
Biasing in Gaussian random �elds and galaxy correlationsAndrea Gabrielli1;2, Francesco Sylos Labini 2;3 and Ruth Durrer31 Laboratoire de Physique de la Mati�ere Condens�ee, �Ecole Polytechnique, 91128 - Palaiseau Cedex, France2INFM Sezione Roma1, Dip. di Fisica, Universit�a "La Sapienza", P.le A. Moro, 2, I-00185 Roma, Italy.3D�epartement de Physique Th�eorique, Universit�e de Gen�eve, 24 quai Ernest Ansermet, CH-1211 Gen�eve 4, SwitzerlandIn this letter we show that the peaks of a Gaussian random �eld, with density-density correlationson small scales, are not more `strongly correlated' than the �eld itself: they are more sparse. Thepeaks are (almost) connected regions identi�ed by a certain threshold in the density �eld, andtheir spatial extension is of the order of the correlated patches of the original Gaussian �eld. Theampli�cation of the correlation function of the peaks selected by a certain threshold, usually referredto as `biasing', has nothing to do with how `strongly clustered' the peaks are but is due to theirsparseness. This clari�es an old-standing misconception in the literature. We also argue that thise�ect does not explain the observed increase of the amplitude of the correlation function �(r) whengalaxies of brighter luminosity or galaxy clusters of increasing richness are considered.PACS Numbers : 98.65.Dx, 02.50.-r, 05.40.+jWe �rst explain, in mathematical terms, the notion ofbiasing for a Gaussian random �eld. Here we follow theideas of Kaiser [1] which have been developed further in[2]. We then calculate biasing for some examples andwe clarify the physical meaning of bias in the context ofRef. [1]. Finally we comment on the signi�cance of our�ndings for the correlations of galaxies and clusters.We consider a homogeneous, isotropic and correlatedGaussian random �eld, �(x), with mean zero and vari-ance �2 = h�(x)2i in a volume V . We assume V to be�nite for de�niteness, but it can go to in�nity at the end.The marginal one-point probability density function of �is P (�) = 1p2�� e� �22�2 :Using P we calculate the fraction of the volume V with�(x) � ��, given by P1(�) = R1�� P (�)d�.The correlation function between two values of �(x)in two points separated by a distance r is given by�(r) = h�(x)�(x + rn)i. By de�nition, �(0) = �2. Inthis context, homogeneity means that the variance �2and the correlation function, �(r) do not depend on x.Isotropy means that �(r) does not depend on the direc-tion n1. An important application we have in mind arecosmological density uctuations, �(x) = (�(x)� �0)=�0,where �0 = h�i is the mean density; but the followingarguments are completely general.2 Here and in whatfollows we assume that the average density �0 is a well1In other words, we assume �(x) to be a so called `stationarynormal stochastic process' [3].2Clearly, cosmological density uctuations can never be per-fectly Gaussian since �(x) � 0 and thus �(x) � �1, but forsmall uctuations Gaussianity is a good approximation. Fur-thermore, our results remain at least qualitatively correct alsoin the non-Gaussian case.

de�ned quantity. This is not so if the distribution is frac-tal [4]. Then the correlation length is in�nite, and themean density does not exist.The goal is, to determine the correlation function ofmaxima from the correlation function of the underlyingdensity �eld. Like [1] we simplfy the problem by comput-ing the correlations of the region above a certain thresh-old 6= � instead of the correlations of maxima; but thesequantities are closely related for values of � signi�canltylarger than 1. We de�ne the threshold density, ��(x) by��(x) � �(�(x) � ��) = � 1 if �(x) � ��0 else. (1)Note the qualitative di�erence between � which is aweighted density �eld and �� which just de�nes a seton V , each point having equal weight. We note the fol-lowing simple facts concerning the threshold density, �� ,due only to its de�nition, independent of the correlationproperties of �(x):h��i � P1(�) � 1 ; (��(x))n = ��(x) ; (2)h��(x)��(x+ rn)i � P1(�) ;h��(x)��(x+ rn)iP1(�)2 � 1 � ��(r) � ��(0) = 1P1(�) � 1 ;��0(x) � ��(x) ; P1(�0)�P1(�) for �0 > � ;��0 (0) � ��(0) for �0 > � : (3)The enhancement of ��(0) for higher thresholds hasclearly nothing to do with how 'strongly clustered' thepeaks are but is entirely due to the fact that the larger �the lower the fraction of points above the threshold (i.e.P1(�0) < P1(�) for �0 > �). In the case of white noise,�(r) = 0 for r > 0 the peaks are just spikes. When athreshold �� is considered the number of spikes decreasesand hence ��(0) is ampli�ed because they are much moresparse and not because they are `more strongly clustered':This is the point where the misconception of bias, as usu-ally referred to [1,2] comes from. In fact, in Refs. [1,2]��(r) is used as measure for the 'clustering strength' of1



the peaks, while the information contained in ��(r) isa non-trivial combination of the noise level related tosparseness of the peaks and the clustering properties (re-lated to the correlation length) of the system. As we clar-ify below, also in correlated systems, like for white noise,the bias introduced in Ref. [1] leads to an increase of theaverage distance between the peaks which is a measureof the noise level and not an increase of the correlationlength ('strength').In the context of cosmological density uctuations, ifthe average density is well-de�ned [4], the amplitude of�(r) is very important, since its integral over a given ra-dius is proportional to the over density on this scale,�(R) = 3R�3 Z R0 �(r)r2dr :The scale Rl, where �(Rl) � 1 separates large, non-lineaructuations from small ones. In contrary, �� is not simplyrelated to the uctuation amplitude and, as will becomeclear from this work, it should by no means be used toquantify the amplitude of cosmological density uctua-tions on any scale.The joint two-point probability density P2(�; �0; r) de-pends on the distance r between x and x0, where � = �(x)and �0 = �(x0). For Gaussian �elds, P2, it is entirely de-termined by the 2-point correlation function �(r) [5,3]:P2(�; �0; r) = (4)= 12�p�4 � �(r)2 exp���2(�2 + �02)� 2�(r)��02(�4 � �2(r)) � :By de�nition�(r) � h�(x+ rn)�(x)i = Z 1�1 Z 1�1 d�d�0��0P2(�; �0; r) :(5)The probability that both, � and �0 are larger than �� isP2(�; r) = Z 1�� Z 1�� P2(�; �0; r)d�d�0 � h��(x)��(x+ rn)i :(6)The conditional probability that �(y) � ��, given �(x) ���, where jx� yj = r, is then just P2(�; r)=P1(�). Thetwo-point correlation function for the stochastic variable��(x), introduced above can be expressed in terms of P1and P2 by ��(r) = P2(�; r)P 21 (�) � 1 (7)If we set �c(r) = �(r)=�2, we obtainP1(�)2(��(r) + 1) = 12�p1� �2c Z 1� Z 1� dxdx0� exp�� (x2 + x02)� 2�c(r)xx02(1� �2c (r)) � (8)

which implies for � � 1 and for su�ciently large r suchthat �c(r)� 1 [6]��(r) ' exp ��2�c(r)�� 1 ; (9)in lowest non-vanishing order in �c(r). If, in addition,�2�c(r) � 1 we �nd [6]��(r) ' �2�c(r) : (10)This is the relation derived by Kaiser [1]. He only statesthe condition �c(r) � 1 and separately � � 1, which issigni�cantly weaker than the required �2�c(r) ' ��(r)�1, especially around the correlation length where � is notyet very small.It is important to note that in the cosmologically rel-evant regime, �� �> 1 the Kaiser relation (10) does notapply and �� is actually exponentially enhanced. If thismechanism would be the cause for the observed clus-ter correlation function one would thus expect an ex-ponential enhancement on scales where �cc �> 1, i.e.R �< 20h�1Mpc. This is in complete contradiction withobservations [7]!3If, within a range of scales, �(r) can be approximatedby a power law, � = ( rr0 )� , and if the threshold � issuch that Eq. (10) holds, which implies �� � 1, it is ofthe form �� = ( rr� )� where the scales r� for di�erentbiases are related by r�0 = r�(�0=�)2= : For that reasonKaiser, who �rst derived relation (10), interpreted it asan increase in the `correlation length', i.e. an increase ofthe `clustering strength'4 r� .In general a correlation function is characterized bytwo quantities, an amplitude A strictly related to thedilution of objects or the noise level and a correlationlength rc (which may however be in�nite). In the aboveexample a meaningful choice would be A = (rmin=r0)� ,where rmin is the lower cuto� (or smoothing scale) whichhas to be introduced.In order to clarify the meaning of the amplitude ofthe correlation function, A and the correlation lengthrc, we �rst study an example with �nite correlation3One might argue that non-linearities which are importantwhen the uctuations are large can 'rescue' the Kaiser rela-tion (10) also into the regime �� > 1. There are two objec-tions against this: First of all, as we pointed out above, �� > 1does not imply large uctuations. Actually most cosmologistswould agree that on R � 20h�1Mpc, where the cluster corre-lation function, �cc � 1, uctuations are linear. Secondly, itseems very unphysical that Newtonian clustering should actas to change the exponential relation (9) into a linear one (10).4Clearly, in the sense of statistical mechanics, power law cor-relation functions indicate in�nite correlation length. There-fore, r� is not a correlation length in the statistical mechanicsde�nition of this term [3,4]. Since it is called so in the cos-mology literature, we use this term here in quotation marks.2
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FIG. 1. Behavior of �(r) � �2(r=r0)� exp(�r=rc) (where = �1:7, r0 = 0:3 and rc = 10) and ��(r) are shown fordi�erent values of the threshold � in a log-log plot.
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FIG. 2. As Fig. 1 but in a semi-log plot. The slope of ��(r)for r �> 10 is �1=rc, independent of � i.e. the correlationlength of the system does not change for the peaks above thethreshold.length, which, however, is well approximated by a powerlaw on a certain range of scales. We set �(r) =(r=r0)� exp(�r=rc) with r0 � rc. In the region r � rc� is well approximated by the power law (r=r0)� . Thecorrelation length, rc is given by the slope of log ��(r)at large r which is clearly independent of bias (seeFigs 1 and 2). In order to investigate whether ��(r) �(r=r�)�� , we plot �d log(��(r))=d log(r) � � in Fig 3.Only in the regime where ��(r) � 1, � becomes con-stant and roughly independent of �. This behavior isvery di�erent from the one found in galaxy catalogs!We also want to analyse briey a more realistic ex-ample with a lower cuto� (smoothing scale) but in�nitecorrelation length:�(r) = �2=(1 + (r=rmin)) : (11)On scales rmin < r < rc this example should not di�ervery much from the above, but of course the correlationlength is in�nite here. The ampli�cation of �� for thisexample is plotted in Fig. 4 and the scale dependence ofthe spectral index is shown in Fig. 5.We have shown that bias does not inuence the cor-relation length. It ampli�es the correlation function bythe fact that the mean density, P1(�), is reduced more
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FIG. 3. The behavior of �(r) is shown for di�erent valuesof the threshold � for the correlation function shown in Figs. 1and 2. Clearly � is strongly scale dependent on all scaleswhere �� �> 1, this is r �< 0:1 in our units.
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FIG. 4. Behavior of �(r) � �2=(1 + (r=rmin)) (with = �1:7, rmin = 0:01) and ��(r) are shown for di�erentvalues of the threshold � in a log-log plot.
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FIG. 5. The behavior of �(r) is shown for di�erent valuesof the threshold � for the correlation function shown in Figs. 3and 4. Clearly � is strongly scale dependent on all scaleswhere �� �> 1, this is r < 1 in our units.3



strongly than the conditional density, P2(�; r)=P1(�).The fact that the amplitude of ��(r) increases with thethreshold does not imply that the peaks of the Gaussian�eld are \more clustered" but that they are more sparse.According to Eq. (9), this ampli�cation is very signi�cant(more than exponential!) within correlated regions andbecomes weak (linear) beyond the correlation length. Ifthe correlation length is well de�ned the distribution is'more strongly clustered' if the correlation length, andnot the amplitude of �(r), is larger.This can also be understood when comparing the meanpeak size, Rp and the mean peak distance, Dp. For aGaussian random �eld it isRp ' p2�R0� and Dp ' 2�R0 exp(�2=2)so that Dp=Rp ' � exp(�2=2) for � � 1 : (12)Here R0 is the ratio of the variances of the Gaussianrandom �eld and its derivative [8] which is of the orderof the smoothing scale of the �eld, R0 �p�(0)=�00(0). Itis mainly the inter peak distance, a measure of the peaksparseness, which increases.Finally, we want to stress once more that the bias-ing mechanism introduced by Kaiser and discussed inthis work cannot lead to a relation of the form ��0(r) =��0���(r) over a range of scales r1 < r < r2 such that1 < ��(r1) and ��(r2) < 1. But exactly this behavior isfound in galaxy and cluster catalogs. For example in [7]or [9], a constant biasing factor ��0� over a range fromabout 1h�1Mpc to 20h�1Mpc is observed for correlationamplitudes varying from about 20 to 0:1. We thereforeconclude that the explanation by Kaiser [1] cannot bethe origin of the di�erence of the correlation functionsobserved in the distribution of galaxies with di�erent in-trinsic magnitude or in the distribution of clusters withdi�erent richness.This result appears at �rst disappointing since it in-validates an explanation without proposing a new one.On the other hand, the search for an explanation of anobserved phenomenon is only motivated if we are fullyaware of the fact that we don't already have one.Last but not least, we want to point out that frac-tal density uctuations together with the fact that moreluminous objects are seen out to larger distances do actu-ally induce a increase in the amplitude of the correlationfunction �(r) similar to the one observed in real galaxycatalogs [4]. In this explanation, the linear ampli�cationfound for the correlation function, has nothing to do witha correlation length but is a pure �nite size e�ect, andthe distribution of galaxies does not have any intrinsiccharacteristic scale.It is a pleasure to thank L. Pietronero, A. Baldassarri,T. Buchert, P. Ferreira, R. Juszkiewicz, N. Kaiser, N.Turok, and F. Vernizzi for useful discussions, sugges-tions and comments. This work is partially supportedby the EEC TMR Network "Fractal structures and self-organization" ERBFMRXCT980183 and by the SwissNSF.
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