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We consider a 2-brane system in a 5 dimensional Anti-de Sitter spacetime. We study particle
creation due to the motion of the physical brane which first approaches the second static brane
(contraction) and then recedes from it (expansion). We calculate the spectrum and the energy
density of the generated gravitons. We show that the massless gravitons have a blue spectrum
and that their energy density satisfies the nucleosynthesis bound with very mild constraints on
the parameters. We also show that the Kaluza-Klein modes cannot provide the dark matter in
an Anti-de-Sitter braneworld. However, for natural choices of parameters, back reaction from the
KK-gravitons may well become important.
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I. INTRODUCTION

In recent times, the possibility that our observed Uni-
verse might represent a hypersurface in a higher dimen-
sional spacetime has received considerable attention. The
main motivation for this idea is the fact, that string
theory [1, 2], which is consistent only in ten spacetime
dimensions (or 11 for M–theory) allows for solutions
where the standard model particles (like fermions and
gauge bosons) are confined to some hypersurface (called
the brane) and only the graviton can propagate in the
bulk [2, 4]. Since gravity is not well constrained at small
distances, the dimensions normal to the brane, the extra
dimensions, can be as large as 0.1mm. The presence of
two or more such extra-dimensions can provide a solu-
tion to the hierarchy problem, the problem of the huge
difference between the Planck scale and the electroweak
scale [3].

Here we consider another interesting consequence:
within the context of braneworlds, cosmological evolu-
tion, i.e., the expansion of the Universe can be under-
stood as motion of the brane which represents our Uni-
verse in the bulk. We consider a 5-dimensional Anti-de
Sitter spacetime, as proposed in Randall Sundrum I [5],
with two branes in it. For definiteness we keep the
second brane at rest, while the first one, our universe,
moves. This represents a spacetime with moving bound-
aries. Such moving boundaries can lead to particle cre-
ation via the dynamical Casimir effect [8]. We want to
study the generation of gravitons in this context.

Previously, we have shown that in a radiation domi-
nated universe, where the second, static brane is arbi-
trarily far away, no gravitons are produced [21]. It has
also been shown that during a de Sitter phase of brane
expansion, graviton production is basically like in four
dimensional inflationary cosmology [22].
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Motivated by the ekpyrotic Universe (see [23, 24] and
Refs. therein) and similar ideas, we consider two branes
which first approach each other. During this phase the
physical brane, representing our Universe is contract-
ing. We then suppose that some high energy mecha-
nism which we do not want to specify in any detail, turns
around the motion of the brane leading to an expanding
Universe (see Fig. 1).

The Lanczos-Sen-Darmois-Israel-junction condi-
tions [9, 10, 11, 12], relate the energy-momentum tensor
on the brane to the extrinsic curvature and hence to
the brane motion. Initially, the motion is very slow.
Then the brane contracts, the energy density on the
brane increases and the motion becomes faster. We do
not model the transition from contraction to subsequent
expansion in any detail, since this would require detailed
assumptions about unknown physics, but we shall
therefore ignore results which depend on the details of
the transition. After some more or less close encounter,
which we call the bounce, the physical brane moves away
from the static brane, leading to an expanding universe.
Expansion is first fast and then becomes slower as the
energy density drops.

We consider the bulk graviton field initially to be in
the vacuum state. We then evolve the graviton modes
which are spin-2 on the brane through the bounce until
late time, where we shall count the gravitons. The inter-
actions dissappear at very early and at very late times,
such that the entire process can be treated like an ordi-
nary scattering process.

Similar results could be obtained for the free gravi-
photon and gravi-scalar i.e. when we neglect the pertur-
bations of the brane energy momentum tensor which also
couple to these gravity wave modes which have spin-1 re-
spectively spin-0 on the brane.

In this paper we address the following questions: What
is the spectrum and energy density of the produced
gravitons, the massless zero-mode and the Kaluza-Klein
modes? Can the graviton production in such a brane
universe lead to limits e.g. on the AdS curvature scale
via the nucleosynthesis bound? Can the Kaluza-Klein
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FIG. 1: Two branes in an AdS5 spacetime. The physical
brane is on the left. While it is approaching the static brane
its scale factor is decreasing and when it moves away from the
static brane it is expanding. The value of the scale factor of
the brane metric as function of the extra dimension y is also
indicated.

modes provide the dark matter or lead to stringent lim-
its on these models? For this we investigate numerically
graviton production due to the brane motion.

The reminder of the paper is organized as follows. In
the next section we repeat the basic equations for the
evolution of the background and perturbations. In Sec-
tion III we present some basics of quantum particle cre-
ation in a space with moving boundaries and in Sec-
tion IV we derive expressions for the energy density and
the power spectrum of gravitons. In Section V we de-
scribe our numerical results. In Section VI we reproduce
some of the numerical results with analytical approxi-
mations and we derive fits for the number of produced
gravitons. We discuss our main results in Section VII
and conclude in Section VIII. Some technical aspects are
collected in appendices.

This rather long and technical paper is accompanied
by a Letter [41] where we summarize the main results
and comment on their interpretation and importance for
braneworld cosmology.

II. GRAVITONS IN MOVING BRANEWORLDS

A. Tensor perturbations in AdS5

We consider a AdS-5 spacetime. In Poincaré coordi-
nates, the bulk metric is given by

ds2 = gABdxAdxB =
L2

y2

[
−dt2 + δijdxidxj + dy2

]
.

(2.1)
The physical brane (our Universe) is located at some time
dependent position y = yb(t), while the static brane is at
the fixed position y = ys. The induced metric on the

physical brane is given by

ds2 =
L2

y2
b (η)

[
−
(

1 −
(

dyb

dt

)2
)

dt2 + δijdxidxj

]

= a2(η)
[
−dη2 + δijdxidxj

]
, (2.2)

where a = L/yb is the scale factor and η denotes the
“conformal time” of an observer on the brane,

dη =

√

1 −
(

dyb

dt

)2

dt ≡ γ−1dt . (2.3)

We have introduced

v ≡ dyb

dt
= − LH√

1 + L2H2
and (2.4)

γ =
1√

1 − v2
=
√

1 + L2H2 . (2.5)

Here H is the usual Hubble parameter,

H ≡ ȧ/a2 ≡ a−1H = −L−1γv , (2.6)

where an over-dot denotes the derivative w.r.t conformal
time η. The bulk cosmological constant Λ is related to
the curvature scale L by Λ = −6/L2. The junction con-
ditions on the brane lead to [26]

κ
5
(ρ + T ) = 6

√
1 + L2H2

L
= 6L−1γ , (2.7)

κ
5
(ρ + P ) = − 2LḢ

a
√

1 + L2H2
− 2L−1γ̇ , (2.8)

ρ̇ = −3Ha(ρ + P ) , (2.9)

H2 =
κ2

5

18
T ρ
(
1 +

ρ

2T
)

+
κ2

5
T 2

36
− 1

L2
, (2.10)

Equations (2.7) to (2.10) form the basis of brane cos-
mology and have been discussed at length in the liter-
ature (for a review, see [16] or [27]). The last equation
is called the “modified Friedmann equation” for brane
cosmology [17]. For usual matter with ρ + P > 0, ρ
decreases during expansion and at sufficiently late time
ρ � T . The ordinary 4-dimensional Friedmann equation
is then recovered if

κ2
5
T 2

12
=

3

L2
and we set κ

4
= 8πG4 =

κ2
5
T

6
. (2.11)

Here we have neglected a possible four-dimensional cos-
mological constant. Defining the string and Planck scales
by

κ5 =
1

M3
5

= L3
s , κ4 =

1

m2
Pl

= L2
Pl, (2.12)

respectively, the Randall-Sundrum fine tuning condition
κ5/L = κ4, which follwos from Eq. (2.11), leads to

L

Ls
=

(
Ls

LPl

)2

. (2.13)
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We shall be interested mainly in the radiation dominated
low energy phase, hence in the period where

P =
1

3
ρ and v � 1 so that γ ' 1 , dη ' dt .

(2.14)
In such a period, the solutions to the above equations are
of the form

a(t) =
|t| + tb

L
, (2.15)

yb(t) =
L2

|t| + tb
, (2.16)

v(t) = − sign(t)L2

(|t| + tb)2
' HL . (2.17)

Negative times describe a contracting phase, while pos-
itive times describe radiation dominated expansion. At
t = 0, the scale factor exhibits a kink and the evolution
equations are singular. This is the bounce which we shall
not model in detail, but we will have to introduce a cut-
off in order to avoid ultraviolet divergencies in the total
particle number and energy density which are due to this
unphysical kink.

We now consider tensor perturbations on this back-
ground,

ds2 =
L2

y2

[
−dt2 + (δij + 2hij)dxidxj + dy2

]
. (2.18)

Tensor modes satisfy the traceless and transverse con-
ditions, hi

i = ∂ih
i
j = 0. We decompose hij into spatial

Fourier modes,

hij(t, x, y) =

∫
d3k

(2π)3/2

∑

•=+,×
eik·xe•

ij(k)h
•
(t, y; k) ,

(2.19)
where e•

ij(k) are unitary constant transverse-traceless po-
larization tensors which form a basis of the two polariza-
tion states • = + and • = ×. For hij to be real we require

h∗
•(t, y;k) = h•(t, y;−k). (2.20)

The perturbed Einstein equations yield the equation of
motion for the mode functions h

•
, which obey the Klein-

Gordon equation for minimally coupled massless scalar
fields in AdS5 [18, 19, 20]

[
∂2

t + k2 − ∂2
y +

3

y
∂y

]
h

•
(t, y;k) = 0 . (2.21)

In addition to the bulk equation of motion the modes
also satisfy a boundary condition at the brane coming
from the second junction condition,

[
LH∂th•

−
√

1 + L2H2∂yh
•

]∣∣∣
yb

=

γ−1 (v∂t − ∂y) h
•

∣∣
yb

=
κ

5

2
aPΠ(T )

•
.(2.22)

We are interested in the quantum production of free
gravitons, not at the coupling of gravitational waves to
matter. Therefore we shall set Π(T )

•
= 0 in the sequel.

This is not entirely correct for the evolution of gravity
modes since at late times, when matter on the brane
is no longer a perfect fluid and anisotropic stresses de-
velop which slightly modify the evolution of gravitational
waves. We neglect this subdominant effect in our treat-
ment.

B. Mode expansion in the late time limit

We restrict ourselves to relatively late times, when
ρT � ρ2 and therefore v � 1. In this limit the confor-
mal time on the brane agrees roughly with the 5D time
coordinate t and we shall therefore not distinguish these
times in this work. Furthermore, the boundary condi-
tion (2.22) reduces to a Neumann boundary condition.
Consequently the graviton amplitude is subject to the
boundary conditions

∂yh
•
|yb

= ∂yh
•
|ys

= 0 . (2.23)

In order to achieve a canonical formulation, i.e. a de-
scription of the graviton field and its dynamics in terms
of field modes, we introduce instantaneous eigenfunctions
φn(t, y) of the spatial part of the differential operator
(2.21)

[
−∂2

y +
3

y
∂y

]
φα(t, y) = −y3∂y

[
y−3∂yφα(t, y)

]

= m2
α(t)φα(t, y). (2.24)

Imposing the boundary conditions (2.23) for the eigen-
functions φα(t, y), equation (2.24) forms a Sturm-
Liouville problem at any given time t. Consequently,
the set of eigenfunctions {φα(t, y)}∞α=0 is complete and
orthonormal with respect to the inner-product

(φα, φβ) =

∫ yr

yb

dy

y3
φα(t, y)φβ(t, y) = δαβ . (2.25)

The case α = 0 with m0 = 0 is the zero-mode, i.e.
the massless four-dimensional graviton. Its general so-
lution in accordance with the boundary conditions is
just a constant with respect to the extra dimension,
φ0(t, y) = φ0(t), and is fully determined by the normal-
ization condition (φ0, φ0) = 1:

φ0(t) =
√

2
ysyb(t)√
y2

s − y2
b (t)

. (2.26)

For α = i ∈ {1, 2, 3, · · · , } with non-negative eigenvalues
mi 6= 0 the general solution of (2.24) is a combination of
the Bessel functions J2 (mi(t) y) and Y2 (mi(t) y). Their
particular combination is determined by the boundary
condition at the moving brane. The remaining boundary
condition at the static brane selects the possible values
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for the eigenvalues mi(t), the Kaluza-Klein (KK) masses.
For any three-momentum k these masses build up an en-
tire tower of momenta in direction y, the fifth dimension.
Explicitly, the solutions φi(t, y) for the KK-modes read
1

φi(t, y) = Ni(t)y
2C2 (mi(t) y) (2.27)

with

Cν(miy) = Y1(miyb)Jν(miy)−J1(miyb)Yν(miy). (2.28)

The normalization reads

Ni(t, yb, ys) =

[
2

y2
sC2

2(mi ys) − (2/(miπ))2

] 1
2

(2.29)

where we have used that

C2(mi yb) =
2

π mi yb
. (2.30)

It can be simplified further by using

C2(mi ys) =
Y1(mi yb)

Y1(mi ys)

2

π mi ys
(2.31)

leading to

Ni =
miπ√

2

[
Y 2

1 (miys)

Y 2
1 (miyb) − Y 2

1 (miys)

] 1
2

. (2.32)

Note that it is possible to have Y 2
1 (mi ys)− Y 2

1 (mi yb) =
0. But then both Y 2

1 (miys) = Y 2
1 (miyb) = 0 and

Eq. (2.32) has to be understood as a limit. For that rea-
son, the expression (2.29) for the normalization is used
in the numerical simulations. Its denominator remains
always finite.
The time-dependent KK-masses {mi(t)} are determined
by the condition

C1 (mi(t)ys) = 0 (2.33)

and the rate of change ṁi/mi of a KK-mass can be di-
rectly related to the normalization,

m̂i ≡
ṁi

mi
= ŷb

2

m2
i π2

N2
i (2.34)

where we have set

ŷb(t) ≡ ∂t ln (yb) = −vy−1
b ' −Ha = − ȧ

a
≡ −H .

(2.35)

Because the zeros of the cross product of the Bessel func-
tions J1 and Y1 are not known analytically in closed form,

1 Note that we have changed the parametrization of the solutions
with respect to [21] for technical reasons.

the KK-spectrum has to be determined by solving Eq.
(2.33) numerically2.
On account of the completeness of the eigenfunctions
φα(t, y) the gravitational wave amplitude h•(t, y;k) can
now be expanded in these eigenfunctions. The coeffi-
cients qα,k,•(t) are canonical variables,

h•(t, y;k) =

√
κ5

L3

∞∑

α=0

qα,k,•(t)φα(t, y). (2.36)

In order to satisfy (2.20) we have to impose the same con-
dition for the canonical variables, i.e. q∗α,k,• = qα,−k,•.

The factor
√

κ5

L3 has been introduced in order to render
the qα,k,•’s canonically normalized.

C. Equations of motion

Inserting the expansion (2.36) into the wave equation,
(2.21) leads to the equations of motion for the variables
qα,k,•

q̈α,k,• + ω2
α,kqα,k,• +

∑

β

[Mβα − Mαβ ] q̇β,k,•

+
∑

β

[
Ṁαβ − Nαβ

]
qβ,k,• = 0 , (2.37)

where we have introduced the time-dependent frequency
of a graviton mode

ω2
α,k =

√
k2 + m2

α , k = |k| , (2.38)

and the coupling matrices Mαβ and Nαβ. The mode cou-
plings occur due to the time-dependent boundary con-
dition ∂yh•(t, y)|yb

= 0 which forces the eigenfunctions
φα(t, y) to be explicitly time-dependent. This system
of equations as well as the specific form of the coupling
matrices Mαβ and Nαβ has been derived in detail in
Ref. [21]. For completeness we repeat the formulae for
the matrix elements in Appendix A. Here we just men-
tion that N = MMT , so that we only need to calculate
M . The matrix M is determined by the brane motion,
i.e., the cosmological evolution which leads to particle
creation.

III. QUANTUM GENERATION OF

FIVE-DIMENSIONAL TENSOR

PERTURBATIONS

A. Preliminary remarks

In this section we present a treatment of quantum gen-
eration of tensor perturbations, i.e. graviton production,

2 Approximate expressions for the zeros can be found in [36].
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based on the formulation of the dynamical Casimir effect.
The this section is partly based on [28, 29, 30] where the
dynamical Casimir effect is discussed for a scalar field as
well as for the electromagnetic field.
Asymptotically, i.e. for t → ±∞ when the physical
brane approaches the Cauchy horizon, yb → 0, and moves
very slowly, the coupling matrices vanish and the Kaluza-
Klein masses are constant (for yb close to zero, Eq. (2.33)
reduces to J1(miys) = 0):

lim
t→±∞

Mαβ(t) = 0 , lim
t→±∞

mα(t) = const. . (3.1)

In this limit, the system (2.37) reduces to an infinite set
of uncoupled harmonic oscillators which allows to intro-
duce an unambiguous and meaningful particle concept,
i.e. notion of (massive) gravitons.
As a matter of fact, in the numerical simulations we have
to switch the brane motion on and off at finite times.
These times are denoted by tin and tout, respectively. We
then introduce the vacuum state with respect to times
t ≤ tin < 0 and t ≥ tout > 0. In order to avoid spurious
effects influencing the particle creation, we have to chose
tin small, respectively tout large enough such that the
couplings are effectively zero at those times. Checking
the independence of the numerical results on the choice
of tin and tout guarantees that these times correspond
effectively to the real asymptotic states of the brane con-
figuration.

B. Quantization, initial and final state

Canonical quantization of the gravity wave amplitude
is performed by replacing the canonical variables qα,k,•
by the corresponding operators q̂α,k,•

ĥ•(t, y;k) =

√
κ5

L3

∑

α

q̂α,k,•(t)φα(t, y). (3.2)

Adopting the Heisenberg picture it follows that q̂α,k,• sat-
isfies the same equation (2.37) as the canonical variable
qα,k,•.
Under the assumptions outlined above, the operator
q̂α,k,• can be written for times t ≤ tin as

q̂α,k,•(t ≤ tin) =
1√

2ωin
α,k

[
âin

α,k,•e
−i ωin

α,k t + âin†
α,−k,•e

i ωin
α,k t

]

(3.3)
where we have introduced the reference frequency

ωin
α,k ≡ ωα,k(t ≤ tin). (3.4)

The set of annihilation and creation operators {âin
α,k,•,

âin†
α,k,•} corresponding to the particle (graviton) notion

for t ≤ tin is subject to the usual commutation relations
[
âin

α,k,•, â
in†
α′,k′,•′

]
= δαα′δ••′δ(3)(k − k

′) , (3.5)
[
âin

α,k,•, â
in
α′,k′,•′

]
=
[
âin†

α,k,•, â
in†
α′,k′,•′

]
= 0. (3.6)

For times t ≥ tout, i.e. after the motion of the brane, the
operator q̂α,k,• can be expanded in a similar manner,

q̂α,k,•(t ≥ tout) = (3.7)

=
1√

2ωout
α,k

[
âout

α,k,•e
−i ωout

α,k t + âout †
α,−k,•e

i ωout
α,k t

]
.

with final state frequency

ωout
α,k ≡ ωα,k(t ≥ tout). (3.8)

The annihilation and creation operators âout
α,k,•, â

out †
α,k,•,

correspond to a meaningful definition of final state par-
ticles (they are associated with positive and negative fre-
quency solutions for t ≥ tout) and satisfy the same com-
mutation relations as the initial state operators.
Initial |0, in〉 ≡ |0, t ≤ tin〉 and final |0, out〉 ≡ |0, t ≥ tout〉
vacuum state are uniquely defined via

âin
α,k,•|0, in〉 = 0 , âout

α,k,•|0, out〉 = 0 , ∀ α, k, • . (3.9)

Note that the notations |0, t ≤ tin〉 and |0, t ≥ tout〉 do not
mean that the states are time-dependent, states do not
evolve in the Heisenberg picture. These are the vacuum

states for times t ≤ tin and t ≥ tout, respectively, de-
fined by the annihilation properties (3.9). The operators
counting the number of particles defined with respect to
the initial and final vacuum state, respectively, are

N̂ in
α,k,• = âin †

α,k,•â
in
α,k,• , N̂out

α,k,• = âout †
α,k,•â

out
α,k,• . (3.10)

The number of gravitons created during the motion of
the brane for each momentum k, quantum number α and
polarization state • is given by the expectation value of
the number operator N̂out

α,k,• of final-state gravitons with

respect to the initial vacuum state |0, in〉:

N out
α,k,• = 〈0, in|N̂out

α,k,•|0, in〉. (3.11)

If the brane undergoes a non-trivial dynamics between
tin < t < tout it is âout

α,k,•|0, in〉 6= 0 in general, and thus,
particle production takes place.
From (2.19), the expansion (3.2) and Eqs.(3.3), (3.7) it
follows that the amplitude of the five-dimensional tensor
perturbations in the initial and final state can be written
as

ĥij(t ≤ tin,x, y) = (3.12)
√

κ5

L3

∑

•α

∫
d3k

(2π)3/2

âin
α,k,• e−i ωin

α,k t

√
2ωin

α,k

u•

ij,α(tin,x, y,k) + h.c.

and

ĥij(t ≥ tout,x, y) = (3.13)
√

κ5

L3

∑

•α

∫
d3k

(2π)3/2

âout
α,k,• e−i ωout

α,k t

√
2ωout

α,k

u•

ij,α(tout,x, y,k) + h.c.,
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respectively, where we have introduced the basis func-
tions

u•

ij,α(t,x, y,k) = eik ·x e•

ij(k) φα(t, y). (3.14)

Note that on account of (e•

ij(k))∗ = e•

ij(−k) one has
(u•

ij,α(t,x, y,k))∗ = u•

ij,α(t,x, y,−k).

C. Time evolution

During the motion of the brane the time evolution of
the field modes is described by the system of coupled
differential equations (2.37). To account for the inter-
mode couplings mediated by the coupling matrix Mαβ

the operator q̂α,k,• may be written as

q̂α,k,•(t) =
∑

β

1√
2ωin

β,k

[
âin

β,k,•ε
(β)
α,k(t) + âin†

β,−k,•ε
(β)∗

α,k (t)
]
.

(3.15)

The complex functions ε
(β)
α,k(t) also satisfy the system of

coupled differential equations (2.37). With the ansatz
(3.15) the quantized tensor perturbation reads

ĥij(t,x, y) = (3.16)
√

κ5

L3

∑

•αβ

∫
d3k

(2π)
3
2

âin
β,k,•√
2ωin

β,k

ε
(β)
α,k(t)u•

ij,α(t,x, y,k) + h.c. .

Due to the time-dependence of the eigenfunctions φα the
time-derivative of the gravity wave amplitude contains
additional mode coupling contributions. Using the com-
pleteness and orthnormality of φα it is easy to show that

˙̂
h•(t, y;k) =

√
κ5

L3

∑

α

p̂α,k,•(t)φα(t, y) (3.17)

where

p̂α,k,•(t) = ˙̂qα,k,•(t) +
∑

β

Mβαq̂β,k,•(t). (3.18)

The coupling term comes from the time dependence of
the mode functions φα. Accordingly, the time derivative
˙̂
hij reads

˙̂
hij(t,x, y) =

√
κ5

L3

∑

•αβ

∫
d3k

(2π)
3
2

âin
β,k,•√
2ωin

β,k

× (3.19)

×
{

ε̇
(β)
α,k(t) +

∑

γ

Mγα(t)ε
(β)
γ,k(t)

}
u•

ij,α(t,x, y,k) + h.c. .

Comparing Eq. (3.12) and its time-derivative with Eqs.
(3.16) and (3.19) at t = tin one can read off the initial

conditions for the functions ε
(β)
α,k:

ε
(β)
α,k(tin) = δαβ Θin

α,k , (3.20)

ε̇
(β)
α,k(tin) =

[
−iωin

α,kδαβ − Mβα(tin)
]

Θin
β,k (3.21)

with phase

Θin
α,k = e−iωin

α,k tin . (3.22)

The choice of this phase for the initial condition is in
principle arbitrary, we could as well set Θin

α,k = 1. But

with this choice, ε
(β)
α,k(t) is independent of tin for t < tin

and therefore it is also at later times independent of tin
if only we choose tin sufficiently early. This is especially
useful for the numerical work.

D. Bogoliubov transformations

The two sets of annihilation and creation operators

{âin
α,k,•, âin †

α,k,•} and {âout
α,k,•, âout †

α,k,•} corresponding to
the notion of initial state and final state gravitons, re-
spectively, are related via a Bogoliubov transformation.
Matching the graviton amplitude Eq. (3.16) and its time-
derivative Eq. (3.19) at t = tout with the final state ex-
pression Eq. (3.13) and its corresponding time-derivative
one finds

âout
β,k,• =

∑

α

[
Aαβ,k(tout)â

in
α,k,• + B∗

αβ,k(tout)â
in †
α,−k,•

]

(3.23)
with

Aβα,k(tout) =
Θout∗

α,k

2

√
ωout

α,k

ωin
β,k

[
ε
(β)
α,k(tout) +

i

ωout
α,k

f
(β)
α,k(tout)

]

(3.24)
and

Bβα,k(tout) =
Θout

α,k

2

√
ωout

α,k

ωin
β,k

[
ε
(β)
α,k(tout) −

i

ωout
α,k

f
(β)
α,k(tout)

]

(3.25)
where we have introduced the function

f
(β)
α,k(t) = ε̇

(β)
α,k(t) +

∑

γ

Mγα(t)ε
(β)
γ,k(t) (3.26)

and we stick to the phase Θout
α,k defined like Θin

α,k in (3.22)
for completeness. Performing the matching for tout = tin
the Bogoliubov transformation should become trivial, i.e.
the Bogoliubov coefficients are subject to vacuum initial
conditions

Aαβ,k(tin) = δαβ , Bαβ,k(tin) = 0. (3.27)

Evaluating the Bogoliubov coefficients (3.24) and (3.25)
for tout = tin by making use of the initial conditions (3.20)
and (3.21) shows the consistency. Note that the Bogoli-
ubov transformation (3.23) is not diagonal due to the
inter-mode coupling. If during the motion of the brane
the graviton field departs form its vacuum state one has
Bαβ,k(tout) 6= 0, i.e. gravitons have been generated.

By means of Eqs. (3.23) the number of generated fi-
nal state gravitons (3.11), which is the same for every
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polarization state, is given by

N out
α,k (t ≥ tout) =

∑

•=+,×
〈0, in|N̂out

α,k,•|0, in〉

= 2
∑

β

|Bβα,k(tout)|2. (3.28)

Later we will sometimes interpret tout as a continuous
variable tout → t such that N out

α,k → Nα,k(t), i.e. it be-

comes a continuous function of time. We call Nα,k(t) the
instantaneous particle number [see Appendix B]. This
quantity may be considered as the number of created par-
ticles in case the motion of the brane would stop at time
t. However, a physical interpretation should be made
with caution (discontinuity in the brane velocity when
switching off the brane dynamics).

E. The first order system

The basic idea of our numerical approach is to de-
rive a system of differential equations for the Bogoli-
ubov coefficients directly. However, it turns out that,
for technical reasons, it is simpler to work with functions

ξ
(β)
α,k(t), η

(β)
α,k(t) defined through

ξ
(β)
α,k(t) = ε

(β)
α,k(t) +

i

ωin
α,k

f
(β)
α,k(t) (3.29)

η
(β)
α,k(t) = ε

(β)
α,k(t) − i

ωin
α,k

f
(β)
α,k(t) (3.30)

rather than Aαβ,k, Bαβ,k. These new functions are re-
lated to the Bogoliubov coefficients via

Aβα,k(tout) = (3.31)

Θout∗

α,k

2

√
ωout

α,k

ωin
β,k

[
∆+

α,k(tout)ξ
(β)
α,k(tout) + ∆−

α,k(tout)η
(β)
α,k(tout)

]

Bβα,k(tout) = (3.32)

Θout
α,k

2

√
ωout

α,k

ωin
β,k

[
∆−

α,k(tout)ξ
(β)
α,k(tout) + ∆+

α,k(tout)η
(β)
α,k(tout)

]

where we have defined

∆±
α,k(t) =

1

2

[
1 ±

ωin
α,k

ωα,k(t)

]
. (3.33)

With the aid of the system of second order differential

equations for ε
(β)
α,k it follows that the functions ξ

(β)
α,k(t),

η
(β)
α,k(t) satisfy the following system of first order differ-

ential equations:

ξ̇
(β)
α,k(t) = −i

[
a+

αα,k(t)ξ
(β)
α,k(t) − a−

αα,k(t)η
(β)
α,k(t)

]

−
∑

γ

[
c−αγ,k(t)ξ

(β)
γ,k(t) + c+

αγ,k(t)η
(β)
γ,k(t)

]
(3.34)

η̇
(β)
α,k(t) = −i

[
a−

αα,k(t)ξ
(β)
α,k(t) − a+

αα,k(t)η
(β)
α,k(t)

]

−
∑

γ

[
c+
αγ,k(t)ξ

(β)
γ,k(t) + c−αγ,k(t)η

(β)
γ,k(t)

]
(3.35)

with

a±
αα,k(t) =

ωin
α,k

2



1 ±

[
ωα,k(t)

ωin
α,k

]2


 , (3.36)

c±γα,k(t) =
1

2

[
Mαγ(t) ±

ωin
α,k

ωin
γ,k

Mγα(t)

]
. (3.37)

The vacuum initial conditions (3.27) entail the initial
conditions

ξ
(β)
α,k(tin) = 2 δαβ Θin

α,k , η
(β)
α,k(tin) = 0. (3.38)

With the aid of Eq. (3.32), the coefficients Bαβ,k(tout)
and therefore the number of produced gravitons can be
directly deduced from the solutions to this system of cou-
pled first order differential equations.

In the next section we will show how interesting observ-
ables like the power spectrum and the energy density of
the amplified gravitational waves are expressed in terms
of the number of created gravitons.

The system (3.34, 3.35) of coupled differential equa-
tions forms the basis of our numerical simulations. De-
tails of the applied numerics are collected in Appendix C.
Other work on this subject [31, 32, 33, 34, 35] uses
a Wronskian formulation to determine graviton produc-
tion. In these works partial differential equations have to
be solved which is in general less accurate than a system
or ordinary differential equations. Another advantage of
the formalism outlined here relies on the fact that the
coupling matrices allow us to keep track of the inter mode
couplings which can easily be switched on and off, as we
shall see in Section V. This makes the relevant physical
effects much more transparent.

IV. POWER SPECTRUM AND ENERGY

DENSITY

A. Four dimensional perturbation

By solving the system of coupled differential equa-
tions formed by Eqs. (3.34) and (3.35) the time evolu-
tion of the quantized five-dimensional tensor perturba-

tion ĥij(t,x, y) during the brane dynamics can be com-
pletely reconstructed. Accessible to observations is how-
ever, only the imprint which the five-dimensional per-
turbations have left on the brane, i.e. in our universe.
Of particular interest is therefore the part of the five-
dimensional tensor perturbation which resides on the
brane. The amplitude measured on the brane is given
by evaluating the five-dimensional perturbation at the
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brane position y = yb:

ĥij(t,x, yb) =

∫
d3k

(2π)3/2

∑

•

eixk·xe•

ij(k)ĥ
•
(t, yb,k).

(4.1)
The expansion of the universe (motion of the brane) en-
ters this expression via the eigenfunctions φα(t, yb(t)).
The zero-mode function φ0(t), given Eq. (2.26), does not
depend on the extra dimension y. Noting that C2(mnyb)
is a Wronskian, we read off from Eqs. (2.27) that the
eigenfunctions on the brane φn(t, yb) are

φα(t, yb) =
√

2
L

a
Yα(a) (4.2)

where we have used that yb = L/a and we define “cor-
rection” function for the zero-mode

Y0(a) =

√
y2

s

y2
s − y2

b

(4.3)

and the Kaluza-Klein-modes

Yn(a) =

√
Y 2

1 (mnys)

Y 2
1 (mnyb) − Y 2

1 (mnys)
. (4.4)

One immediately is confronted with an interesting obser-
vation: the function Yα(a) behaves differently with the
expansion of the universe for the zero-mode α = 0 and
the KK-modes α = n. This is evident in particular in
the asymptotic regime ys � yb, i.e. yb → 0 for t → ∞
where, exploiting the asymptotics of Y1, one finds

Y0(a) ' 1 , Yn(a) ' L

a

πmn

2
|Y1(mnys)|, (4.5)

i.e. Y0 is constant while Yn ∝ 1/a. For large n we can
approximate mn ' nπ/ys and Y1(mnys) ' Y1(nπ) '
1/(π

√
n), so that

Yn(a) ' Lmn

2
√

na
, Y2

n(a) ' πL2mn

4ysa2
. (4.6)

Consequently, the amplitude of the KK-modes on the
brane will decrease faster with the expansion of the uni-
verse than the amplitude of the zero-mode. This leads to
interesting consequences for the observable power spec-
trum and energy density and has a clear physical inter-
pretation.

B. Power spectrum

We define the power spectrum P(k) of gravitational
waves as

(2π)3

k3
P(k)δ(3)(k − k

′) (4.7)

=
∑

•=×,+

〈
0, in|ĥ•(t, yb;k)ĥ†

•(t, yb;k
′)|0, in

〉
,

i.e. we consider the expectation value of the field oper-

ator ĥ• with respect to the initial vacuum state at the
position of the brane y = yb(t). In order to get a physi-
cally meaningful power spectrum, averaging over several
oscillations of the gravitational wave amplitude has to be
performed. Equation (4.7) then describes the observable
power spectrum imprinted by the five-dimensional ten-
sor perturbations on the brane, i.e. in our universe. The
explicit calculation of the expectation value involving a
“renormalization” of a divergent contribution is carried
out in detail in Appendix B. The final result reads

P(k) =
2

a2

k3

(2π)3
κ5

L

∑

α

Rα,k(t)Y2
α(a). (4.8)

The function Rα,k(t) can be expressed in terms of the
Bogoliubov coefficients (3.24) and (3.25) if we consider
tout as a continuous variable t:

Rα,k(t) =
Nα,k(t) + ON

α,k(t)

ωα,k(t)
. (4.9)

Nα,k(t) is the instantaneous particle number which is ob-
tained by replacing tout in Eq. (3.28) by t and the func-
tion ON

α,k(t) is defined in Eq. (B9). It is important to

note that Nα,k(t) cannot in general be interpreted as a
physical particle number. For example zero-modes with
wave numbers such that kt < 1 cannot be considered as
particles. They have not performed several oscillations
and their energy density cannot be defined in a meaning-
ful way. Equivalently, expressed in terms of the complex

functions ε
(β)
α,k, one finds

Rα,k(t) =
∑

β

|ε(β)
α,k(t)|2
ωin

β,k

− 1

ωα,k(t)
+ Oε

α,k(t), (4.10)

with Oε
α,k given in Eq. (B10). The result (4.8) together

with (4.9) or (4.10) holds at all times.
If one is interested in the power spectrum at early times
kt � 1, it is not sufficient to take only the instanta-
neous particle number Nα,k(t) in Eq. (4.9) into account.
This is due to the fact that even if the mode functions
ε
(β)
α,k are already oscillating, the coupling matrix entering

the Bogoliubov coefficients might still undergo a non-
trivial time dependence [cf. Eq. (6.15)]. Later on, [cf, e.g.,
Figs. 5, 6, 8] we will see explicitly that in the radiation
dominated bounce studied in this work, particle creation
especially of the zero-mode, only stops on sub-Hubble
times, kt > 1, even if the mode functions are plane waves
right after the bounce. Therefore, in order to determine
the perturbation spectrum of the zero-mode, we have to
make use of the full expression expression (4.10) and may
not use (4.11), given below.
At late times, kt � 1 (t ≥ tout) when the brane moves
slowly, the couplings Mαβ go to zero and particle creation
has ceased both functions ON

α,k and Oε
α,k do not con-

tribute to the observable power spectrum after averaging
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over several oscillations. Furthermore, the instantaneous
particle number then equals the (physically meaningful)
number of created final state gravitons N out

α,k and, close to
the Cauchy horizon, the KK-masses are constant. Con-
sequently, the observable power spectrum at late times
can be written as

P(k, t > tout) =
2 κ4

a2

k3

(2π)3

∑

α

N out
α,k

ωout
α,k

Y2
α(a) , (4.11)

where we have used that κ5/L = κ4. The dependence on
the wave number k is completely determined by the spec-
tral behavior of the number of created gravitons N out

α,k .
It is useful to decompose the power spectrum in its zero-
mode and Kaluza-Klein contributions:

P(k) = P0(k) + PKK(k). (4.12)

In the late time regime, using Eqs. (4.11) and (4.5) the
zero-mode power spectrum reads

P0(k, t > tout) =
2 κ4

a2

k2

(2π)3
N out

0,k . (4.13)

As expected for a four-dimensional tensor perturbation,
on sub-Hubble scales the power spectrum decreases with
the expansion of the universe as 1/a2. By contrast, the
KK-mode power spectrum for late times, given by

PKK(k) =
k3

a4

κ4L
2

16π

∑

n

N out
n,k

m2
n

ωout
n,k

Y 2
1 (mnys), (4.14)

decreases as 1/a4, i.e. with a factor 1/a2 faster than
P0. The gravity wave power spectrum at late times is
therefore dominated by the zero-mode power spectrum
and looks four dimensional. Contributions to it coming
from five-dimensional effects are scaled away rapidly as
the universe expands due to the 1/a4 behavior of PKK.
In the limit of large masses mnys � 1, n � 1 and for
wave lengths k � mn such that ωn,k ' mn, the late-time
KK-mode power spectrum can be approximated by

PKK(k) =
k3

a4

κ4L
2

16π2ys

∑

n

N out
n,k (4.15)

where we have inserted Eq. (4.6) for Y2
n(a).

C. Energy density

For a usual four-dimensional tensor perturbation hµν

on a background metric gµν an associated effective energy
momentum tensor can be defined unambiguously by [37]

Tαβ =
1

κ4
〈hµν,αhµν

,β〉 , (4.16)

where the bracket stands for averaging over several pe-
riods of the wave. The energy density of gravity waves

is the 00-component of the effective energy momentum
tensor. We can use the same effective energy momentum
tensor to calculate the energy density corresponding to
the imprint left by the five-dimensional perturbations on
the brane, i.e. for the perturbation hij(t,x, yb) given in
Eq. (4.1). For this it is important to note that at late
times for which we want to calculate the energy density
the conformal time η of an observer on the brane is iden-
tical to the bulk time t we have been working with so far.
Consequently, the energy density of gravitational radia-
tion amplified during the brane motion is given by (in
the TT-gauge employed here)

ρ =
1

κ4 a2

〈〈
0, in| ˙̂hij(t,x, yb)

˙̂
hij(t,x, yb)|0, in

〉〉
. (4.17)

Here the outer bracket denotes averaging which (in con-
trast to the power spectrum) we embrace from the very
beginning. We are only interested in the energy density
at late times kt � 1 (t ≥ tout) where the mode couplings
vanish and particle creation has ceased. The factor 1/a2

comes from the fact that an overdot indicates the deriva-
tive with respect to bulk time which is conformal time
on the brane. A detailed calculation is carried out in
Appendix B leading to

ρ =
2

a4

∑

α

∫
d3k

(2π)3
ωα,kNα,k(t)Y2

α(a) . (4.18)

At late times t ≥ tout the energy density is therefore given
by

ρ =
2

a4

∑

α

∫
d3k

(2π)3
ωout

α,k N out
α,k Y2

α(a). (4.19)

This expression looks at first sight very similar to a
“naive” definition of energy density as integration over
momentum space and summation over all quantum num-
bers α of the energy ωout

α,k N out
α,k of created particles. (Note

that the graviton number N out
α,k already contains the con-

tributions of both polarizations [see Eq. (3.28)] and the
additional factor 2 is due to our normalization of the
scale factor.) However, the important difference is the
appearance of the function Y2

α(a) which exhibits a dif-
ferent dependence on the scale factor for the zero-mode
compared to the KK-modes as we have seen before.
Decomposing the energy density into zero-mode and
Kaluza-Klein contributions

ρ = ρ0 + ρKK (4.20)

we find for the massless, i.e. four-dimensional, graviton
in the late time regime the expected expression for the
energy density which behaves as radiation, i.e. decreases
as 1/a4 as the universe expands:

ρ0 =
2

a4

∫
d3k

(2π)3
kN out

0,k . (4.21)
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The energy density of the KK-modes at late times, how-
ever, is found to be

ρKK =
L2

a6

π2

2

∑

n

∫
d3k

(2π)3
ωout

n,k N out
n,k m2

nY 2
1 (mnys),

(4.22)
scaling like 1/a6. As the universe expands the energy
density of massive gravitons on the brane is therefore
rapidly diluted and the total energy density of gravita-
tional waves in our universe at late times is dominated
by the massless four-dimensional graviton. In the large
mass limit mnys � 1,n � 1 the KK-energy density can
be approximated

ρKK,n ' πL2

2a6ys

∫
d3k

(2π)3
N out

n,k ωout
n,kmn . (4.23)

Due to the factor mn coming from the function Y2
i , for

the summation over the KK-tower to converge, the num-
ber of produced gravitons N out

n,k has to decrease faster

than 1/m3
n for large masses and not just faster than 1/m2

n

as one might naively expect.

D. Escaping of massive gravitons and localization

of gravity

The rapid decrease (compared to the zero-mode) of the
power spectrum (PKK ∝ 1/a4) and of the energy density
(ρKK ∝ 1/a6) of the KK-modes with the expansion of
the universe has a simple physical interpretation. It is a
direct consequence of the warping of the fifth dimension.
Let us define the (spatial) “wave function”

Ψn(t, y) =
φn(t, y)

y3/2
(4.24)

which satisfies
∫ ys

yb
dyΨ2

n(t, y) = 1. From the expan-

sion of the gravity wave amplitude Eq. (2.36) and the
normalization condition (φn, φn) = 1 where the inner
product (φn, φn) is defined in Eq. (2.25) it is clear that
Ψ2

n(t, y) gives the probability to find the corresponding
KK-graviton for a given time t at position y in the AdS-
bulk. In Fig. 2 we plot the evolution of Ψ2

1(t, y) un-
der the influence of the brane motion Eq. (2.16) with
|v(0)| ≡ vb = 0.1. The second brane is placed at
ys = 10L. Thereby y ranges from yb(t) to ys and, for
simplicity, we have set Ψ2

1 = 0 for y < yb(t) . The time-
dependent KK-mass m1 has been determined numerically
from Eq. (2.33). As it becomes clear from this Figure,
Ψ2

1 is effectively localized close to the static brane. The
probability to find a KK-mode is therefore larger in a
region with less warping.

Since the effect of the brane motion on Ψ2
1 is hardly

visible in Fig. 2 we also show the behavior of Ψ2
1 close to

the physical brane in Fig. 3. Ψ2
1 peaks also at the physical

brane but with an amplitude roughly ten times smaller
than at the second brane. While the brane, coming from

FIG. 2: The evolution of Ψ1(t, y) = φ1(t, y)/y3/2 which cor-
responds to the probability to find the first KK-graviton at
time t at the position y in the AdS-bulk. The static brane
is at ys = 10L and the maximal brane velocity is given by
vb = 0.1.

t → −∞ approaches the point of closest encounter Ψ2
1

slightly increases and peaks at the bounce t = 0 where,
as we will see in the next section, the production of KK-
particles takes place. Afterwards, for t → ∞, when the
brane is moving back towards the Cauchy horizon, the
amplitude Ψ2

1 decreases again and so does the probabil-
ity to find a KK-particle at the position of the physical
brane, i.e. in our universe. From Eqs. (4.2) and (4.5)
it follows that Ψ2

n(t, yb) ∝ 1/a. If KK-gravitons are cre-
ated in our universe during the brane motion, the weight
of their wave function lies in the region of less warping,
far from the brane, as the universe expands. In other
words, the KK-particle escape from the brane into the
bulk, when the brane moves back to the Cauchy horizon.

The power spectrum and the energy density imprinted
by the KK-modes on the brane decrease faster with the
expansion of the universe than for any kind of matter
(including massless gravitons) confined on the brane.

The parameter settings used in Figures 2 and 3 are
typical parameters which we use in the numerical sim-
ulations. However, the effect of escaping KK-particles
is illustrated even better if the second brane is closer to
the moving brane. In Figure 4 we show Ψ2

1 for the same
parameters as in Figures 2 and 3 but now with ys = L.
In this case, the probability to find a KK-particle on the
physical brane is of the same order as in the region close
to the second brane during times close to the bounce.
However, as the universe expands, Ψ2

1 rapidly decreases
at the position of the physical brane, hence KK-particles
generated during the bounce at the position of the mov-
ing brane escape into the bulk. This scaling behavior of
the power spectrum and energy density of the KK-modes
on the brane is entirely a consequence of the geometry
of the bulk space-time, i.e. of the warping L2/y2 of the
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FIG. 3: Evolution of Ψ1(t, y) as in Fig. 2 but zoomed into
the bulk-region close to the moving brane.

FIG. 4: Evolution of Ψ1(t, y) for ys = L and vb = 0.1.

metric (2.1). It does not depend on a particular type of
brane motion 3. It is simply a manifestation of the local-
ization of gravity on the brane: as time evolves, the KK-
gravitons, which are traces of the 5D nature of gravity,
escape into the bulk and only the zero-mode which cor-
responds to the usual 4D graviton remains on the brane.
An immediate consequence of this particular scaling be-
havior is that KK-gravitons in an AdS brane world can-
not play the role of dark matter. Their energy density
in our universe decays much faster with the expansion
than that of ordinary matter which is restricted to re-

3 Actually, it should also be true in the high energy case which we
do not consider here.

side on the brane. This remains true also in the 1-brane
model, Randall-Sundrum II [6], and is also true for other
fields which are ’confined to the brane’. We actually ex-
pect it to hold in most brane-models with warped extra
dimension.

V. NUMERICAL SIMULATIONS

A. Preliminary remarks

The scale factor a(t) of the universe, the corresponding
motion of the brane in the bulk yb(t) and its velocity v(t)
are given by Eqs. (2.15)-(2.17). A quantity of particular
importance is the maximal velocity of the brane which is
reached at the bounce t = 0:

vb = |ẏb(0)| =
L2

t2b
. (5.1)

In the numerical simulations we set L = 1, i.e. all quan-
tities afflicted with dimensions are measured in units of
the AdS curvature scale. Starting at initial time tin � 0
where the initial vacuum state |0, in〉 is defined we evolve
the system (3.34,3.35) up to final time tout. We set
tin = −2πNin/k with 1 � Nin ∈ N, such that Θin

0,k = 1.

This implies ξ
(0)
0 (tin) = 2, i.e. independent of the 3D-

momentum k a (plane wave) zero-mode solution always
performs a fixed number of oscillations between tin and
the bounce at t = 0. We calculate the final particle spec-
trum at t = tout [N out

α,k ] at late times when the brane
approaches the Cauchy horizon and particle creation has
ceased. This quantity is physically well defined and leads
to the late-time power spectrum (4.11) and energy den-
sity (4.19) on the brane. For illustrative purposes, we
will also plot the instantaneous particle number Nα,k,•(t)
which also determines the power spectrum at all times
[cf Eq.(4.9)]. In this section we will use the term par-

ticle number for both, the instantaneous particle num-
ber Nα,k,•(t) as well as the final state graviton number
N out

α,k,•, keeping in mind that only the latter is physically
meaningful.
There are two physical input parameters for the numer-
ical simulation; the maximal brane velocity vb (i.e. tb)
and the position of the static brane ys. The latter de-
termines the number of KK-modes which fall within a
particular mass range. On the numerical side we have to
specify Nin and tout as well as the maximum number of
KK-modes nmax which we take into account, i.e. after
which KK-mode we truncate the system of differential
equations. The independence of the numerical results on
the choice of the time parameters is checked and the con-
vergence of the particle spectrum with increasing nmax is
investigated. More detailed information on numerical is-
sues including accuracy considerations are collected in
Appendix C.
One strong feature of the brane motion (2.16) is its kink
at the bounce t = 0. In order to study how particle
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production depends on the kink we will compare the mo-
tion (2.16) with the following motion which has a smooth
transition (L = 1):

yb(t) =

{
(|t| + tb − ts)

−1 if |t| > ts
a + (b/2)t2 + (c/4)t4 if |t| ≤ ts

(5.2)

with the new parameter ts in the range 0 < ts < tb. This
motion is constructed such that its velocity at |t| = ts

is the same as the velocity of the kink motion at the
bounce. This will be the important quantity determin-
ing the number of produced gravitons. For ts → 0 the
motion with smooth transition approaches (2.16). The
parameters a, b and c are obtained by matching the mo-
tions and the first and second derivatives. Matching also
the second derivative guarantees that possible spurious
effects contributing to particle production are avoided.
The parameter ts has to be chosen small enough, ts � 1,
such that the maximal velocity of the smooth motion is
not much larger than vb in order to have comparable sit-
uations.
For reasons which will become obvious in the next two
sections we discuss the cases k � 1 and k � 1 separately.

B. Generic results and observations for long

wavelengths k � 1

Figure 5 displays the results of a numerical simulation
for three-momentum k = 0.01, asymptotic inter-brane
distance ys = 10 and maximal brane velocity vb = 0.1.
Depicted is the graviton number for one polarization
Nα,k,•(t) for the zero-mode and the first ten KK-modes
as well as the evolution of the scale factor a(t) and the
position of the physical brane yb(t). Initial and final
time are Nin = 5 and tout = 2000, respectively. The
KK-particle spectrum will be discussed in detail later.

One observes that the zero-mode particle number in-
creases slightly with the expansion of the universe to-
wards the bounce at t = 0. Close to the bounce N0,k,•(t)
increases drastically, shows a local peak at the bounce
and, after a short decrease, grows again until the mode
is sub-horizon (kt � 1). Inside the horizon N0,k,•(t) is
oscillating around a mean value with diminishing ampli-
tude. This mean value which is reached asymptotically
for t → ∞ corresponds to the number of generated fi-
nal state zero-mode gravitons N out

0,k,•. Production of KK-
mode gravitons takes effectively place only at the bounce
in a step-like manner and the graviton number remains
constant right after the bounce.
In Fig. 6 we show the numerical results obtained for the
same parameters as in Fig. 5 but without coupling of
the zero-mode to the KK-modes, i.e. Mi0 ≡ 0 (and thus
also Ni0 = N0i = 0). We observe that the production
of zero-mode gravitons is practically not affected by the
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FIG. 5: Evolution of the graviton number Nα,k,•(t) for the
zero-mode and the first ten KK-modes for three-momentum
k = 0.01 and vb = 0.1, ys = 10.
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FIG. 6: Nn,k,•(t) for the zero-mode and the first ten KK-
modes for the parameters of Fig. 5, but without coupling of
the zero-mode to the KK-modes, i.e. Mi0 ≡ 0.

artificial decoupling 4. Note that even if M0j ≡ 0 (see Ap-
pendix A) which is in general true for Neumann bound-
ary conditions, the zero-mode q0 couples in Eq. (2.37)
to the KK-modes via N0j = M00Mj0 and through the
anti-symmetric combination Mαβ − Mβα. In contrast,
the production of the first ten KK-modes is heavily sup-
pressed if Mi0 ≡ 0. Their corresponding final-state gravi-
ton numbers N out

n,k,• are reduced by four orders of magni-
tude. This shows that the coupling to the zero-mode is
essential for the production of massive gravitons. Later

4 Quantitatively it is N0,k,•(t = 2000) = 965.01 with and
N0,k,•(t = 2000) = 965.06 without Mi0. Note that this differ-
ence lies indeed within the accuracy of our numerical simulations
(see Appendix C).
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we will show that this is true for light KK-gravitons only.
If their masses exceed mi ∼ 1, they evolve indepently of
the four-dimensional graviton and their evolution is en-
tirely driven by the intermode couplings Mij . It will also
turn out that the time-dependent KK-mass mi(t) plays
only an inferior role for the generation of massive KK-
modes. On the other hand, the effective decoupling of
the evolution of the zero-mode from the KK-modes oc-
curs in general as long as k � 1 is satisfied, i.e. for
long-wavelengths. We will see that it is no longer true
for short wavelengths k � 1.

The effective decoupling of the zero-mode evolution
from the KK-modes makes it is possible to derive an ana-
lytical expression for the number of zero-mode gravitons,
their power spectrum and energy density. The calcula-
tions are carried out in Section VI.
In summary we emphasize the important observation
that for long wavelengths the amplification of the four
dimensional gravity wave amplitude during the bounce
is not affected by the evolution of the KK-gravitons. We
can therefore study the zero-mode separately from the
KK-modes in this case.

C. Zero-mode: long wavelengths k � 1

In Figure 7 we show the numerical results for the num-
ber of generated zero-mode gravitons N0,k,•(t) and the
evolution of the corresponding power spectrum P0(k) on
the brane for momentum k = 0.01, position of the static
brane ys = 10 and maximal brane velocity vb = 0.1.
The results have been obtained by solving the equations
for the zero mode alone, i.e. without the couplings to
the KK-modes, since, as we have just shown, the evo-
lution of the four-dimensional graviton for long wave-
lengths is not influenced by the KK-modes. Thereby
the power spectra is shown before and after averaging
over several oscillations, i.e. employing Eq. (4.9) with
and without the term ON

0,k, respectively. Right after the
bounce where the generation of gravitons is initiated and
which is responsible for the peak in N0,k,• at t = 0, the
number of gravitons first decreases again. Afterwards
N0,k,• grows further until the mode enters the horizon
at kt = 1. Once on sub-horizon scales kt � 1, the
number of produced gravitons oscillates with a dimin-
ishing amplitude and asymptotically approaches the fi-
nal state graviton number N out

0,k,•. During the growth of

N0,k,•(t) after the bounce, the power spectrum remains
practically constant. Within the range of validity it is
in good agreement with the analytical prediction (6.21)
yielding L2(2π)3/(2κ4)P0(k) = 4vb(kL)2. When parti-
cle creation has ceased, the full power spectrum Eq.(4.8)
starts to oscillate with an decreasing amplitude. The
time-averaged power spectrum obtained by using Eq.
(4.9) without the ON

0,k-term is perfectly in agreement

with the analytical expression Eq. (6.19) which yields
L2(2π)3/(2κ4)P0(k) = 2vb/t2. Note that at early times,
the time-averaged power spectrum behaves not in the
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FIG. 7: Time evolution of the number of created zero-mode
gravitons N0,k,•(t) and of the zero-mode power spectrum
(4.8): (a) for the entire integration time; (b) for t > 0 only.
Parameters are k = 0.01, ys = 10 and vb = 0.1. Initial and fi-
nal time of integration are given by Nin = 10 and tout = 4000,
respectively. The power spectrum is shown with and without
the term O

N
0,k,•, i.e. before and after averaging, respectively,

and compared with the analytical results.

same way as the full one, demonstrating the importance
of the term ON

0,k at early times.
Figure 8 shows a summary of numerical results for the
number of created zero-mode gravitons N0,k,•(t) for dif-
ferent values of the three-momentum k. The maximum
velocity at the bounce is vb = 0.1 and the second brane is
at ys = 10. Those values are representative. Other val-
ues in accordance with the considered low-energy regime
do not lead to a qualitatively different behavior. Note
that the evolution of the zero-mode does practically not
depend on the value of ys as long as ys � yb(0) (see
below). Initial and finial integration times are given by
Nin = 5 and tout = 20000, respectively. For sub-horizon
modes we compare the final graviton spectra with the an-
alytical prediction (6.16). Both are in perfect agreement.
On super-horizon scales where particle creation has not
ceased yet N0,k,• is independent of k. The corresponding
time-evolution of the power spectra P0,k(t) is depicted in
Fig. 9. For the sake of clarity, only the results for t > 0,
i.e. after the bounce, are shown in both figures.
The numerical simulations and the calculations carried
out in Section VI reveal that the power spectrum for the
four-dimensional graviton for long wavelengths is scale
invariant on sub-horizon scales and decaying like 1/a2

but blue on super-horizon scales. However, the analyti-
cal calculations rely on the assumption that yb � ys and
tin → ∞. Figure 10 shows the behavior of the number
of generated zero-mode gravitons of momentum k = 0.01
in dependence on the inter-brane distance and the ini-
tial integration time. The maximal brane velocity at the
bounce is vb = 0.1 which implies that at the bounce the
moving brane is at yb(0) =

√
vb ' 0.316 (L = 1). In case
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FIG. 8: Numerical results for the time evolution of the num-
ber of created zero-mode gravitons N0,k,•(t) after the bounce
t > 0 for different three-momenta k. The maximal brane
velocity at the bounce is vb = 0.1 and the second brane is
positioned at ys = 10. In the final particle spectrum the nu-
merical values are compared with the analytical prediction
Eq. (6.16). Initial and final time of integration are given by
Nin = 5 and tout = 20000, respectively.
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Fig. 8. The numerical results are compared to the analytical
predictions Eqs. (6.19) and (6.21).

of a close encounter of the two branes as for ys = 0.35,
the production of massless gravitons is strongly enhanced
compared to the analytical result. But as soon as ys ≥ 1,
(i.e. ys ≥ L) the numerical result is very well described
by the analytical expression Eq. (6.15) derived under the
assumption ys � yb. For ys ≥ 10 the agreement be-
tween both is very good. From panels (b) and (c) one
infers that the numerical result becomes indeed indepen-
dent of the initial integration time when increasing Nin.
Note that in the limit Nin � 1, the numerical result is
slightly larger than the analytical prediction but the dif-
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FIG. 10: Dependence of the zero-mode particle number on
inter-brane distance and initial integration time for momen-
tum k = 0.01, maximal brane velocity vb = 0.1 in comparison
with the analytical expression Eq. (6.15). (a) Evolution of the
instantaneous particle number N0,k,•(t) with initial integra-
tion time given by Nin = 5 for ys = 0.35, 0.5 and 1. (b) Final
zero-mode graviton spectrum N0,k,•(tout = 2000) for various
values of ys and Nin. (c) Close-up view of (b) for large ys.

ference between both is negligibly small. This confirms
the correctness and accuracy of the analytical expressions
derived in Section VI for the evolution of the zero-mode
graviton.

D. Kaluza-Klein-modes: long wavelengths k � 1

Because the creation of KK-gravitons ceases right after
the bounce [cf Fig. 5] we can stop the numerical simula-
tion and read out the number of produced KK-gravitons
N out

n,k,• at times tout for which the zero-mode is still super-
horizon.
Even though Eq. (2.33) cannot be solved analytically,
the KK-masses can be approximated by mn ' nπ/ys.
This expression is the better the larger the mass. Conse-
quently, for the massive modes the position of the second
brane ys determines how many KK-modes belong to a
particular mass range ∆m.
In Figure 11 we show the KK-graviton spectra N out

n,k,•
for three-momentum k = 0.001 and second brane posi-
tion ys = 100 for maximal brane velocities vb = 0.1, 0.3
and 0.5. For any velocity vb two spectra obtained with
nmax = 60 and 80 KK-modes taken into account in the
simulation are compared to each other. This reveals that
the numerical results are stable up to a KK-mass mn ' 1.
One infers that first, N out

n,k,• grows with increasing mass
until a maximum is reached. The position of the maxi-
mum shifts slightly towards larger masses with increasing
brane velocity vb. Afterwards, N out

n,k,• declines with grow-
ing mass. Until the maximum is reached, the numerical
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FIG. 11: Final state KK-graviton spectra for k = 0.001, ys =
100, different maximal brane velocities vb and Nin = 1, tout =
400. The numerical results are compared with the analytical
prediction Eq. (6.33) (dashed line).
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FIG. 12: Final state KK-graviton spectra for k = 0.01, ys =
100, different vb and Nin = 1, tout = 400. The numerical
results are compared with the analytical prediction Eq. (6.33)
(dashed line). For vb = 0.3, 0.5 the spectra obtained without
KK-intermode and self-couplings (Mii = Mij = 0) are shown
as well.

results for the KK-particle spectrum are very stable. This
already indicates that the KK-intermode couplings me-
diated by Mij are not very strong in this mass range. In
Figure 12 we show the final KK-particle spectrum for the
same parameters as in Fig. 11 but for three-momentum
k = 0.01 and the additional velocity vb = 0.9 5. The
same qualitative behavior is observed as in Fig. 11. In

5 Such a high brane velocity is of course not consistent with a
Neumann boundary condition Eq. (2.23) at the position of the
moving brane.

addition we show numerical results obtained without the
KK-intermode couplings, i.e. we have set Mij = 0 by
hand. One infers that for KK-masses, depending slightly
on the velocity vb, but at least up to mn ' 1 the numer-
ical results for the spectra do not change when switch-
ing off the KK-intermode couplings. Consequently, the
evolution of light, i.e. mn ≤ 1, KK-gravitons is prac-
tically not affected by the KK-intermode coupling. In
addition one finds that also the time-dependence of the
KK-masses is not important for the production of those
light KK-gravitons which will later be demonstrated ex-
plicitely. Thus the production of light KK-gravitons is
driven by the zero-mode evolution only. This allows us
to find an analytical expression for the number of pro-
duced light KK-gravitons in terms of exponential inte-
grals Eq. (6.33). It is based on several approximations
and particularly valid up to masses mn ' 1. In Figs. 11
and 12 the analytical prediction for the spectrum of final
state gravitons has already been included (dashed lines).
Within its range of validity it is in excellent agreement
with the numerical results obtained by including the full
KK-intermode couplings. It perfectly describes the de-
pendence of N out

n,k,• on the three-momentum k and the
maximal velocity vb. For small velocities vb ∼ 0.1 it
is also able to reproduce the position of the maximum.
This proves that the KK-intermode coupling is negligi-
ble for the light KK-masses and their production is en-
tirely driven by their coupling to the evolution of the
four-dimensional graviton. Since the analytical expres-
sion has been derived for real asymptotic initial condi-
tions tin → −∞, its agreement with the numerics gives
us confidence that the (finite) initial time used in the nu-
merical simulations is large enough. No spurious initial
effects contribute to the shown particle spectra. Note,
that the numerical values for N out

n,k,• in the shown exam-
ples are all smaller than one. However, for smaller values
of k than the ones which we consider here for purely nu-
merical reasons, the number of generated KK-mode par-
ticles is enhanced since N out

n,k,• ∝ 1/k as can be inferred

from Eq. (6.33) in the limit k � mn.
If one goes to smaller values of ys, less KK-modes be-
long to a particular mass range. Hence, with the same
or similar number of KK-modes as taken into account in
the simulations before, we can study the behavior of the
final particle spectrum for larger masses. Those simula-
tions will reveal the asymptotical behavior of N out

n,k,• for
mn → ∞ and therefore the behavior of the total gravi-
ton number and energy density. Due to the kink in the
brane motion we cannot expect that the energy density
of produced KK-mode gravitons is finite when summing
over arbitrarily high frequency modes. Eventually we
will have to introduce a cut-off setting the scale at which
our kink-approximation is no longer valid. This is the
scale at which the effects of the underlying unspecified
high-energy physics become important which drive the
transition from contraction to expansion. The depen-
dence of the final particle spectrum on the kink will be
studied later on in this section in detail.
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FIG. 13: Final state KK-graviton spectra for k = 0.01, ys =
10, different maximal brane velocities vb and Nin = 2, tout =
400. The numerical results are compared with the analytical
prediction Eq. (6.33) (dashed line).
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FIG. 14: Final state KK-graviton spectra for k = 0.1, ys = 10,
different maximal brane velocities vb and Nin = 2, tout =
400. The numerical results are compared with the analytical
prediction Eq. (6.33) (dashed line).

In Figures 13 and 14 we show final KK-graviton spectra
for ys = 10 and three-momentum k = 0.01 and k = 0.1,
respectively. The analytical expression Eq. (6.33) is de-
picted as well and the spectra are always shown for at
least two values of nmax to indicate up to which KK-
mass the numerical results are stable. Now, only two
KK-modes are lighter than mn = 1. For those modes
the analytical expression Eq. (6.33) is valid and in excel-
lent agreement with the numerical results, in particular
for small maximal brane velocities vb ∼ 0.1. As before,
the larger the velocity vb the stronger the effect of the
truncation of the system at nmax.

For k = 0.01 the spectrum seems to follow a power
law decrease right after the maximum in the spectra. In

case of vb = 0.1 the spectrum is numerically stable up to
masses mn ' 20. In the region 5 ≤ mn ≤ 20 the spec-
trum is very well fitted by a power law N out

n,k,• ∝ m−2.7
n .

Also for the larger velocities the decline of the spectrum
is given by the same power within the mass ranges where
the spectrum is numerically stable. For k = 0.1, however,
the decreasing spectrum bends over at a mass around
mn ' 10 towards a less steep decline. This is in par-
ticular visible in the two cases with vb = 0.1 and 0.3
where the first 100 KK-modes have been taken into ac-
count in the simulation. The behavior of the KK-mode
particle spectrum can therefore not be described by a
single power law decline for masses mn > 1. It shows
more complicated features instead, which depend on the
parameters. We will see that this bending over of the
decline is related to the coupling properties of the KK-
modes and to the kink in the brane motion.
Before we come to a detailed discussion of those issues
we briefly confront numerical results of different ys to
demonstrate a scaling behavior. In the upper panel of
Figures 15 and 16 we compare the final KK-mode spec-
tra for several positions of the second brane ys = 3, 10, 30
and 100 obtained for maximal brane velocity vb = 0.1 for
k = 0.01 and 0.1, respectively. One observes that the
shapes of the spectra are basically identical. The bend-
ing over in the decline of the spectrum at masses mn ∼ 1
is very well visible for k = 0.1 and ys = 3, 10. For a
given KK-mode n the number of particles produced in
this mode is larger the smaller ys. But the smaller ys,
the less KK-modes belong to a given mass interval ∆m.
The energy transferred into the system by the moving
brane, which is basically defined by the maximum brane
velocity vb, is the same in all cases. Therefore, the energy
of the produced final state KK-gravitons belonging to a
given mass interval ∆m should also be the same, inde-
pendent of how many KK-modes are contributing to it.
This is demonstrated in the lower panels of Figs. 15 and
16 where the energy (in units of L) of the generated KK-
gravitons ωout

n,kN out
n,k,• binned in mass intervals ∆m = 1

is shown 6. One observes that, as expected, the en-
ergy transferred into the production of KK-gravitons of
a particular mass range is the same (within the region
where the numerical results are stable), independent of
the number of KK-modes lying in the interval. This is
in particular evident for ys = 30, 100. The discrepancy
for ys = 10 is due to the binning. As we shall see be-
low in detail, the particle spectrum can be split into two
different parts. The first part is dominated by the cou-
pling of the zero-mode to the KK-modes (as already seen
before) whereas the second part is dominated by the KK-
intermode couplings and is practically independent of the
wave number k. As long as the coupling of the zero-mode
to the KK-modes is the dominant contribution to their

6 The energy for the case ys = 3 is not shown because no KK-mode
belongs to the first mass interval.
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FIG. 15: Upper panel: Final state KK-particle spectra for
k = 0.01, vb = 0.1 and different ys = 3, 10, 30 and 100.
The analytical prediction Eq. (6.33) is shown as well (dashed
line). Lower panel: Energy ωout

n,kN
out

n,k,• of the produced fi-
nal state gravitons binned in mass intervals ∆m = 1 for
ys = 10, 30, 100.
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FIG. 16: Upper panel: Final state KK-particle spectra for
k = 0.1, vb = 0.1 and different ys = 3, 10, 30 and 100.
The analytical prediction Eq. (6.33) is shown as well (dashed
line). Lower panel: Energy ωout

n,kN
out

n,k,• of the produced fi-
nal state gravitons binned in mass intervals ∆m = 1 for
ys = 10, 30, 100.

creation we have [cf. Eq. (6.33)] N out
n,k,• ∝ 1/k. Hence,

Eout
n,k,• = ωout

n,kN out
n,k,• ∝ 1/k if mn � k. This explains why

the energy per mass interval ∆m is one order larger for
k = 0.01 [cf Fig. 15] than for k = 0.1 [cf Fig. 16] .
Let us now discuss the KK-graviton spectrum for large
masses. As we have just seen, the shape and qualitative
behaviour of the spectrum N out

n,k,• is independent of the
position ys of the static brane and thus the mass at which
the decline of the spectrum changes is independent of ys.
This is demonstrated in Figure 17 where we show the
numerically calculated KK-mode spectrum for vb = 0.1,

k = 0.1 and ys = 10 [cf Fig. 14] and ys = 3 [cf Fig. 16]. In
addition to the results obtained by taking all intermode-
couplings into account we show the results of simulations
where we have switched off the coupling of the KK-modes
to each other, i.e. Mij = 0, as well as their self-coupling,
i.e. Mii = 0. Furthermore we display the results for the
KK-spectrum obtained by taking only the KK-intermode
couplings into account, i.e. Mi0 = 0 as well as Mii = 0.
One observes that for the lowest masses the spectra ob-
tained with the full coupling are identical to the ones
obtained without the KK-intermode (Mij = 0) and self-
couplings (Mii = 0). Hence, as already seen before, the
primary source of the production of light KK-gravitons
is their coupling to the evolution of the four-dimensional
graviton mode. In this mass range, the contribution to
the particle creation coming from the KK-intermode cou-
plings is very much suppressed and negligibly small.

For masses mn ' 4 a change in the decline of the
spectrum sets in and the spectrum obtained without the
coupling of the KK-modes to the zero-mode starts to
diverge from the spectrum computed by taking all the
couplings into account. While the spectra without the
KK-intermode couplings decrease roughly like a power
law Nn,k,• ∝ m−3

n the spectra corresponding to the full
coupling case change their slope towards a power law de-
cline with less power. At this point the KK-intermode
couplings gain importance and the coupling of the KK-
modes to the zero-mode looses influence. For a particular
mass mc ' 9 the spectra obtained including the KK-
intermode couplings only cross the onces calculated by
taking into account exclusively the coupling of the KK-
modes to the zero-mode. After the crossing, the spectra
obtained by taking only the KK-intermode couplings into
account approach the spectra corresponding to the full
coupling case. For larger masses, both agree. Thus for
large masses mn > mc the production of KK-gravitons
is dominated by the couplings of the KK-modes to each
other and is not influenced anymore by the evolution of
the four-dimensional graviton. This crossing defines the
transition between the two regimes mentioned before: for
masses mn < mc production of KK-gravitons takes place
due to their coupling to the zero-mode Mi0 while it is en-
tirely caused by the intermode couplings Mij for masses
mn > mc.
The decoupling of the evolution of the KK-modes from
the dynamics of the four-dimensional graviton for large
masses implies that the KK-spectra obtained for the
same maximal velocity are independent of the three-
momentum k. This is demonstrated in Fig. 18 where
we compare spectra obtained for vb = 0.1 and ys = 3 but
different k. As expected, all spectra converge towards
the same behavior for masses mn > mc.

In Fig. 19 we show the KK-particle spectra for three-
momentum k = 0.1, maximum brane velocity vb = 0.1
and ys = 3 obtained for different coupling combinations.
This plot visualizes the effects of each different coupling
on the production of KK-gravitons. It shows, as al-
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FIG. 17: KK-particle spectra for three-momentum k = 0.1,
maximum brane velocity vb = 0.1 and ys = 3 and 10 with
different couplings taken into account. The dashed lines indi-
cates again the analytical expression Eq. (6.33).
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FIG. 18: Comparison of KK-particle spectra for ys = 3,
vb = 0.1 and three-momentum k = 0.01, 0.03, 0.1 and 1
demonstrating the independence of the spectrum on k for
large masses. nmax = 60 KK-modes have been taken into
account in the simulations.

ready mentioned before but not shown explicitly, that
the Mii coupling which is the rate of change of the cor-
responding KK-mass [cf. Eqs. (2.34),(A8)] is not impor-
tant for the production of KK-gravitons. Switching it
off does not affect the final graviton spectrum. In addi-
tion we show the result obtained with full coupling but
with α+

ii (t) = ωin
i,k and α−

ii (t) = 0, i.e. we neglect the

time-dependence of the frequency [cf. Eq. (3.36)]. We
observe that for this case the spectrum for larger masses
is changed slightly but shows the same qualitative be-
haviour. If, on the other hand, all the couplings are
switched off Mi0 = Mij = Mii = 0 and only the time-
dependence of the frequency ωi,k is taken into account,
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FIG. 19: KK-particle spectra for three-momentum k = 0.1,
maximum brane velocities vb = 0.1 and ys = 3 for nmax = 40
obtained for different coupling combinations.

the spectrum changes drastically. Not only the number
of produced gravitons is now orders of magnitude smaller
but also the spectral tilt changes. For large masses it
behaves now as Nn,k,• ∝ m−2

n . Consequently, the time-
dependence of the graviton frequency itself plays only an
inferior role for production of KK-gravitons. The bot-
tom line is that the main sources of the production of
KK-gravitons is their coupling to the evolution of the
four-dimensional graviton (Mi0) and their couplings to
each other (Mij) for small and large masses, respectively.
Those effects are caused entirely by the time-dependent
boundary conditions. The time-dependence of the os-

cillator frequency ωj,k =
√

m2
j (t) + k2 is practically ir-

relevant. Note that this situation is very different from
ordinary inflation where there are no boundaries and par-
ticle production is due entirely to the time dependence
of the the frequency 7.
The behavior of the KK-spectrum, in particular the mass
mc at which the KK-intermode couplings start to domi-
nate over the coupling of the KK-modes to the zero-mode
can only depend on the three-momentum k = |k| and
the maximal brane velocity vb. This is now discussed. In
Figure 20 we show the KK-particle spectra for ys = 10,
vb = 0.1, nmax = 100 and three-momenta k = 0.01 and
0.1. Again, the spectra obtained by taking all the cou-
plings into account are compared to the case where only
the coupling to the zero-mode is switched on. One ob-
serves that for k = 0.01 the spectrum is dominated by the
coupling of the KK-modes to the zero-mode up to larger
masses than it is the case for k = 0.1. For k = 0.01 the
spectrum obtained taking into account Mi0 only is iden-

7 Note however, that the time-dependent KK-mass mj(t) enters
the intermode-couplings.



19

0.1 1 10 100
Kaluza-Klein mass mn

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

fin
al

 s
ta

te
 g

ra
vi

to
n 

nu
m

be
r 

N
n,

k,
ou

t
full coupling
Mii=0, Mij=0

Mi0=0, Mii=0

k=0.01

k=0.1

k=0.1

●

FIG. 20: KK-particle spectra for ys = 10, vb = 0.1, nmax =
100 and three-momentum k = 0.01 and 0.1 with different
couplings taken into account. The thin dashed lines indicates
Eq. (6.33) and the thick dashed line Eq. (5.5).

tical to the spectrum obtained with the full coupling up
to mn ' 10. In case of k = 0.1 instead, the spectrum is
purely zero-mode dominated only up to mn ' 5. Hence,
the smaller the three-momentum k, the larger is the mass
range for which the KK-intermode coupling is suppressed
and the coupling of the zero-mode to the KK-modes is
the dominant source for the production of KK-gravitons.
We find that as long as the coupling to the zero-mode is
the primary source of particle production, the spectrum
declines with a power law ∝ m−3

n . Therefore, in the lim-
iting case k → 0 when the coupling of the zero-mode
to the KK-modes dominates particle production also for
very large masses we have N out

n�1,k→0,• ∝ 1/m3
n.

In Figure 21 we show KK-graviton spectra obtained for
the same parameters as in Fig. 20 but for fixed k = 0.1
and different maximal brane velocities vb. Again, the
spectra obtained by taking all the couplings into account
are compared with the spectra to which only the coupling
of the KK-modes to the zero-mode has contributed. One
observes that the mass up to which the spectra obtained
with the different couplings are identical changes slightly
with the maximal brane velocity. Therefore the depen-
dence on the velocity is rather small even if the velocity
is changed by an order of magnitude, but nevertheless
evident.
This behavior of the spectrum can indeed be under-
stood qualitatively. In Section VI we will show that the
strength of the coupling of the KK-modes to the zero-
mode at the bounce t = 0 where production of KK-
gravitons takes place, is proportional to

√
vb

k
. (5.3)

The larger this term, the stronger is the coupling of the
KK-modes to the zero-mode and thus the larger is the
mass up to which this coupling dominates over the KK-
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FIG. 21: KK-particle spectra for three-momentum k =
0.1,ys = 10 and maximum brane velocities vb = 0.03, 0.1 and
0.3 with nmax = 100. As in Fig. 20 different couplings
have been taken into account and thin dashed lines indicates
Eq. (6.33) and the thick dashed line Eq. (5.5).

intermode couplings. Consequently, the mass at which
the decline of the KK-particle spectrum changes strongly
depends on the three-momentum k but only weakly on
the maximal brane velocity due to the square root. This
explains qualitatively the behavior obtained from the nu-
merical simulations.
An (approximate) analytical expression for mc(k, vb) in
terms of k and vb is obtained from the numerical sim-
ulations. In Figure 22 we show the KK-particle spec-
tra for three-momentum k = 0.01, 0.03, 0.1 and 1 for
ys = 3 and maximum brane velocities vb = 0.1 with dif-
ferent couplings taken into account. The legend is like in
Fig. 21. From the crossing of the Mii = Mij = 0- and
Mii = Mi0 = 0 results we determine the k-dependence of
mc. Note that the spectra are not numerically stable for
large masses, but they are stable in the range where mc

lies [cf., e.g., Fig. 24, for k = 0.1]. Using the data for k =

0.01, 0.03 and 0.1 one finds mc(k, vb) ∝ 1/
√

k . In Fig. 23
KK-graviton spectra are displayed for k = 0.1,ys = 3 and
maximal brane velocities vb = 0.3, 0.2, 0.1, 0.08, 0.05 and
0.03 with different couplings taken into account. From
the crossing of the Mii = Mij = 0- and Mii = Mi0 = 0
results it is in principle possible to determine the vb-
dependence of mc. As the values for mc displayed in
the Figures indicate, that the dependence of mc on vb

is very weak. From the given data it is not possible to
obtain a good fitting formula (as a simple power law) for
the vb-dependence of mc. (In the range 0.1 ≤ vb ≤ 0.3

a very good fit is mc = 1.12πv0.13
b /

√
k.) The reason

is twofold. First of all, given the complicated coupling
structure, it is a priori not clear that a simple power
law dependence exists. Recall that also the analytical
expression for the particle number Eq. (6.33) has not a
simple power law dependence of the velocity . More im-
portantly, for the number of modes taken into account
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FIG. 22: KK-particle spectra for three-momentum k = 0.01,
0.03, 0.1 and 1 for ys = 3 and maximum brane velocities
vb = 0.1 with different couplings taken into account where
the notation is like in Fig. 21. From the crossing of the
Mii = Mij = 0- and Mii = Mi0 = 0 results we determine
the k-dependence of mc(k, vb). The thick dashed line indi-
cates Eq. (5.5).
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FIG. 23: KK-graviton spectra for three-momentum k =
0.1, ys = 3 and maximal brane velocities vb =
0.3, 0.2, 0.1, 0.08, 0.05 and 0.03 with different couplings taken
into account where the notation is like in Fig. 21. From the
crossing of the Mii = Mij = 0- and Mii = Mi0 = 0 results we
determine the vb-dependence of mc.

(nmax = 40) the numerical results are not stable enough
to resolve the weak dependence of mc on vb with a high
enough accuracy. (But it is good enough to perfectly
resolve the k-dependence.) The reason for the slow con-
vergence of the numerics will become clear below. As we
will see, the corresponding energy density is dominated
by masses much larger than mc. Consequently the weak
dependence of mc on vb is not very important in that re-
spect and therefore we do not have to determine it more
precisely. However, combinig all the date we can give as

fair approximation

mc(k, vb) '
π vα

b√
k

, with α ' 0.1. (5.4)

Taking α = 0.13 for 0.1 ≤ vb ≤ 0.3 and α = 0.08 for
0.03 ≤ vb ≤ 0.1 fits the given data reasonably well.
As we have seen, as long as the zero-mode is the dominant
source of KK-particle production, the final KK-graviton
spectrum can be approximated by a power law decrease
m−3

n . We can combine the presented numerical results to
obtain a fitting formula valid in this regime:

N out
n�1,k�1,• =

π

k ys

(vb)
2.37

(L mn)3
, for 1 < mn < mc. (5.5)

This fitting formula is shown in Figs. 20 21 and 22 and
is in reasonable good agreement with the numerical re-
sults.
Of particular interest is the slope of the KK-graviton
spectrum for masses mn → ∞ since it determines the
contribution of the heavy KK-modes to the energy den-
sity. In Figure 24 we show KK-graviton spectra ob-
tained for three-momentum k = 0.1, second brane posi-
tion ys = 3 and maximal brane velocities vb = 0.01, 0.03
and 0.1. Up to nmax = 100 KK-modes have been taken
into account in the simulations. One immediately is con-
fronted with the observation that the convergence of the
KK-graviton spectra for large mn is very slow. This is not
surprising since those modes, which are decoupled from
the evolution of the four-dimensional graviton-mode, are
stronlgy affected by the kink in the brane motion. Re-
call that the production of “light” KK-gravitons with
masses mn � mc is practically driven entirely by the
evolution of the massless mode. Those light modes are
not so sensitive to the discontinuity in the velocity of
the brane motion. A discontinuity in the motion will
always lead to a divergent total particle number. Arbi-
trary high frequency modes are excited by the kink since
the acceleration diverges there. Due to the excitation of
KK-gravitons of arbitrarily high masses one cannot ex-
pect that the numerical simulations show a satisfactory
convergence which would allow to determine the slope by
fitting the data. However, it is nevertheless possible to
give an quantitative expression for the behavior of the
KK-graviton spectrum for large masses.
In the context of the dynamical Casimir effect for a real
scalar field on a time-dependent interval [0, y(t)] it has
been shown analytically that a discontinuity in the mo-
tion will lead to a divergent particle number [38, 39].
Furthermore, it is known analytically that for a linear
boundary motion y(t) = y0+vt the particle spectrum be-
haves as ∝ v2n−1 where n determines the frequency [39].
The discontinuities in the velocity when it is switched
on and off are responsible for this divergent behaviour.
More details are collected in Appendix D. where we
also present particle spectra obtained numerically. Those
spectra show an identical slow convergence behaviour as
the KK-graviton spectra depicted in Fig. 24. For the
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FIG. 24: KK-particle spectra for k = 0.1, ys = 3 and max-
imal brane velocities vb = 0.01, 0.03, 0.1 up to KK-masses
mn ' 100 compared with an 1/mn decline. The dashed lines
indicate the approximate expression (5.7) which describes the
numerical results reasonably well.

kink in the brane-motion the total change of the velocity
during the bounce is 2vb as it is the case for the linear
motion. Consequently one may conclude that for large
KK-masses, i.e. after the evolution of the KK-modes is no
longer affected by their coupling to the four-dimensional
graviton 8, the KK-graviton spectrum should behave as

N out
n≥nc,k,• ∝ (vb)

2

mn
. (5.6)

Thereby nc is defined by the KK-mass after which the
spectrum is independent of the three-momentum k, i.e.
the KK-mode dynamics is no longer coupled to the zero-
mode. If one assumes that the spectrum declines like
1/mn and uses that the numerical results for the mass
m29 = 30.686 are practically stable one finds N out

n,• =

0.08× (vb)
2.08/mn which is plotted in Fig. 24. As for the

dynamical Casimir effect for a uniform motion as dis-
cussed in Appendix D, the slow convergence of the nu-
merical results towards the 1/mn behaviour is well visible
[cf. Fig. 33]. We consider this as a strong indication that
the final graviton spectrum for large masses behaves in-
deed like (5.6). It is therefore possible to give a single
simple expression for the final KK-particle spectrum for
large masses which comprises all the features of the spec-
trum even quantitatively reasonably well [cf. dashed lines

8 Note that the analytical calculation in [39] is carried out for
Dirichlet boundary conditions. For Neumann boundary condi-
tons considered here the zero-mode and its asymmetric coupling
play certainly a particular role. However, as we have shown, for
large masses only the KK-intermode couplings are important.
Consequently, there is no reason to expect that the qualitative
behaviour of the spectrum for large masses depends on the par-
ticular kind of boundary condition.
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FIG. 25: Evolution of the zero-mode particle number N0,k,•(t)
and final KK-graviton spectra N out

n,k,• for ys = 3, maximal
brane velocity vb = 0.1 and three-momenta k = 10 and 30.

in Fig. 24]

N out
n,k,• ' 0.2

v2
b

ωn,k ys
. (5.7)

The 1/ys-dependence is compelling. It follows imme-
diately from the considerations on the energy and the
scaling behaviour discussed above [cf. Figs. 15 and 16].
For completeness we now write 1/ωn,k instead of the KK-
mass mn only, since what matters is of course the to-
tal energy of a mode. Throughout this section this has
not been important since we considered only k � 1 and
the spectrum becomes independent of k for larger masses
[cf. Fig. 18].

E. Short wavelengths k � 1

For short wave lengths k � 1, i.e. short compared to
the AdS-curvature scale L set here to one, a completely
new and very interesting effect appears. The behavior
of the four-dimensional graviton mode changes drasti-
cally. We find that the zero-mode now couples to the
KK-gravitons and no longer evolves (effectively) inde-
pendently of the KK-modes, contrary to the behavior
of long wavelengths. In Fig. 25 we show the evolution of
the zero-mode particle number N0,k,•(t) and final KK-
graviton spectra N out

n,k,• for ys = 3, maximal brane veloc-
ity vb = 0.1 and three-momentum k = 10 and 30. One
observes that the evolution of the four-dimensional gravi-
ton depends on the number of KK-modes nmax taken
into account. Hence the zero-mode couples to the KK-
gravitons. For k = 10 the first 60 KK-modes have to
be included in the simulation in order to obtain a nu-
merically stable result for the zero-mode. In the case of
k = 30 we already need nmax ' 100 to obtain a numeri-
cally stable result for .N0,k,•(t)
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FIG. 26: 4D-graviton number N0,k,•(t) for k = 3, 5, 10, 20 and
30 with ys = 3 and maximal brane velocity vb = 0.1. The
small plot shows the final graviton spectrum N

out

0,k,• together
with a fit to the inverse law a/(k + b). For k = 10 and 30 the
corresponding KK-graviton spectra are shown in Fig. 25.

Figure 26 displays the time-evolution of the number of
produced zero-mode gravitons N0,k,•(t) for ys = 3 and
vb = 0.1. For large k the production of massless gravi-
tons takes place only at the bounce since these short
wavelength modes are sub-horizon right after the bounce.
The corresponding KK-particle spectra for k = 10, 30 are
depicted in Fig. 25 and the insert in Fig. 26 shows the
resulting final 4D-graviton spectrum N out

0,k,•. It turns out
that 4D-graviton spectrum is very well fitted by an in-
verse power law9 N out

0,k,• = 0.02/(k − 1.8). Consequently

for k � 1 the zero-mode particle number N out
0,k,• will de-

cline like 1/k only, in contrast to the 1/k2 behaviour
found for k � 1. The dependence of N out

0,k,• on the max-
imal brane velocity vb also changes. In Fig. 27 we show
N0,k,•(t) together with the corresponding KK-graviton
spectra for ys = 3, k = 5 and 10 in each case for dif-
ferent vb. Using nmax = 60 KK-modes in the simulation
guarantees numerical stability for the zero-mode. We
find that the velocity dependence of N out

0,k,• is not given
by a simple power law as it is the case for k � 1. This
is not very suprising since now the zero-mode couples
strongly to the KK-modes. For k = 10, for example, we
find N out

0,k,• ∝ v1.37
b if vb ≤ 0.1.

As in the long wavelengths case the zero-mode particle
number does not depend on the position of the static
brane ys even though the zero-mode now couples to
the KK-modes. This is demonstrated in Fig. 28 where
we show the evolution of the zero-mode particle num-
ber N0,k,•(t) and the corresponding KK-graviton spectra

9 The momenta k = 5, 10, 20, 30 and 40 have been used to obtain
the fit. Fitting the spectrum for k = 20, 30 and 40 to a power
spectrum fit gives N out

0,k,• ∝ k−1.1
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FIG. 27: Zero-mode particle number N0,k,•(t) and corre-
sponding final KK-particle spectra N

out

n,k,• for ys = 3, k = 5, 10
and different maximal brane velocities vb. nmax = 60 guar-
antess numerically stable solutions for the zero-mode.

with k = 10, vb = 0.1 for the two values ys = 3 and 10.
One needs nmax = 60 for ys = 30 in order to obtain a
stable result for the zero-mode which is not sufficent in
the case ys = 10. Only for nmax = 120 the zero-mode
solution approaches the stable result which is identical
to the result obtained for ys = 3. What is therefore
important is not the number of the KK-modes the four-
dimensional graviton couples to, but rather a particular
mass mzm ' k. The zero-mode couples to all KK-modes
of masses below mzm no matter how many KK-modes are
lighter. Recall that the value of ys just determines how
many KK-modes belong to a given mass interval ∆m
since, roughly, mn ' nπ/ys. Thus the KK-spectra for
k ≥ 1 show the same scaling behaviour as demonstrated
for long wavelengths in Figs. 15 and 16.

The production of 4D-gravitons of short wavelengths
takes place on the expense of the KK-modes. In Fig. 29
we show the numerical results for the final KK-particle
spectra with vb = 0.1, ys = 3 and k = 3, 5, 10 and 30 ob-
tained for different coupling combinations. These spec-
tra should be compared with those shown in Fig. 22 for
the long wavelength case. For k >∼ 10 the number of the
produced lightest KK-gravitons is smaller in the full cou-
pling case compared to the situation where only the KK-
intermode coupling is taken into account. In case k = 30,
for instance, the numbers of produced gravitons for the
first four KK-modes are smaller for the full coupling
case. This indicates that the lightest KK-modes couple
strongly to the zero-mode. Their evolution is damped
and graviton production in those modes is suppressed.
The production of zero-mode gravitons on the other hand
is enhanced compared to the long wavelengths case. For
short wavelengths, the evolution of the KK-modes there-
fore contributes to the production of 4D-gravitons. This
can be interpreted as creation of 4D-gravitons out of KK-



23

-100 -50 0 50 100
time t

-100 -50 0 50 100
time t

0

1

2

3

4

N
0,

k,
 (

t)

1 10 50
KK-mass mn

nmax=60

nmax=120

1 10 50
KK-mass mn

10
-08

10
-07

10
-06

10
-05

10
-04

10
-03

N
n,

k,
ou

t

nmax=20

nmax=40

nmax=60

ys=3

ys=3

ys=10

ys=10

nmax=20

nmax=60

nmax=40
nmax=60

nmax=120

x10
-03

●

●

FIG. 28: Zero-mode particle number N0,k•(t) and correspond-
ing KK-graviton spectra for k = 10, vb = 0.1 and 2nd brane
positions ys = 3 and 10.
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FIG. 29: Final KK-particle spectra N
out

n,k,• for vb = 0.1, ys = 3
and k = 3, 5, 10 and 30 and different couplings. Circles cor-
respond to the full coupling case, squares indicate the results
if Mij = Mii = 0, i.e. no KK-intermode couplings and dia-
monds correspond to Mi0 = 0, i.e. no coupling of KK-modes
to the zero-mode.

mode vacuum fluctuations.
As in the long wavelength case, the KK-particle spectrum
becomes independent of k if mn � k and the evolution of
the KK-modes is dominated by the KK-intermode cou-
pling. This is visible in Fig. 29 for k = 3 and 5. Also the
bend in the spectrum when the KK-intermode coupling
starts to dominate is observable. For k = 10 and 30 this
regime with mn � k is not reached. As we have shown
before, in the regime mn � k the KK-particle spectrum
behaves as 1/ωn,k which will dominate the energy den-
sity of produced KK-gravitons.
If 1 � mn <∼ k, however, the zero-mode couples to the
KK-modes and the KK-graviton spectrum does not decay
like 1/ωout

n,k. This is demonstrated in Fig. 30 where the
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FIG. 30: Final KK-particle spectra N out

n,k,• for vb = 0.1, ys = 3
and k = 5, 10, 20 and 30. The dashed lines indicate Eq. (6.34).

number of produced final state gravitons N out
n,k,• is plot-

ted over their frequency ωout
n,k for parameters vb = 0.1,

ys = 3 and k = 5, 10, 20 and 30. While for k = 5
the KK-intermode coupling dominates for large masses
[cf. Fig. 29] leading to a bending over in the spectrum
and eventually to an 1/ωout

n,k-decay, the spectra for k = 20
and 30 show a different behaviour. Most of the modes
are still coupled to the zero-mode leading to a power-law
decrease ∝ 1/(ωout

n,k)α with α ' 2. The case k = 10 cor-
responds to an intermediate regime. Also shown is the
simple analytical expression given in Eq. (6.34) which
describes the spectra reasonably well for large k (dashed
line). The KK-particle spectra in the region 1 � mn <∼ k
will also contribute to energy density since we chose the
cut-off scale to be the same for the integration over k and
the summation over the KK-tower (see section VI.D).

F. A smooth transition

Let us finally investigate how the KK-graviton spec-
trum changes when the kink-motion (2.16) is replaced by
the smooth motion (5.2). In Fig. 31 we show the numeri-
cal results for the final KK-graviton spectrum for ys = 3,
vb = 0.1 and k = 0.1 for the smooth motion (5.2) with
ts = 0.05, 0.015 and 0.005. nmax = 60 modes have been
taken into account in the simulation and the results are
compared to the spectrum obtained with the kink-motion
(2.16). The parameter ts defines the scale Ls at which we
smooth the kink. They are related by Ls ' 2ts, i.e. Ls

corresponds to the width of the transition from contrac-
tion to expansion. From the numerical results we observe
that KK-modes of masses smaller than ms = 1/Ls are
not affected but the production of KK-particles of masses
larger than ms is exponentially suppressed. This is in
particular evident for ts = 0.05 where the particle spec-
trum for masses mn > 10 has been fitted to a exponential
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FIG. 31: KK-particle spectrum for ys = 3, vb = 0.1 and
k = 0.1 for the bouncing as well as smooth motions with
ts = 0.005, 0.015, and 0.05 to demonstrate the influence of the
bounce. nmax = 60 KK-modes have been taken into account
in the simulations and the result for the kink motion is shown
as well.

decrease. Going to the smaller value ts = 0.015 the sup-
pression of KK-mode production sets in for masses larger
than ms ' 33. Finally, for the last shown example with
ts = 0.005 the KK-particle spectrum is identical to the
one obtained with the kink-motion within the depicted
mass range. In this case the exponential suppression of
particle production sets in only for masses mn > 100.
Note that the exponential decay of the spectrum for the
smooth transition from contraction to expansions also
shows that no additional spurious effects due to the dis-
continuities in the velocity when switching the brane dy-
namics on and off occur. Consequently, tin and tout are
appropriately chosen.

VI. ANALYTICAL CALCULATIONS AND

ESTIMATES

A. The zero-mode: long wavelengths k � 1/L

The numerical simulations show that the evolution of
the zero-mode at large wavelength is not affected by the
KK-modes. To find an analytical approximation to the
numerical result for the zero-mode, we neglect all the
couplings of the KK-modes to the zero-mode by setting
Mjk = 0 and keeping M00 only. Then only the evolution

equation for ε
(α)
0 ≡ δα

0 ε is important; it decouples and
reduces to

ε̈ + [k2 + V(t)]ε = 0 , (6.1)

with “potential”

V = Ṁ00 − M2
00 . (6.2)

A brief calculation using the expression for M00 given in
Appendix A yields

V =
y2
s

y2
s − y2

b

[
ÿb

yb
+

ẏ2
b

y2
b

3y2
b − 2y2

s

y2
s − y2

b

]
(6.3)

= − y2
s

y2
s − y2

b

[
H2

(
1 − y2

b

y2
s − y2

b

)
+ Ḣ

]
. (6.4)

The vacuum initial conditions are

lim
t→−∞

ε = 1 , lim
t→−∞

ε̇ = −ik. (6.5)

To evaluate V we use the scale factor is given by (2.15)
so that

H =
ȧ

a
=

sign(t)

|t| + tb
and (6.6)

Ḣ =
2δ(t)

tb
− 1

(|t| + tb)2
(6.7)

Ḣ + H2 =
2δ(t)

tb
. (6.8)

Here δ denotes the Dirac delta function. If we also as-
sume that the static brane is much further away from
the Cauchy horizon than the physical brane, ys � yb, we
obtain

V = Ṁ00 − M2
00 ' −2δ(t)

tb
= −2

√
vb

L
δ(t) , (6.9)

where vb is given in Eq (5.1). The approximated potential
V vanishes for all t < 0. With the initial condition (6.5)
we therefore have

ε(t) = e−ikt , t < 0 . (6.10)

Assuming continuity of ε through t = 0, the differential
equation gives

0 =

∫ 0+

0−

[
ε̈ +

(
k2 − 2

√
vb

L
δ(t)

)
ε

]

= ε̇(0+) − ε̇(0−) − 2
√

vb

L
ε(0) . (6.11)

This jump of ε̇ at t = 0 leads to particle creation. Using

ε(0+) = ε(0) = ε(0−) and ε̇(0+) = ε̇(0−) − 2
√

vb

L ε(0) as
initial conditions for the solution for t > 0, we obtain

ε(t) = Ae−ikt + Beikt , t > 0 (6.12)

with

A = 1 + i

√
vb

kL
(6.13)

B = −i

√
vb

kL
. (6.14)

The Bogoliubov coefficient B00(t) is given by

B00(t ≥ 0) =
e−ikt

2

[(
1 + i

H
k

)
ε(t) − i

k
ε̇(t)

]
(6.15)
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where we have used that M00 = −H if ys � yb. At
this point the importance of the coupling matrix M00

becomes obvious. Even though the solution ε to the dif-
ferential equation (6.1) is a plane wave right after the
bounce, |B00(t)|2 is not a constant due to the motion of
the brane itself. Only after the mode is inside the hori-
zon, i.e. H/k � 1, |B00(t)|2 is constant and the number
of generated final state gravitons (for both polarizations)
is given by

N out
0,k = 2|B00(kt � 1)|2 =

1

2

[
|ε|2 +

|ε̇|2
k2

]
− 1

=
2vb

(kL)2
(6.16)

where we have used that the Wronskian of ε, ε∗ is 2ik.
As illustrated in Fig. 8 the expression (6.16) is indeed in
excellent agreement with the (full) numerical results, not
only in its k-dependence but also the amplitude agrees
without any fudge factor. The evolution of the four-
dimensional graviton mode and the associated genera-
tion of massless gravitons with momentum k < 1/L can
therefore be understood analytically.
N out

0,k is dimensionless and its integral over d3k gives the
particle number density in real space. However, we have
to take into account that our approximation of an exactly
radiation dominated universe with an instant transition
breaks down on small scales. We assume this break down
to occur at some lengths scale Ls which we expect to be
the string scale, much smaller than L. It is the true
width of the transition from collapse to expansion, which
we have set to zero in our treatment. Modes with mode
numbers k � (2π)/Ls will not ’feel’ the potential and
are not generated. We therefore choose kmax = (2π)/Ls

as our cutoff scale so that the zero-mode particle density
is

n0 =
4π

a3

∫ 2π/Ls

0

dkk2

(2π)3
N0,k . (6.17)

With Eq (4.21) we obtain correspondingly for the energy
density

ρ0 =
1

π2a4

∫ 2π/Ls

0

dkk3N0,k . (6.18)

For small wave numbers, k < 1/L, we can use the
above analytical result for the zero-mode particle num-
ber. However, as we have seen in our numerical analysis,
as soon as k ≥ 1/L, coupling to the KK-modes becomes
important and at large wave numbers, N0,k decays only
like 1/k. Hence both integrals (6.17) and (6.18) are en-
tirely dominated by the upper cutoff. The contribution
from long wavelengths to the energy density are negligi-
ble.

For the power spectrum, on the other hand, we are
interested in cosmologically large scales, 1/k ' several
Mpc or more but not in short wavelengths kL > 1 dom-
inating the energy density. Inserting the expression for

the number of produced long wavelength gravitons (6.16)
into (4.11), the gravity wave power spectrum at late time
becomes

P0(k) =
4vb

(2π)3
κ4

(aL)
2 for kt � 1. (6.19)

This is the asymptotic power spectrum, when ε starts
oscillating, hence inside the Hubble horizon, kt � 1. On
super Hubble scales, kt � 1 when the asymptotic out-
state of the zero-mode is not yet reached, we have to
use Eq. (4.10) with

R0,k(t) =
|ε(t)|2 − 1

k
' 4vba

2

k
. (6.20)

For the ' sign we assume t � L and t � tb so that
we may neglect terms of order t/L in comparison to√

vb(t/L)2, we have also approximated a = (t + tb)/L '
t/L. Inserting this in Eq. (4.8) yields

P0(k) =
κ4

π3
vb k2 , kt � 1 . (6.21)

The gravity wave spectrum on large, super Hubble scales
is blue ∝ k2 and therefore very suppressed on scales rel-
evant for the anisotropies of the cosmic microwave back-
ground. Both expressions (6.19) and (6.21) are in good
agreement with the corresponding numerical results, see
Figs. 8,9 and 10.

B. The zero-mode: short wavelengths k � 1/L

As we have seen in our numerical analysis, as soon as
k ≥ 1/L, coupling of the zero-mode to the KK-modes
becomes important and for large wave numbers, N0,k ∝
1/k. We obtain a good asymptotic behavior if we set

N0,k,• ' vb

5(kL)
. (6.22)

This function and Eq. (6.16) (divided by two for one po-
larization) meet at kL = 5. Even though the approxima-
tion is not good in the intermediate regime it is very rea-
sonable for large k [cf. Fig. 26]. The integral in Eq. (6.17)
is entirely dominated by the upper cutoff and we obtain

n0 ' 2

5

vb

a3LL2
s

. (6.23)

Inserting our approximation for N0,k into Eq (6.18) for
the energy density, we again find that the integral is dom-
inated entirely by the blue, high energy modes:

ρ0 ' 16

15

π

a4

vb

LL3
s

. (6.24)

The power spectrum associated with the short wave-
lengths k > 1/L is not of interest since the gravity wave
spectrum is measured on cosmologically large scales only,
k � 1/L.
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C. Light Kaluza-Klein modes and long wavelengths

k � 1/L

The numerics indicates that light (mn <∼ 1) long wave-
length Kaluza-Klein modes become excited mainly due to
their coupling to the zero-mode. We take only this cou-
pling into account and neglect also the time-dependence
of the frequency setting ωn(t) ≡ ω0

n ≡ ωn. The Bogoli-
ubov coefficients are then determined by the equations

ξ̇n + iω0
nξn =

k

2ω0
n

Sn(t; k) (6.25)

η̇n − iω0
nηn = − k

2ω0
n

Sn(t; k) (6.26)

with the “source”

Sn(t; k) = (ξ0 − η0) Mn0 . (6.27)

This source is known. From the result for ε above and
the definition of ξ and η in terms of ε we obtain

ξ0 − η0 =
2i

k

[
−ik +

1

|t| + tb

]
e−itk , t < 0 (6.28)

ξ0 − η0 = 2

[
1 +

i

ktb
+

1 − iktb
k2tb(t + tb

]
e−itk

+2

[
i

ktb
− 1

k2tb(t + tb

]
eitk , t > 0 . (6.29)

Furthermore, if ys � yb (see appendix) we have

Mn0 = 2
ẏb

yb

√
Y1(mnys)2

Y1(mnyb)2 − Y1(mnys)2
. (6.30)

Assuming ysmn � 1 and ybmn � 1 we can expand the
Bessel functions and arrive at

Mn0 ' √
π

√
mn

ys
ẏb = −

√
πmnL2

ys

L sign(t)

(|t| + tb)2
.

To determine the number density we only need to calcu-
late ηn since

lim
t→∞

Nn ≡ N out
n,k =

ωn

4k
|ηn|2 .

The vacuum initial conditions require limt→−∞ ηn = 0
so that ηn is given by the particular solution

ηn(t) =
k

ωn

∫ t

−∞
Sj(t

′; k)e−it′ωndt′ , (6.31)

and

N out
n,k =

k

4ωn

∣∣∣∣
∫ ∞

−∞
Sn(t; k)e−itωj dt

∣∣∣∣
2

. (6.32)

This integral can be solved exactly. A somewhat lengthy
but straight forward calculation gives

N out
n,k =

πm5
nL4

2ωnkys

∣∣∣2iRe
(
ei(ωn+k)tbE1(i(ωn + k)tb)

)

+(ktb)
−1ei(ωn−k)tbE1(i(ωn − k)tb)

−ei(ωn+k)tbE1(i(ωn + k)tb)
∣∣∣
2

. (6.33)

Here E1 is the exponential integral, E1(z) ≡∫∞
z t−1e−tdt . This function is holomorphic in the com-

plex plane with a cut along the negative real axis, and
the above expression is therefore well defined. Note that
this expression does not give rise to a simple dependence
of N out

n,k on the velocity vb = (L/tb)
2. In the preceding

section we have seen that, within its range of validity,
Eq. (6.33) is in excellent agreement with the numerical
results (cf., for instance, Figs. 11 and 12).

D. Kaluza-Klein modes: asymptotic behaviour and

energy density

The numerical simulations show that the asymptotic
KK-graviton spectra (i.e. for masses mn � 1) decay

like 1/ωout
n,k if mn � k and like

(
1/ωout

n,k

)α

with α ' 2 if

mn <∼ k. The corresponding energy density on the brane
is given by the summation of Eq. (4.23) over all KK-
modes up to the cut-off. Since the mass mn is simply the
momentum into the extra dimension, it makes sense to
choose the same cut-off scale for both, the k-integral and
the summation over the KK-modes, namely 2π/Ls. The
main contribution to the 4-dimensional particle density
and energy density comes from mn ∼ 2π/Ls and k ∼
2π/Ls, i.e. the blue end of the spectrum.
The large-frequency behaviour of the final KK-spectrum
can be approximated by

N out
n,k,• ' 0.2v2

b

ys





1

ωout
n,k

if 1/L <∼ k <∼ mn

2(α−1)/2 kα−1

(ωout
n,k)α

if mn <∼ k <∼ 2π/Ls

(6.34)
with α ' 2 which is in particular good for large k. Both
expression match at mn = k and are indicated in Fig-
ures 24 and 30 as dashed lines. Given the complicated
coupling structure of the problem and the multitude of
features visible in the particle spectra those compact ex-
pressions describe the numerical results reasonable well
for all parameters. The deviation from the numerical re-
sults is at most a factor of two. This accuracy is sufficient
in order to obtain a useful expression for the energy den-
sity from which bounds on the involved energy scales can
be derived.
The energy density on the brane associated with the KK-
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gravitons is given by [cf. Eq. (4.23)]

ρKK ' L2

2πa6ys

∑

n

∫
dkk2 N out

n,k,• ωout
n,kmn . (6.35)

Splitting the momentum integration into two integrations
from 0 to mn and mn to the cut-off 2π/Ls, and replacing
the sum over the KK-masses by an integral one obtains

ρKK ' C(α)
π5v2

b

a6ys

L2

L5
s

. (6.36)

The power α in Eq. (6.34) enters the final result for the
energy density only through the pre-factor C(α) which is
of order unity.

In the limit ys → ∞ we can recover the 1-brane sce-
nario. Eq. (6.36) implies that a bouncing model with
only one brane has vanishing KK-energy density on the
brane. Even though KK-modes are produced in the bulk.

VII. DISCUSSION

A. The zero-mode

1. Power spectrum

We finally summarize our results and draw some con-
clusions. Let us first consider the zero-mode. On scales
on which we observe cosmological fluctuations, i.e. scales
of Mpc and larger, we have obtained for t � L and tb, in
the radiation dominated era

P0(k) =
κ4

π3
vb

{
k2 if kt � 1
1
2 (La)−2 if kt � 1

(7.1)

Hence, we find a blue spectrum of tensor perturbations on
super Hubble scales. The amplitude of perturbations on
CMB scales is of the order of (H0/mPl)

2, hence unobserv-
ably small. The fluctuations induced by these Casimir
gravitons are much too small to leave any observable im-
print on the CMB.

2. Energy density

For the zero-mode graviton energy density at late
times, kt � 1, we have obtained [cf Eq. (6.24)]

ρh0 ' 16

15

π

a4

vb

LL3
s

. (7.2)

Here we denote the energy density of the zero-mode by
ρh0 in order not to confuse it with the present density of
the Universe. The string scale Ls is related to the scale
L via Eq. (2.13). It is the scale at which our kinky ap-
proximation (2.15) of the scale factor breaks down, i.e.
the width of the bounce. If this width is taken to zero,
the energy density of gravitons is very blue and diverges.

This is not so surprising, since the kink in a(t) allows us
to generate gravitons of arbitrary high energies. The nu-
merical simulations have shown that when we smooth the
kink at some scale Ls, the production of modes with en-
ergies larger than about 1/Ls is exponentially suppressed
[cf. Fig. 31]. We have therefore used Ls as a cutoff scale.
Below we use apart from vb the quantities

amin =
L

ymin
b

=
tb
L

=
1√
vb

and

Hmax =
ȧ

a2

∣∣∣∣
t=0

' vb

L
.

Here amin is the minimal scale factor and Hmax is the
maximal Hubble parameter, i.e. the Hubble parameter
right after the bounce, and we have made use of the low
energy approximation, ȧ ' da/dt. During the radiation
era, curvature and/or a cosmological constant can be ne-
glected so that the density is

ρrad =
3

κ4
H2

max

(amin

a

)4

=
3

κ4L2
a−4 . (7.3)

We want to determine the density parameter of the gener-
ated gravitons today, i.e., at t = t0. For this we use Ωh0 ≡
ρh0(t0)/ρc(t0) = [ρh0(t0)/ρrad(t0)] × [ρrad(t0)/ρc(t0)].
The second factor is the present radiation density pa-
rameter Ωrad = ρrad(t0)/ρc(t0). For the factor ρh0/ρrad,
which is time independent since both ρh0 and ρrad scale
like 1/a4, we insert the above results and obtain

Ωh0 =
ρh0

ρrad
Ωrad =

16

15

π

3
vb

(
LPl

Ls

)2
L

Ls
Ωrad

' vb

(
LPl

Ls

)2
L

Ls
Ωrad . (7.4)

The nucleosynthesis bound [37] requests that

Ωh0 <∼ 0.1Ωrad , (7.5)

which translates into

vb (LPl/Ls)
2
(L/Ls) <∼ 0.1 . (7.6)

The scale dependent term in this equation is exactly 1
due to the RS fine tuning condition (2.13). Consequently
all scale dependencies drop out of the equation and we
are left with the condition

vb <∼ 0.1 . (7.7)

All we have to require to be consistent with the nucle-
osynthesis bound is a small brane velocity. This justi-
fies our low energy approach. In all, we conclude that
the model is not severely constrained by the zero-mode.
This result itself is remarkable. If there would be no
coupling of the zero-mode to the KK-modes for small
wavelengths the number of produced 4D gravitons would
behave as ∝ k−2 as it is the case for long wavelengths.
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The production of high energy zero-mode gravitons from
KK-gravitons enhances the total energy density by a fac-
tor of about L/Ls. Without this enhancement, the nu-
cleosynthesis bound would not lead to any meaningful
constraint and would not require vb < 1.

The coupling of the 4D graviton to the KK-modes for
short wavelengths is also directly responsible for the scale
independence of the nucleosynthesis bound.

B. The KK-modes

In our setup the more stringent bounds come from the
KK-modes. The energy density of KK-gravitons on the
brane is dominated by high enegy gravitons and can be
approximated by Eq. (6.36)

ρKK ' π5v2
b

a6ys

L2

L5
s

. (7.8)

The most surprising fact is that the energy density of
these massive modes decays like 1/a6. At first this seems
very disturbing. How can it be that massive modes on
the brane scale like stiff matter rather than like ordinary
massive particles, ∝ 1/a3. The reason for this is twofold.
First of all, the mass of the modes, mn is a ’comoving’
mass. The dispersion relation of the particles is ω2

n =
k2 + m2

n, where k and ω are comoving momentum and
frequency. This comes from the fact that the 5D time t
corresponds to the conformal 4D time and not the the
physical time τ on the brane. Therefore, the mass of
the KK-particles, which is simply their momentum in
the direction transverse to the branes, is redshifted like
their kinetic energy from the point of view of an observer
sitting on the brane measuring physical time dτ ' adt.
This is true for all massive modes on an AdS braneworld.

Alone, this would imply a 1/a4 behavior of the energy
density, as for the massless mode. But there is an ad-
ditional factor 1/a2 coming from the value of the mode
function φn on the brane. This function is normalized
in the bulk but its value on the brane decreases. Physi-
cally this means, as time evolves, the probability that a
KK-graviton is concentrated close to the brane becomes
smaller and smaller, see Fig. 4. The KK-gravitons escape
into the bulk. The wave function of massive gravitons is
repulsed away from the brane. This is an expression of
the confinement of gravity: the five dimensional aspects
of it, like the KK-gravitons become less and less ’visible’
on the brane. If the inter-brane distance which is given
by ys is large, the KK-gravitons have more space in the
bulk and their density on the brane decreases. In the
limit ys → ∞ they disappear completely from the brane,
even though they are still present in the bulk.

At first, one might be surprised by this decay law since
we know that the energy density corresponding to the 5D
Weyl tensor projected onto the brane decays like 1/a4 in
a FRW braneworld, from where its name ’dark radiation’
stems. But here we do not consider a component which is
homogeneous on the physical brane, but a perturbation.

Furthermore, the graviton energy momentum tensor is
quadratic in the perturbation field hij .

Finally, let us evaluate the constraint induced from the
requirement that the KK-energy density on the brane be
smaller than the radiation density ρKK(t) < ρrad(t) at
all times. If this is not satisfied, back-reaction cannot be
neglected and our results are no longer valid. Clearly,
at early times this condition is more stringent than at
late times since ρKK decays faster then ρrad. Inserting
the value of the scale factor directly after the bounce,
a−2
min = vb, we find, using again the RS fine tuning condi-

tion (2.13),

(
ρKK

ρrad

)

max

' 100 v3
b

(
L

ys

)(
L

Ls

)2

. (7.9)

If we use the largest value for the brane velocity vb ad-
mitted by the nucleosynthesis bound vb ' 0.1 and re-
quire that ρKK/ρrad be (much) smaller than one for back-
reaction effects to be negligible we obtain the very strin-
gent condition

L

ys
�
(

Ls

L

)2

. (7.10)

Let us first the largest allowed value for L ' 0.1mm.
The Randall-Sundrum fine tuning condition then deter-
mines Ls = (LL2

Pl)
1/3 ' 10−22mm ' 1/(106TeV). In

this case the brane tension is T = 6κ4/κ2
5 = 6L2

Pl/L6
s =

6/(LL3
s) ∼ (10TeV)4. Furthermore, we have (L/Ls)

2 '
1042 so that ys > L(L/Ls)

2 ' 1041mm ' 3 × 1015Mpc
which is about 12 orders of magnitude larger than the
present Hubble scale.

Also, since yb(t) � L in the low energy regime, and
ys � L according to the inequaltiy (7.10), the physi-
cal brane and the static brane are very far apart at all
times. Note that the distance between the physical and
the static brane is

d =

∫ ys

yb

L

y
dy = L log(ys/yb) >∼ L � Ls .

This situation is probably not very realistic. We need
some high energy, stringy effects to provoke the bounce
and we expect these to be relevant only when the branes
are sufficiently close, i.e. at a distance of order Ls. But
in this case the constraint (7.10) will be violated which
implies that back-reaction will be relevant.

On the other hand, if we want that ys ' L and
back-reaction to be unimportant, then Eq. (7.9) implies
that the bounce velocity has to be exceedingly small,
vb <∼ 10−15.

One might hope to find a way out of these conclu-
sions by allowing the bounce to happen in the high en-
ergy regime. But then vb ' 1 and the nucleosynthesis
bound is violated since too many zero-mode gravitons
are produced. Even if we disregard this limit for a mo-
ment, saying that our calculation only applies in the low
energy regime, vb � 1, the modification coming from
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the high energy regime are not expected to alleviate the
bounds. In the high energy regime we have to perform a
y-dependent boost in y direction in order to obtain coor-
dinates with respect to which the gravitons satisfy Neu-
mann boundary condition at the physical brane yb(t) and
at the static brane ys along the lines of Ref. [40]. In this
work, which considers the generation of scalar particles
and TM photons in an oscillating cavity, it is found that
particle creation at high speed is rather somewhat more
efficient than the low velocity result which neglects the
time derivative in the boundary condition. We therefore
expect the energy densities of both, the zero-mode and
the KK-mode gravitons to be rather larger than in the
case analysed here.

In the high energy regime we may of course have
yb(t) � L and therefore the physical brane can approach
the static brane arbitrarily closely without the latter hav-
ing to violate (7.10).

VIII. CONCLUSIONS

The dynamical Casimir effect from two bouncing
branes leads to a blue spectrum of gravitons which has
much too little power on large scales to affect the fluctu-
ations of the CMB. Also the energy density of the gen-
erated massless gravitons is small for natural choices of
the parameters. However, requiring that also the energy
density of KK-gravitons is always smaller than the radia-
tion density leads to interesting constraints on the ratios
between the string and AdS scales and between the AdS
scale and the position of the static brane.

The energy density of the KK gravitons decays very
fast when the universe expands, like stiff matter, ∝ 1/a6.
All KK-modes of a (massless) bulk field in an AdS
braneworld have this property and they can therefore
not provide the dark matter.

The present model is not ruled out by observations
and backreaction is negligible as long as ys � L(L/Ls)

2.
In the low energy regime where yb(t) � L, this makes
a bounce unlikely. Therefore, either back reaction from
KK-gravitons is very important or the bounce takes place
in the high energy regime where particle creation is rather
more abundant. The detailed calculation of the graviton
spectrum in the high energy regime is reserved for future
work.

If back-reaction is important we expect it to affect
the bulk geometry. This model might be appropriate
to study this issue, since particle creation happens only
at the bounce.

On the other hand, at the level discussed here, this
model does not provide a mechanism to generate initial
fluctuations nor can it explain the origin of dark matter.
In principle, however one can add an inflationary phase
after the bounce which then leads to a scale invariant
spectrum of perturbations in the same way as ordinary
inflation [22].

The results obtained in this work are summarized in a

letter [41].
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APPENDIX A: THE COUPLING MATRICES Mαβ

AND Nαβ

The coupling matrices Mαβ and Nαβ are given by [21]

Mαβ(t) ≡ (∂tφα, φβ) , Nαβ(t) ≡ (∂tφα, ∂tφβ) . (A1)

The completeness of the eigenfunctions φα implies

∑

γ

φγ(y)φγ(ỹ) = δ(y − ỹ)y3 , (A2)

so that

∑

γ

MαγMβγ =
∑

γ

[(∂tφα, φγ)(∂tφβ , φγ)]

=(∂tφα, ∂tφβ) = Nαβ . (A3)

The use of several identities of Bessel functions leads to

M00 = ŷb
y2
s

y2
s − y2

b

, (A4)

M0j = 0 , (A5)

Mi0 =
2Ni

πmi

ŷb

yb
φ0 = ŷb

2
√

2

πmi
Ni

ys√
y2

s − y2
b

, (A6)

Mii = m̂i , (A7)

Mij = MA
ij + MN

ij (A8)

with

MA
ij = (ŷb + m̂i)yb

m2
i NiNj

m2
j − m2

i

× (A9)

× [ys C2(mjys)J1(miys) − yb C2(mjyb)J1(miyb)]

where

J1(mi y) = [J2(miyb)Y1(miy) − Y2(miyb)J1(miy)]
(A10)

and

MN
ij = NiNjmim̂i

∫ ys

yb

dyy2C1(miy)C2(mjy). (A11)
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This integral has to be solved numerically. Note that,
because of the boundary conditions, on has the identity

∫ ys

yb

dyy2C1(miy)C2(mjy) = −
∫ ys

yb

dyy2C1(miy)C0(mjy).

(A12)
Furthermore, one can simplify

J1(mi yb) =
2

πmiyb
, J1(mi ys) =

2

πmiyb

Y1(miys)

Y1(miyb)
(A13)

where the limiting value has to be taken for the last term
whenever Y1(miyb) = Y1(miys) = 0.

APPENDIX B: ON POWER SPECTRUM AND

ENERGY DENSITY CALCULATION

1. Instantaneous vacuum

In Section III the in - out state approach to particle cre-
ation has been presented. The definition of the in - and
out- vacuum states Eq. (3.9) is unique and the particle
concept is well defined and meaningful. It is also possible
to interpret tout as continous time variable. Then we can
write the Bogoliubov transformation Eq. (3.23) as

âα,k,•(t) =
∑

β

[
Aβα,k(t)âin

β,k,• + B∗
βα,k(t)âin †

β,−k,•

]
.

(B1)
where at any time t we have introduced a set of operators

{âα,k•(t), â
†
α,k,•}(t). Vacuum states defined at any time

t can be associated with those operators via

âα,k,•(t)|0, t〉 = 0 ∀ α,k • . (B2)

Similar to Eq. (3.11) a ”particle number” can be intro-
duced through

Nα,k(t) =
∑

•
〈0, in|ât †

α,k•â
t
α,k,•|0, in〉 = 2

∑

β

|Bβα,k(t)|2

(B3)
We shall denote |0, t〉 as the instantaneous vacuum state
and the quantity Nα,k(t) as instantaneous particle num-
ber 10. However, even if we call it ”particle number” and
plot it in section V for illustrative reasons, we consider
only the particle definitions for the initial and final state
(asymptotic regions) outlined in section III as physically
meaningful particles.

10 It could be interpreted as the number of particles which would
have been created if the motion of the boundary (the brane)
stops at time t.

2. Power spectrum

In order to calculate the power spectrum Eq. (4.7) we
need to evaluate the expectation value

〈ĥ
•
(t, yb,k)ĥ†

•
(t, yb,k

′)〉in = (B4)
κ5

L3

∑

αα′

φα(t, yb)φα′(t, yb)〈q̂α,k,•(t)q̂
†
α′ ,k′,•(t)〉in

where we have introduced the shortcut 〈...〉in =
〈0, in|...|0, in〉. Using the expansion (3.15) of q̂α′,k′•(t) in

itital state operators and complex functions ε
(γ)
α,k(t) one

finds

〈q̂α,k•(t)q̂
†
α′ ,k′•(t)〉in =

∑

β

ε
(β)
α,k(t) ε

(β)∗
α′,k (t)

2ωin
β,k

δ(3)(k − k
′).

(B5)
From the initial conditions (3.20) it follows that the sum
in (B4) diverges at t = tin. This divergence is related to
the usual normal ordering problem and can be removed
by a substraction scheme. However, in order to get a
well defined power spectrum at all times, it is not suffi-
cient just to substract the term (1/2)(δαα′/ωin

α,k)δ(3)(k−
k
′) which corresponds to 〈q̂α,k,•(tin)q̂†α′,k′,•(tin)〉in in the

above expression. In order to identify all terms contained
in it we use the instantaneous particle concept which al-
lows us to treat the Bogoliubov coefficients (3.24) and
(3.25) as continuos functions of time. First we express

the complex functions ε
(β)
α,k in (B5) in terms of Aγα,k(t)

and Bγα,k(t). This is of course equivalent to calculating
the expectation value using [cf. Eq.(3.7)]

q̂α,k•(t) =
1√

2ωα,k(t)
[âα,k,•(t)Θα,k(t)+

â†
α,−k,•(t)Θ

∗
α,k(t)

]
(B6)

and the Bogoliubov transformation Eq. (B1). The result
consists of terms involving the Bogoliubov coefficients
and the factor (1/2)(δαα′/ωα,k(t))δ(3)(k − k

′), leading
potentially to a divergence at all times. This term cor-

responds to 〈0, t|q̂α,k,•(t)q̂
†
α′,k′,•(t)|0, t〉, i.e. it is related

to the normal ordering problem (zero-point energy) with
respect to the instantaneous vacuum state |0, t〉. It can
be removed by the substraction scheme

〈q̂α,k•(t)q̂
†
α′,k′•(t)〉in,phys (B7)

= 〈q̂α,k•(t)q̂
†
α′,k′•(t)〉in − 〈0, t|q̂α,k•(t)q̂

†
α′,k′•(t)|0, t〉

where we use the substript “phys” to denote the physi-
cally meaningful expectation value. Inserting this expec-
tation value into (B4), and using Eq. (4.2) on finds

〈ĥ•(t,k, yb)ĥ•(t,k
′, yb)〉in (B8)

=
1

a2

κ5

L

∑

α

Rα,k(t)Y2
α(a)δ(3)(k − k

′)
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with Rα,k(t) defined in Eq. (4.9). The function ON
α,k

appearing in Eq. (4.9) is explicitely given by

ON
α,k = 2<

∑

β

{
Θ2

α,kAβα,kB∗
βα,k + Θα,k

∑

α′ 6=α

×

×
√

ωα,k

ωα′,k

Yα′(a)

Yα(a)

[
Θ∗

α′,kB∗
βαBβα′ + Θα′,kAβαB∗

βα′

] }

(B9)

and Oε
α,k appearing in Eq. (4.10) reads

Oε
α,k =

∑

β,α′ 6=α

Yα′(a)

Yα(a)

ε
(β)
α,kε

(β)∗

α′,k

ωin
β,k

. (B10)

3. Energy density

In order to calculate the energy density we need to

evaluate the expectation value 〈 ˙̂hij(t,x, yb)
˙̂
hij(t,x, yb)〉in.

Using (2.19) and the relation e•

ij(−k) = (e•

ij(k))∗ one
finds

〈 ˙̂hij(t,x, yb)
˙̂
hij(t,x, yb)〉in =

∑

••
′

∫
d3k

(2π)3/2

d3k′

(2π)3/2
×

(B11)

× 〈 ˙̂h
•
(t, yb,k)

˙̂
h†

•
′(t, yb,k

′)〉inei(k−k
′)·xe•

ij(k)
(
e•

′ ij(k′)
)∗

.

By means of the expansion (3.17) the expectation value

〈 ˙̂h
•
(t, yb,k)

˙̂
h†

•
′(t, yb,k

′)〉in becomes

〈 ˙̂h
•
(t, yb,k)

˙̂
h†

•
′(t, yb,k

′)〉in (B12)

=
κ5

L3

∑

αα′

〈p̂α,k,•(t)p̂
†
α′,k′,•′(t)〉inφα(t, yb)φα′ (t, yb).

From the definition of p̂α,k,•(t) in Eq. (3.18) it is clear
that this expectation value will in general contain terms
proportional to the coupling matrix and its square when

expressed in terms of ε
(β)
α,k. However, since we are inter-

ested in the expectation value at late times only when the
brane moves very slowly such that the mode couplings go
to zero and a physical meaningful particle definition can
be given, we can set

〈p̂α,k,•(t)p̂
†
α′,k′,•′(t)〉in =

〈
˙̂qα,k,•(t) ˙̂q†α′ ,k′,•′(t)

〉
in

.(B13)

Calculating this expectation value by using Eq. (3.15)
leads to an expression which, as for the power spec-
trum calculation before, has a divergent part related to
the zero-point energy of the instantaneous vacuum state
(normal ordering problem). We remove this part by a
subtraction scheme similar to Eq (B7). The final result
reads

〈 ˙̂qα,k•(t) ˙̂q†α′,k′•′(t)〉in,phys (B14)

=
1

2


∑

β

ε̇
(β)
α,k(t)ε̇

(β)∗

α′,k′(t)√
ωin

β,kωin
β,k′

− ωα,k(t)δαα′


 δ

••
′δ(3)(k − k

′).

Inserting this result into Eq. (B12), splitting the summa-
tions in sums over α = α′ and α 6= α′ and neglecting the
oscillating α 6= α′ contributions having averaging over
several oscillations in mind, leads to

〈 ˙̂h
•
(t, yb,k)

˙̂
h†

•
′(t, yb,k

′)〉in (B15)

=
1

a2

κ5

L

∑

α

Kα,k(t)Y2
α(a)δ

••
′δ(3)(k − k

′)

where the function Kα,k(t) is formally given by

Kα,k(t) =
∑

β

|ε̇(β)
α,k(t)|2
ωin

β,k

− ωα,k(t) = ωα,k(t)Nα,k(t).

(B16)
and we have made use of Eq. (4.2). The relation be-

tween
∑

β |ε̇(β)
α,k(t)|2/ωin

β,k and the number of created par-
ticles can easily be established. Using this expression in
Eq. (B11) leads eventually to

〈0, in| ˙̂hij(t,x, yb)
˙̂
hij(t,x, yb)|0, in〉 (B17)

=
2

a2

κ5

L

∑

α

∫
d3k

(2π)3
Kα,k(t)Y2

α(a)

where we have used that
∑

•

e•

ij(k)
(
e• ij(k)

)∗
= 2. (B18)

The final expression for the energy density Eq. (4.18) is
then obtained by exploiting that κ5/L = κ4.

APPENDIX C: NUMERICS

In order to calculate the number of produced gravitons
the system of coupled differential equations (3.34) and

(3.35) is solved numerically. The complex functions ξ
(β)
α,k,

η
(β)
α,k are decomposed into their real and imaginary parts:

ξ
(β)
α,k = u

(β)
α,k + iv

(β)
α,k , η

(β)
α,k = x

(β)
α,k + iy

(β)
α,k. (C1)

The system of coupled differential equations is then writ-
ten as (cf. Eq. (A2) of [29])

Ẋ
(β)
k (t) = Wk(t)X

(β)
k (t) (C2)

where

X
(β)
k =
(
u

(β)
0,k ...u

(β)
nmax,kx

(β)
0,k ...x

(β)
nmax,kv

(β)
0,k ...v

(β)
nmax,ky

(β)
0,k ...y

(β)
nmax,k

)T

.

(C3)

The matrix Wk(t) is given by Eq. (A4) of [29] but here
indices start at zero. The number of produced gravi-
tons can be calculated direclty from the solutions to this
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system using Eqs. (3.28) and (3.32). Note that for a
given truncation parameter nmax the above system of size
4(nmax + 1) × 4(nmax + 1) has to be solved nmax + 1 -
times, each time with different initial conditions (3.38).
The main difficulty in the numerical simulations is that
most of the entries of the matrix Wk(t) [Eq. (A4) of [29]]
are not known analytically. This is due to the fact that
Eq. (2.33) which determines the time-dependent KK-
masses mi(t) does not have an (exact) analytical solu-
tion. Only the 00-component of the coupling matrix Mαβ

is known analytically. We therefore have to determine
the time-dependent KK-spectrum {mi(t)}nmax

i=1 by solv-
ing Eq. (2.33) numerically. In addition, also the part MN

ij

[Eq. (A11)] has to be calculated numerically since the in-
tegral over the particular combination of Bessel functions
can not be found analytically.
We numerically evaluate the KK-spectrum and the inte-
gral MN

ij for discrete time-values ti and use spline rou-
tines to assemble Wk(t). The system (C2) can then be
solved using standard routines. We chose the separation
of the ti’s in a non-uniform way. A more dense mesh
close to the bounce and a less dense mesh at early and
late times. The independence of the numerical results
on the particular separation is checked. In order to im-
plement the bounce as realistic as possible we do not
spline the KK-spectrum very close to the bounce but re-
calculate it numerically at every time t needed in differ-
ential equation solver. This minimizes possible artificial
effects caused by using a spline in the direct vicinity of
the bounce. The same is done for MN

ij and we find that

splining MN
ij when propagating through the bounce does

not affect the numerical results.
Entirely routines provided by the GNU Scientific Li-
brary (GSL) [42] have been employed. Different routines
for root finding, and integration and several differential
equation solvers have been compared. The code has been
parallelized (MPI) in order to deal with the intensive nu-
merical computations.
The accuracy of the numerical simulations can be as-
sessed by checking the validity of the Bogoliubov rela-
tions
∑

β

[
Aβα,k(t)A∗

βγ,k(t) − B∗
βα,k(t)Bβγ,k(t)

]
= δαγ (C4)

∑

β

[
Aβα,k(t)B∗

βγ,k(t) − B∗
βα,k(t)Aβγ,k(t)

]
= 0. (C5)

In the following we demonstrate the accuracy of the nu-
merical simulations by considering the diagonal part of
(C4). The deviation of the quantity

dα,k(t) = 1 −
∑

β

[
|Aβα,k(t)|2 − |Bβα,k(t)|2

]
(C6)

from zero gives a measure for the accuracy of the nu-
merical result. We consider this quantity at final times
tout and compare it with the corresponding final particle
spectrum. In Fig. 32 we compare the final KK-graviton
spectrum N out

n,k,• with the expression dn,k(tout) for two
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FIG. 32: Comparison of the final KK-graviton spectrum
N

out

n,k,• with the expression dn,k(tout) describing to what accu-
racy the diagonal part of the Bogoliubov relation (C4) is sat-
isfied. Left panel: ys = 3, k = 0.1, vb = 0.03 and nmax = 100
[cf. Fig. 24]. Right panel: ys = 3, k = 30, vb = 0.1 and
nmax = 100 [cf. Fig. 25].

different cases. We observe that the accuracy of the nu-
merical simulations is very good. Even if the particle
number is only of order 10−7 to 10−6, the deviation of
dn,k(tout) from zero is at least one order of magnitude
smaller. This demonstrates the reliability of our numer-
ical simulations and that we can trust the numerical re-
sults presented in this work.

APPENDIX D: DYNAMICAL CASIMIR EFFECT

FOR A UNIFORM MOTION

Consider a massless scalar field on a time-dependent
interval [0, y(t)]. The time-evolution of its mode func-
tions are described by a system of differential equation
like (2.37) where the specific form of Mαβ depends on the
particular boundary condition the field is subject to. In
[28, 30] a method has been introduced to study particle
creation due to the motion of the boundary y(t) (i.e. the
dynamical Casimir effect) fully numerically. We refer the
interested reader to those publications for more details.
If the boundary undergoes a uniform motion y(t) = 1+vt
(in units of some reference length) it was shown in [38, 39]
that the total number of created scalar particles diverges
caused by the discontinuities in the velocity at the begin-
ning and at the end of the motion. In particular (in case
of Dirichlet boundary conditions) it was found in [39] that

〈0, in|N̂out
n |0, in〉 ∝ v2/n if n > 6 and v � 1. Thereby

in- and out- vacuum states are defined like in the present
work and the frequency of a mode function is given by
ωn = π n , n = 1, 2, ... . In Figure 33 we show spec-
tra of created scalar particles obtained numerically with
the method of [30] for this particular case. One observes
that, as for our bouncing motion, the convergence is very
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FIG. 33: Spectra of massless scalar particles produced under
the influence of the uniform motion y(t) = 1+vt for velocities
v = 0.01, 0.02, 0.05 and 0.1. The numerical results are com-
pared to the expression Nn = 0.035v2/n (dashed lines) which
agrees with the analytical prediction Nn ∝ v2/n.

slow. As already explained in Section V.D, the disconti-
nuities in the velocity lead to the excitation of arbitrary
high frequnecy modes. Nevertheless it is evident from
Fig. 33 that the numerically calculated spectra approach
the analytical prediction also shown in the plot. The lin-
ear motion discussed here and the brane-motion (2.16)
are very similar with respect to the discontinuities in the
velocity. In both cases, the total discontinous change of
the velocity is 2v and 2vb, respectively. The resulting
divergence of the acceleration is responsible for the exci-
tation and therefore creation of particles of all frequency
modes. Consequently we expect the same ∝ v2/ωn be-
haviour for the bouncing motion (2.16).
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