
COSMOLOGICAL STRUCURE FORMATION WITH TOPOLOGICALDEFECTSRuth DURRERD�epartement de Physique Th�eorique, Universit�e de Gen�eve, 24 Quai E. Ansermet, CH-1211 Gen�eve 4,Suisse

Structure formation with topological defects is described. The main di�erence from ina-tionary models are highlighted. The results are compared with recent observations. It isconcluded that all the defect models studied so far are in disagreement with recent observa-tions of CMB anisotropies. Furthermore, present observations do not support 'decoherence',a generic feature of structure formation from topological defects.1 IntroductionEven if the big bang is an \irreproducible experiment", we want to learn from it as much aspossible about the physics at high energies. We have reasons to hope that it may have lefttraces from energies much higher than those reached in any astrophysical event or terrestrialexperiment. Therefore, even if it is irreproducible and hence not as controllable as we mightwant, we simply cannot a�ord to ignore the information it may have left.The initial uctuations in the cosmic matter density and geometry may represent one suchtrace. In fact, presently there are two relatively worked out ideas for cosmic initial uctuations,both relying on the physics at very high energies. In the �rst model, cosmic initial perturbationsare due to quantum uctuations which 'freeze in' as classical uctuations when they becomesuper-horizon during an inationary era.The second possibility is that topological defects which may have formed during a phasetransition in the early universe have induced structure formation. This second possibility is thetopic of this talk.Here, a pedagogical remark may be in order: Often these two alternatives have been rep-resented as 'ination versus defects'. This is of course not quite correct, as topological defectshave nothing to say about the atness, the horizon and the monopole or moduli (or whateverunwanted relicts) problems which ination also solves. It is, however, easy to construct ina-tionary models where the amplitude of initial uctuations is much too small to be relevant forstructure formation. Therefore, in a model, where cosmic structure is due to topological defects,one needs either ination prior to defect formation or another mechanism to solve the atness,horizon and relict problems.The reminder of this talk is organized as follows: In Section 2 I give a short overview on theformation of topological defects during cosmological phase transitions. In Section 3 I discussthe problem of structure formation with topological defects. I will �rst describe some genericinsights and then discuss results for speci�c models. Conclusions are presented in Section 4.



2 Topological defectsDuring adiabatic expansion the universe cools down from a very hot initial state. It is naturalto expect that the cosmic plasma undergoes several symmetry breaking phase transitions. Inthe process of such a transition an initial symmetry group G is broken down to a subgroupH. Depending on the topology of the vacuum manifold M, which generically is topologicallyequivalent to the homogeneous space G=H, topological defects may form.This is described by an order parameter or Higgs �eld, �, with a temperature dependente�ective potential. The �eld values which minimize the potential form the vacuum manifoldM.After the phase transition the �eld will assume di�erent values in M in di�erent positions ofphysical space, which are uncorrelated if, e.g. the spatial separation is larger than the presentparticle horizon, lH � t. If the topology of the vacuum manifold is non-trivial, the Kibblemechanism 1 generically leads to the formation of topological defects: the �eld � may varyin space in such a way that there are points, where � has to leave the vacuum manifold bycontinuity reasons and assume values with higher potential energy. Such points have to form aconnected sub-manifold of spacetime.For example ifM is not connected, �0(M) 6= f0g, in di�erent positions � can assume valueswhich belong to disconnected parts of M and therefore is has to leave the vacuum manifoldsomewhere in between . The sub-manifold of higher energy is in this case three dimensional inspacetime and is called domain wall. (Domain walls from high energy phase transitions aredisastrous for cosmology.) Similarly, a non simply connected vacuum manifold, �1(M) 6= f0g,leads to the formation of two dimensional defects, cosmic strings. Domain walls and cosmicstrings are either in�nite or closed. If M contains non shrinkable two spheres, �2(M) 6= f0g,one dimensional defects, monopoles form. Finally, if �2(M) 6= f0g, zero dimensional texturesappear, which are events of higher energy. By Derrick's theorem one can argue that a scalar �eldcon�guration with non-trivial �3 winding number (i.e. a texture knot) contracts and eventuallyunwinds producing a space-time 'point' of higher energy. A summary of this is given in Table 1;more details can be found in Refs. 2;3.Homotopy �n, dimension in spacetime = d = 4� 1� n appearance�0(M) 6= 0, M is disconnected walls d = 3 sheets in space�1(M) 6= 0 M contains non shrinkable circles strings d = 2 lines in space�2(M) 6= 0 M contains non shrinkable 2-spheres monopoles d = 1 points in space�3(M) 6= 0 M contains non shrinkable 3-spheres texture d = 0 events in spacetimeTable 1: Topological defects in four dimensional spacetime.Topological defects are also very well known in solid state physics. For example the vortexlines in type II super conductors are nothing else than cosmic strings. Also in liquid crystals4 (seeFig. 1) or super uid Helium 5 a variety of topological defects form during symmetry breakingphase transitions.The defects are called local, if a gauge symmetry is broken and global if they emergefrom global symmetry breaking. In the case of local defects, gradients in the scalar �eld are'compensated' by the gauge �eld and the energy density of the defect is con�ned to the defectmanifold with very small transverse dimension of the order of the symmetry breaking scale. Soonafter formation, local defects therefore seize to interact over distances larger than the inversesymmetry breaking scale.The energy density of global defects is dominated by gradient energy and hence of the orderof �defect � T 2c =t2 where Tc is the symmetry breaking temperature and t is the horizon scale, thetypical scale over which the scalar �eld varies. As the energy density of the cosmic uid also



Figure 1: A scaling sequence of a string network in a nematic liquid crystal after the isotropic - nematic phasetransition. Time runs from left to right. (From Ref. 4.)decays like 1=t2, global defects always scalea and lead to uctuations with a typical amplitudeof �defect=� � 4�GT 2c = � : (1)In the case of local defects only cosmic strings scale and obey (1). Local monopoles sooncome to dominate the cosmic energy density and are therefore ruled out from observations.Local texture die out. To be relevant for structure formation, the defects have to induce scalinguctuations with an amplitude � � 10�5 with impliesTc � 1016GeV;a grand uni�ed energy scale. Topological defects which form at lower temperature are of norelevance for structure formationb.3 Structure formation with topological defectsWe discuss especially the di�erences of structure formation with topological defects from ina-tionary initial perturbations. I �rst highlight some very generic features, then we discuss resultsfor speci�c models.3.1 GenericsThe large scale uctuations in the cosmic microwave background (CMB) are of the same orderas the deviation of the cosmic metric from a Friedmann metric. Since these uctuations aresmall, linear perturbation theory is justi�ed. For a cosmic uid consisting of radiation, masslessneutrinos, baryons, cold dark matter, possibly hot dark matter and/or a cosmological constant,we obtain linear perturbation equations (in Fourier space). For each wave vector k they are ofthe form DX = S ; (2)where X is a long vector describing all the random perturbation variables, D is a deterministiclinear �rst order di�erential operator and S is a random source term which consists of linearcombinations of the energy momentum tensor of the defect network. More details can be found,e.g. in Ref. 7.For inationary perturbations S = 0 and the solutions are determined entirely by the randominitial conditions, X(k; tin). For most inationary models X(k; tin) is a set of Gaussian randomaUp to logarithmic corrections to the scaling law which are especially important in the case of global cosmicstrings.bWith a possible exception of 'soft domain walls', see e.g. 6 or the contribution of M. Bucher to theseproceedings.



variables and hence their statistical properties are entirely determined by the spectra P (theFourier transforms of the two point functions),hXi((tin;k) X�j ((tin;k0)i � Pij(k)�(k � k0) : (3)Here the Dirac delta is a consequence of statistical homogeneity which we want to assume forthe random process leading to the initial perturbations.Be Ai(k; t) the solution with initial condition Xj(k; tin) = �ij . The spectra of the solutionwith initial 'spectrum' given by Eq. (3) is then justhXi((t0;k) X�j ((t0;k0)i = Ai(k; t0)A�j (k; t0)Pij(k)�(k � k0) :Tehrefore, if Ai is oscillating, e.g. as a function of kt so will hjXij2i. This leads to a veryimportant feature in the CMB anisotropy spectrum, the acoustic peaks: Prior to recombina-tion, due to radiation pressure the photon/baryon plasma undergoes acoustic oscillations onsubhorizon scales. At recombination the photons become suddenly free and 'stream' into ourantennas without further interaction. Since the acoustic oscillations of a given wave number kare all in phase, the have a �xed amplitude at decoupling. This phenomenon imprints itself inthe CMB anisotropy spectrum as a series of peaks. On very small scales, the �nite thicknessof the recombination shell and free streaming have to be taken into account which leads to anexponential damping of the peaks (Silk damping). As we shall see below, the acoustic peaks arevery characteristic of inationary perturbations.If the source term S does not vanish, the situation is di�erent. Equation (2) can be solvedby means of a Green's function (kernel), G(t; t0), in the formXj(t0;k) = Z t0tin dtGjl(t0; t;k)Sl(t;k) : (4)Power spectra or, more generally, quadratic expectation values of the form hXj(t0;k)X�l (t0;k)iare then given byhXj(t0;k)X�l (t0;k)i = Z t0tin dt Z t0tin dt0Gjm(t0; t;k)G�ln(t0; t0;k)hSm(t;k)S�n(t0;k)i : (5)The only information about the source random variable which we really need in order to computepower spectra are therefore the unequal time two point correlatorshSm(t;k)S�n(t0;k)i : (6)This nearly trivial fact has been exploited by many workers in the �eld, for the �rst timeprobably in Ref. 8 where the decoherence of models with seeds has been discovered, and later inRefs. 9;10;11;12;7 and others.To determines the correlators (6) one has to calculate the unequal time correlators of thedefect energy momentum tensor by means of numerical simulations. To solve the enormousproblem of dynamical range, 'scaling', statistical isotropy and causality have to be used.Seeds from global topological defects and from cosmic strings are 'scaling' in the sense thattheir correlation functions C���� de�ned by���(k; t) = M2���(k; t) ; (7)C����(k; t; t0) = h���(k; t)����(k; t0)i (8)are scale free; i.e. the only dimensional parameters in C���� are the variables t; t0 and k them-selves. Here the energy scale M corresponds to the symmetry breaking scale. One can set



M = Tc. Up to a certain number of dimensionless functions Fn of z = kptt0 and r = t=t0, thecorrelation functions are then determined by the requirement of statistical isotropy, symmetriesand by their dimension. Causality requires the functions Fn to be analytic in z2. A more de-tailed investigation of these arguments and their consequences is presented in Ref. 13. There itis shown that statistical isotropy and energy momentum conservation reduce the correlators (8)for global defects to �ve such functions F1 to F5. Since cosmic strings loose energy by gravita-tional radiation, which is crucial to ensure scaling, in this case 14 functions Fn are needed tofully describe the correlators. However, numerical simulations show that for cosmic strings thedensity-density correlator is signi�cantly larger than all the other components of C���� whichagain simpli�es the problem 14.Since analytic functions generically are constant for small arguments z2 � 1, Fn(0; r) ac-tually determines Fn for all values of k with z = kptt0 <� 0:5. Furthermore, the correlationfunctions decay inside the horizon and we can safely set them to zero for z >� 40 where they havedecayed by about two orders of magnitude. In Fig. 2 I show one of these functions for globalO(4)-texture (a) and for the large N limit of global O(N) models7 (b).
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rFigure 2: A two point correlation function of scalar perturbations is shown. Panel (a) represents the result fromnumerical simulations of the texture model; panel (b) shows the large-N limit. For �xed r the correlator isconstant for z < 1 and then decays. Note also the symmetry under r! 1=r (�gure from Ref. 7).For the induced perturbations in the cosmic uids, the presence of of this source term hasseveral important consequences. First of all, as is clear from Eqn. (4), the randomness of thesource term enters at all times (as long as the source term is non-zero). Therefore, uctuationsof a given wave number k are in general not in phase, and the distinctive series of acoustic peakspresent in inationary models is blurred into one 'broad hump'. This phenomenon has beentermed 'decoherence' 8. A key ingredient for decoherence to happen is the non-linearity of thetime evolution of the source termc. Even though time evolution is deterministic, di�erent Fouriermodes mix due to non-linearity, and the randomness in one mode 'sweeps' into the other modes.In the case of topological defects, S is given by linear combinations of the defect stress energytensor, ��� , quadratic in the defect �eld, which itself obeys non-linear evolution equations. Onlyin the large N limit, the evolution of the 'defect �eld' becomes linear and decoherence is muchweaker. The non-linearity of the source evolution also leads to the non Gaussianity of defectcIf the source term would evolve linearly it could just be added to the components of X and we would obtain anew, somewhat longer linear system of equations where again randomness can enter only via the initial conditions.



models. Even if the initial �eld con�guration would be Gaussian (which it usually is not dueto non-linear constraints), the non-linear time evolution renders the source term and thereforealso the perturbations highly non Gaussian.In Table 2 we highlight the similarities and di�erences of inationary and defect models ofstructure formation.Inationary models Topological defectsSimilarities� Cosmic structure formation is due to gravitational instability of small 'initial'uctuations. ! Gravitational perturbation theory can be applied.� GUT scale physics is involved in generating initial uctuations.� The only relevant 'large scale' is the horizon scale. ! Harrison-Zel'dovich spectrum.Di�erences�The uctuation amplitude depends on �The amplitude of uctuations is �xeddetails of the inaton potential, �ne tuning. by the symmetry breaking scale.�Homogeneous perturbations (passive). �Inhomogeneous perturbations (active).�Vector perturbations decay and become �Vector perturbations are sourced onirrelevant. large scales and are typically of thesame order as scalar perturbations.�Tensor perturbations can have arbitrary �Scalar, vector and tensor modes areamplitudes. generically of the same order.�Perturbations are usually adiabatic. � Perturbations are isocurvature.�Perturbations are usually Gaussian. � Perturbations are non Gaussian.�For given initial perturbations, the �The source evolution is non-linear atproblem is linear. all times.�Randomness enters only via the �Randomness enters at all times dueinitial conditions. to the mixing of scales�The phases of perturbations at a �xed �The phases of perturbations becomescale are coherent. incoherent, decoherence.�Super Hubble scale correlations exist. �No correlations on super Hubble scales.Table 2: Similarities and and di�erences of inationary perturbations versus perturbations induced by seeds.3.2 ResultsAs we have seen, there are several important di�erences between defect models and inationarymodels of structure formation. First of all, defect models generically predict scalar, vectorand tensor perturbations with comparable amplitudes at horizon scale, whereas in inationarymodels vector perturbations are absent (they simply have decayed from their initial values) andtensor perturbations are often signi�cantly smaller than scalar modes. Furthermore, inationaryperturbations are usually adiabatic. This leads to an important cancelation in the temperatureuctuations due to gravity, given by ��TT �grav = �2�, where � denotes denotes the Newtonianpotential, and the intrinsic temperature uctuation on large scales, which is ��TT �int = 14�rad =13�mat = 53� in the adiabatic case. The net result becomes ��TT �SW = �13�, the ordinarySachs-Wolfe e�ect for adiabatic perturbations 15.Both these e�ects lower the temperature uctuations of inationary models on very largescales if compared to those from defect models. This leads to the result that the amplitude



of uctuations on very large scales, the height of the 'Sachs-Wolfe plateau' is comparable tothe amplitude of intermediate scales, the acoustic peak(s). This has �rst been noted in Ref. 16.Furthermore, the isocurvature nature of defect models leads to a shift of the �rst acoustic peaktowards smaller angular scales. For at cosmologies the peak position is around `peak � 350�450,depending on the speci�c model (to be compared with `peak � 220 for inationary models).Thorough numerical simulations from two di�erent groups9;7 now show that CMB anisotropiesfrom global O(N) models do not agree with present data see Fig. 3). There models also requirea very high bias to �t the galaxy power spectrum and exhibit much too low bulk ows on largescales. For example the bulk velocity on 50h�1Mpc for the texture model is V50 � 60km/swhereas the measured value is more like V50 � 300 � 100km/s.
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Figure 3: Left: The CMB anisotropies obtained from global O(4) texture are compared with data, COBE 17(the 8 leftmost data points), BoomerangNA 18 (solid crosses) and Toco 19 (dashed crosses). The model clearlydisagrees with the Toco and Boomerang data. Right: The CMB anisotropies obtained from global O(4) textureare shown for di�erent values of cosmological parameters. It is clear that varying the cosmological parameterscannot save the model.The results for cosmic strings are somewhat more promising due to a variety of e�ects. Mostnotably the following:� The cosmic string energy density seems to be considerably higher in the radiation era thanin the matter era, therefore boosting the uctuations on scales which enter the horizonalready in the radiation dominated era of the universe, <� 50h�1Mpc, just the scales whereglobal O(N) models are missing power.� T 00 = � is much larger than the other components of the string energy momentum ten-sor. Being of scalar nature it induces only scalar perturbations so that vector and tensorperturbations are suppressed in the case of strings.� Cosmic strings loose power on scales inside the horizon by inter-commutation and gravi-tational radiation. These processes are slower than the speed of light with which globaldefects decay. Therefore, the energy momentum tensor persists to later times, up to largervalues of kt than for O(N) models. This induces larger uctuations in the dark matter.The induced uctuations in the dark matter may even be too large on small scales, a problemwhich can be solved by introducing hot dark matter 20. The persistence of the string energymomentum tensor induces even more decoherence 8 than for O(N) models.Therefore, cosmic strings may lead to one broad 'acoustic hump' but certainly not to a seriesof peaks. The precise height of the hump depends sensitively on several unknowns, for example
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Figure 4: The CMB anisotropy spectrum for a model where cosmic string loops 'decay' into a uid with equationof state pX = wX�X are shown and compared with the standard inationary CDM model (long-short dashedline). Clearly, the result depends very sensitively on wX . Figure taken form Ref.21.on how one models the string energy momentum non conservation 21 and on the small scalestructure of the string network 22, see, e.g., Fig. 4.Decoherence which leads to a 'smearing' of acoustic peaks (if they are there) is one of thefew features about which all results on cosmic strings agree. The height of the 'acoustic hump'may be about two to four times the height of the plateau at low `. The position of the hump isnot very well de�ned and depends on the details of the modelling, but it is typically at ` >� 400for a at universe, which is in disagreement with the new data shown in Fig. 3. The bias factorneeded in the dark matter spectra (maybe between 2 and 5) are still quite uncertain. Somerecent work on this subject can be found in Refs. 10;23;24;21.4 ConclusionsAll the defect models studied in detail are in disagreement with current observations. Theyexhibit no acoustic peaks (global O(N) models) or only one broad hump on too small scales(cosmic strings). Decoherence, which is inherent to the non-linear evolution of the defect sourceterm smears out the distinguished series of acoustic peaks expected in inationary models. Thewidth of the �rst peak measured by the the Toco19 and BoomerangNA18 experiments is relativelynarrow, which already clearly disfavors a model where decoherence is important. Secondarypeaks in the CMB anisotropy spectrum will �nally be a unambiguous sign for a (quasi-)linearprocess of structure formation like, e.g., ination.It has been shown, however, that linearly evolving causal scaling seeds might mimic aninationary CMB and dark matter power spectrum 25;12. Nevertheless, due to causality theydi�er from ination in the CMB polarization spectrum26. Clearly, such seeds are not topologicaldefects and there is so far no convincing physical motivation to introduce them.AcknowledgmentsIt is a pleasure to acknowledge useful discussions with Martin Kunz, Joao Magueijo and Alessan-dro Melchiorri. This work is supported by the Swiss National Science Foundation.



References1. T.W.B. Kibble, J. Phys. A, 1387 (1978); T.W.B. Kibble, Phys. Rep. 67, 183 (1980).2. R. Durrer, New Astr. Rev. 43, 111 (1999).3. A. Vilenkin and P. Shellard, Cosmic Strings and other topological defects, CambridgeUniversity Press, Cambridge 1994.4. Y. Chuang, R. Durrer, N. Turok and B. Yurke, Science 251, 1336 (1991).5. P.C. Hendry, et al., Nature 368, 315 (1994); V. Ruutu et al., Nature 382, 334 (1996).6. C. Hill, D. Schramm and J. Fry, Comm. on Nuc. and Part. Phys. 19, 25 (1989).7. R. Durrer, M. Kunz and A. Melchiorri, Phys. Rev. D 59 123005 (1999).8. A. Albrecht, D. Coulson, P.G. Ferreira and J. Magueijo, Phys. Rev. Lett. 76, 1413 (1996).9. U. Pen, U. Seljak and N. Turok, Phys. Rev. Lett. 79, 1611 (1997).10. B. Allen et al., Phys. Rev. Lett. 79, 2624 (1997).11. M. Kunz and R. Durrer, Phys. Rev. D 55, R4516 (1997).12. R. Durrer and M. Sakellariadou, Phys. Rev. D 56, 4480 (1997).13. R. Durrer and M. Kunz, Phys. Rev. D 57, R3199 (1998).14. J. Magueijo and R. Brandenberger, in \Large Scale Structure Formation" (Kluwer, Dor-drecht, 2000), archived under astro-ph/0002030.15. R. K. Sachs and A. M. Wolfe, Astrophys. J. 147, 73 (1967).16. R. Durrer, A. Gangui and M. Sakellariadou, Phys. Rev. Lett. 76, 579 (1996).17. M. Tegmark and A. Hamilton, in proccedings of the 18th Texas Symposium on RelativisticsAstrophysics and Cosmology, eds. A. Olinto, J. Frieman & D. Schramm, 270 (WorldScienti�c, 1998); archived under astro-ph/9702019 (1997).18. P. Mauskopf et al., preprint archived under astro-ph/9911444.19. A. Miller et al., preprint archived under astro-ph/9906421.20. R. Scherrer, R. Melott and E. Bertschinger, Phys. Rev. Lett. 62, 379 (1988).21. C. Contaldi, M. Hindmarsh and J. Magueijo, Phys. Rev. Lett. 82, 679 (1999).22. L. Pogosian and T. Vachaspati, Phys. Rev. D 60, 083504 (1999).23. R. Battye, J. Robinson and A. Albrecht, Phys. Rev. Lett. 80 4847 (1998).24. P. Avelino, P.Shellard, J. Wu and B. Allen, Phys. Rev. Lett. 81, 2008 (1998).25. N. Turok, Phys. Rev. Lett. 77, 4138 (1996).26. D. Spergel and M. Zaldarriaga, Phys. Rev. Lett. 79, 2180 (1997).


