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Abstract. The analysis of anisotropies in the cosmic microwave background (CMB) has becomean extremely valuable tool for cosmology. We even have hopes that planned CMB anisotropyexperiments may revolutionize cosmology. Together with determinations of the CMB spectrum,they represent the �rst cosmological precision measurements. This is illustrated in the talk byAnthony Lasenby. The value of CMB anisotropies lies to a big part in the simplicity of the theoret-ical analysis. Fluctuations in the CMB can be determined almost fully within linear cosmologicalperturbations theory and are not severely in
uenced by complicated nonlinear physics.In this contribution the di�erent physical processes causing or in
uencing anisotropies in theCMB are discussed. The geometry perturbations at and after last scattering, the acoustic oscilla-tions in the baryon{photon{plasma prior to recombination, and the di�usion damping during theprocess of recombination.The perturbations due to the 
uctuating gravitational �eld, the so called Sachs{Wolfe con-tribution, is described in a very general form using the Weyl tensor of the perturbed geometry.
1 IntroductionThe formation of cosmological structure in the universe, inhomogeneities in the matter dis-tribution like quasars at redshifts up to z � 5, galaxies, clusters, super clusters, voids andwalls, is an outstanding basically unsolved problem within the standard model of cosmol-ogy. We assume, that the observed inhomogeneities formed from small initial 
uctuations1



by gravitational clustering.At �rst sight it seems obvious that small density enhancements can grow su�cientlyrapidly by gravitational instability. But global expansion of the universe and radiationpressure counteract gravity, so that, e.g., in the case of a radiation dominated, expandinguniverse no density inhomogeneities can grow signi�cantly. Even in a universe dominatedby pressure-less matter, cosmic dust, growth of density perturbations is strongly reduced bythe expansion of the universe.Furthermore, we know that the universe was extremely homogeneous and isotropic atearly times. This follows from the isotropy of the 3K Cosmic Microwave Background (CMB),which represents a relic of the plasma of baryons, electrons and radiation at times beforeprotons and electrons combined to neutral hydrogen. After a long series of upper bounds,measurements with the DMR instrument aboard the COsmic Background Explorer satellite(COBE) have �nally established anisotropies in this radiation [1] at the level of*(T (n)� T (n0))2T 2 +(n�n0=cos�) � 10�10 on angular scales 7o � � � 90o :Such an angle independent spectrum of 
uctuations on large angular scales is calledHarrison Zel'dovich spectrum [2]. It is de�ned by yielding constant mass 
uctuations onhorizon scales at all time, i.e., if lH(t) denotes the expansion scale at time t,h(�M=M)2(� = lH)i = const. , independent of time.The COBE result, the observed spectrum and amplitude of 
uctuations, strongly supportthe gravitational instability picture.Presently, there exist two main classes of models which predict a Harrison{Zel'dovichspectrum of primordial 
uctuations: In the �rst class, quantum 
uctuations expand to superHubble scales during a period of in
ationary expansion in the very early universe and `freezein' as classical 
uctuations in energy density and geometry [3] (see also the contribution byV. Mukhanov). In the second class, a phase transition in the early universe, at a temperatureof about 1016GeV leads to topological defects which induce perturbations in the geometryand in the matter content of the universe [4]. Both classes of models are in basic agreementwith the COBE �ndings, but di�er in their prediction of anisotropies on smaller angularscales.On smaller angular scales the observational situation is at present somewhat confusingand contradictory [5, 6], but many anisotropies have been measured with a maximum ofabout �T=T � (3 � 2) � 10�5 at angular scale � � (1 � 0:5)o. There is justi�ed hope,that the experiments planned and under way will improve this situation within the next fewyears (see contribution by A. Lasenby) In Fig. 1, the experimental situation as of spring '96is presented.In this paper we outline a formal derivation of general formulas which can be used tocalculate the CMB anisotropies in a given cosmological model. Since we have the chance2



Figure 1: The corresponding quadrupole amplitude Qflat is shown versus the corresponding spher-ical harmonic index `. The amplitude Qflat(`) corresponds roughly to the temperature 
uctuationon the angular scale � � �=`. The solid line indicates the predictions from a standard cold darkmatter model. (Figure taken from ref. [5]).to address a community of relativists, we make full use of the relativistic formulation of theproblem. In Section 2 we derive Liouville's equation for massless particles in a perturbedFriedmann universe. In Section 3 we discuss the e�ects of non-relativistic Compton scatteringprior to decoupling. This �xes the initial conditions for the solution to the Liouville equationand leads to a simple approximation of the e�ect of collisional damping. In the next Sectionwe illustrate our results with a few simple examples. Finally, we summarize our conclusions.Notation: We denote conformal time by t. Greek indices run from 0 to 3, Latin indicesrun from 1 to 3. The metric signature is chosen (� + ++). The Friedmann metric is thusgiven by ds2 = a2(t)(�dt2+
ijdxidxj), where 
 denotes the metric of a 3{space with constantcurvature K. Three dimensional vectors are denoted by bold face symbols.We set �h = c = kBoltzmann = 1 throughout.
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2 The Liouville equation for massless particles2.1 GeneralitiesCollision-less particles are described by their one particle distribution function which liveson the seven dimensional phase spacePm = f(x; p) 2 TMjg(x)(p; p) = �m2g :HereM denotes the spacetime manifold and TM its tangent space. The fact that collision-less particles move on geodesics translates to the Liouville equation for the one particledistribution function, f . The Liouville equation reads [7]Xg(f) = 0 : (2.1)In a tetrad basis (e�)3�=0 of M, the vector �eld Xg on Pm is given by (see, e.g., [7])Xg = (p�e� � !i�(p)p� @@pi ) ; (2.2)where !�� are the connection 1{forms of (M; g) in the basis e�, and we have chosen the basis(e�)3�=0 and ( @@pi )3i=1 on TPm ; p = p�e� :We now show that for massless particles and conformally related metrics,g�� = a2~g�� ;(Xgf)(x; p) = 0 is equivalent to (X~gf)(x; ap) = 0 : (2.3)This is easily seen if we write Xg in a coordinate basis:Xg = b�@� � �i��b�b� @@bi ;with �i�� = 12gi�(g��;� +g��;��g��;� ) :The variables b� are the components of the momentum p with respect to the coordinate basis:p = p�e� = b�@� :If (e�) is a tetrad with respect to g, then ~e� = ae� is a tetrad basis for ~g. Therefore, thecoordinates of of ap = ap�~e� = a2p�e� = a2b�@�, with respect to the basis @� on (M; ~g) aregiven by a2b�. In the coordinate basis thus our statement Eq. (2.3) follows, if we can showthat (X~gf)(x�; a2bi) = 0 i� (Xgf)(x�; bi) = 0 (2.4)4



Setting v = ap = v�~e� = w�@�, we have v� = ap� and w� = a2b�. Using p2 = 0, we obtainthe following relation for the Christo�el symbols of g and ~g:�i��b�b� = ~�i��b�b� + 2a;�a b�bi :For this step it is crucial that the particles are massless! For massive particles the statementis of course not true. Inserting this result into the Liouville equation we �nda2Xgf = w�(@�f jb � 2a;�a bi @f@bi )� ~�i��w�w� @f@wi ; (2.5)where @�f jb denotes the derivative of f w.r.t. x� at constant (bi). Using@�f jb = @�f jw + 2a;�a bi @f@bi ;we see, that the braces in Eq. (2.5) just correspond to @�f jw. Therefore,a2Xgf(x; p) = w�@�f jw � ~�i��w�w� @f@wi = X~gf(x; ap) ;which proves our claim. This statement is just a precise way of expressing conformal invari-ance of massless particles.2.2 Free, massless particles in a perturbed Friedmann universeWe now apply this general framework to the case of a perturbed Friedmann universe. Forsimplicity, we restrict our analysis to the case K =, i.e., 
 = 1. The metric of a perturbedFriedmann universe with density parameter 
 = 1 is given by ds2 = g��dx�dx� withg�� = a2(��� + h��) = a2~g�� ; (2.6)where (���) = diag(�;+;+;+) is the 
at Minkowski metric and (h��) is a small perturbation,jh��j � 1.From Eq. (2.3), we conclude that the Liouville equation in a perturbed Friedmann uni-verse is equivalent to the Liouville equation in perturbed Minkowski space,(X~gf)(x; v) = 0 ; (2.7)with v = v�~e� = ap�~e�.1We now want to derive a linear perturbation equation for Eq. (2.7). If �e� is a tetradin Minkowski space, ~e� = �e� + 12h���e� is a tetrad w.r.t the perturbed geometry ~g. For1Note that also Friedmann universes with non vanishing spatial curvature, K 6= 0, are conformally 
atand thus this procedure can also be applied for K 6= 0. Of course, in this case the conformal factor a2 isno longer just the scale factor but depends on position. A coordinate transformation which transforms themetric of K 6= 0 Friedmann universes into a conformally 
at form can be found, e.g., in [8].5



(x; v��e�) 2 �P0, thus, (x; v�~e�) 2 ~P0. Here �P0 denotes the zero mass one particle phase spacein Minkowski space and ~P0 is the phase space with respect to ~g, perturbed Minkowski space.We de�ne the perturbation, F , of the distribution function byf(x; v�~e�) = �f(x; v��e�) + F (x; v��e�) : (2.8)Liouville's equation for f then leads to a perturbation equation for F . We choose the naturaltetrad ~e� = @� � 12h��@�with the corresponding basis of 1{forms~�� = dx� + 12h��dx� :Inserting this into the �rst structure equation, d~�� = �!� � ^ dx�, one �nds!�� = �12(h��;� �h��;� )�� :Using the background Liouville equation, namely that �f is only a function of v = ap, weobtain the perturbation equation(@t + ni@i)F = �v2[( _hi0 � h00;i )ni + (_hij � h0j;i )ninj]d �fdv ;where we have set vi = vni, with v2 = P3i=1(vi)2, i.e., n gives the momentum direction ofthe particle. Let us parameterize the perturbations of the metric by(h��) =  �2A BiBi 2HL�ij + 2Hij ! ; (2.9)with H ii = 0. Inserting this above we obtain(@t + ni@i)F = �[ _HL + (A;i+12 _Bi)ni + ( _Hij � 12Bi;j)ninj]vd �fdv : (2.10)From Eq. (2.10) we see that the perturbation in the distribution function in each spectralband is proportional to v d �fdv . This shows once more that gravity is achromatic. We thus donot loose any information if we integrate this equation over photon energies. We de�nem = ��ra4 Z Fv3dv :4m is the fractional perturbation of the brightness �,� = a�4 Z fv3dv :Setting �(n;x) = ��(T (n;x)), one obtains that � = (�=60)T 4(n;x). Hence, m corresponds tothe fractional perturbation in the temperature,T (n;x) = �T (1 +m(n;x)) : (2.11)6



Another derivation of Eq. (2.11) is given in [10]. According to Eq. (2.10), the v dependenceof F is of the form v d �fdv . Using now4� Z d �fdv v4dv = �4 Z �fv3dvd
 = �4�ra4 ; (2.12)we �nd F (x�; ni; v) = �m(x�; ni)vd �fdv :This shows thatm is indeed the quantity which is measured in a CMB anisotropy experiment,where the spectral information is used to verify that the spectrum of perturbations is thederivative of a blackbody spectrum. Of course, in a real experiment located at a �xedposition in the Universe, the monopole and dipole contributions to m cannot be measured.They cannot be distinguished from a background component and from a dipole due to ourpeculiar motion w.r.t. the CMB radiation.Multiplying Eq. (2.10) with v3 and integrating over v, we obtain the equation of motionfor m @tm+ ni@im = _HL + (A;i+12 _Bi)ni + ( _Hij � 12Bi;j )ninj : (2.13)It is well known that the equation of motion for photons only couples to the Weyl partof the curvature (null geodesics are conformally invariant). However, the r.h.s. of Eq. (2.13)is given by �rst derivatives of the metric only which could at best represent integrals of theWeyl tensor. To obtain a local, non integral equation, we thus rewrite Eq. (2.13) in termsof r2m. It turns out, that the most suitable variable is however not r2m but �, which isde�ned by � � r2m� (r2HL � 12H;ijij )� 12(r2Bi � 3@j�ij)ni ;where �ij � �12(Bi;j +Bj;i ) + 13�ijB;ll + _Hij:Note that � and r2m only di�er by the monopole contribution, r2HL � (1=2)H ij;ij , andthe dipole term, (1=2)(r2Bi � 3@j�ij)ni. The higher multipoles of � and r2m agree. Anobserver at �xed position and time cannot distinguish a monopole contribution from anisotropic background and a dipole contribution from a peculiar motion. Only the highermultipoles, l � 2 contain information about temperature anisotropies. For a �xed observertherefore, we can identify r�2� with �T=T .In terms of metric perturbations, the electric and magnetic part of the Weyl tensor aregiven by (see, e.g. [11, 10])Eij = 12[4ij(A�HL)� _�ij �r2Hij � 23H ;lmlm �ij +H ;lil;j +H ;ljl;i ] (2.14)Bij = �12(�ilm�jm;l+�jlm�im;l ) ; (2.15)with 4ij = @i@j � (1=3)�ijr2 :7



Explicitly working out (@t+ni@i)� using Eq. (2.13), yields after some algebra the equationof motion for �: (@t + ni@i)� = 3ni@jEij + nknj�kli@lBij � S(t;x;n) ; (2.16)where �kli is the totally antisymmetric tensor in three dimensions with �123 = 1. The spatialindices in this equation are raised and lowered with �ij and thus index positions are irrelevant.Double indices are summed over irrespective of their positions.Eq. (2.16) is the main result of this paper. We now discuss it, rewrite it in integral formand specify initial conditions for adiabatic scalar perturbations with or without seeds.In Eq. (2.16) the contribution from the electric part of the Weyl tensor is a divergence,and therefore does not contain tensor perturbations. On the other hand, scalar perturbationsdo not induce a magnetic gravitational �eld. The second contribution to the source termin Eq. (2.16) thus represents a combination of vector and tensor perturbations. If vectorperturbations are negligible (like, e.g., in models where initial 
uctuations are generatedduring an epoch of in
ation), the two terms on the r.h.s of Eq. (2.16) yield thus a split intoscalar and tensor perturbations which is local.Since the Weyl tensor of Friedmann Lemâ�tre universes vanishes, the r.h.s. of Eq. (2.16)is manifestly gauge invariant (this is the so called Stewart{Walker lemma [12]). Hence alsothe variable � is gauge invariant. Another proof of the gauge invariance of �, discussing thebehavior of F under in�nitesimal coordinate transformations is presented in [10].The general solution of Eq. (2.16) is given by�(t;x;n) = Z tti S(t0;x+ (t0 � t)n;n)dt0 + �(ti;x+ (ti � t)n;n) ; (2.17)where S is the source term on the r.h.s. of Eq. (2.16).In Appendix A we derive the relations between the geometric source term S and theenergy momentum tensor in a perturbed Friedmann universe.3 The collision termIn order for Eq. (2.17) to provide a useful solution, we need to determine the correct initialconditions, �(tdec), at the moment of decoupling of matter and radiation. Before recom-bination, photons, electrons and baryons form a tightly coupled plasma, and thus � cannot develop higher moments in n. The main collision process is non{relativistic Comptonscattering of electrons and photons. The only non vanishing moments in the distributionfunction before decoupling are the zeroth, i.e., the energy density, and the �rst, the energy
ow. We therefore set �(tdec) = r2 �14D(r)g (tdec)� n � V (r)(tdec)� ; (3.1)8



where D(r)g (tdec) = r�2 � 1� Z �(tdec)d
� (3.2)= ��(r)� � 4HL + 2r�2(H jijij ) andV j(r)(tdec) = �r�2 � 34� Z �(tdec)njd
� (3.3)= �T (r)j0 =(43�(r)) +Bi � 32r�2(@i�ij) :D(r)g and V (r) are gauge invariant density and velocity perturbation variables [9, 10].In the tight coupling or 
uid limit, the initial conditions can also be obtained from thecollision term. SettingM� r�2� one �nds the following expression for the collision integral[10], C[M] = a�Tne[14D(r)g �M+ n � V (b) + 12ninjM ij ] : (3.4)The last term is due to the anisotropy of the cross section for non{relativistic Comptonscattering, with M ij = 38� Z (ninj � 13�ij)Md
 :M is a gauge invariant perturbation variable for the distribution function of photons. V (b)denotes the baryon velocity �eld, �T and ne are the Thomson cross section and the freeelectron density respectively. To make contact with other literature, we note thatM = �+�,where � is the perturbation variable describing the CMB anisotropies de�ned in [13] and� denotes a Bardeen potential (see Section 4). Since M and � di�er only by a monopoleterm, they give rise to the same spectrum of temperature anisotropies for ` � 1. M satis�esthe Boltzmann equation (@t + ni@i)M = r�2S + C[M] ; (3.5)where S is the gravitational source term given in Eq. (2.16). In the tight coupling limit,tT � (a�Tne)�1 � t, we may, to lowest order in (tT=t), just set the square bracket on theright hand side of Eq. (3.4) equal to zero. Together with Eq. (3.3) this yieldsV (b) = V (r) :Neglecting gravitational e�ects, the right hand side of Boltzmann's equation then leads to_D(r)g = 43r � V (b) = 43D(b)g ; (3.6)where the last equal sign is due to baryon number conservation. In other words, photons andbaryons are adiabatically coupled. Expanding Eq. (3.5) one order higher in tT , one obtainsSilk damping [14], the damping of radiation perturbations due to imperfect coupling.Let us estimate this damping by neglecting gravitational e�ects and the time dependenceof the coe�cients in the Boltzmann equation (3.5) since we are interested in time scalestT � t. We can then look for solutions of the formV (b) /M / exp(i(kx� !t)) :9



We also neglect the angular dependence of the collision term. Solving Eq. (3.5) for M, wethen �nd M = (1=4)D(r)g + ik � nV (b)1� itT (! � k � n) : (3.7)The collisions also induce a drag force in the equation of motion of the baryons which isgiven by Fi = a�Tne�r� Z C[M]nid
 = 4�r3tT (V (r) � ikV (b)) :With this force, the baryon equation of motion becomesk!V (b) + i( _a=a)kV (b) = ik	� F =�b :To lowest order in tT=t and ktT , this leads to the following correction to the adiabaticcondition V (b) = V (r): tT!kV (b) = 4�r3�b (ikV (b) � V (r)) ; (3.8)From Eq. (3.6) we obtain the relation k � V (r) = �(3=4)!D(r)g to lowest order. Using thisapproximation, we �nd, after multiplying Eq. (3.8) with k,V (b) = (3=4)!tTk2!R� ik2D(r)g ; (3.9)with R = 3�b=�r. The densities �b and �r denote the baryon and radiation densities respec-tively. Inserting this result in Eq. (3.7) leads toM = 1 + 3�!=k1�itT!R1� itT (! � k�)D(r)g =4 ; (3.10)where we have set � = k � n=k. From this result, which is valid on time scales shorterthan the expansion time (length scales smaller than the horizon), we can derive a dispersionrelation !(k). In lowest order !tT we obtain! = !0 � i
 with (3.11)!0 = kq3(1 +R) and 
 = k2tT R2 + 45(R + 1)6(R + 1)2 : (3.12)At recombination R � 0:1 so that 
 � 2k2tT=15.We have thus found that, due to di�usion damping, the photon perturbations thus un-dergo an exponential decay which can be approximated byjMj / exp(�2k2tT t=15) ; on scales t� 1=k� tT : (3.13)In general, the temporal evolution of radiation perturbations can be split into threeregimes: Before recombination, t � tdec the evolution of photons can be determined in the
uid limit. After recombination, the free Liouville equation is valid. Only during recombi-nation the full Boltzmann equation has to be considered, but also there collisional dampingcan be reasonable well approximated by an exponential damping envelope [15], which is asomewhat sophisticated version of (3.13). 10



4 Example: Adiabatic scalar perturbationsWe now want to discuss Eq. (2.16) with initial conditions given by Eq. (3.1) in some examples.Perturbations are called 'scalar' if all 3 dimensional tensors (tensors w.r.t their spatialcomponents on hyper-surfaces of constant time) can be obtained as derivatives of scalarpotentials.Scalar perturbations of the geometry can be described by two gauge invariant variables,the Bardeen potentials [16] � and 	. The variable 	 is the relativistic analog of the Newto-nian potential. In the Newtonian limit, �� = 	= the Newtonian gravitational potential. Inthe relativistic situation, � is better interpreted as the perturbation in the scalar curvatureon the hyper-surfaces of constant time [17]. In terms of the Bardeen potentials, the electricand magnetic components of the Weyl tensor are given by [11]Eij = 124ij(�� 	) ; Bij = 0 ; (4.1)where 4ij denotes the traceless part of the second derivative, 4ij = @i@j � 13�ijr2. TheLiouville equation, (2.16) then reduces to(@t + ni@i)M = ni@i(�� 	) : (4.2)With the initial conditions given in Eq. (3.1) we �nd the solution�TT (t0;x0;n) =M(t0;x0;n) = [14D(r)g +ni@iV (b)+	��](tdec;xdec)�Z t0tdec( _�� _	)(t;x(t))dt ;(4.3)where xdec = x0 � (t0 � tdec)n and correspondingly x(t) = x0 � (t0 � t)n.We now want to replace the 
uid variables, D(r)g and V (b), wherever possible, by perturba-tions in the geometry. To this goal, let us �rst consider the general situation, when one partof the geometry perturbation is due to perturbations in the cosmic matter components andanother part is due to some type of seeds, which do not contribute to the background energyand pressure. The Bardeen potentials can then be split into contributions from matter andseeds: � = �m + �s ;	 = 	m +	s : (4.4)To proceed further, we must assume a relation between the perturbations in the total energydensity and energy 
ow, Dg and V , and the corresponding perturbations in the photoncomponent. The most natural assumption here is that perturbations are adiabatic, i.e., thatD(r)g =(1 + wr) = Dg=(1 + w) and V (b) = V (r) = V ;where w � p=� denotes the enthalpy, i.e. wr = 1=3. For wr 6= w this condition can onlybe maintained on super{horizon scales or for tightly coupled 
uids. For decoupled 
uidcomponents, the di�erent equations of state lead to a violation of this initial condition onsub{horizon scales. 11



In order to use the perturbed Einstein equations to replace Dg and V by geometricperturbations we de�ne yet another density perturbation variable,D � Dg + 3(1 + w) _aaV � 3(1 + w)� andD(r) � D(r)g + 4 _aaV (r) � 4� :The matter perturbations D and V determine the matter part of the Bardeen potentials viathe perturbed Einstein equations (see, e.g. [10]). The following relation between �m and Dcan also be obtained using Eqs. (4.1) and (A16) in the absence of seeds.D = �23 � _aa��2r2�m � (kt)2�m and_aa	m � _�m = 32 � _aa�2 (1 + w)V :The term D rsp. D(r), is much smaller than the Bardeen potentials on super{horizon scalesand it starts to dominate on sub{horizon scales, kt � 1. For this term therefore, theadiabatic relation is not useful and we should not replace D(r) by 43(1+w)D. The sameholds for @iV (b) which is of the order of kt�m. However, ( _a=a)V (r) is of the same orderof magnitude as the Bardeen potentials and thus mainly relevant on super horizon scales.There the adiabatic condition makes sense and we may replace ( _a=a)V by its expressionin terms geometric perturbations. Keeping only D(r) and @iV (b) in terms of photon 
uidvariables, Eq. (4.3) becomes�TT (x0; t0;n) = [	s + 1 + 3w3 + 3w	m + 23(1 + w) � _aa��1 _�m + 14D(r) + ni@iV (b)](xdec; tdec)� Z t0tdec( _�� _	)(x(t); t) : (4.5)This is the most general result for adiabatic scalar perturbations in the photon temper-ature. It contains geometric perturbations, acoustic oscillations prior to recombination andthe Doppler term. Silk damping, which is relevant on very small angular scales (see thecontribution by [6]) is neglected, i.e., we assume 'instantaneous recombination'. Eq. (4.5) isvalid for all types of matter models, with or without cosmological constant and/or spatialcurvature (we just assumed that the latter is negligible at the last scattering surface, whichis clearly required by observational constraints). The �rst two terms in the square bracketare usually called the ordinary Sachs{Wolfe contribution. The integral is the 'integratedSachs{Wolfe e�ect'. The third and fourth term in the square bracket describe the acousticDoppler oscillations respectively. On super horizon scales, kt� 1, they can be neglected.To make contact with the formula usually found in textbooks, we �nally constrain our-selves to a universe dominated by cold dark matter (CDM), i.e., w = 0 without any seedperturbations. In this case 	s = �s = 0 and it is easy to show that 	 = �� and that12



_� = _	 = 0 (see, e.g., [10]). Our results then simpli�es on super{horizon scales, kt � 1, tothe well{known relation of Sachs and Wolfe [18] �TT !SW = 13	(x0 � t0n; tdec) : (4.6)5 ConclusionsWe have derived all the basic ingredients to determine the temperature 
uctuations in theCMB. Since the 
uctuations are so small, they can be calculated fully within linear cos-mological perturbation theory. Note however that density perturbations along the line ofsight to the last scattering surface might be large, and thus the Bardeen potentials insidethe Sachs Wolfe integral might have to be calculated within non{linear Newtonian gravity.But the Bardeen potentials themselves remain small (as long as the photons never comeclose to black holes) such that Eq. (4.5) remains valid. In this way, even a CDM model canlead to an integrated Sachs Wolfe e�ect which then is known under the name 'Rees Sciamae�ect'. Furthermore, do to ultra violet radiation of the �rst objects formed by gravitationalcollapse, the universe might become reionized and electrons and radiation become coupledagain. If this reionization happens early enough (z > 30) the subsequent collisions lead toadditional damping of anisotropies on angular scales up to about 5o. However, present CMBanisotropy measurements do not support early reionization and the Rees Sciama e�ect isprobably very small. Apart from these e�ects due to non{linearities in the matter distribu-tion, which depend on the details of the structure formation process, CMB anisotropies canbe determined within linear perturbation theory.This is one of the main reason, why observations of CMB anisotropies may providedetailed information about the cosmological parameters (see contribution by A. Lasenby):The main physics is linear and well known and the anisotropies can thus be calculated withinan accuracy of 1% or so. The detailed results do depend in several ways on the parametersof the cosmological model which can thus be determined by comparing calculations withobservations.There is however one caveat: If the perturbations are induced by seeds (e.g. topologi-cal defects), the evolution of the seeds themselves is in general non{linear and complicated.Therefore, much less accurate predictions have been made so far for models where pertur-bations are induced by seeds (see, e.g., [19, 20, 21]). In this case, the observation of CMBanisotropies might not help very much to constrain cosmological parameters, but it mightcontain very interesting information about the seeds, which according to present understand-ing originate from very high temperatures, T � 1016GeV. The CMB anisotropies might thusbury some 'fossils' of the very early universe, of the physics at an energy scale which we cannever probe directly by accelerator experiments.
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A An equation of motion for the Weyl tensorThe Weyl tensor of a spacetime (M; g) is de�ned byC���� = R���� � 2g[�[�R�]�] + 13Rg[�[�g�]�] ; (A1)where [�:::�] denotes anti-symmetrization in the indices � and �. The Weyl curvature hasthe same symmetries as the Riemann curvature and it is traceless. In addition the Weyltensor is invariant under conformal transformations:C����(g) = C����(a2g)(Careful: This equation only holds for the given index position.) In four dimensional space-time, the Bianchi identities together with Einstein's equations yield equations of motion forthe Weyl curvature. In four dimensions, the Bianchi identities,R��[��;�] = 0are equivalent to [8] C��
�;� = R
[�;�] � 16g
[�R;�] : (A2)This together with Einstein's equations yieldsC��
�;� = 8�G(T 
[�;�] � 13g
[�T ;�]) ; (A3)where T�� is the energy momentum tensor, T = T �� .Let us now choose some time-like unit vector �eld u, u2 = �1. We then can decomposeany tensor �eld into longitudinal and transverse components with respect to u. We de�neh�� � g�� + u�u� ;the projection onto the subspace of tangent space normal to u. The decomposition of theWeyl tensor yields its electric and magnetic contributions:E�� = C����u�u� (A4)B�� = 12C��
�u� �
���u� ; (A5)where ���
� denotes the totally antisymmetric 4 tensor with �0123 = p�g. Due to symmetryproperties and the tracelessness of the Weyl curvature, E and B are symmetric and traceless,and they fully determine the Weyl curvature. One easily checks that E�� and B�� are alsoconformally invariant. We now want to perform the corresponding decomposition for theenergy momentum tensor of some arbitrary type of seed, T S�� . We de�ne�S � T (S)�� u�u� (A6)pS � 13T (S)�� h�� (A7)q� � �h �� T (S)�� u� qi = �1aT (S)0i (A8)��� � h �� h �� T (S)�� � h��pS : (A9)15



We then can write T (S)�� = �Su�u� + pSh�� + q�u� + u�q� + ��� : (A10)This is the most general decomposition of a symmetric second rank tensor. It is usuallyinterpreted as the energy momentum tensor of an imperfect 
uid. In the frame of an observermoving with four velocity u, �S is the energy density, pS is the isotropic pressure, q is theenergy 
ux, u � q = 0, and � is the tensor of anisotropic stresses, ���h�� = ���u� = 0.We now want to focus on a perturbed Friedmann universe. We therefore consider a fourvelocity �eld u which deviates only in �rst order from the Hubble 
ow: u = (1=a)@0+ �rstorder. Friedmann universes are conformally 
at, and we require the seed to represent asmall perturbation on a universe dominated by radiation and cold dark matter (CDM). Theseed energy momentum tensor and the Weyl tensor are of thus of �rst order, and (up to�rst order) their decomposition does not depend on the choice of the �rst order contributionto u, they are gauge{invariant. But the decomposition of the dark matter depends on thischoice. Cold dark matter is a pressure-less perfect 
uid We can thus choose u to denote theenergy 
ux of the dark matter, T �� u� = ��Cu�. Then the energy momentum tensor of thedark matter has the simple decompositionT (C)�� = �Cu�u� : (A11)With this choice, the Einstein equations Eq. (A3) linearized about an 
 = 1 Friedmannbackground yield the following 'Maxwell equations' for E and B [22]:i) Constraint equations@iBij = 4�G�j���u�q[�;�] (A12)@iEij = 8�G(13a2�CD;j +13a2�S;j �12@i�ij � _aa2 qj) : (A13)ii) Evolution equationsa _Bij + _aBij � a2h �(i �j)�
�u�E 
;�� = �4�Ga2h�(i�j)���u����;� (A14)_Eij + _aaEij + ah �(i �j)�
�u�B 
;�� = �4�G(aqij � _aa�ij + _�ij + a�Cuij); (A15)where (i:::j) denotes symmetrization in the indices i and j. The symmetric traceless tensor�elds q�� and u�� are de�ned by q�� = q(�;�) � 13h��q�;�u�� = u(�;�) � 13h��u�;� :In Eqs. (A14) and (A15) we have also used that for the dark matter perturbations only scalarperturbations are relevant, vector perturbations decay quickly. Therefore u is a gradient�eld, ui = U;i for some suitably chosen function U . Hence the vorticity of the vector �eld uvanishes, u[�;�] = 0. With�0ijk = a4�ijk ; �S = a�2T S00 and qi = �a�1T S0i ;16



we obtain from Eq. (A13)@iEij = 8�G(13�Ca2D;j +13T S00;j �12@i�ij + _aaT S0j) : (A16)In Eq. (A16) and the following equations summation over double indices is understood,irrespective of their position.To obtain the equation of motion for the magnetic part of the Weyl curvature we takethe time derivative of Eq. (A14), using u = (1=a)@0 + 1:order and �0ijk = a4�ijk. This leadsto (aBij)�� = �a(�lm(i[ _Ej)l + _aaEj)l];m�4�G�lm(i[ _�j)l;m+ _aa�j)l;m ]) ; (A17)where we have again used that u is a gradient �eld and thus terms like �ijkulj;k vanish. Wenow insert Eq. (A15) into the �rst square bracket above and replace product expressions ofthe form �ijk�ilm and �ijk�lmn with double and triple Kronecker deltas. Finally we replacedivergences of B with the help of Eq. (A12). After some algebra, one obtains�lm(i[ _Ej)l + _aaEj)l];m= �r2Bij � 4�G�lm(i[2aql;mj)+ _�j)l;m� _aa2 �j)l;m ] :Inserting this into Eq. (A17) and using energy momentum conservation of the seed, we �nally�nd the equation of motion for B:a�1(aB)��ij �r2Bij = 8�GS(B)ij ; (A18)with S(B)ij = �lm(i[�T S0l ;j)m+ _�j)l;m ] : (A19)Eq. (A18) is the linearized wave equation for the magnetic part of the Weyl tensor in anexpanding universe. A similar equation can also be derived for E .Since dark matter just induces scalar perturbations and Bij is sourced by vector andtensor perturbations only, it is independent of the dark matter 
uctuations. EquationsEqs. (A16) and (A18) connect the source terms in the Liouville equation of section 2, @iEijand Bij to the perturbations of the energy momentum tensor.
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