra
tion to expansion was a
hieved viaa 
ombination of �rst order 
orre
tions in the string s
ale, �0 and/or the string 
ouplinggs. In [13℄ a modi�ed perturbation equation for v was derived using this framework, andin all 
ases a spe
tral index n = 3 + 2q was obtained. This yields n = 4 for the 
asedilaton-driven string 
osmology [13℄ where q = 1=2, and n = 3 for the ekpyroti
 model [14℄where q � 0. However, although 
al
ulations have been performed with v, it remains to beshown that u 
annot pass through the transition regularly (to �rst order). Unfortunately,even though the perturbation equations of [13℄ are very 
ompli
ated, they are probably notrealisti
. It is 
lear that at a time where �rst order 
orre
tions be
ome important, higherorder 
orre
tions are likely to be relevant and the real behavior of the perturbations mightdi�er signi�
antly from the results obtained in the work 
ited above. In this sense, pre-bigbang models in
luding �rst order 
orre
tions are only toy models.In this se
tion we 
on�rm our generi
 �ndings 
on
erning the spe
tral index asso
iated17
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FIG. 2: This �gure illustrates the evolution of various ba
kground quantities s
aled in su
h a waythat they are dimensionless (i.e., invariant under a 
hange in �s). As fun
tions of �=�s, they are:(1) the s
ale fa
tor a(�), (2) the Hubble rate H�s and (3) its �rst time derivative H0�2s . On thebottom line, they are: (4) the pre-fa
tor of the 
omoving wavenumber �, (5) the potential of theperturbation variable u, i.e., Vu�2s = �H2 �H0� �2s and (6) its res
aled square root pjVuj=� �s.The parameters used for these �gures are � = 10�2 and q = 5 � 10�2.with the relevant u and v �elds by numeri
ally solving a simple toy model. We do notinsist on a physi
ally well motivated transition. Rather we arti�
ially de�ne a regular s
alefa
tor so that it agrees with a 
ontra
ting Friedmann universe with 
ontra
tion exponent qat � � ��s and with a radiation dominated universe at � � �s. In the region in between,the s
ale fa
tor smoothly evolves between 
ontra
tion and expansion.A. The ba
kgroundFor the exa
t form of the regularized ba
kground s
ale fa
tor we 
hoosea(�) = �(�=�s)2 + ��~q=2 ; (90)~q(�) = q�+ (1� �) ; (91)�(�) = 1=2� 1�ar
tg(�=�s) ; (92)where 0 < � � 1. The fun
tion �(�) 
ould be repla
ed by any C1 fun
tion whi
h qui
klyinterpolates between 1 for � � ��s to 0 for � � �s. Clearly, this universe 
ontra
ts like j�jqfor � � ��s and expands like a radiation dominated universe a / � for � � �s. Furthermore,a, H, H0 and H2 �H0 are all regular, even analyti
 in the vi
inity of the transition, � = 0.The behavior of the relevant ba
kground quantities for our model are shown in Fig. 2.
18



B. A regular transition in the perturbation variable uWe �rst 
onsider a regular transition for u. In the regime where the s
ale fa
tor is a simplepower law, j�j � �s, the u-equation is given by (14). During this regime, the u-potentialis simply Vu = q(q + 1)=�2. In order to regularize this potential during the transition, weimpose Vu = �00=� throughout, where�(�) = �(�=�s)2 + ��~
=2 ; (93)~
(�) = �
� + (1� �)
+ : (94)This ensures us that the pump �eld �(�) remains regular during the whole evolution andredu
es to the power law asymptoti
 regimes, � ! j�=�sj
� for � � ��s and � ! (�=�s)
+for � � �s.The prefa
tor of the 
omoving wavenumber is � = 1 during the s
alar �eld dominatedpre-big bang phase and � = 
2s = 1=3 in the radiation dominated era. We regularize �during the transition via �(�) = 13 (2�+ 1) : (95)It is worth mentioning at this point that the results we have obtained appear to be quiteinsensitive to how �(�) is modelled. To 
hoose the pump �eld of 
ase 1 of Se
tion IIB,� = �1, requires 
� = �q and 
+ = �1. Similarly, setting � = �2 
orresponds to 
ase 4, with
� = 1 + q and 
+ = 2. To obtain also the 
ases 2 and 3 we need � to interpolate from �1to �2 (
ase 2) and from �2 to �1 (
ase 3) respe
tively. We 
an a
hieve these behaviors usingour fast interpolating fun
tion �(�) given in Eq. (92). The four 
ases are then obtained bythe following 
hoi
es:~
(�) = 8>>><>>>: �(1� q)� 1 (
ase 1: �1 ! �1 ; �q ! �1)��(2 + q) + 2 (
ase 2: �1 ! �2 ; �q ! 2)�(2 + q)� 1 (
ase 3: �2 ! �1 ; 1 + q ! �1)�(q � 1) + 2 (
ase 4: �2 ! �2 ; 1 + q ! 2) (96)It is easy to verify that the given fun
tional forms have the 
orre
t asymptoti
 behavior.Furthermore, they are 
learly regular throughout. The numeri
al results for the u-spe
traare shown in Figs. 3 to 6. The wave number k is given in units of the maximum ampli�edwave number de�ned by km = max(pjVuj=�) ; (97)whi
h is of the order of ��1s . More pre
isely we havekm ' 8>>><>>>: 8:9 ��1s in 
ase 1 ,12:2 ��1s in 
ase 2 ,3:7 ��1s in 
ase 3 ,15:1 ��1s in 
ase 4 . (98)
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It is very en
ouraging that the numeri
al simulations produ
e a spe
tra with pre
iselythe shape predi
ted analyti
ally in the previous se
tion. The spe
tra are evaluated at � =�end = 103�s. As an example, we see that the kink predi
ted for 
ase 1 is there in the �gureand is found at the 
orre
t position,ku = ��1� ��s� 2q�22q+1 ' 8� 10�9��1s ' 10�9km : (99)One also sees that the spe
trum has the 
orre
t sub-Hubble radius slope, nsub = n � 4 fors
ales k > 10�3��1s whi
h have already entered the Hubble radius at �end.It is interesting to note that the 
ases 2 and 3 have roughly the same amplitude whilethe amplitude of 
ase 4, whi
h we expe
t to depend on the transition, is mu
h higher.It is important to investigate the stability of the spe
tral index n = 3 + 2q of 
ase 1. Todo this we have slightly modi�ed the potential for this 
ase in the following way:1. For �=�s 2 [�0:5; 0:5℄, Vu ! Vu + 10�1, (
urve (1) in Fig. 7).2. For �=�s 2 [�0:5; 0:5℄, Vu ! Vu + 10�3, (
urve (2) in Fig. 7).3. For �=�s 2 [�0:1; 0:1℄, Vu ! Vu + 10�3, (
urve (3) in Fig. 7).The result is shown in Fig 7. The plain 
urve represents the original 
ase, Vu = �001=�1.Adding a tiny 
onstant (� O(10�3)) to this potential during about a tenth of the durationof the transition (
urve (3)) already modi�es signi�
antly the ampli�
ation on super-Hubbles
ales and the �nal spe
tral index be
omes n = 1� 2q. Analyzing the growing and de
ayingmodes separately, we have seen that, due to the perturbation of the potential, a tiny portionof the growing mode during the pre-big bang phase is 
onverted into the growing modeduring the radiation era. This is already suÆ
ient for the latter to inherit the naivelyexpe
ted spe
trum n = 1 � 2q like the other 
ases. The later we evaluate the spe
trumthe more pronoun
ed be
omes the di�eren
e from the \pure 
ase 1" spe
trum. We expe
tthat at very late times, hen
e very large s
ales, extremely small di�eren
es from the pure
ase 1 potential will have lead to a s
ale invariant spe
trum. We have also tested smoothmodi�
ations of the potential, like Vu ! Vu + 10�3 exp[�102(�=�s)2℄. They also lead to thesame result. The spe
tra of the 
ases 2 to 4 however are stable under small modi�
ationsof the 
orresponding potential.Finally, in Fig. 8 we show the 
orresponding spe
tra for dilaton-driven 
osmology. Theonly di�eren
e to the previous simulations is that we set q = 1=2 in this model whi
h, in theEinstein frame, is a 
ontra
ting universe with a s
alar �eld with vanishing potential. Againwe obtain pre
isely the spe
tra expe
ted a

ording to the arguments of the previous se
tion.C. A regular transition in the perturbation variable vIn this subse
tion we repeat the analysis presented above for the 
ase of a regular equationfor the variable v. Sin
e the pro
edure is very 
lose to the one presented above, we 
an bebrief here. We again assume that there exists a regular potential Vv su
h thatv00 + (k2�� Vv)v = 0 : (100)In the 
ase of a pure power law s
ale fa
tor, a = j�=�sjq, we have Vv = q(q � 1)=�2 = z00=zwhere z is either z1 = a or z2 = a R a�2d�. To regularize the v-equation during the transition22
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FIG. 7: We draw the spe
tral distributionPu = juj2k3 evaluated at �=�s = 103 (left) and �=�s = 105(right) for Vu of 
ase 1 and the small modi�
ations of the potential detailed in the text. Althoughmodifying the potential during the transition may 
hange km, we kept the same original value ofkm for all spe
tra.
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FIG. 8: We illustrate the spe
tral distribution P(i)u = juj2k3 (
ase i = 1 � 4) as a fun
tion of theres
aled 
omoving wavenumber k=km The parameters for the simulations are � = 10�2, q = 0:5and the spe
tral distributions are evaluated in the radiation era �=�s = 103.era we use our interpolation fun
tions �, ~
 and � (see Eqs. (92), (94) and (95), respe
tively)and impose z(�) = �(�=�s)2 + ��~
=2 : (101)To reprodu
e the four 
ases for v, we make the following 
hoi
es:~
(�) = 8>>><>>>: �(q � 1) + 1 (
ase 1: z1 ! z1 ; q ! 1)�q (
ase 2: z1 ! z2 ; q ! 0)��q + 1 (
ase 3: z2 ! z1 ; 1� q ! 1)�(1� q) (
ase 4: z2 ! z2 ; 1� q ! 0) (102)23



The resulting spe
tra are shown in Fig. 9.
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FIG. 9: We illustrate the spe
tral distribution P(i)v = jvj2k3 (
ase i = 1 � 4) as a fun
tion of theres
aled 
omoving wavenumber k=km. The parameters for the simulations are � = 10�2, q = 5�10�2and the spe
tral distributions are evaluated in the radiation era at �=�s = 103.Again the spe
tra are in very good agreement with those obtained with our theoreti
alarguments. This gives us 
on�den
e that we really understand what is going on. During theradiation era v grows like � on super-Hubble s
ales. Inside the Hubble radius the amplitudeof v remains 
onstant and it begins to os
illate. Negle
ting the os
illations, we thereforeexpe
t for the 
ases 1, 3 and 4 Pv / k2+2q(�s=� + k�)�2; (103)leading to the observed 
at spe
trum inside the Hubble radius. The spe
trum of 
ase 2turns from Pv / k4�2q to Pv / k2�2q inside the Hubble radius. For k >� 10�3km the spe
trumis not very reliable, sin
e it is in
uen
ed by the details of the transition. The kink in thespe
tral distribution expe
ted for 
ase 2 is not well visible sin
e q = 5 � 10�2 is very small(see the argument on the previous se
tion). We have repeated this 
ase for a larger value,q = 0:3, where the kink 
an now be seen, as illustrated in Fig. 10.Finally, note that the 
ase 2 for v is unstable in the same sense as 
ase 1 for u andtherefore probably irrelevant.V. DISCUSSIONA. Whi
h variable, u or v?We have shown that during a 
ontra
ting (or in
ationary for q < 0) phase where thes
ale fa
tor evolves a

ording to a power law, a / j�jq with q > �1=2, the variables u andv a
quire a spe
tral index Pu / k�2q ; nu = 1� 2q ; (104)Pv / k2+2q ; nv = 3 + 2q if q 6 1=2 ; (105)Pv / k4�2q ; nv = 5� 2q if q > 1=2 : (106)24
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FIG. 10: We illustrate the spe
tral distribution Pv = jvj2k3 of 
ase 2 as a fun
tion of the res
aled
omoving wavenumber k=km. The parameters for the simulations are � = 10�2, q = 0:3 and thespe
tral distribution is evaluated in the radiation era at �=�s = 103. We 
onfront our predi
tionsfor the spe
tral slopes, above and below the kink at kv1=km � 10�8 � 10�7, the de
aying mode isstill dominant on s
ales k 6 kv1 .We have also shown that, if the 
orresponding variable transits regularly into the radiationera, the spe
trum is inherited in this era. But, during the radiation era and on large s
ales(k� � 1) u and v are simply related to 	, via (see Eqs. (10), (20) and (22))	 = �MsMP �p2a�2u = �p69 M�1P a�1v ; (107)whi
h therefore has the same spe
trum as both u and v. The only possible resolution ofthis 
ontradi
tion is that either u or v is not regular at the transition and makes a stronglyk-dependent jump. But whi
h one?We do not know the general answer to this question. It is quite likely to be modeldependent. Nevertheless, we are able to prove the following statement:Theorem: If the perturbed metri
 remains regular during the transition and if its evolution
an be des
ribed by a se
ond order di�erential equation for the Bardeen potential 	, then aregular u-variable whi
h satis�es an equation of the form (11) 
an be found.Proof: If the metri
 perturbations are regular, the Bardeen potential whi
h is in generalgiven by (see e.g. [17℄)	 = A+ k�1H(B � k�1H 0T ) + k�1(B � k�1H 0T )0 ; (108)is regular too. Here (s
alar) metri
 perturbations are parameterized with the four variablesA, B, HL and HT viads2 = ��(1 + 2A)d�2 � i2Bk̂jdxjd� + n(1 + 2HL � 23HT )Æjm+2HT k̂jk̂modxjdxmi a2e�ik�x ; (109)25



and k̂j = kj=k.During a period governed by general relativity (and in the absen
e of anisotropi
 stresses)the Bardeen potential satis�es an equation of the form	00 + f(�)	0 + ��(�)k2 � g(�)�	 = 0 ; (110)where f , g and � are smooth fun
tions. If the s
ale fa
tor obeys a simple power lawevolution, a / j�jq, we have f = 2(1+ q)=� and g = 0. If f and g remain smooth during thetransition, we 
an de�ne u = exp�12 Z fd��	 : (111)As one easily veri�es, this variable satis�esu00 + (�k2 � Vu)u = 0 (112)with Vu = g + 12f 0 + 14f 2 : (113)Vu is well de�ned, smooth and bounded in any �nite interval, so that the di�erential equation�00 = Vu� (114)has two well-de�ned solutions �1 and �2 whi
h are the pump �elds. Up to an irrelevant
onstant the so-de�ned variable u 
oin
ides with the well known u given in Eq. (11) in theasymptoti
 past � � ��s and in the asymptoti
 future � � �s. Hen
e it is our regularizedvariable u. 2On the other hand, if � passes via a regular se
ond order equation through the transition,the same theorem leads to a regular v-equation and hen
e to a spe
tral index n = 3+2q forq 6 1=2.This shows again, that it is not possible for both, 	 and � to pass through the transitionregularly (if �1=2 < q). This is 
onsistent with the expressions Eq. (20) or Eq. (21) whi
hrelate � and 	. If these equations are also valid during the transition, � ne
essarily divergesif 	 is regular and vi
e versa sin
e H and H0 � H2 = aH 0 have to pass through zero ina transition from 
ontra
tion to expansion (see also Fig. 2). Of 
ourse these relations willin general be modi�ed during the transition, but a

ording to our results the modi�
ationsshould be su
h that one of the two variables has to develop a singularity if the other isregular.B. Amplitude of the perturbationsDuring 
ontra
tion the Bardeen potential grows like 	 / j�j�(1+2q) on super-Hubbles
ales. One a
tually hasj	j2k3 ' �MsMP �2 ���� ��s �����(2+4q) (k�s)�2q ; for q > �1=2 : (115)Hen
e 	 may be
ome mu
h larger than 1 for k � 1=�s and j�j � �s. Does this imply thatperturbation theory breaks down during the 
ontra
tion phase? We show now that this is not26



the 
ase for q 6 1. First let us note that a quantity relevant to measure the deviation of thegeometry from Friedmann is, for example, the Weyl 
urvature whose ba
kground 
omponentvanishes. It is well known (see, e.g. [17℄) that the ratio between a typi
al 
omponent ofthe Weyl tensor to a typi
al 
omponent of the ba
kground Riemann tensor is given byjC=Rj ' (k�)2	. The geometri
al deviation away from Friedmann is thus of the order ofjC=Rj2k3 ' �MsMP �2 ���� ��s �����4q (k�s)2�2q(k�)2 ; (116)whi
h is always mu
h smaller than 1 on super-Hubble s
ales for �1=2 6 q 6 1 and j�j>� �s.Only in a 
ontra
ting universe with q > 1 do the perturbations be
ome large and hen
eperturbation theory be
omes invalid.To ensure that perturbations truly remain small, it is ne
essary to �nd a gauge in whi
hall the metri
 perturbations are small. We show now that this is so in the o�-diagonal gaugewhi
h also has been used in [21℄ for dilaton-driven string 
osmology. This gauge is de�nedby HT = HL = 0. A

ording to Eq. (108), the Bardeen potential is then given by	 = A + k�1(HB +B0) : (117)The (ij) Einstein equation implies (see e.g. [17℄)	 = A+ k�1(HB +B0) = �k�1HB : (118)Before the transition, the Bardeen potential is given by	 = pH2 �H0MPa u =pq(q + 1)�MsMP � �����s� ����1+q u : (119)On super-Hubble s
ales this gives for q > �1=2, using Eq. (16),	 'pq(q + 1)�MsMP � k�3=2(k�s)�q �����s� ����1+2q : (120)With Eq. (118) we then obtainB ' rq + 1q �MsMP � k�3=2(k�s)1�q �����s� ����2q �1 +O �(k�)2�� ; (121)k3jBj2 ' �MsMP �2 (k�s)2�2q �����s� ����4q ; (122)whi
h is always small for q < 1. From A = �k�1(2HB + B0) and Eq. (121) we �ndthat O(A) = O(k�B), hen
e as with B, A also remains small on super-Hubble s
ales.Note that it is highly non-trivial that A is smaller than B. This is due to the fa
t thatB / a�2(1 +O(k�)2) and hen
e the lowest order 
ontribution to A 
an
els!Sin
e the generi
 form of the perturbed Einstein equations is O(h + (k�)h + (k�)2h) =O(�) where h and � are typi
al metri
 and matter perturbation variables respe
tively (seee.g. [17℄), the matter perturbation variables in this gauge are also small on super-Hubbles
ales. 27



More pre
isely we �nd from the perturbed Einstein equations in the o�-diagonal gaugeÆ = 23kH�1B ' O(A) ; (123)� = B ; (124)�L = 2 + q2� qA ' O(A) : (125)Here Æ and �L are the density and pressure perturbations respe
tively and a2(�+ p)� is thes
alar perturbation of the energy 
ux, T 0i . To obtain the above results we have used thefa
t that a / j�jq obeys a simple power law and B / j�j�2q as well as A / j�j1�2q.This result is in 
ontradi
tion with the statement of Ref. [27℄ that perturbations in theekpyroti
 universe, 0 < q � 1 ne
essarily be
ome large for � ! ��s.VI. CONCLUSIONIn this work we have analyzed the behavior of s
alar perturbations in a transition from a
ontra
ting to an expanding Friedmann universe. We have shown that, if the perturbationequation during the transition 
an be formulated as se
ond order equations for either 	 or�, regular variables u and v respe
tively, 
an be found. The resulting spe
tral index in thelate radiation dominated universe depends on whi
h of these two variables passes regularly,and there are no stable 
ases where both u and v, (equivalently 	 and �), are regular duringthe transition.The resulting spe
tral index n is given byn = 8<: 1� 2q if 	 is regular;3 + 2q if � is regular and q 6 1=2;5� 2q if � is regular and q > 1=2: (126)Our numeri
al results for the spe
tral index obtained from a simple toy model are inperfe
t agreement with the more general arguments of Se
tion III.This result remains valid in an in
ationary universe with �1=2 < q < 0, but has neverraised any attention sin
e su
h models 
annot produ
e the observed s
ale invariant spe
trum.For q < �1=2 both variables, u and v lead to the same spe
tral index n = 3+2q. Therefore,this problem has not been noti
ed in works on standard in
ationary models where q ' �1.We have also shown that, as long as q 6 1, perturbations remain small during 
ontra
tionin the sense that there exists a gauge in whi
h all the metri
 and matter perturbationvariables are small. Sin
e this point has been a matter of debate, we have written downexpli
it expressions for all the variables in Eqs. (121) to (125).We have also argued that the v-equation derived from string 
orre
tions in [13℄ has to be
onsidered as a toy model, sin
e higher order 
orre
tions 
annot be negle
ted in this 
ase.Our �ndings explain that all the literature based on the variable v predi
ts n = 3+2q, seeespe
ially Refs. [13℄ and [14℄, while when mainly working with u one �nds that the spe
tralindex n = 3 + 2q is highly unstable and one typi
ally expe
ts n = 1� 2q.This work has the following important impli
ations:� If it 
an be shown in the ekpyroti
 model [1, 4℄ where 0 < q � 1, that the Bardeenpotential passes regularly through the transition, this model leads to a nearly s
aleinvariant spe
trum with n = 1� 2q. 28



� In dilaton-driven string 
osmology we have the opposite situation. There, q = 1=2and it has generi
ally been assumed that � passes regularly through the transition.This has been shown to be true to �rst order in �0 in [13℄. Then the spe
tral index isn = 3+2q = 4 leading to a very blue spe
trum of highly suppressed perturbation [21℄.If however 	 would be regular, a red spe
trum with n = 1 � 2q is obtained. Thiswould mean a fatal blow for dilaton-driven string 
osmology, sin
e the perturbationsthen be
ome very large in the radiation dominated era: Sin
e the Bardeen potentialis large at the end of the pre-big bang phase and sin
e jC=Rj ' (k�)2j	j ' j	jat Hubble 
rossing, the Weyl tensor be
omes larger than the ba
kground Riemanntensor at Hubble 
rossing. Even though the Weyl tensor has 
onstant amplitude onsuper-Hubble s
ales, the de
ay of the Riemann tensor during expansion leads to ahuge in
rease in the ratio jC=Rj. This problem only a�e
ts red spe
tra, sin
e for bluespe
tra jC=Rj at Hubble 
rossing is always smaller than j	(km)j ' jC=Rj evaluatedat � = ��s for k = km.Even though we 
annot establish from �rst prin
iples in this work whi
h spe
trum dilaton-driven string 
osmology or the ekpyroti
 model have, we nevertheless have formulated suf-�
ient (but maybe not ne
essary) 
onditions on the transition whi
h would allow su
h ade
ision.A
knowledgement: We thank Robert Brandenberger, Patri
k Peter, Gabriele Venezianoand Filippo Vernizzi for stimulating and 
larifying dis
ussions. C.C. a
knowledges a TomallaFellowship. E.C. and R.D. thank the Aspen Center of Physi
s for hospitality. This work issupported by the Swiss National S
ien
e Foundation.[1℄ J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, Phys. Rev. D66, 046005 (2002),[hep-th/0109050℄.[2℄ R. Durrer and F. Vernizzi, Phys. Rev. D66, 083503 (2002), [hep-ph/0203275℄.[3℄ P. Peter and N. Pinto-Neto, Phys. Rev. D66, 063509 (2002), [hep-th/0203013℄.[4℄ J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, Phys. Rev. D64, 123522 (2001),[hep-th/0103239℄.[5℄ R. Brandenberger and F. Finelli, JHEP 11, 056 (2001), [hep-th/0109004℄.[6℄ D. H. Lyth, Phys. Lett. B524, 1 (2002), [hep-ph/0106153℄.[7℄ J.-
. Hwang, Phys. Rev. D65, 063514 (2002), [astro-ph/0109045℄.[8℄ S. Gratton, J. Khoury, P. J. Steinhardt, and N. Turok, (2003), [astro-ph/0301395℄.[9℄ I. Antoniadis, J. Rizos, and K. Tamvakis, Nu
l. Phys. B415, 497 (1994), [hep-th/9305025℄.[10℄ R. Brustein and R. Madden, Phys. Rev. D57, 712 (1998), [hep-th/9708046℄.[11℄ S. Fo�a, M. Maggiore, and R. Sturani, Nu
l. Phys. B552, 395 (1999), [hep-th/9903008℄.[12℄ C. Cartier, E. J. Copeland, and R. Madden, JHEP 01, 035 (2000), [hep-th/9910169℄.[13℄ C. Cartier, J. C. Hwang, and E. J. Copeland, Phys. Rev. D64, 103504 (2001),[astro-ph/0106197℄.[14℄ S. Tsujikawa, R. Brandenberger, and F. Finelli, Phys. Rev. D66, 083513 (2002),[hep-th/0207228℄.[15℄ F. Finelli and R. Brandenberger, Phys. Rev. D65, 103522 (2002), [hep-th/0112249℄.[16℄ V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Phys. Rept. 215, 203 (1992).29



[17℄ R. Durrer, Fund. Cos. Phys. 15, 209 (1994), [astro-ph/9311041℄.[18℄ D. H. Lyth, Phys. Rev. D31, 1792 (1985).[19℄ G. Veneziano, Phys. Lett. B265, 287 (1991), [CERN-TH.6077/91℄.[20℄ M. Gasperini and G. Veneziano, (2002), [hep-th/0207130℄.[21℄ R. Brustein, M. Gasperini, M. Giovannini, V. F. Mukhanov, and G. Veneziano, Phys. Rev.D51, 6744 (1995), [hep-th/9501066℄.[22℄ N. Deruelle and V. F. Mukhanov, Phys. Rev. D52, 5549 (1995), [gr-q
/9503050℄.[23℄ D. N. Page, Class. Quantum Grav. 1, 417 (1984).[24℄ D. Wands, Phys. Rev. D60, 023507 (1999), [gr-q
/9809062℄.[25℄ R. Brustein, M. Gasperini, and G. Veneziano, Phys. Lett. B431, 277 (1998),[hep-th/9803018℄.[26℄ I. P. C. Heard and D. Wands, Class. Quant. Grav. 19, 5435 (2002), [gr-q
/0206085℄.[27℄ D. H. Lyth, Phys. Lett. B526, 173 (2002), [hep-ph/0110007℄.

30


