
Kalb-Ramond axion production in anisotropic string cosmologiesRuth Durrer1 and Mairi Sakellariadou21D�epartement de Physique Th�eorique, Universit�e de Gen�eve,24 quai E. Ansermet, CH-1211 Gen�eve 4, Switzerland.2DARC, Observatoire de Paris,UPR 176 CNRS, 92195 Meudon Cedex, France.(March 2000)We compute the energy spectra for massless Kalb-Ramond axions in four-dimensional anisotropicstring cosmological models. We show that, when integrated over directions, the four-dimensionalanisotropic model leads to infra-red divergent spectra similar to the one found in the isotropic case.PACS number(s): 98.80.CqI. INTRODUCTIONThe pre-big-bang (PBB) model of cosmology [1] in-spired by the duality properties of string theory, is faced,on the phenomenological side, with the question whetheror not it can reproduce the amplitude and slope of the ob-served temperature anisotropy spectrum [2] and of large-scale density perturbations.Within the PBB model, the inationary expansion dueto the dilaton �eld in the low-energy e�ective action ofstring theory, leads to an ampli�cation of metric uctu-ations as well as of quantum uctuations of all the �eldspresent in PBB cosmology. Such �elds, which are notpart of the homogeneous background whose perturba-tions we study, are for example the gauge �elds and thepseudo-scalar partner of the dilaton �eld in the stringtheory e�ective action.At �rst, it was thought that the PBB scenariocould not lead to the observed scale-invariant Harrison-Zel'dovich spectrum of perturbations at large-scales.First-order scalar and tensor metric perturbations werefound to lead to primordial spectra that grow with fre-quency [3], with a normalization imposed by the stringcut-o� at the shortest ampli�ed scales. These blue spec-tra have too little power at scales relevant for the ob-served anisotropies in the cosmic microwave background(CMB). In contrast, the axion energy spectra were foundto be diverging at large scales, red spectra, leading tovery large CMB anisotropies, in conict with observa-tions.These results already rule out four-dimensionalisotropic PPB cosmology. However, if one allows for in-ternal contracting dimensions in addition to the three ex-panding ones, the situation is di�erent. The axion �eldcan lead to a at Harrison-Zel'dovich spectrum of uctua-tions for an appropriate relative evolution of the externaland the compacti�ed internal dimensions [4,5]. Thus, itis possible that the ampli�cation of quantum uctuationsof �elds which are present in the PBB scenario, can gen-

erate via the seed mechanism [6] the observed anisotropyof the CMB radiation.Considering an isotropic PBB model with extra dimen-sions, the ampli�cation of electromagnetic vacuum uc-tuations and of Kalb-Ramond axion vacuum uctuationslead to interesting observational consequences within thecontext of primordial magnetic �elds [7] and large-scaletemperature anisotropies [8]. In particular, massless ax-ions as well as very light axions can exhibit a at orslightly tilted blue spectrum which may reasonably �tthe observational data [8,9]. (Even though an acousticpeak at ` � 350 is excluded by experiments published af-ter Ref. [9] was completed, it is possible to shift this peakto ` � 220 by closing the universe with a cosmologicalconstant. More details about this model can be found inRef. [10].)Recently it has been suggested that four-dimensionalstring cosmology models which expand anisotropicallycan also lead to blue or at energy spectra for axionicperturbations [11]. According to Ref. [11], one can in-stead of assuming internal extra dimensions [8], consideran anisotropic four-dimensional background. This hasbecome especially interesting in view of new results whichshow that the pre-big-bang phase may generically be ho-mogeneous but anisotropic [12].In Ref. [11], the axion spectrum is only computed forthe part of phase space where the longitudinal compo-nent of the wave vector is su�ciently large. In this workwe correct the result of Ref. [11] and complete the com-putation to contain all directions in phase space. Wethen integrate the obtained spectrum over directions andcompare it with the result for the isotropic PBB. We �ndthat the anisotropic spectrum, when averaged over direc-tions agrees roughly with the isotropic one. Therefore,anisotropic expansion during the pre-big-bang phase can-not solve the axion problem of four-dimensional stringcosmology.
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II. AXION PRODUCTION IN THEPRE-BIG-BANG COSMOLOGICAL MODELLet us consider a four-dimensional spatially atanisotropic PBB cosmological model, with metric(g��) = diag[1;�a2(t);�b2(t);�b2(t)] ; (1)the internal compacti�ed radii (if present) are assumedto be frozen. For simplicity, we assume two directions toexpand with the same scale factor b. Varying the low-energy string theory e�ective action (in the string frame)S = � 12�2s Z d4xp�g e��� �R+ g��@��@��� 112H���H���� (2)(H��� denotes the antisymmetric tensor �eld), with re-spect to the metric and the dilaton �eld �, we obtainthe dilaton driven vacuum solutions of the tree-level evo-lution equations. As derived in Ref. [1], these solutionsread a(�) = �� ��1 � �1�� ; b(�) = �� ��1 � �1�� ; (3)and �(�) = ��+ 2� � 11� � � log �� ��1 � ; (4)with � and � satisfying the Kasner condition�2 + 2�2 = 1 : (5)Here � denotes conformal time with respect to the scalefactor a. It is negative during the pre-big-bang era and� = ��1 stands for the transition time from the dilatondriven pre-big-bang era to the radiation dominated post-big-bang era. To obtain the axion evolution equation,we vary the e�ective action, Eq. (2), with respect to theKalb-Ramond axion �eld �, given byH��� = e� �����p�g @�� : (6)The evolution equation of the canonical �eld  = e�=2b�,in Fourier space, reads [11] 00k + �k2L + k2T a2b2 � P 00P � k = 0 ; P = e�=2b ; (7)where kL denotes the modulus of the comoving longitu-dinal momentum and kT = qk2y + k2z is the modulus ofthe transverse momentum. Equation (7) describes thegeneration of axionic modes, where the anisotropy of thespacetime has been translated into an asymmetry be-tween the longitudinal and transverse momenta.

The choice � = � = �1=p3 corresponds to theisotropic case, for which a = b and the evolution of ax-ionic uctuations is given by 00k + �k2 � P 00P � k = 0 ; (8)with  k = P�k ; P = e�=2a / (��)p ; (9)so that P 00P = (�2 � 1=4)�2 ; with �2 = (p� 12)2 : (10)The solution of Eq. (8), normalized to an initial vacuumuctuation spectrum, can be written as k = �1=2H(2)� (jk�j) ; � = ����p� 12 ���� ; � � ��1 ; (11)with � = p3. H(2)� denotes the Hankel function of secondkind (we adopt the conventions of Ref. [13]).Assuming that the dilaton driven era is followed by aradiation dominated era, the density parameter of pro-duced Kalb-Ramond axions per logarithmic frequency in-terval is [4]
�(!; �) = �(!)�c = 1�c d��d log! ' g21
(�) � !!1 �3�2� ;(12)where �(!) denotes their spectral energy density and�c = 3M2pH2=(8�) stands for the critical energy den-sity. Note that !1 = k1=a1 = 1=(a1j�1j) represents themaximal ampli�ed frequency, g1 = H1=Mp is the transi-tion scale in units of the Planck mass, H1 ' !1 denotesthe Hubble scale at which the universe becomes radia-tion dominated. Hence 
(�) = (H1=H)2(a1=a)4 is theradiation density parameter at a given time �.Clearly a at spectrum corresponds to � = 3=2 and thevalue � = p3 obtained in a four-dimensional isotropicpre-big-bang model implies a red spectrum, leading toan unacceptable divergence at low frequencies.Let us now go back to the case of a four-dimensionalanisotropic background. We �rst study the evolu-tion of axionic uctuations and we then calculate thespectral energy density of the axionic inhomogeneities(d��=d log!), as they re-enter the horizon during theisotropic radiation dominated era, after being ampli-�ed during the anisotropic dilaton driven era. InsertingEqs. (3) and (4) into Eq. (7), we obtain [11] 00k +�k2L + k2T �� ��1 � � �2 � 1=4�2 � k = 0 ; (13)where  = 2(���)1�� ; 2�= j2p� 1j ; where (14)p = �+4��12(1��) ; 2�= 2� 4�1� � : (15)2



If  < 0, the kT -term as well as the ��2-term go to zerofor � ! �1; and initially the parentheses in Eq. (13) isdominated by k2L (except if kL � 0). If kT is not verylarge, namely ifkT < kL(k1=kL)�=2 ; (16)the scale kL becomes super-horizon, i.e. the parenthesesin Eq. (13) is dominated by the 1=�2-term, before thekT -term takes over. In this case, we may entirely neglectthe kT -term in Eq. (13), which then reduces to Eq. (8)with k replaced by kL. Therefore, the spectrum for thesemodes is at for � = 3=2 which corresponds to� = �7=9 ; � = �4=9 and  = �3=8 : (17)We also require the solution to expand, i.e. �; � < 0.We �rst concentrate mainly on these values of the Kasnerexponents since they lead to a scale invariant spectrumof uctuations for directions with a su�ciently large kL-component, but we express our results in terms of � and �so that they can then also be applied also to other valuesof the Kasner indices. In the part of phase-space de�nedby the inequality given in Eq. (16), the energy densityof the produced axions has already been determined inRef. [11]. Here we correct the result of Ref. [11] andgeneralize it to the entire phase space.To solve Eq. (13), we distinguish among the followingtwo cases:(I) The modulus of the longitudinal momentum, kL, al-ways dominates until �2 < 1=k2L at which point the 1=�2term comes to dominate. This is equivalent to the con-dition given in Eq. (16).(II) At some conformal time � = �T < ��1, the modu-lus of the transverse momentum, kT , comes to dominateover kL, but the mode is still well within the horizon, i.e.pk2L + k2T (��T =�1) > ��2T . Equation (13) implies�T = ��1�kLkT �2= : (18)Case (I) : Let us �rst discuss this case which is alsothe one studied in Ref. [11]. Here, the inequality givenin Eq. (16) holds. For low frequency modes, ! � !1this is the case outside a very thin slice around the planekL = 0 if  < 0. In this situation we may entirely neglectthe second term inside the parentheses of Eq. (13) whichyields a Bessel di�erential equation. Its solution duringthe pre-big-bang era , is simply PBBk (k; �) =s jkL�jkL H(2)� (kL�) ;for � � ��1 ; (19)After the transition to the radiation dominated era(RD), we assume the dilaton to be frozen and the ex-pansion to have become isotropic. This implies P 00 = 0,a=b = 1 and Eq. (7) reduces to a simple harmonic equa-tion with general solution

 RDk (k; �) = 1pk hc+e�ik(�+�1) + c�eik(�+�1)i ; (20)for � � ��1 : (21)By matching the in-coming solution  PBBk to the out-going one  RDk , and by also matching their �rst deriva-tives, at the transition time � = ��1, we obtain the fre-quency mixing coe�cient c�(k):c� = �1p2�s 1(k�1)(kL�1)2� : (22)The coe�cient c� determines the occupation numbersof produced axions. The spectral energy density of theproduced axions reads�L(!; s) = d��d log! � !4�2 jc�(!)j2 : (23)From Eqs. (22), (23) we obtain with ! = k=a for � = 3=2�L(!; s) � 12�3!41=s3 ; (24)where s = kL=k.Thus, if the longitudinal momentum kL dominates, thespectrum of produced Kalb-Ramond axions is at, i.e.independent of !, but anisotropic. This result genericallyagrees with the �nding of Ref. [11] (up to a factor 1=s2,which we think is missing in Ref. [11]).Case (II) : We now assume that the kT -term comesto dominate before the perturbation becomes superhori-zon. As long as the perturbation is sub-horizon, we mayapproximate Eq. (13) by 00k +�k2L + k2T �� ��1 �� k = 0 ; (25)An approximate solution to this equation is ' exp��pk2L + q2(��=�1)k2T�p�=2 [k2L + (��=�1)k2T ]1=4 ; (26)with q = 1=(1 + =2) = (1� �)=(1� �).In the regime considered, �pk2L + q2(��=�1)k2T � 1,this solution becomes exact, if either kL or kT vanishesand it is a good approximation if one of the two termsdominates. If the kL-term and the kT -term are of thesame order, the relative error is about j=2j = 3=16. Itis also clear that this represents the correctly normalizedincoming vacuum solution.At conformal time � = �T , the transverse momentumkT comes to dominate over the kL- term in Eq. (13). Ateven later times, the ��2-term will eventually dominate.After �T Eq. (13) can be approximated by 00k +�k2T �� ��1 � � �2 � 1=4�2 � k = 0 ; (27)3



with general solution [13] k(kT ; �) = c(1)T pjkT �jH(1)�q  jkT �jq ����1 �=2!�ic(2)T pjkT �jH(2)�q  jkT �jq ����1 �=2! ; (28)where q is as above, and H(1)�q ; H(2)�q are Hankel functionsof the 1st and 2nd kind of order �q. For large kT j�j thesecond term just corresponds to the solution (26) in thelimit where kL can be neglected. Therefore, by matchingthe solutions we �ndc(1)T = 0c(2)T = ipkT ; (29)up to an irrelevant phase.Next, we have to match the solution for the �eld �of the pre-big-bang era to the solution for � during theradiation era at the transition time � = ��1.As we go from the pre- to the post-big-bang era, weassume the universe to become isotropic and the dilaton�eld � to become frozen. Thus, here the matching of thein-coming to the out-going solution for �, is not equiva-lent to matching  . The relation between the the axion�eld � and the canonical �eld  at conformal time � is�RD(�) = � ��1 ��1  RD(�) ; (30)�PBB(�) = �� ��1 ���  PBB(�) : (31)The canonical �eld in Fourier space during RD is givenin Eq. (20). Matching the solutions and their �rst deriva-tives for �, as we pass from PBB to RD at time � = ��1,we obtain for jkT �1j � 1, the Bogoliubov coe�cient c�given byjc�j2 = "�2(�q)4�2 22�q �32 � �q�2#�kTkL��2�q�s�2�q � !!1��1�2�q : (32)With Eq. (23) we then obtain that the energy densityof the produced Kalb-Ramond axions, in the case wherethe transverse momentum kT comes to dominate, i.e theinequality given in Eq. (16) is violated:�T (!; s) = "�2(�q)4�2 22�q �32 � �q�2# 1�2�� kkT �2�q !1+2�q1 !3�2�q : (33)

Inserting the values � = 3=2; � = �7=9 � = �4=9 whichlead to a at spectrum in case I one �nds a somewhatblue spectrum in case II,�T (!; s) / !�9=13 : (34)Of course this case also gives a �nite answer on theplane kL = 0 for which the result obtained under case Idiverges.III. RESULTS AND CONCLUSIONIn total we can summarize the calculated spectrum by�(!; s) ' !412�3 8><>: s�2� � !!1�3�2� if kT < kL(k1=kL)�=2(1� s2)��q � !!1�3�2�q else, (35)where s = kL=k , � = 1�2�=(1��) and q = (1��)=(1��). For our prefered values, � = �7=9 and � = �4=9which imply � = 3=2 and q = 16=13, the above resultreduces to
�(!; s; �) ' g21
(�)( s�3 if kT < kL(k1=kL)�=2(1�s2)� 2413 � !!1��9=13 else.(36)In the regime of phase space where the longitudinal modeof the momentum is very small i.e. when the conditiongiven in Eq. (16) is violated, the spectrum of the pro-duced Kalb-Ramond axions is not at. For a given valueof !, this is the case if s is smaller than the critical valuesc which is well approximated bysc(!) ' � !!1�3=13 ; if ! <� 0:1!1 ; (37)a very small value for cosmologically interesting frequen-cies.In Figure 1 the the energy density �(!) is shown as afunction of s for di�erent values of !.
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FIG. 1. The density parameter of the producedKalb-Ramond axions is shown in units of g21
 as a functionof s for di�erent values of !. The value !1 � (0:01� 0:1)MPlis the string scale. For this curve the results obtained inEq. (36) have been interpolated logarithmically. The littlebars on the log(s)-axis indicate the values of sc at which thecondition (16) becomes an equality. For values of s smallerthan sc(!), the spectral density is approximated by �T (!).For s �xed, if the modulus of the longitudinal momen-tum dominates in Eq. (13), more precisely if it satis�esthe condition kL > kT (kT =k1)�=2=(1+=2), the spectrumof the produced Kalb-Ramond axions is at.To estimate the total energy density per logarithmicfrequency interval we integrate the axion density 
�(!; s)over s. For this we used3k = 2�kT dkL ^ dkT = 4�k2ds ^ dk ; (38)where we have used dkL = kds+ sdk anddkT = �sp1� s2 kds+p1� s2dk :Hence, we have
�(!; �) = Z 
�(!; s; �)ds' 1�c "Z sc(!)0 �T (!; s)ds+ Z 1sc(!) �L(!; s)ds# (39)' g21
(�) �sc �!1! �9=13 + 0:5s2c � : (40)This spectrum is shown in Fig. 2.

FIG. 2. The energy density 
�(!)=g21
 , integrated overdirections s is shown as a function of ! (solid line). Comparingit with the isotropic result (dashed line) we conclude that, thetwo spectral indices are the same and, within our accuracy,also the amplitudes are comparable.Using sc ' (!=!1)3=13, which is a good approximationas long as ! � 0:1!1 it can also be seen directly fromEq. (40) that the isotropic energy spectrum is nearlyreproduced. The isotropic spectral index, 3 � 2p3 ��0:464 is actually replaced by �6=13 � �0:463. Insert-ing reasonable values for the string scale, 0:01 � g1 < 1,we see that also in the anisotropic case axions are over-produced in unacceptable amounts. Even if the spectrumof the axions from wave vectors directed su�ciently farfrom the plane kL = 0, is scale-invariant, the enhance-ment of the spectrum in the vicinity of the plane kL = 0leads to a total contribution which agrees with the oneobtained in the isotropic case. Therefore, the model isexcluded (see Ref. [4]).So far we have mainly considered the case � = �7=9and � = �4=9, but our results apply quite generically,as long as  < 0 and thus the kL-term dominates atsu�ciently early times. But also if  > 0, Eq. (26) isan approximate solution on sub-horizon scales. In thissituation, however the kT -term dominates at su�cientlyearly times and continues to do so until the perturbationbecomes super-horizon if the inequality given in Eq. (16)is violated. For  > 0 this is the case outside a narrowcylinder around the kT = 0 axis. Therefore, the genericformula given in Eq. (39) always applies, but sc � 1, if < 0 and sc ' 1, if  > 0.For general values of � and � we obtain
�(!; �) = Z 
�(!; s; �)ds' g21
(�)"� !!1�3�2�q Z sc(!)0 (1� s2)��qds5



+ � !!1�3�2� Z 1sc(!) s�2�ds# : (41)The transition value of s is given byp1� s2c = s1+=2c � !!1�=2 : (42)If  < 0 (i.e. � < �), the factor � !!1�=2 is very largein most of phase space and hence sc � 1. On the otherhand, if  > 0 (i.e. � > �), the above factor is verysmall for the relevant frequencies, ! � !1 and sc ' 1. Areasonable approximation issc ' � !!1�q�1 if  < 0 (43)1� s2c ' � !!1�2=q�2 if  > 0 ; (44)where we have used the relation q = 1=(1+ =2). Insert-ing these results in Eq. (41), the integrals can be approx-imated by
�(!; �) � g21
(�)� !!1�n ; where (45)n = 2 + q � 2�q = 1 + �+ 2�1� � if � < � ; (46)n = 1 + 2=q � 2�= 1 + �+ 2�1� � if � > � : (47)Clearly, since �2+2�2 = 1 and �; � � 0 it is �+2� � �1.This shows that the spectrum is never blue and becomesscale invariant only in the degenerate case with two staticdimensions, � = 0. This is also shown in Fig. 3, wherethe above approximation for the spectral index plotted asa function of �: the spectrum always remains red witha spectral index relatively close to the isotropic value,niso = 3 � 2p3 � �0:46, except in the extremal case,when two dimensions are frozen and � = �1.If one relaxes the condition that both a and b be ex-panding and just asks for volume expansion, �+2� < 0,there is another pair of values for the Kasner indices lead-ing to a at spectrum, namely � = 1=3 and � = �2=3.However, if we want expansion in all three dimensionsthe spectrum is always red.

FIG. 3. The spectral index n is shown as a function ofthe exponent � of the expansion law. For � = �1=p3, theisotropic case, our approximation is not very good since there� = �. This is reected in the unphysical kink at this valueof �. Clearly, the resulting spectrum is always red (n < 0),with �0:4 > n > �0:5 except close to the degenerate case�! �1.To summarize, we �nd that anisotropic expansion hasvery little inuence on the overall axion production andcannot cure the axion problem of four-dimensional pre-big-bang models. Only by allowing for extra dimensionsone can escape this conclusion and obtain a scale invari-ant spectrum of axions as described in Refs. [8,9]. A'realistic' string cosmology with a Kalb-Ramond axioncan therefore be realized only in models with extra di-mensions. ACKNOWLEDGMENTSIt is a pleasure to thank A. Buonanno, T. Damour,K. Kunze, G. Veneziano and A. Vilenkin for useful dis-cussions. This work is supported by the Swiss NationalScience Foundation.
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