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Ruth Durrer
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We consider super-gravity models in which the lightest supersymmetric particle (LSP) is a stable
gravitino. The next-to-lightest supersymmetric particle (NLSP) freezes out with its thermal relic
density and then decays after (105

−1010) sec, injecting high-energy photons into the cosmic plasma.
These photons heat up the electron plasma which then thermalizes with the cosmic microwave back-
ground (CMB) via Compton scattering, bremsstrahlung and double-Compton scattering. Contrary
to previous studies which assume instantaneous energy injection, we solve the full kinetic equation
for the photon number density with a source term describing the decay of the NLSP. This source
term is based on the requirement that the injected energy be almost instantaneously redistributed by
Compton scattering, hence leading to a time-dependent chemical potential. We investigate the case
of a stau NLSP and determine the constraints on the gravitino and stau masses from observations
of the CMB spectrum by assuming that all gravitino LSPs come from stau NLSP decays. Unlike
the analytical approximations, we find that there may be a stau mass below which the constraint
from the CMB spectrum vanishes.

PACS numbers: 95.35.+d, 98.80.Es, 98.80.Cq

I. INTRODUCTION

Supersymmetry provides mainly two compelling can-
didates for cold dark matter: either the gravitino or the
neutralino, depending on which one is the LSP. If we re-
quire that R-parity be conserved, the NLSP decays into
the stable LSP and releases energy in standard model
particles. At leading order, these late decays are two-
body and the accompanying energy is mainly electromag-
netic.

Part of the electromagnetic release is transferred to the
cosmic microwave background radiation. The CMB then
re-thermalizes through three relevant processes: Comp-
ton scattering (γ+e → γ+e), double-Compton scattering
(γ+e → γ+γ+e) and bremsstrahlung (e+p → e+p+γ).
The energy injection may distort the CMB, depending on
the redshift at which it occurs and on the various time
scales of the processes. Early NLSP decays can be fully
thermalized, whereas distortions caused by injection from
late decays cannot. Varying the NLSP and LSP masses,
it is possible to control both the NLSP lifetime and the
energy injected in the CMB.

The CMB is not only very isotropic, but it also has
a very precise Planck spectrum. The FIRAS instrument
aboard the COBE satellite constrains the deviation from
a perfect blackbody spectrum in terms of a few numbers.
Important for this work is the limit for the chemical po-
tential [1]

|µ| ≤ 9 × 10−5 .

This bound has been used to derive limits for the en-
ergy released by NLSP decays as well as the NLSP life-

time. Observational constraints on the CMB spectrum
can be translated into bounds for the stau NLSP and
gravitino LSP masses. It should be mentioned that we
explicitly assume that all gravitinos present in the uni-
verse are produced by stau decays. Some models suggest
that gravitino LSPs may also be produced by scattering
interactions after reheating, leading to less stringent con-
straints. Recently, several papers have employed an ana-
lytic approximation to determine these limits [2–4]. The
approximation used in [2–4] is derived in Ref. [5]. This
analytical result turns out to provide the most stringent
limit on the gravitino dark matter model in some range
for the NLSP and LSP masses. This prompted us to
repeat the calculation numerically.

We find that the bounds for a chemical potential of
µ < 9×10−5 given by [5] is a good approximation only for
stau masses above 500 GeV. Below this mass, our bounds
are less stringent and even disappear for staus lighter
than 100 GeV. We also consider the limit µ < 10−5 and
find that our results suggest lighter gravitinos or equiv-
alently shorter stau lifetimes. Finally, we consider an
upper bound on the chemical potential of 2 × 10−6 as
planned to be achieved in the DIMES experiment [6].
We find that, if DIMES does not see a chemical potential,
µ < 2 × 10−6, gravitinos cannot significantly contribute
to the dark matter if supersymmetry breaking is gravity
mediated.

After recalling some properties of the NLSP in the next
section, we write down the full kinetic equation for the
evolution of the photon one-particle distribution function
in Section III. We express it as an evolution equation for
a frequency-dependent chemical potential. This allows
us to determine the chemical potential for a given point
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in the (mNLSP, mLSP) and (mNLSP, τNLSP) plane of the
NLSP and to draw exclusion plots in Section IV. We
summarize our conclusions in Section V.

II. NLSP PROPERTIES

We investigate a super-gravity model with a gravitino
LSP and a stau NLSP. We assume that the NLSP freezes
out with thermal relic density and decays after a time
determined by both its mass and the LSP mass. Due
to the suppression of non-photonic decay channels, the
branching ratio for decays to photons is set to be equal
to one.

Gravitino LSPs are produced through NLSP decays
NLSP → LSP + SMP, where SMP are standard model
particles. Using the standard N = 1 super-gravity La-
grangian, the rates for the various decay channels of the
NLSP can be calculated.

A. Slepton NLSP

We assume a gravity-mediated supersymmetry break-
ing model, where the gravitino LSP mass is of the or-
der 102 − 104 GeV and the stau NLSP lifetime of the
order 104 − 1010 sec. In gauge-mediated supersymmetry
breaking models the gravitino is also the LSP but is much
lighter (mG̃ . keV), resulting in a much shorter NLSP
lifetime. In such models, the present CMB constraints
do therefore not apply.

The width for the decay of any sfermion f̃ to a gravi-
tino G̃ for a negligible fermion mass is given by

Γ(f̃ → fG̃) =
1

48πM2
∗

m5

f̃

m2

G̃

[

1 −
m2

G̃

m2

f̃

]4

, (1)

where M∗ = (8πGN )−1/2 is the reduced Planck mass.

Stau NLSPs decay to taus and gravitinos, which then
decay to e, µ, π0, π± and ν. As mentioned in Ref. [3],
the electromagnetic energy produced in τ decays varies
between ǫmin

EM ≈ 1
3
Eτ and ǫmax

EM = Eτ . If not specified, a
value of ǫEM = 0.8Eτ will be assumed throughout of this
paper.

B. Thermal relic density

Using the thermal relic density of the right-handed
slepton NLSPs determined in Ref. [7] and the thermally-
averaged cross section from Ref. [8], the stau relic abun-
dance is given by

Ωth
τ̃ h2 ≈ 0.2

[ mτ̃

TeV

]2

. (2)

As long as the staus do not decay, their time-dependent
number density can be expressed as

nτ̃ (t) ≈ 0.26 m−3

[

GeV

mτ̃

] [

T

Kelvin

]3

Ωτ̃ . (3)

The fact that the final gravitino density, ΩG̃h2 =
(mG̃/mτ̃ )Ωτ̃h2, is bounded by observations, ΩG̃h2 ≤ 0.14
[9] together with Eq. (2) implies an upper bound for the
gravitino mass as a function of the stau mass:

mG̃

GeV
< 0.7 × 106 GeV

mτ̃
. (4)

III. EVOLUTION EQUATION FOR THE

PHOTON NUMBER DENSITY

The decay of unstable particles into photons during
the early stages of the universe can lead to distortions
in the CMB. Depending on the redshift at which energy
is injected, this may leave a measurable imprint of the
early decays. This is the process which we now analyze
in detail.

A. Energy injection by particle decays

Energy injection resulting from NLSP decays heats the
electrons, leading to a ratio Te/TCMB larger than one,
where Te is the electron temperature and TCMB is the
temperature of the CMB. Due to the tight coupling be-
tween electrons and photons during the early stages of
the universe, the energy surplus of the electrons is redis-
tributed among the photons, distorting the CMB pho-
ton distribution from a blackbody spectrum. Assuming
that the energy transfer between electrons and photons
results in a Bose-Einstein spectrum with a frequency-
independent chemical potential, it is possible to relate
this resulting chemical potential to the number and en-
ergy density of the injected photons and electrons.

Following the analysis done in [5], we can write the
energy in a Bose-Einstein distribution as

ρBE = 4σSBT 4
e

(

1 − 90ζ(3)

π4
µinj

)

, (5)

where we assume a small chemical potential. The number
density is given by

nBE =
2ζ(3)

π2
T 3

e

(

1 − π2

6ζ(3)
µinj

)

. (6)

Here ζ denotes the Riemann ζ-function (see Ref. [10]).
Furthermore, due to energy conservation, we know that
the energy density may also be written as

ρBE = ρP + ρdecay, (7)

where ρdecay is the energy density injected by the NLSP
decays and ρP is the density of the CMB photons. This
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equation is only valid if the injected photons are re-
distributed in a negligible amount of time compared to
the time scales of double-Compton and bremsstrahlung.
However, this does not hold for the low-frequency spec-
trum, where the photon-creating processes dominate.

More precisely, the injected energy density is given by
the following differential equation

dρdecay

dt
= ǫ

m2
NLSP − m2

LSP

2mNLSP

nNLSP(t)
e−t/τ

τ
− 4

ȧ

a
ρdecay,

(8)
where τ is the lifetime of the NLSP. Due to the fact that
tau decays also produce several neutrinos, the right hand
side of Eq. (8) has been multiplied by a factor ǫ describing
the ratio of the injected energy to the total energy. As
pointed out in Sec. II A, ǫ may have a value between 0.3
and 1; we set ǫ = 0.8. In order to solve Eq. (8), we
integrate both sides from tin to t and obtain

ρdecay = ǫ
m2

NLSP − m2
LSP

2mNLSP

nNLSP(tin)
(ain

a

)4

×
{

1

2

√
π

[

Erf
(

√

t/τ
)

− Erf
(

√

tin/τ
)]

−
[
√

t

tin
e−t/τ − e−tin/τ

]}

, (9)

where Erf is the error function as defined in [10]. Simi-
larly, the photon number density is given by

nBE = nP + ndecay, (10)

where ndecay is the injected photon number density given
by the following differential equation

dndecay

dt
= NγnNLSP(t)

e−t/τ

τ
− 3

ȧ

a
ndecay. (11)

Here Nγ is the number of photons per stau decay injected
into the spectrum. The solution of Eq. (11) is given by

ndecay = NγnNLSP(tin)
(ain

a

)3 (

1 − e−t/τ
)

. (12)

Inserting Eq. (9) and Eq. (7) into Eq. (5), as well insert-
ing (12) and Eq. (10) into Eq. (6) we find the relations:

1 +
ndecay

nP

=

(

Te

T

)3 (

1 − π2

6ζ(3)
µinj

)

1 +
ρdecay

ρP

=

(

Te

T

)4 (

1 − 90ζ(3)

π4
µinj

)

. (13)

These equations cannot be solved simultaneously since
there are three unknowns, µinj, Te and Nγ . However, it
turns out that the chemical potential is independent of
Nγ up to an unreasonable photon number injection of
≈ 107 photons per NLSP decay, as shown in the bottom
panel of Fig. 1. The top panel shows the time evolution
of the chemical potential for two different stau lifetimes.
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FIG. 1: Solution of the system of equations (13). Top: Time
evolution of the chemical potential for fixed Nγ at mτ̃ = 200
GeV and mG̃ = 50 GeV, corresponding to τNLSP ≈ 6×106 sec
(blue solid line) and mτ̃ = 300 GeV and mG̃ = 50 GeV,
corresponding to τNLSP ≈ 7 × 105 sec (green dashed line). A
value of Nγ = 104 has been assumed. Bottom: The chemical
potential at a time t = 108 sec is shown as a function of Nγ .
Both lines are given by the same masses as above.

Up to now, we have assumed that the energy injection
caused by stau decays was instantaneously converted in
a chemical potential through Compton scattering. How-
ever, there are also two other processes that do not con-
serve the photon numbers: bremsstrahlung and double-
Compton scattering. The influence of both processes is
discussed in the next section.

We shall use the value µinj obtained in this section as
initial condition for the numerical solution of the Boltz-
mann equation discussed below.

B. Photon-matter interaction

When the universe is more than a few minutes old, the
coupling of CMB photons and matter is basically due
to three processes: Compton scattering, double Comp-
ton scattering and bremsstrahlung. If these processes
are no longer very efficient, the spectrum can be dis-
torted. Especially, if double Compton scattering and
bremsstrahlung become weak, the photon number can
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no longer be changed and energy injection into the CMB
leads to a chemical potential. With this in mind, we
parameterize a general distorted spectrum by a Bose-
Einstein distribution with a frequency-dependent dimen-
sionless chemical potential µ(x, t),

n(x, t) =
1

exp(x + µ(x, t)) − 1
, (14)

where x = hν/Te is the dimensionless photon frequency.
The collision terms in the Boltzmann equation for the
three relevant processes (Compton scattering, double-
Compton scattering and bremsstrahlung) are studied in
[11]. The Boltzmann equation is given by

∂n

∂t
=

1

tγe

Te

me

1

x2

∂

∂x

(

∂n

∂x
+ n + n2

)

+
Qg(x)

tγe

1

exx3
[1 − n (ex − 1)]

+ [1 − θ(x − 1)]
1

tγe

4α

3π

(

Te

me

)2
1

x3

× [1 − n (ex − 1)]

∫

dxx4(1 + n)n

− ex+µinj

(ex+µinj − 1)2
dµinj

dt
. (15)

The first term describes Compton scattering, the sec-
ond bremsstrahlung, the third term double Compton
scattering and the fourth is the injection term given
by the solution of Eq. (13). We have introduced the
Heaviside function θ in the double-Compton scattering
term, to take into account that it is active only for
x < 1. The constant tγe = (neσT )−1 is the Thom-

son scattering time, Q = 2
√

2π(me/Te)
1/2αnBT−3

e ≃
1.7 × 10−10(MeV/T )1/2(T/Te)

7/2ΩBh2 and g(x) is the
Gaunt factor. More details on the collision terms can be
found in Refs. [5, 11] or [12].

Since we expect a small value of the chemical potential,
we can expand this equation to first order in µ.

n(x, t) ≈ n0(x, t) + µ(x, t)
∂n0

∂µ
(x, t)

=
1

ex − 1
− µ(x, t)

ex

(ex − 1)2
. (16)

The zeroth order is the equilibrium distribution, and
the first order in µ describes the spectral distortion.
The kinetic equations for the three relevant processes
(Compton scattering, double Compton scattering and
bremsstrahlung) [11], then becomes a linear equation for

the evolution of the chemical potential (µ′ = ∂µ/∂x),

− ex

(ex − 1)2
∂

∂t
µ(x, t) =

2

tγe

Te

me

xe2x

(ex − 1)4
×

[(4 − 4 coshx + x sinh x)µ′(x, t) −x(cosh x − 1)µ′′(x, t)]

+
Qg(x)

tγe

1

x3(ex − 1)
µ(x, t)

+ [1 − θ(x − 1)]
1

tγe

16π3α

45

(

Te

me

)2
ex

x3(ex − 1)
µ(x, t)

− ex

(ex − 1)
2

dµinj

dt
.

(17)

We have solved both systems of equations numerically
and find consistent results. When interested in values
µ ∼ 10−5, we start at tin = 105 sec, but when we want
to detect chemical potentials on the level of µ ∼ 10−6 we
have to start at tin = 104 sec.

C. Time evolution of the frequency-dependent

chemical potential

As shown in Ref. [12], energy injected at a redshift
higher than z ∼ 107, corresponding to a time t . 105 sec
is fully thermalized. Furthermore, at decoupling time
tdec ≈ 1013 sec, the CMB spectrum is frozen in and does
not evolve anymore apart from redshifting the photon
momenta. However, as shown in Fig. 2, the photon-
creating processes are unable to reduce a chemical po-
tential already as early as t & 108 sec, much before re-
combination.

We see from the top panel of Fig. 2 that, compared
to the chemical potential of a Bose-Einstein spectrum
(dashed blue line), double-Compton and bremsstrahlung
significantly reduce the magnitude of the distortions from
a blackbody spectrum: the chemical potential at late
times has been reduced from 7.4×10−5 to 4.3×10−5. The
bottom panel of Fig. 2 shows the frequency dependence of
µ evaluated at different times. The high-frequency range
is dominated by Compton scattering. The chemical po-
tential is constant above x & 1, describing a true Bose-
Einstein spectrum. The low-energy spectrum is domi-
nated by the photon-creating processes which can destroy
the chemical potential and lead to a Planck spectrum be-
low x . 4 × 10−3 at recombination time.

It is clear that the later the energy injection, or equiv-
alently the later the staus decay, the weaker are the
photon-creating processes which would reduce the distor-
tions. However, it should be kept in mind that our equa-
tions are valid only if Compton scattering can achieve
a Bose-Einstein spectrum. By requiring that Compton
scattering be well active during stau decays, we can put
an upper limit on the stau lifetime. Following the anal-
ysis of [12], a given spectrum can only relax to a Bose-
Einstein spectrum before tBE ≃ 109 sec. Therefore, the
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FIG. 2: Solution of the full kinetic equation (15) for mτ̃ = 200
GeV and mG̃ = 50 GeV, corresponding to τNLSP ≈ 6×106 sec.
Top: The dashed (blue) line represents the chemical potential
given by Eq. (13), the solid (red) line is the solution of Eq. (15)
evaluated at x = 3. Bottom: Chemical potential as a function
of x given by Eq. (15) evaluated at t = 5 × 106 sec (dotted
blue line), t = 107 sec (dashed green line) and t = tdec (solid
red line).

accuracy of a solution of Eq. (15) for a stau lifetime longer
than τNLSP ∼ 5 × 108 sec becomes questionable and un-
trustworthy for τNLSP & 109 sec.

On the other hand, after freeze-out of Compton scat-
tering, the injected energy resulting from stau decays
cannot be scattered downward in frequency. But there
are several other processes that could leave an imprint
on the measurable CMB spectrum. For example, pho-
tons produced during stau decays have an energy much
greater than the electron mass and can create electron-
positron pairs through the process γ + γ → e+ + e−.
The rate of this process has a typical value of ΓDP ≈ 103

sec−1, provided Eγ & m2
e/22T [13]. Compared to the

Hubble rate H = 1/2t, we see that this process plays
an important role in heating up the electrons. However,
the raise of the electron temperature does no longer af-
fect the CMB spectrum when Compton scattering has
already frozen out.

We have also analyzed the fact that the true electron
temperature Te,true is not the same as the electron tem-
perature Te obtained by solving Eq. (13) due to the influ-

ence of bremsstrahlung and double-Compton scattering
which reduce the chemical potential from the value µinj.
Given the chemical potential µ at recombination time,
we can calculate Te by inserting µ into one of the equa-
tions of the system (13). We have found that Te,true only
differs from Te by ∼ 10−4, and that changing the electron
temperature in Eq. (15) by such small amounts has no
effect. (This is not so surprising, as the effect is of second
order.)
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FIG. 3: Excluded and allowed regions in the (mNLSP, mLSP)
parameter space. The light shaded region in the upper part
of the graphs, labeled ’G̃ not LSP’, (yellow) is not considered
since in this part of parameter space mNLSP < mLSP. The
shaded region in the right upper corner, labeled ’ΩG̃’, (green)
is excluded by the over-closure constraint ΩG̃h2<

∼
0.14. The

dark shaded region on the left, labeled ’LEP data’ (red) is
forbidden by LEP measurements [19]. The dashed line cor-
responds to ΩG̃h2 = 0.12, the best fit value for the cold
dark matter density from the WMAP experiment [9]. The
dark shaded region in the middle (magenta) is forbidden for a
chemical potential limit of µ < 9 × 10−5 (top) and µ < 10−5

(bottom). The approximation of Ref. [5] excludes the entire
region above the solid line.
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FIG. 4: Excluded and allowed regions in the (mNLSP, τ ) plane.
The dashed line corresponds to ΩG̃h2 = 0.12, the best fit
value for the cold dark matter density from the WMAP ex-
periment [9]. The regions are labeled as in Fig. 3. In the top
panel the limit on the chemical potential is µ < 9×10−5 while
we require µ < 10−5 in the bottom panel. The approximation
of Ref. [5] excludes the entire region above the solid line.

IV. CMB CONSTRAINTS ON THE STAU AND

GRAVITINO MASSES

The FIRAS instrument aboard the COBE satellite has
measured a temperature T0 = 2.725 ± 0.001 Kelvin [14],
and it was able to give an upper bound for the chem-
ical potential [1, 15], |µ| < 9 × 10−5. This bound
comes from measurements in the frequency range from
2 to 600 GHz, corresponding to x = hν/T0 ∈ [0.03, 10].
There are also some measurements at lower frequen-
cies, but their accuracy is worse, leading to a lower
bound on µ which is by at least an order of magnitude
higher. To obtain good accuracy in the measured inter-
val, we numerically compute the chemical potential for
x ∈ [10−4, 15]. We require that the chemical potential
be never higher than 9 × 10−5 within the experimental

range x ∈ [0.03, 10]. Outside that range, µ may be larger
(experiments do not rule out deviations outside the fre-
quency range [0.5 GHz, 600 GHz]).

A point in the (mNLSP, mLSP)-plane is considered to
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FIG. 5: Excluded and allowed regions in the (mNLSP, mLSP)
plane for different values of the parameter ǫ and a chemical
potential µ = 9 × 10−5. The labeled regions are as in Fig. 3.
The lower solid (blue) line represents the case ǫ = 1, the
dashed (red) line ǫ = 0.8 and the dotted (black) line ǫ = 0.3.
The upper solid line denotes the limit on the lifetime, τ >

109sec above which the CMB spectrum is not modified.

satisfy the CMB observational bound if the magnitude of
the chemical potential never trespasses the limit 9×10−5

within and only within the frequency range [0.03, 10].
Due to the limitations explained in the previous section,
not every point in the (mNLSP, mLSP)-plane can be cal-
culated, but we expect the chemical potential to be much
smaller than the experimental limit for points where our
calculation cannot be trusted.

An estimate of the chemical potential caused by an in-
stantaneous energy injection is given in [5]. It is shown as
a solid line in Figs. 3 to 6. This approximation is not very
precise for small distortions. While it is in good agree-
ment with our results for staus heavier than 500 GeV,
it does not take account of the fact that light staus do
not inject enough energy to significantly distort the spec-
trum. As shown in the upper panel of Fig. 3, the bound
on the gravitino mass disappears for staus lighter than
≈ 100 GeV. Moreover, due to the freeze-out of Compton
scattering, we have introduced a limit on the gravitino
masses corresponding to a stau lifetime 109 sec. All grav-
itino masses leading to longer stau lifetimes are allowed.

Our results match quite well with the approximation
given in [5] for µ < 10−5, as shown in the bottom panel
of Fig. 3. We find the same limit for light staus and a
somewhat more stringent limit for heavy staus. However,
when compared to the stau lifetime (see the bottom panel
of Fig.4), our numerical results give a limit on the lifetime
that is up to five times shorter than the one obtained by
using the approximation.

As mentioned in Sec. III A, the injected energy depends
on the energy going into neutrinos. This is described by
the parameter ǫ. Contrary to what is claimed in [3],
our results depend significantly on this parameter. We
considered the two extreme cases ǫ = 0.3 and ǫ = 1
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and the usual case ǫ = 0.8 (Fig. 5). The case ǫ = 0.3
is much less constraining than ǫ = 0.8, even completely
disappearing for staus lighter than 140 GeV. On the other
hand, the cases ǫ = 1 and ǫ = 0.8 match well down to
mτ̃ ≃ 200GeV below which the former becomes more
stringent.

Future missions like the Absolute Radiometer
for Cosmology, Astrophysics Diffuse Emission (AR-
CADE) [16, 17] or the Diffuse Microwave Emission Sur-
vey (DIMES) [6] experiments may improve sensitivities
in the poorly studied centimeter-wavelength band, im-
proving the limit on the chemical potential to about
|µ| < 2× 10−6. In our model, if neither DIMES nor AR-
CADE is able to measure distortions of the CMB, grav-
itinos could only contribute to the missing dark matter if
τNLSP & 109 sec or τNLSP . 2×105 sec (see Fig. 6). How-
ever, combining our results with other constraints [18],
we find that gravitinos could not significantly contribute
to the dark matter for such a bound.
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FIG. 6: Excluded and allowed regions in the (mNLSP, mLSP)
plane (top panel) and in the (mNLSP, τ ) plane (bottom panel)
for a limit on the chemical potential of µ < 2 × 10−6. The
labeled regions are like in Fig. 3.

V. SUMMARY

We have studied the effect on the CMB from stau
NLSP decays into gravitino LSPs, assuming that the
staus freeze out with their thermal relic density. We
have numerically solved the kinetic equation for the pho-
ton number density with non-instantaneous energy in-
jection. We have found that our numerical results are in
good accordance with the analytical approximation [5]
for the induced chemical potential µ < 9 × 10−5 if the
stau is heavier than 500GeV, but differs considerably for
lighter stau masses. For light staus the constraints are
weaker and even disappear for mτ̃ < 100GeV. On the
other hand, the approximation underestimates the limits
for stronger constraints given by µ < 10−5 or even more
for µ < 2 × 10−6. This limit, which could be achieved
in planned experiments [6, 16], together with other con-
traints [18] would completely exclude the gravitino as
dark matter candidate in models with gravity-mediated
supersymmetry breaking. However, allowing a gravitino
production after reheating leads to less stringent con-
straints than our results. We also found that the results
depend sensitively on the energy injection parameter ǫ.
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