
Microwave Background Anisotropiesfrom Scaling Seed PerturbationsRuth Durrer and Mairi SakellariadouD�epartement de Physique Th�eoriqueUniversit�e de Gen�eve24 quai Ernest Ansermet, CH-1211 Gen�eve 4, SwitzerlandAbstractWe study microwave background anisotropies induced by scaling seed pertur-bations in a universe dominated by cold dark matter. Using a gauge invariantlinear perturbation analysis, we solve the perturbation equations on super-horizon scales, for CMB anisotropies triggered by generic gravitational seeds.We �nd that perturbations induced by seeds | under very mild restrictions |are nearly isocurvature. Thus, compensation, which is mainly the consequenceof physically sensible initial conditions, is very generic.We then restrict our study to the case of scaling sources, motivated byglobal scalar �elds. We parameterize the energy momentum tensor of thesource by \seed functions" and calculate the Sachs-Wolfe and acoustic contri-butions to the CMB anisotropies. We discuss the dependence of the anisotropyspectrum on the parameters of the model considered. Even within the re-stricted class of models investigated in this work, we �nd a surprising varietyof results for the position and height of the �rst acoustic peak as well as forthe overall amplitude. In particular, for certain choices of parameters, thespectrum resembles very much the well known adiabatic inationary spec-trum, whereas for others, the position of the �rst acoustic peak is signi�cantlyshifted towards smaller angular scales.
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1 IntroductionThe origin of the large scale structure in the universe, is clearly one of the mostimportant open questions in cosmology. Within the framework of gravitational in-stability, there are two currently investigated families of models to explain the for-mation of the observed structure. Initial density perturbations can either be due to\freezing in" of quantum uctuations of a scalar �eld during an inationary period[1], or they may be seeded by topological defects, which can form naturally during1



a symmetry breaking phase transition in the early universe [2]. Inationary uc-tuations are produced at a very early stage of the evolution of the universe, andare driven far beyond the Hubble radius by inationary expansion. Subsequently,they are not altered anymore and evolve freely according to homogeneous linearperturbation equations until late times. These uctuations are termed \passive"and \coherent" [3]. \Passive", since no new perturbations are created after ina-tion; \coherent" since randomness only enters the creation of perturbations duringination, subsequently they evolve in a deterministic and coherent manner.On the other hand, in models with topological defects or other types of seeds,uctuations are generated continuously and evolve according to inhomogeneous lin-ear perturbation equations. The seeds are any non{uniformly distributed form ofenergy, which contributes only a small fraction to the total energy density of theuniverse and which interacts with the cosmic uid only gravitationally. We will beparticularly interested in the case of global topological defects, playing the role ofseeds. The energy momentum tensor of the seed is determined by the defect (seed)evolution which, in general, is a non-linear process. These perturbations are called\active" and \incoherent" [3]. \Active" since new uid perturbations are inducedcontinuously due to the presence of the seeds; \incoherent" since the randomnessof the non-linear seed evolution which sources the perturbations can destroy thecoherence of uctuations in the cosmic uid.The cosmic microwave background (CMB) anisotropies provide a link betweentheoretical predictions and observational data, which may allow us to distinguishbetween inationary models and defect scenarios, by purely linear analysis. Onlarge angular scales, both families of models predict an approximately scale-invariantHarrison-Zel'dovich spectrum [4, 5]. Although, perturbations from defect modelsare non-Gaussian, this signature is probably rather weak, especially on large scales,where cosmic variance is substantial, and its observation might be quite di�cult.Acoustic peaks have been extensively studied in inationary models, where obser-vations of amplitude and position of the peaks can be used to determine cosmologicalparameters [6]. Some studies of simpli�ed models where perturbations are seededby topological defects, have already appeared in the literature[7, 8].In this paper, we present a general investigation of acoustic peaks for modelswith active perturbations. We estimate the Sachs-Wolfe and acoustic contributions.Our \seed functions", which determine the energy momentum tensor of the sourceare motivated from 3d numerical simulations of �3 defects, textures [9, 10], in auniverse dominated by cold dark matter (CDM). We restrict ourselves to scalarperturbations.In section 2, we study CMB anisotropies triggered by generic gravitational seeds.In particular, we present the equation for the coe�cients C` and discuss the Sachs-Wolfe contribution, the acoustic peaks and Silk damping. We solve the perturbationequations for super-horizon scales. Studying the Bardeen potentials 	 and �, whichdescribe the scalar geometry perturbations, we �nd that compensation is automat-ically obtained, i.e., that perturbations are nearly isocurvature. In section 3, werestrict our investigation to the case of global scalar �elds, for which we deducethe power spectra of the seed functions from numerical simulations and analyticalscaling arguments. The results obtained there apply for general scaling sources. Insection 4, we present some numerical examples and discuss how the characteristics ofthe acoustic peaks depend on the model. We summarize our conclusions in section5. Notation: The Friedmann metric is given by a2(�dt2 + ijdxidxj), where adenotes the scale factor, t is conformal time and  is the metric of a three spacewith constant curvature K. We shall consider a universe dominated by cold darkmatter and discuss the case K = 0 exclusively. An over-dot stands for derivativewith respect to conformal time t, while prime denotes the derivative with respect tokt � x. Subscripts (or superscripts) r ((r)) and c ((c)) indicate the baryon-radiation2



plasma and CDM, respectively.2 CMB anisotropies from seedsThe coe�cients C` represent the angular power spectrum of CMB anisotropies. Theycan be given in terms of the expansion of the angular correlation functionh�TT (n)�TT (n0)i ��� (n�n0=cos#) = 14� X̀(2`+ 1)C`P`(cos#) :We want to investigate these coe�cients in models where the uctuations are inducedby seeds. We restrict ourselves to scalar perturbations, but this analysis is easilyextended to include vector and tensor contributions.If we neglect Silk damping in a �rst step and integrate the photon geodesics inthe perturbed metric, gauge invariant linear perturbation analysis leads to [11, 12]�TT (x;n) = ��14D(r)g (x)� Vj(x)nj � (	� �)(x)�fi+ Z fi ( _	� _�)(x0; t0)d� ; (1)where over-dot denotes derivative with respect to conformal time t. � and 	 are theBardeen potentials, quantities describing the perturbations in the geometry, V is thepeculiar velocity of the baryon uid with respect to the overall Friedmann expansionand D(r)g speci�es the intrinsic density uctuation in the radiation uid. There areseveral gauge invariant variables which describe density uctuations; they all di�ersubstantially on super-horizon scales but coincide inside the horizon. Dg correspondsto the density uctuation in the so-called \at slicing", where the perturbation of the3-dimensional Riemann scalar vanishes. The initial time is the time of decoupling,tdec of baryons and radiation, which occured at a redshift of zdec � 1100.The �nal time values in the square bracket of Eq. (1) give rise only to monopolecontributions and the dipole due to our motion with respect to the CMB and aredisregarded in the following. Taking the Fourier transform of Eq. (1), we thenobtain�TT (k;n) = ei(k�n)t0 [14D(r)g (k; tdec) +V(k; tdec) � n + (	� �)(k; tdec)+ Z t0tdec( _	� _�)(k; t)e�i(k�n)tdt] : (2)The �rst term in Eq. (2) describes the intrinsic inhomogeneities on the surface ofthe last scattering due to acoustic oscillations prior to decoupling. It also containscontributions to the geometrical perturbations [7]. The second term describes therelative motions of emitter and observer. This is the Doppler contribution to theCMB anisotropies. It appears on the same angular scale as the acoustic term and wedenote the sum of the acoustic and Doppler contributions by \acoustic peaks". Thelast two terms are due to the inhomogeneities in the spacetime geometry; the �rstcontribution determines the change in the photon energy due to the di�erence of thegravitational potential at the position of emitter and observer. Together with thepart contained in D(r)g they represent the \ordinary" Sachs-Wolfe e�ect. The second3



term accounts for red-shifting or blue-shifting caused by the time dependence ofthe gravitational �eld along the path of the photon (Integrated Sachs-Wolfe (ISW)e�ect). The sum of the two terms is the full Sachs-Wolfe contribution (SW).On angular scales 0:1� <� � <� 2�, the main contribution to the CMB anisotropiescomes from the acoustic peaks, while the SW e�ect is dominant on large angularscales. For topological defects, the gravitational contribution is mainly due to theISW. The \ordinary" Sachs Wolfe term even has the wrong spectrum, a white noisespectrum instead of Harrison{Zel'dovich [10].From Eq. (2) the C`'s are found to beC` = 2� Z < j�`(k)j2i(2`+ 1)2 k2dk ; (3)with �`2`+ 1 = j`(kt0) �14D(r)g (k; tdec) + (	� �)(k; tdec)�� j 0̀(kt0)Vr(k; tdec)+ Z t0tdec( _	� _�)(k; t0)j`(k(t0 � t0))dt0= 14D(r)g (k; tdec)j`(kt0)� j 0̀(kt0)Vr(k; tdec)+k Z t0tdec(	� �)(k; t0)j 0̀(k(t0 � t0))dt0 ; (4)j` denotes the spherical Bessel function of order ` and j 0̀ stands for its derivativewith respect to the argument.On scales smaller than about 0:1o, the anisotropies are damped due to the �-nite thickness of the recombination shell, as well as by photon di�usion during re-combination (Silk damping). Baryons and photons are very tightly coupled beforerecombination and oscillate as one component uid. During the process of decou-pling, photons slowly di�use out of over-dense into under-dense regions. To fullyaccount for this process, one has to solve the Boltzmann equation (see, e.g. [12]). Areasonable approximation can however be achieved by multiplying the �` with anexponential damping envelope D(k) which is given in Ref. [13].We now discuss the calculation of the C`'s for perturbations with seeds. Sincethe background contribution of the energy momentum tensor of the seeds vanishes,its components ��� are gauge invariant perturbation variables. They can be de-composed into scalar, vector and tensor contributions. Here we restrict ourselvesto scalar perturbations. We express the scalar degrees of freedom of ��� in termsof the gauge invariant perturbation variables f�; fp; fv; f�, which parameterize theenergy density, pressure, scalar velocity potential and anisotropic stress potential ofseeds, respectively (see [11, 12]).�00 = M2f� (5)�(s)i0 = M2fv;i (6)�(s)ij = M2[ffp � (1=3)�f�gij + f�;ij] ; (7)where � denotes the Laplacian with respect to the metric  of the three space andM is a typical \mass", energy scale, of the seeds. The superscript (s) indicatesthat only the scalar contribution to �i0 and �ij is obtained in this way. Numericalsimulations show that the vector and tensor perturbations make up about 20% of4



the energy momentum tensor on super{horizon scales [10]. Since we assume that theseeds interact with other matter components only gravitationally, the seed functionssatisfy the following covariant conservation equations [12]_f� ��fv + (_a=a)(f� + 3fp) = 0 (8)_fv + 2( _a=a)fv � fp � (2=3)�f� = 0 : (9)We consider the matter content of the universe as a two-uid system: thebaryons+radiation plasma, which prior to recombination is tightly coupled, andcold dark matter (CDM). Before recombination, the evolution of the perturbationvariables in a spatially at background, 
 = 1, is described by [14]_D(r)g � 3(c2r � wr) _aaD(r)g + kVr(1 + wr) = 0 (10)_D(c)g + kVc = 0 (11)_Vr + (1� 3c2r) _aaVr � k(	� 3c2r�)� k c2r(1 + wr)D(r)g = 0 (12)_Vc + _aaVc � k	 = 0 ; (13)where subscripts r, c (superscript (r), (c)) denote the baryon-radiation plasma andCDM, respectively; D and V are density and velocity perturbations; w = pr=�r,c2s = _pr= _�r and � = �r+�c. The geometrical perturbations 	 and � can be separatedinto a part coming from standard matter and radiation (subscript m), and a partdue to the seeds (subscript s).	 = 	m +	s (14)� = �m + �s ; (15)where 	s and �s are determined by the energy momentum tensor of the seeds. We�nd [12]�m = 4�Ga2k2 [�rD(r)g + �cD(c)g � 3f�r(1 + wr) + �cg�+3 _aak�1f�r(1 + wr)Vr + �cVcg] (16)	m = ��m (17)�s = �k�2[f� + 3 _aafv] (18)	s = ��s � 2�f� ; (19)where � � 4�GM2. This parameter has to be small to validate cosmological pertur-bation theory. In other words, the mass M has to be signi�cantly smaller than thePlanck mass. For global scalar �elds, it actually turns out that the typical amplitudeof geometrical perturbations is of the order of �, so that the COBE normalizationrequires M � 1016GeV. In this work, we neglect the contribution of neutrino uc-tuations. Anisotropic stresses in the matter components are explicitly set to zero,�m � 0, which implies Eq. (17). The anisotropic stresses in the source, f�, cantherefore not be compensated. 5



To solve the above system of equations, we need to specify initial conditions. Fora given scale k, we choose the initial time tin early enough, such that the perturba-tions are super-horizon and the universe is radiation dominated at tin. We set x = ktand denote by a prime the derivative w.r.t x. The super-horizon limit is thus thelimit x � 1. Choosing (x; k) as independent variables, the perturbation equationsreduce in this limit toD(r)0g + 43Vr = 0 (20)D(c)0g + Vc = 0 (21)V 0r + (��	)� 14D(r)g = 0 (22)V 0c + Vc=x�	 = 0 (23)	m + �m = 0 (24)�s = �k�2(f� + 3fv=t) (25)� = x26 �s + Vr=x (26)	 + � = 2�f� : (27)If f�, fv and f� are di�erentiable in the vicinity of x = 0, we can solve the abovesystem exactly. We take the derivative of Eq. (20) and replace V 0r with Eq. (22).Using Eqs. (26, 27, 25) we then �ndD(r)00g + 2xD(r)0g = �(2f� + x23k2 f� + xkfv) : (28)Di�erentiability now guarantees that the source term on the right hand side of Eq.(28) is given by �A(k)x� + higher orders. We then obtain to lowest order in xD(r)g = �A(k)(� + 2)(�+ 3)x�+2 (29)Vr = � 3�A(k)4(� + 3)x�+1 (30)��	 = 3�A(k)(� + 1)4(� + 3) x� : (31)On the other hand, the seed perturbations are of the order of�s ; 	s / �A(k)x��2 � � ; 	 ; (32)if f� <� (x2=3k2)f� + (x=k)fv. For scaling sources, we shall see that these two termsare of the same order of magnitude. In other words, � � �s and, if f� is notextremely large, 	 � 	s on super-horizon scales. The main reason for this �nd-ing certainly lies in choosing the correct initial conditions which have to vanish inthe absence of sources. We could always add a homogeneous contribution to D(r)gwhich would destroy this behaviour. We consider this choice of initial conditionsas the most natural way to obtain compensation: the presence of matter and radi-ation reduces the Bardeen potentials on super-horizon scales by a factor x2. Onlythe contribution � + 	 = �2�f�, which is due to anisotropic stresses, cannot becompensated by matter and radiation. If f� 6= 0, there is compensation providedf� � max(f�t2 ; fvt). 6



We therefore conclude that seeds, which are uncorrelated on super-horizon scales,are compensated by the presence of matter and radiation, where we de�ne compen-sation as the suppression of the total Bardeen potentials by a factor x2 with respectto �s;	s. In this sense, the type of seed perturbations discussed here are nearlyisocurvature uctuations.Within the context of scaling sources (seed functions with white noise spectra),the basic ingredient which leads to compensation, is not the absence of perturbationson very large scales or on very early times, but the fact that we only consider theparticular solution of the second order di�erential equation for the perturbationvariable D(r)g . Clearly, a homogeneous contribution to D(r)g can destroy this �nding.In our case, perturbations are induced by the presence of the seeds, and thereforethese initial conditions are the most physical ones.This result is important, since compensation has usually been understood eitheras a consequence of the integral constraint [15, 16, 3] or as a consequence of causalityof the source perturbations[17]. In our work compensation arises naturally for scalingsources and it can be generalized to sources with arbitrary spectra which satisfyf� � max(f�t2 ; fvt) : (33)Clearly for � = 0, which is the most natural assumption for non-relativistic cosmicuids, f� has to be small since it cannot be compensated, �;	 >� O(�f�). If f� islarger than the limit given in Eq. (33), then � 6= 0 is a necessary but not su�cientcondition for compensation to occur. We know of one example, namely relativisticcollisionless particles, where compensation can take place for certain choices of f�,due to the presence of anisotropic stresses � (see appendix). Collisionless particlesare special in that they interact with each other and with the seeds only throughgravity. In general, if particle interactions other than gravity determine �, we donot expect compensation, since by de�nition the seeds interact with the cosmic uidonly through gravity.3 CMB anisotropies induced by scaling sourcesWe now restrict our study to scaling seeds. We �rst discuss as motivating exampleglobal scalar �elds which, depending on their number of degrees of freedom, canlead to global topological defects during a symmetry breaking phase transition inthe early universe [2]. We shall, however, only make use of the general behaviour ofthe seed functions f� which we call \scaling". In the absence of any intrinsic lengthscale other than the cosmic horizon, this is the behaviour which the seed functionsassume by dimensional reasons.We consider an N -component scalar �eld with potential V = �(�2� �2)2. In the�-model approximation, the equation of motion for � can be expressed solely in thedimensionless variable � = �=� [10]. In terms of � the energy momentum tensor ofthe scalar �eld is given by��� = �2 ��;��;� � 12g��� ;�;�� : (34)De�ning M2 � �2, the functions f� result inf�(k) = 12F h _�2 + (r�)2)i 7



fp(k) = 12F � _�2 � 13(r�)2)�fv(k) = � ik2kjF h _��;j if�(k) = � 32k4kikjF ��;i �;j�13�ij(r�)2� ; (35)where F [g] denotes the Fourier transform of g, de�ned by g(k) = V �1=2 R eikxg(x)d3x.In what follows, the Fourier transform of the seed functions F [f�], will be denotedsimply by f�.On super-horizon scales � and _� are assigned random initial values, so they havewhite noise spectra initially. r� clearly has a k2-spectrum. However, using theconvolution theorem one �nds that (r�)2 has a white noise spectrum. Therefore,both f� and fp have white noise spectra on super-horizon scales. From the aboveexpressions for fv we �ndfv = (2�)3kjpV k2 Z d3q _�(q)�(q� k)(q � k)j :Expanding this expression in lowest order in k using that � and _� have whitenoise spectra, we �nd that the term of order k0 in the integral vanishes and thelowest order contribution to the integral is linear in kj, so that fv also has a whitenoise spectrum on super-horizon scales. By similar arguments one can deduce thatf� has a white noise spectrum on super-horizon scales.The dimensions of f� and fp in physical space are (length)�2, therefore in k-space,f� and fp have dimensions (length)�1=2. Since on super-horizon scales (kt� 1), thesefunctions have white noise spectra, they must behave as 1=pt. The correspondingarguments lead to a super-horizon behaviour for fv / pt and f� / t3=2. So thepower spectra of the seed functions behave likehjf�j2i = A21 t�1 F1(x)hjfpj2i = A22 t�1 F2(x)hjfvj2i = A23 t F3(x)hjf�j2i = A24 t3 F4(x) ; (36)where we choose the dimensionless constants Ai to be positive and such that Fi(0) =1. The power spectra of the functions f� do not depend on the direction of k, thusthe Fi's are even functions of x = kt. Furthermore, since the energy momentumtensor of the source decays inside the horizon, we know that Fi ! 0 for x ! 1.This behaviour of f�, fp and fv has also been found by numerical simulations.The temporal behaviour of f� and fp can also be understood from the followingargument: the k = 0 component of f� just corresponds to the average energy densitymultiplied by pV and is thus proportional to V 1=2=t2. On super-horizon scales, f�(k)is white noise superimposed on this average. The number N of independent patchesin V is V=t3 and hence the amplitude of f�(k) is proportional to V �1=2=(t2N�1=2) /t�1=2. The same arguments hold for fp. From numerical simulations [10] for �3defects, global textures, one �nds that the average of _�2 over a shell of radius k canbe modeled on super-horizon scales byhj _�2j2i(k; t) � 2t : (37)8



We de�ne a seed to be scaling if the power spectra of the seed functions behaveas in Eq. (36). We expect this scaling behaviour to be valid not only for global scalar�elds, but also for (local) cosmic strings. However, since the only decay mechanismfor cosmic strings is through emission of gravitational radiation, we expect the func-tions Fi to decay slower on sub-horizon scales, than in the case of global �elds, whichdecay very e�ciently into Goldstone bosons.The system given by Eq. (20) to (27) can be solved analytically if the stochasticvariables f� are replaced by the square root of their power spectra. The resultsare thus to be taken with a grain of salt. But we believe that the r.h.s. of thefollowing equations are good approximations to the square roots of the power spectraof the corresponding stochastic variables on the l.h.s., since, as we argue below, thiscoherence assumption does not signi�cantly inuence the results on super{horizonscales. Inserting the square roots of Eqs. (36) in the system (20) to (27), one �ndsin the limit x� 1�s = �(A1 + 3A3)k�3=2x�1=2 (38)	s = ��(A1 + 3A3 + 2A4x2)k�3=2x�1=2 (39)D(r)g = 16189�(2A4 + 13A1 + A3)k�3=2x7=2 (40)D(c)g = 263�(4A4 + 521A1 + 57A3)k�3=2x7=2 (41)Vr = �29�(13A1 + A3 + 2A4)k�3=2x5=2 (42)Vc = � �63(28A4 + 53A1 + 5A3)k�3=2x5=2 (43)� = 16x2�s + Vrx (44)	 = ��� 2�A4k�3=2x3=2 : (45)We use these results as initial conditions for the system (10) to (19). Eqs. (40) and(41) show, that the perturbations are in general non-adiabatic.Due to the conservation equations (8) and (9), the constants Ai are not inde-pendent. Taking the sum of the ensemble averages of the conservation equation Eq.(8) multiplied by f ?� (the complex conjugate of f�), and its complex conjugate, weobtainddthjf�j2i+ k2hf ?�fv + f�f ?v i+ 2 _aahjf�j2i+3 _aahf ?�fp + f�f ?p i = 0: (46)Let us discuss the above equation on super-horizon scales where we can neglect thesecond term. Since (d=dt)hjf�j2i = �hjf�j2i=t, we �nd that the real part of hf ?�fpi isnegative. Furthermore, Schwarz inequality leads tojA2j � 16 jA1j in the radiation era, and jA2j � 14 jA1j in the matter era. (47)Similarly, from Eq. (9) we conclude that the real part of hf ?v fpi is positive andjA2j � 52 jA3j in the radiation era, and jA2j � 92 jA3j in the matter era. (48)9



The equality sign is valid, if and only ifhf ?�fp + f�f ?p i = �2qhjf�j2ihjfpj2i :We call this condition, which requires that f� and fp are in perfect phase correlation\perfect coherence" between f� and fp. On super-horizon scales the spectrum of k2fvis much smaller than the spectrum of f�=t; and thus k2fvhhf�=t, almost everywherein the space of realizations. Hence, on super{horizon scales energy conservation (Eq.8) yieldsf�(t) = a(tin)a(t) f�(tin)� 3a(t) Z ttin _a(t0)fp(t0)dt0 :The question of coherence between f� and fp is thus reduced to the question ofunequal time coherence of fp and f� themselves. Similarly, the coherence between fvand fp reduces to the unequal time coherence of each of these functions. We believethat for scaling sources, unequal time coherence is reasonably well maintained onsuper-horizon scales and therefore the equal signs in Eqs. (47) and (48) are probablyvalid on su�ciently large scales. Numerical simulations for global scalar �elds andthe large N limit (see [18]) support this hypothesis.We now address the e�ect of unequal time coherence, hfi(t)fj(t0)i, on the resultingpower spectrum C`. To simplify the relevant equations, we neglect here the shortmatter dominated period before decoupling and we also neglect baryons, such thatc2r = wr = 1=3. The dynamical components during the tight coupling epoch are thusreduced to radiation and seeds. A WKB solution of the evolution equations thengives D(r)g (k; x) = 4p3 Z x0 dx0[�(x0)� 	(x0)] sin((x� x0)=p3)Vr(k; x) = � Z x0 dx0[�(x0)� 	(x0)] cos((x� x0)=p3) ; (49)where we set �(0) = 	(0) = D(r)g = 0.This actually just reformulates our simpli�ed system of equations in terms of twointegral equations, since the Bardeen potentials � and 	 are given in terms ofD(r)g ; Vr and the source functions as follows��	 = 26 + x2 (32D(r)g + 6xVr) + 2�( x2k2(6 + x2)f� + 3xk(6 + x2)fv + f�)= 26 + x2 (32D(r)g + 6xVr) + 2x26 + x2�s + 2�f� : (50)As we have seen earlier, it is a very bad approximation to replace � and 	 bythe corresponding source potentials �s and 	s, since this does not take care of thecompensation.Applying the Hu and Sugiyama formalism [6] for topological defects [3], we obtainwithin our approximation (
b = 0, purely radiation dominated)�`(k)2`+ 1 = Z xdec0 dx[�(x)�	(x)]fj`(x0 � xdec)p3 sin(xdec � xp3 )�j 0̀(x0 � xdec) cos(xdec � xp3 )g10



+[	(xdec)� �(xdec)]j`(x0 � xdec)+ Z x0xdec dx[	0(x)� �0(x)] j`(x0 � x); (51)where xdec = ktdec, x0 = kt0. The times tdec and t0 denote the time of decoupling andtoday respectively. The somewhat more involved formula which takes into accountthe presence of baryons and CDM, can be found in [3].Assuming coherence, the power spectrum C` can be calculated by squaring�`=(2` + 1) obtained from Eq. (51), where each variable is replaced by the squareroot of its power spectrum. On the other hand, for totally incoherent perturbations,one should instead use [3]C` = Z dkk3 Z xdec0 dxPr(��	)fj`(x0 � xdec)p3 sin(xdec � xp3 )�j 0̀(x0 � xdec) cos(xdec � xp3 )g2+ Z dkk2[P (	� �)(tdec)] j 2̀(x0 � xdec)+ Z dkk3[j 0̀(x0 � xdec)j`(x0 � xdec)[Pr(	� �)](xdec)]+ Z dk Z t0xdec dxk2Pr(	0 � �0)j 2̀(x0 � x) ; (52)where P (X) � hjXj2i(k; t) denotes the power spectrum of the variable X and Pr(X)is the power spectrum of X integrated over a short time period �t (see [3]).We now want to illustrate the di�erence of the two approaches in our simpli�edpure radiation model. For pure radiation we can derive the following second orderequation for D(r)g :D(r)00g + 12(6 + x2)xD(r)0g � 2� x2=36 + x2 D(r)g = 8�3 " x2k2(6 + x2)f� + 3xk(6 + x2)fv + f�#= 83(�f� + x26 + x2�s) ; (53)with general solutionD(r)g = 83� Z x0 f(x0)G(x; x0)dx0 ; (54)where f(x) � f�(x) + (x2=6�)�s= and G(x; x0) denotes the Green's functionG(x; x0) = p3x0(6 + x02)x "(12 + xx0) sin x� x0p3 !+ 2p3(x + x0) cos x� x0p3 !# :(55)The power spectrum of D(r)g is thereforehjD(r)g j2i = 649 �2 Z x0 Z x0 dx0dx00hf(x0)f ?(x00)iG(x; x0)G(x; x00) : (56)Assuming total coherence, Eq. (56) takes the formhjD(r)g j2i = [83� Z x0 dx0qhjf(x0)j2iG(x; x0)]2 : (57)11



On the other hand, assuming complete decoherence,hf(x)f ?(x0)i = �(x� x0) Z x+�xx dxhjf(x)j2i ; (58)leads to the power spectrumhjD(r)g j2i = 649 �2r Z x0 dx0hjf(x0)j2iG2(x; x0) ; (59)where we have chosen �x = rx. We further assume also complete decoherencebetween di�erent source functions,hf�fvi = hf�f�i = hfvf�i = 0 : (60)In Figs. 1a and 1b we plot jD(r)g j2k3 versus ktdec under the assumption of total coher-ence and complete decoherence respectively. The role of the coherence assumptionon the characteristics of the power spectrum is shown in Fig. 2. Clearly, completedecoherence shifts the �rst acoustic peak to smaller angular scales, and reducessubstantially its height. Furthermore, secondary peaks are completely washed out.A realistic defect model will always lay somewhere between these two extremes.We suppose however, motivated by numerical simulations of textures and the largeN limit, that the texture example is closer to the completely coherent case. In thenext section we thus restrict ourselves to perfect coherence.4 Numerical examplesIn this section we study how the characteristics of the acoustic peaks depend on thevalues of the dimensionless constants Ai and the form of the functions Fi, whichdetermine the power spectra of the seed functions (see Eq. (36)). A crucial questionis whether there is a set of parameters for which the position and amplitude of theprimary acoustic peak are similar to those predicted by an adiabatic inationarymodel.As we discussed earlier, the functions Fi are normalized such that Fi(0) = 1, andFi ! 0 for x ! 1. Numerical simulations for global textures [10] suggest that inthe case of global scalar �elds, the functions Fi have power law decay. However, forgeneric scaling sources, one could also consider the case of exponential decay. As weshall show, the form of these functions a�ects the features of the power spectrumsigni�cantly. In general, we �nd that if Fi have an exponential decay, the positionof the primary peak is within the range predicted by adiabatic inationary models,at ` � 220. On the other hand, if Fi have a power law decay, as it seems to be forglobal topological defects, the position of the �rst acoustic peak is clearly shiftedto smaller angular scales, at around ` � 300 to 400. The amplitude of uctuationsdecreases by up to a factor of 500 if we choose an exponential decay law for the seedfunctions. This is due to the fact that in this case the decay is very fast and erasesalmost all substantial seed contribution. The sensitivity of the overall amplitudeof CMB perturbations on the parameters is extremely important especially if onewants to rule out defect models with biasing arguments!In �gures 3 to 8, we show the resulting power spectra for di�erent set of dimen-sionless constants Ai, with the seed functions having either exponential or power lawdecay. The dashed line indicates the SW contribution, the dashed-dotted line is thecontribution from the acoustic peaks, and their sum is drawn as solid line.12



In Fig. 3a we choose an exponential decay for all the seed functions, Fi(x) =exp(�x2), and a set of constants A1 = 3; A3 = �0:6; A4 = 0. The position of theprimary peak is at ` � 200, while the relevant height of the �rst peak with respectto the SW plateau is � 25. Using the same set of constants Ai, however choosinga power law decay for the seed functions, Fi(x) = [1: + (1:=(2�)2)x2]�1, we see inFig. 3b that the peak is displaced to smaller angular scales, at � 330, while therelative amplitude of the acoustic peak with respect to the SW plateau remains� 25. Also the features of the secondary peaks are di�erent. While in Fig. 3a thesecond and third peaks have almost the same height, in Fig. 3b the second peak hasalmost completely disappeared. In both cases, the spectral index of the plateau, inthe range ` � 2� 20 is n � 1, consistent with observations.Now, selecting a slightly di�erent set of dimensionless constants, we see that thepredicted power spectrum is very di�erent. In Fig. 4 we show the power spectrumfor A1 = 3; A3 = �0:7; A4 = 0, and the same power law decay for the functions Fias in Fig. 3b. The primary peak is again at rather large angular scales, � 350, butthe height of the peak is di�erent, and the spectral index clearly deviates from 1.A very interesting case is displayed in Fig. 5a, where we see that both the positionand the amplitude of the �rst acoustic peak, agreed with those predicted by a genericinationary model. Here, A1 = 3; A3 = 1; A4 = 2, and Fi(x) = exp(�x2). Theprimary peak is at ` � 200 and its relative amplitude is at � 4. The secondpeak is almost completely washed out and the spectral index in the range ` �2 � 20 is very close to 1. This power spectrum, where perturbations are generatedby scaling seeds, is quite similar to one resulting from an adiabatic inationarymodel. Considering the same set of parameters and a somewhat slower exponentialdecay for the functions Fi given by Fi(x) = exp(�0:5x2), we �nd (Fig. 5b) thatboth, the position and relative amplitude of the �rst peak with respect to the SWplateau, remain the same as in Fig. 5a, whereas the Sachs Wolfe plateau is somewhatprolonged. This simple example shows that it may well be possible to \manufacture"inationary spectra by a suitable choice of seed functions. A point which has alreadybeen realized in Ref. [19]. It is thus extremely important to further constrain theseed functions of defect models by numerical simulations and/or the large N limit. Itmay well be that the requirement of power law decay of the seed functions, excludesthe inationary position of the �rst acoustic peak. With the same parameters Aiand a power law decay Fi(x) = [1 + (1=(2�)2)x2]�1, the primary peak is at ` � 320,while the relative height of the peak is about 8, Fig. 5c.We have also considered the values for the parameters Ai which are suggestedby the conservation equations and perfect coherence, choosing a power law decay,Fi(x) = [1+ (1=(2�)2)x2]�1. We �nd that the sign of A3 does not a�ect the featuresof the power spectrum. In Fig. 6a A1 = 3; A3 = �1=6; A4 = 1=(2(2�)2), while inFig. 6b A1 = 3; A3 = 1=6; A4 = 1=(2(2�)2). In both these cases, the peak is at` � 300, and its amplitude is � 8.Finally, to illustrate the variety of results which can be obtained by parametervariation within a simple family of seed functions, we show a rather extreme casein Fig. 7, where A1 = 3; A3 = �1:; A4 = 0 and Fi(x) = exp(�x2). Here we see noacoustic peaks at all. However, this is a rather particular case, since with this choiceof parameters, all the variables �s;	s; D(r)g ; D(c)g ; Vr and Vc vanish initially (see Eqs.(38) to (45)).To analyze the dependence of the characteristics of the power spectrum on theseed functions in a somewhat more systematic way, we have calculated the C`'sfor a grid of values �A1 � A3; A4 � A1 with spacing 0:2A1 and �xed functionsFi = 1=(1+(x=(2�))2). We �tted the resulting C` for 2 � ` � 20 to the simple powerlaw behaviour arising in inationary models, C` / �(`+(n�1)=2)=�(`+(5�n)=2).We �nd that for jA4j � 0:4A1, the �2 of the �t is unacceptably high: �2 � 3 to 4 for13



jA4j = 0:4A1, and more than 10 for even larger anisotropic stresses. We allow fora relative error of 0.05. However, �2 depends only weakly on the value of A3 (seeFig. 8). We therefore restrict the parameter range for A4 to �0:3A1 � A4 � 0:3A1.The spectral index is in good agreement with observations, 1 � n � 1:4 (see Figs. 9aand 9b).We �nd positions of the �rst acoustic peak in the range 260 � `peak � 520. Forthe choice of seed functions with power law decay on sub-horizon scales (which is alsoindicated from numerical simulations and from the large N limit), we never obtainthe peak at the adiabatic inationary position of � 220, and values lpeak < 300 areonly found for very small A4 (see Fig. 10).We de�ne the quantity `peak(`peak+1)C`peak=(110C10) as a measure for the heightof the acoustic peak. This quantity is very model dependent and assumes, withinthe small class of models investigated in our parameter study, all values between 0:1(for A4 = 0 and A3 = A1, i.e., virtually no discernible peak) and 11 (see Figs. 11aand 11b). For �xed A3, the peak height is a steeply raising function of jA4j. Onlyvalues jA4j < 0:1A1 lead to peak heights below 6.It is interesting to note, that also the absolute amplitude of the spectrum issensitively depending on the ratios A4=A1 and A3=A1. For A4 = 0 the amplitude110C10 varies from 0:002�2A21 for A3 = �0:2A1 to 0:8�2A21 for A3 = A1. If A4 6= 0,the amplitude does not depend very strongly on A3 and grows from � 0:4�2A21 forjA4j = 0:1A1 to � 4�2A21 for jA4j = 0:3A1 (see �g. 12). This �nding is importantfor the biasing problem of structure formation. Sometimes, defect models have beenclaimed to be ruled out, since they would not lead to large enough matter densityuctuations, if normalized to the COBE experiment on very large scales. Thisnormalization �xes the only free parameter of a given model, namely the symmetrybreaking scale and therefore �. In our work, we have seen that the Sachs Wolfeuctuations in the CMB are largely governed by A4, the amplitude of anisotropicstresses. The density uctuations in the dark matter, however, are induced by _�2alone (see, e.g. [11]), which is determined entirely by A1 and A2. Defect models,with somewhat small anisotropic stresses, e.g., A4 < 0:05A1, which are actually quitenatural, but di�cult to resolve numerically, may explain the di�erent bias factorsobtained from numerical simulations in [20, 10].5 ConclusionsIn this paper we analyzed with some generality the CMB anisotropies induced inmodels with scaling sources for an 
 = 1, cold dark matter cosmological model.Within the framework of gauge invariant perturbation theory it turns out thatcompensation is a consequence of \natural" initial conditions. By \natural" we meanthat we only consider that part of the solution induced by the source itself and donot add an arbitrary homogeneous contribution. In this case, we have found thatthe total Bardeen potentials are reduced by a factor x2 = (kt)2 with respect to thepotentials generated by the source alone. One may think at �rst sight that such aresult is unphysical, acausal, however it just reects that also the initial conditionof a perfect Friedmann universe is acausal.Even restricting ourselves to the case of scaling sources, we found that the result-ing power spectrum depends signi�cantly on the model parameters. In particular,if the seed functions decay exponentially, the position of the �rst acoustic peak is at` � 220 as in inationary models. Adjusting the amplitude of the seed functions,14



we can also obtain a peak height consistent with inationary perturbations.On the other hand, if the seed functions have a power law decay, as numericalsimulations of global textures [10] as well as the large N limit [18] indicate, theposition of the �rst peak is within the range 260 � `peak � 500. Its amplitudedepends sensitively on the parameters of the seed functions which, for a speci�cmodel, have to be determined by involved numerical simulations. In our analysis weencountered amplitudes in the range 0:1 � `peak(`peak + 1)Cpeak` =(110C10) � 25.We also found that the total amplitude of CMB anisotropies produced dependsstrongly on the amplitude of anisotropic stresses of the seed. Whereas, the sourceterm leading to CDM density uctuations is given by f� + 3fp, i.e, determined byA1 + 3A2 on large scales. Therefore, the relation between the COBE normalizationof the model and the bias factor depends sensitively on the ratio A4=(A1 + 3A2),which may depend on details of the model.These results are obtained under the assumption of perfect coherence. Thishypothesis seems reasonable for global scalar �elds as also the large N limit indicates[18]. On the other hand, assuming complete decoherence, the position of the �rstpeak is shifted to smaller angular scales, its amplitude is reduced and secondarypeaks are washed out. A realistic situation may lay somewhere between the twoextremes.The examples with power law seed functions which we discussed in this paperwere motivated by numerical simulations of global textures with vacuum manifoldS3. Apart from the scaling behaviour on very large and very small scales, whichshould be the same for all global defects, we do not know to what extend the seedfunctions depend on this particular choice.Acknowledgment It is a pleasure to thank Alejandro Gangui andMartin Kunz for helpful suggestions. We also thank Nathalie Deruelle, MaurizioGasperini and Gabriele Veneziano for stimulating discussions. This work is partiallysupported by the Swiss NSF. M.S. acknowledges �nancial support from the Tomallafoundation.
APPENDIXA Compensation for relativistic collisionless par-ticlesIn this appendix we show how compensation arises in the case of relativistic colli-sionless particles.We consider a universe dominated by massless (i.e. relativistic) collisionlessparticles, with scalar perturbations induced by seeds. We assume seeds consisting ofmassless particles conformally coupled to gravity. In this case, the time dependenceof the seed functions is given by f� / 1=a2 / 1=t2 (t denotes conformal time).The evolution of perturbations is determined by the collisionless Bolztmann equa-tion, which reads [12]@tM(�; k; t) + ik�M = ik�[�� 	](k) ; (A1)15



where k denotes the wave number and � = n � k=k; n stands for the momentumdirection of the relativistic particles. M is a gauge-invariant perturbation variablefor the energy integrated one-particle distribution function,M = �� Z p3dp�f :Using the general de�nition of the energy momentum tensor,T �� = Z d3pp0 f(p)p�p� ;we obtainDg = 2 Z 1�1Md� (A2)V = 3i2 Z 1�1M�d� (A3)� = 3 Z 1�1(1� 3�2)Md� : (A4)The gravitational perturbation equations on super-horizon scales yield� = 14Dg + Vx + 16x2�s (A5)	 = ��� 2�f� � 1x2� ; (A6)where �s = �k�2[f� + (3=t)fv]. Furthermore, the conservation equation, D0g =�(4=3)V , tells us that Dg / xV , so that we may neglect the Dg term in Eq. (A5).Inserting Eqs. (A5, A6) in Eq. (A1), we obtain@yM(y; x) + iM = i[2Vx + 13x2�s + 2�f� + �x2 ](k) ; (A7)where y = �x.For x� 1, and thus y� 1, we make the ansatz (see [21])M = x�[c1y + c2y2 +O(y3)] ; (A8)where c1; c2 and � are constants. Inserting this ansatz in Eqs. (A2), (A3) and (A4),we getDg = 43c2x�+2 (A9)V = ic1x�+1 = �(� + 2)c2x�+1 (A10)� = �85c2x�+2 ; (A11)where the second equality in Eq. (A10) is obtained from the energy conservationequation (the zeroth moment of Eq. (A1)). The �rst moment of Eq. (A1) (momen-tum conservation) implies[(� + 2)(� + 3) + 85]c2x� = 13x2�s + 2�f� : (A12)16
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Figure 1: The acoustic uctuations in the photon density spectrum are shown forthe case of perfect coherence, (top) and complete decoherence (bottom).19



Figure 2: The resulting spectrum of CMB anisotropies from the photon density per-turbations given in Fig. 1 for perfect coherence (solid line) and complete decoherence(dashed line).
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Figure 3: Here and in the subsequent �gures, the CMB anisotropies are shown inunits of �2 = (4�G�2)2. The Sachs Wolfe contribution alone is indicated by a dashedline and the coherent sum of acoustic and Doppler terms are shown as dot-dashedcurve. The solid line is the incoherent sum of these two contributions. Here the seedfunctions are determined by the choice A1 = 3, A3 = �0:6 and A4 = 0. In the topframe the seed functions decay exponentially, while they decay like a power law inthe bottom one. 21



Figure 4: As Fig. 3b, but with A3 = �0:7. In this regime (A4 = 0, A3 � �(1=4 to1=3)A1) the resulting spectrum depends very sensitively on A3. While A3 = �0:6leads to a perfectly reasonable spectrum with a somewhat high �rst acoustic peak,this spectrum is excluded by observations due to its \bump" in the Sachs Wolfeplateau and the absence of a distinctive acoustic peak.
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Figure 5: The CMB anisotropy spectrum for parameters A1 = 3, A3 = 1, A4 = 2and exponential decay, Fi / exp(�x2) (top) and Fi / exp(�x2=2) (middle). Thecorresponding spectrum for seed functions with power law decay is shown in thebottom frame. The position and relative amplitude of the �rst acoustic peak ofthe spectra (top) and (middle) is compatible with an inationary spectrum. Thissimple example hints that it may be possible to \manufacture" inationary spectraby choosing suitable seed functions. 23



Figure 6: The anisotropy spectra for A1 = 3, A4 = A1=6(2�)2 and A3 = A1=18 (top)respectively A3 = �A1=18 (bottom) are shown. The seed functions are chosen tohave power law decay. These are the values Ai which can be inferred from energymomentum conservation under the assumption of perfect coherence (see text). Thesign of A3 cannot be deduced, but we see that the results do not depend on it.24



Figure 7: Even extremely strange spectra, like this one with a negative spectralindex and without acoustic peaks can be obtained. For this result we have chosenexponentially decaying source functions, Fi / exp(�x2) and A1 = 3, A3 = �1,A4 = 0.
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Figure 8: The CMB anisotropies on large scales, ` � 20 from 122 models withscaling sources with structure function amplitudes (for details see text) in the regime�1 � A4=A1 � 1 and �1 � A3=A1 � 1 are �tted to simple power law spectra withspectral index �0:5 � n � 2:5. The �2 of the �t (allowing for 5% relative error) isshown as function of A4.
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Figure 9: The spectral index for di�erent models with �0:3 � A4=A1 � 0:3 and�1 � A3=A1 � 1 is shown as function of A4 (top). The fact that there are less thansix di�erent circles visible for some values of A4 is due to the discrete spacing ofabout 0.06 in n. The bottom frame shows the same results as a function of A3.27



Figure 10: The position of the �rst acoustic peak is shown as function of A4=A1 fordi�erent values of A3 in the range �A1 � A3 � A1.
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Figure 11: The amplitude of the �rst acoustic peak over the Sachs Wolfe plateauis shown as function of A4=A1 (top) for di�erent values of A3 in the range �A1 �A3 � A1. The bottom frame shows the same results as a function of A3.29



Figure 12: The amplitude 110C10 is given (in units of �2A21) as a function of theamplitude of anisotropic stresses, A4=A1. It varies over about 3 orders of magnitudesand can become substantially smaller than 1, especially for very small values of A4.The signi�cance of this �nding for the biasing problem is discussed in the text.
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