
Microwave Background Anisotropiesfrom Alfv�en wavesR. Durrer�, T. Kahniashviliy and A. Yates��D�epartement de Physique Th�eorique, Universit�e de Gen�eve,24 quai Ernest Ansermet, CH-1211 Gen�eve 4, SwitzerlandyDepartment of Astrophysics, Abastumani Astrophysical Observatory,Kazbegi Ave. 2a, 380060 Tbilisi, GeorgiaAbstractWe investigate microwave background anisotropies in the presence of pri-mordial magnetic �elds. We show that a homogeneous �eld with �xed directioncan amplify vector perturbations. We calculate the correlations of �T=T ex-plicitly and show that a large scale coherent �eld induces correlations betweena`�1;m and a`+1;m. We discuss constraints on the amplitude and spectrum of aprimordial magnetic �eld imposed by observations of CMB anisotropies.1 IntroductionSince the detection of CMB anisotropies by the COBE satellite[1], it has become clearthat anisotropies in the cosmic microwave background (CMB) provide a powerful toolfor distinguishing models of cosmological structure formation. Furthermore, they mayhelp to determine cosmological parameters which inuence their spectrum in a wellde�ned, non-trivial way [2]. It is thus important to calculate the CMB anisotropiesfor a given model simply and reliably.The origin of observed galactic magnetic �elds of the order of �Gauss is stillunknown. For some time it has been believed that tiny seed �elds can be ampli�edby a non-linear galactic dynamo mechanism. The e�ectiveness of this process hasrecently been strongly questioned, however [3]. If magnetic �elds are not substantiallyampli�ed by non-linear e�ects, but have just contracted with the cosmic plasma duringgalaxy formation, primordial �elds of the order 10�9 Gauss on Mega-parsec scales arerequired to induce the observed galactic �elds.It is interesting to note that a �eld strength of 10�8Gauss provides an energydensity of 
B = B2=(8��c) � 10�5
 , where 
 is the density parameter in photons.We naively expect a �eld of this amplitude to induce perturbations in the CMB onthe order of 10�5, which is just the level of the observed anisotropies. This leads usto investigate the extent to which the isotropy of the CMB may constrain primordialmagnetic �elds. It is clear from our order of magnitude estimate that we shall neverbe able to constrain tiny seed �elds on the order of 10�13Gauss with this approach,but primordial �elds of 10�9 to 10�8Gauss may well have left observable traces in themicrowave background. 1



This is the question we investigate quantitatively in this paper. Some work onthe inuence of primordial magnetic �elds on CMB anisotropies has already beenpublished, particularly the cases of fast magneto-sonic waves and the gravitationale�ects of a constant magnetic �eld [6, 7, 8]. Here we study Alfv�en waves. We leaveaside the problem of generation of primordial magnetic �elds. This issue is addressede.g. in [4, 5].The possible inuence of magnetic �elds on large scale structure formation hasbeen investigated in [9] and references therein.The paper is organized as follows. In Section 2 we discuss the e�ect of a homo-geneous magnetic �eld background on the cosmic plasma. Both scalar (potential, orfast and slow magneto-sonic waves) and vorticity (Alfv�en) waves can be induced. Westudy the latter. In Section 3 we consider the inuence of Alfv�en waves on CMBanisotropies. The inuence of the magneto-sonic waves can be interpreted as a slightchange in the speed of sound, and has been investigated in [6]. In Section 4 we presentour conclusions. Some of the more technical computations as well as a discussion ofSilk damping of vector perturbations are left to two appendices.Notation: For simplicity we concentrate on the case 
0 = 1. The choice of 
is of little importance for our perturbation variables (which have to be calculatedfor at early times, when curvature e�ects are not signi�cant), but does inuence theresulting C`'s due to projection e�ects. Throughout, we use conformal time which wedenote by t. The unperturbed metric is thus given by ds2 = a2(t)(�dt2 + �ijdxidxj).Greek indices run from 0 to 3, Latin ones from 1 to 3. We denote spatial (3d) vectorswith bold face symbols.2 Cosmological vector perturbations and Alfv�enwavesVector perturbations of the geometry are of the form(h��) =  0 BiBj Hi;j +Hj;i ! ; (1)where B and H are divergence-free, 3d vector �elds supposed to vanish at in�nity.Studying the behaviour of these variables under in�nitesimal coordinate transforma-tions (called gauge transformations in the context of linearized gravity), one �ndsthat the combination � = _H�B (2)is gauge invariant. Geometrically, � determines the vector contribution to the per-turbation of the extrinsic curvature [10, 11].To investigate perturbations of the energy-momentum tensor, we consider a baryon,radiation and cold dark matter (CDM) universe for which anisotropic stresses arenegligible. The only vector perturbation in the energy-momentum tensor is thus a2



perturbation of the energy ux, u, the time-like eigenvector of T �� . We parameterizea vector perturbation of u with a divergence free vector �eld v, such thatu = 1av : (3)Analyzing the gauge transformation properties of v, one �nds two simple gauge-invariant combinations [10],V = v � _H and 
 = v �B : (4)They are simply related by V = 
� � : (5)The perturbations of the Einstein equations, together with energy-momentum con-servation, yield [11] �124� = 3� _aa�2
 ; (6)_� + 2� _aa�� = 0 ; (7)_
+ (1� 3c2s) _aa
 = 0 : (8)The two Einstein equations (6, 7) and the momentum conservation equation (8) arenot independent. Eq. (8) follows from Eqs. (6) and (7).This system does clearly not describe waves. From Eq. (7) it follows that � decayslike 1=a2. Furthermore, Eq. (6) implies 
 / (kt)2�. In the radiation dominated era,where a / t, this yields 
 = 16(ktin)2�in, where tin is some initial time at whichuctuations were created, e.g. the end of ination. The fact that 
 stays constantduring the radiation dominated era also follows from Eq. (8). On cosmologicallyinteresting scales, k � 1=tin, we have therefore 
 � �in and � � �in. In contrast,scalar and tensor perturbations remain constant on super-horizon scales. For thisreason, vector perturbations induced at a very early epoch (e.g. ination) whichhave evolved freely can be entirely neglected in comparison to their scalar and tensorcounterparts.This situation is altered in the presence of a primordial magnetic �eld, whichinduces vorticity waves after the inationary era. Let us consider a homogeneousmagnetic �eld B0 before the time of decoupling of matter and radiation. Such a �eldcould have originated, for example, at the electroweak phase transition [5]. Whenthe photon-baryon uid is taken to be a perfectly conducting plasma, an externalmagnetic �eld induces two distinct modes of oscillation. Magneto-sonic waves, scalarperturbations which propagate at speeds c� slightly above or very much below theordinary speed of sound in the plasma. These induce density oscillations just likeordinary acoustic waves. The slight change in the speed of sound can change slightly3



the position and shape of the acoustic peaks in the CMB spectrum [6]. Here wediscuss the vectorial Alfv�en waves.We assume a plasma with in�nite conductivity and use the frozen-in condition:E+ v �B = 0 ;where v is the plasma velocity �eld. Our plasma is non-relativistic (v � 1). The �eldlines of a homogeneous background magnetic �eld in a Friedmann universe are justconformally diluted, such that B0 / 1=a2. Until recombination, the photon-baryonplasma is dominated by photons, �r ' � / a�4 (�r denotes the combined baryonand photon energy density) and the ratio B20=(�r+pr) is time-independent. We studypurely vortical waves which induce a uid vorticity �eld 
(k) normal to k. We notethat charged particles are tightly coupled to the radiation uid and obey the equationof state pr = �r=3.It is convenient to rescale physical quantities like the �elds and the current densityas follows: E! Ea2 ; B! Ba2 and J! Ja3 :We now introduce �rst-order vector perturbations in the magnetic �eld (B1) and inthe uid velocity (
); B = B0 +B1; r �B1 = 0 and (9)v = 
 ; r �
 = 0 : (10)To obtain the equations of motion for
 andB1, we �rst consider Maxwell's equations.Since the uid velocity is small, we may neglect the displacement current in Amp�ere'slaw, which then yields J = 14�r�B1: (11)We replace E1 with B0, using the frozen-in condition. The induction law then gives@@tB1 = r� (v �B0) : (12)Inserting relation (11) for the current, the equation of motion (T i�;� = F i�j�) for vectorperturbations in the plasma becomes@@tv = � 14�(�r + pr)B0 � (r�B1): (13)(We have neglected viscosity, which is a good approximation on scales much largerthan the Silk damping scale [12].) Taking the time derivative of this equation, weobtain with the help of Eqs. (9), (10) and (12) for a �xed Fourier mode k�
 = (B0 � k)24�(�r + pr)
 and (14)4



_
 = iB0 � k4�(�r + pr)B1 : (15)These equations1 describe waves propagating at the velocity vA(e � k̂), wherev2A = B204�(�r + pr) ; vA � 4� 10�4(B0=10�9Gauss)is the Alfv�en velocity and e is the unit vector in the direction of the magnetic �eld.Typically the Alfv�en velocity will be very much smaller than the speed of acousticoscillations in the radiation-dominated plasma (c2s = 1=3� v2A).Due to the observed isotropy of the CMB, we have to constrain the magnetic �eldcontribution to the total energy density. For example, in the radiation dominated erait must be a fraction of less than about 10�5 [7], leading to vA <� 10�3. Eq. (14) ishomogeneous in 
 and so does not determine the amplitude of the induced vorticity.The general solution contains two modes, cos(vAkt�) and sin(vAkt�) (where � = e�k̂).If the cosine mode is present, it dominates on the relevant scales k < 1=(vAtdec). Thenwe can approximate cos(vAktdec�) ' 1 and the sine is negligibly small. But this modethen describes the usual vector perturbations without a magnetic �eld. We assumeit to be absent. We want to consider initial conditions, then, with
(k; t = 0) = 0:Only the sine mode is present and we have
(k; t) = 
0 sin(vAkt�) ' 
0vAkt� : (16)The initial amplitude of 
0 is connected with the amplitude of B1 by means ofEq. (15), yielding j
0j = (vA=B0)jB1j : (17)This allows a vorticity amplitude of up to the order of the Alv�en velocity (see also[8]).3 CMB anisotropies from Alfv�en wavesVector perturbations induce anisotropies in the CMB via a Doppler e�ect and anintegrated Sachs-Wolfe term [11]��TT �(vec) = � V � njt0tdec + Z t0tdec _� � nd� ; (18)where the subscripts dec and 0 denote the decoupling epoch (zdec � 1100) and todayrespectively. Since the geometric perturbation � is decaying, the integrated term is1Our derivation is valid either in a gauge invariant framework as outlined in [13] or in a gauge withvanishing shift vector. In other gauges metric coe�cients will enter and complicate the equations.5



dominated by its lower boundary and just cancels � in V = 
� �. Neglecting apossible dipole contribution from vector perturbations today, we obtain�TT (n;k) ' n �
(k; tdec) = n �
0vAktdec(e � bk): (19)We assume that the vector perturbations 
0 are created by some isotropic randomprocess, and so have a power spectrum of the formh
0i(k)
0j(k)i = (�ij � k̂ik̂j)A(jkj) : (20)For simplicity, we further assume that the spectrum A(k) = (1=2)j
0j2(k) is a simplepower law over the range of scales relevant here,A(k) = A0 knk(n+3)0 ; k < k0; (21)for some dimensionless constant A0 and cuto� wavenumber k0. With this we cancalculate the CMB anisotropy spectrum.The C`'s are de�ned by*�TT (n)�TT (n0)+����� (n�n0=�) = 14� X̀(2`+ 1)C`P`(�) : (22)A homogeneous magnetic �eld induces a preferred direction e and the correlationfunction (22) is no longer a function of n �n0 = � alone but depends also on the anglesbetween n and B0 as well as n0 and B0. Statistical isotropy is broken. Setting�TT (n) = X̀;m a`mY`m(n); (23)in the isotropic situation, the C`'s of Eq. (22) are justC` = ha`ma�̀mi ; (24)where hi denotes a theoretical expectation value over an ensemble of statically identi-cal universes. We �nd that the presence of the preferred direction B0 not only leadsto an m-dependence of the correlators, but also induces correlations between the mul-tipole amplitudes a`+1;m and a`�1;m. Correlations in the temperature uctuations atdi�erent points on the sky are no longer simply functions of their relative angularseparation, but also of their orientations with respect to the external �eld. Detailedcomputations of the correlators for the Doppler contribution from Alfv�en waves arepresented in Appendix A. We obtainC`(m) = ha`ma�̀mi= A0v2a �tdect0 �2 (k0t0)�(n+3) 2n+1�(�n� 1)�(�n=2)2 �6



 2`4 + 4`3 � `2 � 3`+ 6m2 � 2`m2 � 2`2m2(2`� 1)(2`+ 3) ! �(`+ n=2 + 3=2)�(`� n=2 + 1=2) (25)D`(m) = ha`�1;ma�̀+1;mi = ha`+1;ma�̀�1;mi= A0v2A �tdect0 �2 (k0t0)�(n+3) 2n+2�(�n� 1)jn+ 1j�(�(n+ 1)=2)2 (`� 1)(`+ 2)� (`+m + 1)(`�m + 1)(`+m)(`�m)(2`� 1)(2`+ 1)2(2`+ 3) !1=2 �(`+ n=2 + 3=2)�(`� n=2 + 1=2) : (26)This result is valid in the range �7 < n < �1. For n � �7 the quadrupole divergesat small k, and for n > �1 the result is dominated by the upper cuto� k0,C` ' D` ' v2AA02�(n+ 1)(k0t0)2 �tdect0 �2 `2 ; n > �1 : (27)For n = �5 we obtain a scale-invariant Harrison-Zeldovich spectrum, C` � `2.To obtain some insight into the e�ect of the cross terms D`, we picture the corre-lation functionf(n) = *�TT (n0)�TT (n)+ = X`m `0m0ha`ma�̀0m0iY`m(n0)Y �̀0m0(n) (28)for various orientations of the magnetic �eld with respect to the �xed direction n0.These are shown for the case n = �5 and with n0 = ẑ in �gures 1 to 3. Notice,however, that these �gures do not represent temperature maps but are plots of thecorrelation function. For a given realization stochastic noise has to be added. Theexplicit expression for f(n) is given in Appendix A.With no a priori knowledge of the �eld direction, it could be inferred by performingCMB measurements with various n0 and comparing the obtained f(n) with the plotsbelow. Of course this procedure su�ers from problems with cosmic variance, as oncewe �x a direction n0 in the sky we have only a single realization with which todetermine f . The expectation value in expression (28), then, strictly refers to a(hypothetical) average over an ensemble of universes.A probably simpler observational test of the existence of a constant magnetic �eldis the presence of temperature correlations for unequal `. To simplify, we introducethe mean values C` = ha`ma�̀mi ; (29)D` = ha`�1;ma�̀+1;mi ; (30)where the bar denotes average over di�erent values of m, and we �ndC` ' A0 �tdect0 �2 (k0t0)�(n+3)v2A2n+1�(�n� 1)3�(�n=2)2 `n+3; for n < �1 (31)7



Figure 1: An Aito� projection of the function f(n) for a homogeneous magnetic �eldpointing in the � = �=4, � = �=2 direction and the reference vector n0 pointing inthe z-direction (� = 0) (see equation (28)).

Figure 2: The function f(n) for B0 pointing in the � = �=2, � = 0 direction.8



Figure 3: The function f(n) for B0 pointing in the � = 0 direction (i.e., parallel ton0). The gray scale scheme has enhanced the variation in f .C` ' A0 �tdect0 �2 (k0t0)�2v2A 1n+ 1`2; for n > �1 (32)D`=C` ' 3=2 : (33)The existence of signi�cant correlations between the a`�1;m and a`+1;m is a clear in-dication of the presence of a preferred direction in the universe. Due to its spin-1nature, a long-range vector �eld induces transitions ` ! ` � 1 and thus leads to thecorrelators D`.There are no published limits on these cross correlation terms. Since the full a`m'sare needed to obtain them, full sky coverage and high resolution, as will be providedby the MAP and PLANCK satellites, are most important to obtain such limits. Thegalaxy cut in the 4-year COBE data leads to an inuence of C` by C`�2 which ison the order of 10%. for 2 � ` � 30 [14]. To be speci�c, let us assume that thisbe a limit on the o� diagonal correlations D`. Then, �rst of all, the observed CMBanisotropies are not due to Alfv�en waves, since 0:1 ' D`=C` is substantially smallerthan the �gure in Eq. (33). To obtain a limit on the magnetic �eld amplitude andthe spectral index, we now require`2D` � 0:1`2C` ' 10�11 for 2 < ` <� 100 : (34)We now argue as follows. From Eq. (17), and the fact that B1 <� B0, we havej
0j2k3 <� v2A : (35)9



This inequality must hold on all scales inside the horizon at decoupling, k � 1=tdec.With Eq. (21) we therefore obtain2A0(k=k0)n+3 <� v2A 1=tdec � k � k0; (36)which implies 2A0(k0tdec)�(n+3) <� v2A for n � �3; (37)2A0 <� v2A for n � �3 : (38)Here we have identi�ed k0 with the maximal frequency (cuto�) of the magnetic �eld,which has to be introduced in the case n > �3 for 
 not to diverge at small scales.A de�nite upper limit on k0 is the scale beyond which the magnetic �eld is dampedaway, due to the �nite value of the conductivity. The physical damping scale is givenby [15] (kD=a)2 = 4��=� ; (39)where � denotes the cosmic time (not comoving) and � is the plasma conductivity.The conductivity of a non-relativistic electron-proton plasma is easily shown to be� � 4T , and it has been shown recently that this result still holds approximately inthe very early universe [16].Using Tdec � 0:3 eV � 0:6� 10�4cm�1 and �dec � 105 years � 1023 cm, we obtainthe comoving damping scale at decouplingk0(tdec) � kD(tdec) � (zdec)�1q16�Tdec=�dec � 3� 10�10cm�1; (40)and (k0t0)(tdec) = k0(tdec)�0=adec � �0q16�Tdec=�dec � 0:4� 1014: (41)Inserting the limiting values of Eqs. (37, 38) for the A0 in Eq. (31), Eq. (34) yields3v4Az�(n+5)=2dec 2n+1�(�n� 1)3�(�n=2)2 `n+5 < 10�11 for n < �3; (42)3v4Az�1dec(2:5� 10�14)(n+3) 2n+1�(�n� 1)3�(�n=2)2 `n+5 < 10�11 for �3 � n < �1; (43)3v4Az�1dec(2:5� 10�14)2 1n + 1`4 < 10�11 for �1 < n; (44)Using vA � 4� 10�4(B0=10�9Gauss), this can be translated into a limit for B0 whichdepends on the spectral index n and the harmonic `. In Fig. 4 we plot the best limiton B0 as a function of the spectral index n. To optimize the limit we choose ` = 2 forn < �5 and ` = 100 for n > �5. For n > �3 the limit becomes very quickly entirelyirrelevant due to the huge factor 1014(n+3). This reects the fact that for n > �3, themagnetic �eld uctuations grow towards small scales, and B1 <� B0 is leads to a limit10



Figure 4: The upper limit on the magnetic �eld amplitudeB0 due to CMB anisotropiescaused by Alfv�en waves, shown as a function of the magnetic �eld spectral index n.We assume D` � 0:1C`. Allowed values of the �eld must lie in the dashed region.
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at the tiny scale k = k0; where as the CMB anisotropies, are caused by the smalleructuations at large scales, k � `=t0. At n � �1 the induced D`'s start to feel theupper cuto� and thus do not decrease any further.The presence of a homogeneous magnetic �eld also induces anisotropic stressesin the metric. This gravitational e�ect has been estimated elsewhere [7]. Comparedwith the COBE DMR experiment, it leads to a similar limit for B0.4 ConclusionsWe have studied Alfv�en waves in the primordial electron-proton plasma that aresourced by a homogeneous magnetic �eld. In addition, we allow for an isotropic dis-tribution of random magnetic �elds on smaller scales. The induced vorticity in thebaryon uid leads, via the Doppler e�ect, to vector-type CMB anisotropies on all an-gular scales larger than the vectorial Silk damping scale `damp � 500 (see Appendix B).The vector nature of the magnetic �eld induces o�-diagonal correlations,D`(m) = ha`�1;ma�̀+1;mi � C`(m) : (45)Assuming that observations constrain these terms to be less than about 10% of theobserved C`'s, we derive a limit for the amplitude of the magnetic �eld as a functionof its spectral index. For n < �7, the quadrupole anisotropy diverges if no lowercuto� is imposed on the spectrum, and so such spectra are very strongly constrained.For n > �3, the constraint is proportional to (k0t0)(n+3)=4, where t0 is the comovingscale today and k0 is the upper cuto� of the spectrum. We have set 1=k0 equal tothe magneto-hydrodynamical damping scale which is inversely proportional to theconductivity and thus extremely small, leading to (k0t0) � 1014. Therefore, the limitsobtained for n > �3 are extremely weak and actually uninteresting. This is due tothe fact that the quantity B2(k)k3 decreases on large scales for n > �3. For spectralindices in the range�7 < n < �3 the limit on B0 is on the order of (2�7)�10�9Gauss.An important remark is also that causally induced magnetic �elds lead to a spec-tral index n = 2 and so are not constrained at all2. Examples here are magnetic �eldsgenerated by the decay of a Y �eld during the electroweak phase transition.At �rst sight it may seem somewhat arti�cial to have split the magnetic �eldinto a homogeneous component and an isotropic spectrum of random magnetic �elds.However, this is the correct procedure for realistic observations. This is seen asfollows. If we calculate the C`'s for a given model, we determine expectation valuesover an ensemble of universes. If we make a measurement, however, we have just oneobservable universe at our disposition. This problem is generally referred to as `cosmicvariance'. On scales much smaller than the horizon, cosmic variance is irrelevant if2If we assume magnetic �elds to be generated by a causal procedure, i.e. not during an inationaryepoch, in a Friedmann universe, then the real space correlation function has to vanish at super-horizon distances (say jxj > 2t). Its Fourier transform hBiBji(k) / kn(�ij � kikj) is thereforeanalytic in k, which requires n to be an integer with n � 2.12
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A Calculation of C` from vector perturbationsIn the usual way we decompose the temperature uctuations of the microwave back-ground into spherical harmonics:�TT (n) = X̀m a`mY`m(n):The two point function ha`ma�̀0m0i is thenha`ma�̀0m0i = 1(2�)3 Z d3k Z d
n Z d
n0 *�TT �(n;k)�TT (n0;k)+Y �̀m(n)Y`0m0(n0) : (46)We consider the contribution to the temperature anisotropy only from the vorticityin the baryon uid. From Eq. (19), we obtain�TT (n;k;�t) = eik�n�tn �
(k; tdec) ; (47)

14



where �t = t0 � tdec ' t0, the time elapsed since last scattering. Using the form (20)for the power spectrum of the vortical velocity uctuations, we have*�TT �(n;k)�TT (n0;k)+ = eik�(n0�n)t0(n � n0 � ��0)(vAk�tdec)2A(k)= A(k)(vAk�)2  eikt0(�0��)n � n0 � @@(kt0)e�ikt0� @@(kt0)eikt0�0!= f(n;n0;k); (48)where � = n � k̂, �0 = n0 � k̂, � = e � k̂ and e is the unit vector in the direction of thehomogeneous magnetic �eld B0. Soha`ma�̀0m0i = 1(2�)3 Z d3k Z d
n Z d
n0 f(n;n0;k) Y �̀m(n)Y`0m0(n0) : (49)To evaluate these integrals, we use the identitieseixk̂�n = 4� 1Xr=0 +rXq=�r irjr(x)Y �rq(k̂)Yrq(n) ; (50)n � n0 = P1(n � n0) = 4�3 +1Xp=�1Y1p(n)Y �1p(n0) ; (51)where jr is the spherical Bessel function of order r. Using the orthonormality of thespherical harmonics and the recursion relation(2`+ 1)j 0̀ = `j`�1 � (`+ 1)j`+1 ; (52)we �nd that in evaluating (49) only the terms with (`;m) = (`0; m0) and (`;m) =(`0 � 2; m0) survive, whereha`ma�̀mi =  2`4 + 4`3 � `2 � 3`+ 6m2 � 2`m2 � 2`2m2(2`� 1)(2`+ 1)2(2`+ 3) !�2� Z dk k2 (vAktdec)2A(k)(j`+1 + j`�1)2 (53)and ha`+1ma�̀�1;mi = ha`�1ma�̀+1;mi =�(`� 1)(`+ 2) (`+m+ 1)(`�m+ 1)(`+m)(`�m)(2`� 1)3(2`+ 1)2(2`+ 3)3 !1=2 �2� Z dk k4 (vAtdec)2A(k) (j` + j`�2) (j` + j`+2) : (54)15



The Bessel functions take kt0 as their arguments. With A(k) = A0(k=k0)nk�30 , weobtain, for �7 < n < �1,ha`ma�̀mi � C`(m)2n+1A0v2A(k0t0)n+3 �tdect0 �2 �(�n� 1)�(�n=2)2 �(`+ n=2 + 3=2)�(`� n=2 + 1=2) �(2`4 + 4`3 � `2 � 3`+ 6m2 � 2`m2 � 2`2m2)(2`� 1)(2`+ 3) ; (55)ha`+1;ma�̀�1;mi = ha`�1;ma�̀+1;mi � D`(m)2n+2A0v2Ajn+ 1j(k0t0)n+3 �tdect0 �2 �(�n� 1)�(�(n + 1)=2)2 �(`+ n=2 + 3=2)�(`� n=2 + 1=2) �(`� 1)(`+ 2) (`+m+ 1)(`�m+ 1)(`+m)(`�m)(2`� 1)(2`+ 1)2(2`+ 3) !1=2 : (56)For n > �1 the integral is dominated by the upper cuto� k0 and we �ndC`(m) = v2AA02�(n+ 1)(k0t0)2 �tdect0 �2 � (57)(2`4 + 4`3 � `2 � 3`+ 6m2 � 2`m2 � 2`2m2)(2`� 1)(2`+ 3) ; (58)D`(m) = v2AA02�(n+ 1)(k0t0)2 �tdect0 �2 � (59)(`� 1)(`+ 2) (`+m + 1)(`�m+ 1)(`+m)(`�m)(2`� 1)(2`+ 1)2(2`+ 3) !1=2 : (60)In this case, the result is nearly independent of the spectral index n and, due to thefactor (k0t0)�2, it is so small that it fails to lead to relevant constraints for B0.The temperature correlation function is �nallyf(n) = *�TT (n0)�TT (n)+ = X`m `0m0ha`ma�̀0m0iY`m(n0)Y �̀0m0(n)= X̀m ha`ma�̀miY`m(n0)Y �̀m(n) +X̀m ha`+1;ma�̀�1;mi �Y`+1;m(n0)Y �̀�1;m(n) + Y`�1;m(n0)Y �̀+1;m(n)� :
16



B Collisional damping for vector perturbationsDenoting the fractional perturbation in the radiation brightness byM,M = 4(�T=T ),the Boltzmann equation for vector perturbations gives [11]_M+ n � rM = �4ninj�i;j +a�Tne [�M+ 4n �
] : (61)Here n is the photon direction, �T denotes the Thomson cross section and 
 isthe baryon vorticity. We have neglected the anisotropy of non-relativistic Comptonscattering.To the baryon equation of motion (8) we have to add the photon drag force,_
+ _aa
 = a�Tne�r3�b �14M�
� ; (62)with M = 34� Z nMdn :We shall also use the fact that for vector perturbations, the perturbation of the photonbrightness vanishes, Z Mdn = 0 :Due to the loss of free electrons during recombination, the mean (conformal) collisiontime tc = 1=(a�Tne) increases from a microscopically small scale before recombinationto a super-horizon scale after recombination. After recombination the collision termcan be neglected and we recover Eqs. (8) and (18). We �rst consider the very tightcoupling regime, tc � �, where � denotes the typical scale of uctuations. In thislimit the term inside the square brackets of Eqs. (61) and (62) can be set to zero andwe obtain M = 4
 ( the baryon and photon uids are adiabatically coupled).Next, we derive a dispersion relation for the damping of uctuations due to the�nite size of tc. We proceed in the same way as Peebles [17] for scalar perturbations.We consider scales with wavelength k�1 � t and thus neglect the time dependenceof the coe�cients in Eqs. (61) and (62). To study the damping we also neglectgravitational e�ects, which act on much slower timescales. With the ansatzM = A(n) exp(i(kx� !t)); (63)
 = B(n) exp(i(kx� !t)); (B � k) = 0 (64)we obtain �i!A+ i(kn)A = 1tc [�A + 4n � B] (65)�i!B = 1tcR [M� 4B] ; R � 3�b4� : (66)17



In the limit ktc; !tc ! 0, we again obtain adiabatic coupling. The general relationbetween A and B is A = 4n � B1 + i(k � n� !)tcand soM = 3B i(ktc)3 "�((ktc)2 + (1� i!tc)2) ln 1� itc(! � k)1� itc(! + k)!+ 2iktc(1� i!tc)# :(67)Inserting this is in (66) leads again, in the limit ktc; !tc ! 0, to the tight couplingresult. In �rst order ktc (the square bracket in Eq. (67) has to be expanded up toorder (ktc)5) we obtain the dispersion relation! = �i; with  = 7k2tc20(1 +R) � k2tc3 : (68)In contrast to the scalar case, vector perturbations show no oscillations (Re(!) = 0)but are just damped. The damping occurs at a slightly larger scale than for scalarperturbations, where scalar ' k2tc=6 [17].The ratio R = 3�b=(4�) is smaller than � 1=4 until the end of recombination.We therefore obtain a damping factor f for a given scale kf � exp 7k220 Z tend(k)0 tcdt! ; (69)where tend(k) is the time at which our approximation ktc < 1 breaks down, i.e.,ktc(tend(k)) = 1. The time over which the damping is active is the order of thethickness of the last scattering surface, �t � tdec(�z=zdec) � 0:1tdec. The dampingscale, the scale at which the exponent in Eq. (69) becomes of order unity, is aboutkdamptdec � 10: (70)The harmonic ` corresponding to kdamp is `damp = kdampt0 � 10t0=tdec � 500.After the time tend(k), collisions become unimportant for uctuations with wavenumber k which then evolve freely, su�ering only directional dispersion which inducesa power law damping / 1=(k�t). Reference [8] discusses only this second e�ect. Nu-merical experience with scalar perturbations, however, shows that they are typicallyboth of similar importance.
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