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It has been shown that generalized Einstein-Aether theories may lead to significant modifications
to the non-relativistic limit of the Einstein equations. In this paper we study the effect of a general
class of such theories on the Solar System. We consider corrections to the gravitational potential in
negative and positive powers of distance from the source. Using measurements of the perihelion shift
of Mercury and time delay of radar signals to Cassini, we place constraints on these corrections. We
find that a subclass of generalized Einstein-Aether theories are compatible with these constraints.
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I. INTRODUCTION

The theory of general relativity proposed by Einstein
explains a wealth of phenomena over a wide range of
scales. At one extreme, one obtains equations of motion
for artificial satellites in orbit around the Earth in par-
ticular and for Solar-System bodies more generally that
considerably surpass Newtonian gravity in the accuracy
of their agreement with observations. At the other ex-
treme we find a comprehensive description of the evolu-
tion of the Universe and of the growth of structure from a
spectrum of primordial perturbations which is backed up
by a handful of precise astronomical observations. This
apparent success over such a wide range of scales leads
us to accept general relativity as the correct theory of
gravitation valid on all scales.

It is well known that there are a number of imperfec-
tions in our understanding of the Universe, if we adopt
Einstein’s theory as the theory of gravity and the Stan-
dard Model of particle physics as the theory of matter.
For example, there is more gravity in galaxies and clus-
ters of galaxies than can be accounted for by the matter
(stars, gas, etc.) that we detect directly through absorp-
tion or emission of electromagnetic radiation [1]. This
is explained by invoking the presence of dark matter,
for which there are several reasonable candidates within
plausible extensions of the Standard Model of particle
physics. Furthermore, the Universe seems to be expand-
ing in a way that general relativity can only accomodate
by including an exotic form of energy that possesses suf-
ficient negative pressure to be gravitationally repulsive
and that currently is the most significant form of en-
ergy density on cosmological scales. This is given the
name dark energy if it varies in time or space, and the
cosmological constant otherwise [2]. Finally, in order to
understand the current homogeneity and isotropy of the
Universe and to provide an origin for the primordial fluc-
tuations that grew into cosmic structures, we are led to
infer the existence of another such form of energy density
with negative pressure that dominated the evolution of

the Universe at early times and were the source of the
quantum fluctuations which were the progenitors of all
structure. This period of early dark-energy domination
is called inflation. There are no particularly compelling
candidates either for dark energy or for inflation within
extensions to the Standard Model not devised expressly
for that purpose [3].

As remarked, these imperfections can be explained by
invoking the presence of dark matter and dark energy. It
is also conceivable that we do not yet have the correct
theory of gravity and that all or some of these effects are
due to this fact. This possibility has been the subject
of intermittent attention for a considerable time [4–6],
but perhaps especially in the last few years [7, 8]. In
particular, there has been progress recently in devising
covariant theories that can, apparently, accommodate all
these effects [9–13]. At some level these are, consequently,
promising alternative theories of gravity. As with general
relativity, they must therefore satisfy the constraints one
infers from precise observations of the Solar System.

In this paper we undertake the task of comparing one
class of modified gravity theories – generalized Einstein-
Aether theories – to Solar-System observations. In these
theories, one assumes the existence of a vector field with
a non-standard kinetic term, and with a time-like vac-
uum expectation value, at least in the cosmological back-
ground. Such theories lead to differences from general
relativistic phenomenology which may be substantial, for
instance producing modifications to Poisson’s equation
and the Friedmann equation of precisely the form posited
as alternatives to dark matter [4] and dark energy [14] re-
spectively. They should therefore be constrained by ob-
servations such as the perihelion precession of Mercury
and the time delay of radio pulses around the Solar Sys-
tem.

The structure of the paper is as follows. We first re-
view the Einstein-Aether theory in Section II, presenting
the complete action and the field equations. We then
focus on the spherically symmetric static metric in Sec-
tion III and consider a systematic expansion around the
Newtonian solution including terms that decrease more



2

quickly with distance as well as terms that grow with dis-
tance. By considering such a wide range of solutions we
find constraints on the parameters that define the action
presented in Section II. In Section IV we discuss our re-
sults. We have organized the text in such a way that the
main thrust of the calculations are presented in the main
body of the paper while the details are given in a set of
appendices at the end.

II. FIELD EQUATIONS

A general action for a vector field Aα coupled to gravity
has the following form:

S =

∫

d4x
√−g

[

R

16πGN
+ L(g,A)

]

+ SM (1)

where g is the metric, R the Ricci scalar and SM the
matter action. The action of the vector field L(g,A) is
constructed to be both covariant and local. We use units
with c = h̄ = 1 and the metric signature is (−,+,+,+).
Furthermore we demand that the vector field is time-like
with a fixed length AαAα = −1.

In this paper we will consider a Lagrangian that de-
pends only on covariant derivatives of A and the time-like
constraint. It can be written in the form:

L(A, g) =
M2

16πGN
[F(K) + λ(AαAα + 1)] (2)

K = M−2Kαβ
γσ∇αA

γ∇βA
σ

Kαβ
γσ = c1g

αβgγσ + c2δ
α
γ δ

β
σ + c3δ

α
σ δ

β
γ

where ci are dimensionless constants and M has the
dimensions of mass. λ is a non-dynamical Lagrange-
multiplier.

Note that in the particular case c1 = −c3 and c2 = 0
we recover the canonical form K ∝ FαβF

αβ where F is
the field-strength of the four-vector A.

The gravitational field equations for this theory are

Gαβ = T̃αβ + 8πGTmatter
αβ +M2λAαAβ (3)

where the stress-energy tensor for the vector field is given
by

T̃αβ ≡ 1

2
∇σ(F ′(J σ

(α Aβ) − Jσ
(αAβ) − J(αβ)A

σ))

−F ′Yαβ +
1

2
gαβM

2F , (4)

where

F ′ ≡ dF
dK

Jα
σ ≡ 2Kαβ

σγ∇βAγ (5)

Yαβ ≡ c1 [(∇αAσ)(∇βA
σ) − (∇σAα)(∇σAβ)] .

Brackets around indices denote symmetrization.

The equations of motion for the vector field are

∇α(F ′Jα
β) = 2M2λAβ . (6)

Variation of the action with respect to λ impose on the
vector field the crucial constraint

AαAα = −1. (7)

III. SPHERICALLY SYMMETRIC STATIC

METRIC

In this paper we restrict ourselves to the particular
case of a spherically symmetric static metric. In isotropic
coordinates (t, r, θ, φ), it takes the form:

ds2 = −eνdt2 + eξ(dr2 + r2dΩ2), (8)

where ν(r) and ξ(r) are functions of r only. The vector
field has only two non-zero components:

Aα = (At(r), Ar(r), 0, 0). (9)

With these restrictions, there are 5 unknown fields,
ν, ξ, At, Ar and the Lagrange multiplier λ, all of which
are functions of r only. We need 5 equations to deter-
mine them. We choose the tt and rr components of the
Einstein equations (3), the t and r components of the
vector field equation (6) and the constraint equation (7).
We can then combine these in order to eliminate the La-
grange multiplier field λ, leaving us with 3 dynamical
equations and the constraint.

The equations of motion depend on the function F(K)
and its first and second derivatives with respect to K.
In [12], it was shown that in order to get ’MONDian’
corrections on galactic scales one has to choose
the mass parameter M to be of the order M ∼
H0 ∼ 10−42 GeV. Therefore in the Solar System, where
the gravitational field is strong with respect to M , the
function K is much larger than one, and F ′(K) can be
expanded in inverse powers of K1/2

F ′(K) =

∞
∑

i=1

αi

Ki/2
, (10)

where this specific form is suggested by comparison to
particular modifications of Poisson’s equation compatible
with galaxy phenomenology [12]. We therefore write the
dynamical equations for a generic term F ′(K) = α2n

Kn .
Note that the leading-order term corresponds to n = 1/2.
We find

−
(

ξ′′ + 2
ξ′

r
+
ξ′2

4

) Kn+1

α2n
= −M

2eξ

2
·N(K)K (11)

+
(

f1K + nf2K′
)

(Ar)
2
+
(

f3K − nc2e
ξK′
)

ArAr ′

+c2e
ξK
(

(Ar ′)2 +ArAr ′′
)

+
(

f4K + nf5K′
)

(

At
)2

+
(

f6K − nc3e
νK′
)

AtAt′ + c3e
νK
(

(At′)2 +AtAt′′
)

,
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(

ξ′ + ν′

r
+
ξ′2

4
+
ξ′ν′

2

) Kn

α2n
=
M2eξ

2
·N(K) (12)

+g1(A
r)2 + g2A

rAr ′ − (c1 + c2 + c3)e
ξ(Ar ′)2

+
c1 − c3

2
(ν′)2eν(At)2 + (c1 − c3)ν

′eνAtAt′

+c1e
ν(At′)2,

and

0 =
(

h1K + nh2K′
)

ArAt +
(

h3K + 2nc1K′
)

At′Ar

+
(

h4K − 2n(c1 + c2 + c3)K′
)

Ar ′At (13)

+ 2(c1 + c2 + c3)KAr ′′At − 2c1KAt′′Ar ,

where

N(K) =

{ K
1−n if n 6= 1
ln(K)K if n = 1

(14)

and fi, gi and hi are functions of c1, c2, c3, the metric
fields and their first and second derivatives with respect
to r. The specific expressions for these functions and for
K in the metric (8) are given in appendix A.

Note that equation (12) contains only first deriva-
tives of the metric and vector fields. It is therefore
a constraint. For the leading order term at large K,
F ′(K) = α1√

K , the right-hand side vanishes and therefore

this equation becomes
(

ξ′ + ν′

r
+
ξ′2

4
+
ξ′ν′

2

)

= 0 . (15)

A. Weak field approximation

In the post-Newtonian parametrization, the metric
fields are expanded in power of rs

r , where rs is the
Schwarzschild radius of the Sun. This expansion is
a generalization of the asymptotic behaviour of the
Schwarzschild metric in isotropic coordinates far from
the source. Observations of the precession of Mercury
and the time delay of a signal emitted from the Earth
and reflected by a satellite or a planet allow us to con-
strain the first coefficients of the expansion. Hence we
try the post-Newtonian ansatz for the four fields

eν = 1 + a1
rs
r

+ a2

(rs
r

)2

+ ...

eξ = 1 + b1
rs
r

+ b2

(rs
r

)2

+ ... (16)

Ar = d1
rs
r

+ d2

(rs
r

)2

+ ...

At = 1 + e1
rs
r

+ e2

(rs
r

)2

+ ... ,

where ai, bi, di and ei are free coefficients which are de-
termined by the equations of motions.

We shall take Ar to have no constant component. In
fact, there is a preferred cosmological frame in which

Ar = 0, and the motion of the Sun with respect to that
frame will undoubtedly induce an Ar [15]. Because the
time-like vacuum expectation value of the aether breaks
Lorentz invariance, the effect of the solar motion with
respect to this frame cannot necessarily be accounted for
by a boost, however it suggests that the contribution to
Ar will be O(γsunβsun) ∼ 10−3. We defer further con-
sideration of velocity-induced effects to future work.

In order to recover Newton’s theory we need a1 < 0;
the choice a1 = −1 defines Newton’s constant. Post-
Newtonian corrections are associated with the parame-
ters a2 and b1. We insert the trial solutions (16) in the
equations (7), (11), (12) and (13), and we match the co-
efficients order by order in rs

r .
¿From equation (11) at lowest order, we find:

nc1 = 0. (17)

The case n = 0 corresponds to the standard aether theory
with F(K) = K, and has already been studied [15, 16].
Here we are interested in n 6= 0 which therefore demands
c1 = 0.

It can be shown that c1 = 0 leads to no modifica-
tion to Poisson’s equation at all [12]. Furthermore, it
implies the existence of modes which propagate super-
luminally. There is some debate as to whether this can
be phenomenologically acceptable [17]. We therefore try
here to see whether the inclusion of additional terms in
the expansion of the metric and vector field can lead to a
consistent weak field approximation for Lagrangians with
c1 6= 0.

B. Additional terms

In a modified theory of gravity, we expect the metric
to have additional terms to the ones given in (16). At the
scale of a galaxy, the next-to-leading term of the metric
has to be a positive power or logarithm of r if the mod-
ified theory is to successfully mimic dark matter on the
scales of galaxies. More generally, unless there are ad-
ditional terms that at least decay more slowly than 1/r,
the modified theory will have only minor phenomenolog-
ical consequences on large scales. Since these additional
terms have to be completely subdominant in the Solar
System, their contribution to the equations of motion
have traditionally been neglected. Nevertheless the form
of the equations (11) and (12) suggests that they could
play a role even in the Solar System. Indeed, in equation
(11) the left-hand side is proportional to Kn+1, whereas
the right-hand side is proportional to K. Since K is ex-
pected to be much larger than one in the Solar System
[12], the parenthesis on the left-hand side must be sub-
stantially suppressed. Therefore even if the additional
terms are small in the Solar System, especially because
they appear on the left-hand side of equation (11) or (12)
they may measurably alter the dynamic of the fields in
the Solar System. Indeed, [18, 19] show that, in modified
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theories of gravity that seek to explain the observed ac-
celerated expansion of the Universe, corrections to the ef-
fective Newtonian potential of a massive body that grow
with radius are generic.

Let us take the Minkowski metric as the background
and add a spherically symmetric perturbation due to the
Sun,

eν = 1 + φ(r), (18)

eξ = 1 + ψ(r).

We now expand the perturbations on a complete set, in-
cluding both positive and negative powers of r:

φ(r) =

∞
∑

i=1

ai

(rs
r

)i

+

∞
∑

i=0

Ai

(

r

rgm

)i

(19)

ψ(r) =

∞
∑

i=1

bi

(rs
r

)i

+

∞
∑

i=0

Bi

(

r

rgm

)i

.

Here rgm ≡ (rs/M)1/2. One can show that this is the
scale at which modifications of gravity occur in theo-
ries that attempt to modify the Einstein equations to get
MOND [13]. For the Sun, rgm ' 1011 km. Since inside
the Solar System r <∼ 109 km, we have r

rgm

<∼ 10−2.

By a rescaling of the coordinates t and r, we can elim-
inate A0 and B0 such that the constant term is equal to
1. The coefficients in front of the additional terms, Ai

and Bi can be constrained by observations in the Solar
System. Indeed, observations of the perihelion shift of
Mercury allow to constrain the parameter a2 to be 0.5
with an accuracy of δa2 ' 10−3, while time-delay obser-
vations allow us to constrain b1 to be 1 with an accuracy
of δb1 ' 10−5.

We derive limits on the coefficients Ai and Bi by re-

quiring |Ai|
(

rM

rgm

)i
<∼ δa2

(

rs

rM

)2

, where rM ' 6 × 107

km is the distance between Mercury and the Sun. The
same argument applies for the other metric field. We find

|Bi|
(

r
rgm

)i
<∼ δb1

rs

r . The best constraint on b1 comes

from the Cassini satellite when it was at ∼ 109 km from
the Sun [20].

These limits would be exact if the only non-zero term
were the one under consideration. Otherwise, the true
limits may be either weaker or stronger (as the sum of
a series can easily be smaller than some of its terms),
or even have the opposite sense (> instead of < or
vice versa). For example, a correction of the form
exp(−Cr/rgm) with C > 0 requires a lower limit on C
rather than the upper limits that would be derived from a
term-by-term analysis. Thus the limits we shall proceed
to derive from a term-by-term approach will be sufficient,
but not necessary.

Indeed, we show that a set of consistency conditions
between the coefficients of the powers of r/rgm can be
satisfied simultaneously. Thus an acceptable solution ex-
ists which has an expansion that includes both negative

and positive powers of r/rgm. Future detailed study of
the Schwarzschild metric in Einstein-Aether theories may
yet identify an expansion basis that is better adapted to
the physics than polynomials in r.

One might also ask if these extra-terms in the metric
are physically acceptable if considered in isolation. After
all, they diverge when r goes to infinity. However, the
expansion (10) is itself appropriate only for r � rgm. As
mentioned though, to obtain the correct modification to
Poisson’s equation for r � rgm one expects terms in the
metric growing as rapidly as rv where v ≥ 1. We might
expect the spacetime to be asymptotically flat far from
the source; although, we should be prepared that the
modified gravity theory may only allow for cosmological
solutions – Minkowski space need not be a global solution
of the theory. Nevertheless, the physical quantity related
to the flatness is the curvature Q ≡ RabcdRabcd, which
behaves like g−2

rr r
−4 as r approaches infinity for a metric

of the form (19). We see that Q tends to zero at large r,
even if grr diverges. Therefore positive powers of r are
compatible with asymptotic flatness.

Through the equations of motion, the perturbations of
the metric created by the Sun lead to perturbations of
the vector field:

Ar(r) = α(r) (20)

At(r) = 1 + β(r).

We can again expand these perturbations on the com-
plete set:

α(r) =

∞
∑

i=1

di

(rs
r

)i

+

∞
∑

i=0

Di

(

r

rgm

)i

(21)

β(r) =

∞
∑

i=1

ei

(rs
r

)i

+

∞
∑

i=0

Ei

(

r

rgm

)i

.

In the following we restrict ourselves to the leading
order term n = 1/2 in the expansion (10) for F ′. In ap-
pendix B we show that α(r) and β(r) are of the same
order-of-magnitude as the perturbations of the metric
φ(r) and ψ(r). Since the leading term of the metric in the
Solar System is rs

r , we will take this value at the edge of
the Solar System as a limit for the peculiar terms. This
means that

|Di|
(

r

rgm

)i

<∼
rs
r

and |Ei|
(

r

rgm

)i

<∼
rs
r
. (22)

In table I, we summarize the resulting constraints on the
coefficients Ai, Bi, Di and Ei with i ≤ 2.

Next we wish to use our expansion of the metric (19)
and the vector field (21) to solve equations (11), (12),
(13) and the constraint equation (7) order-by-order in r.
We first rewrite the positive powers of r in the form

An

(

r

rgm

)n

= An

(

rs
rgm

)n(
r

rs

)n

≡ Ãn

(

r

rs

)n

, (23)
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eν eξ At, Ar

A0 = 0 B0 = 0 |D0|, |E0| <
∼ 3 · 10−9

|A1| <
∼ 10−14 |B1| <

∼ 10−11 |D1|, |E1| <
∼ 10−6

|A2| <
∼ 10−10 |B2| <

∼ 5 · 10−9 |D2|, |E2| <
∼ 5 · 10−4

TABLE I: Constraints from observations on the coefficients
of positive powers of r

rgm
.

where Ãn ≡ An

(

rs

rgm

)n

. We do the same for the co-

efficients of the other fields: Bn, En and Dn. Since
rs

rgm
' 10−11, the constraints on the An in table I be-

come much more stringent constraints on the Ãn (see
table II in appendix C 2).

We use a perturbative expansion in the coefficients.
Moreover we assume the hierarchy 1 � |Ã1| � |Ã2| � ...
for each of the four fields in order to truncate the number
of terms present at each order. The detailed calculation is
presented in appendix C. Here we summarize the results.

Equation (13) leads to two possibilities. The first is

that ds = 0 and D̃s = 0 for all s, i.e. Ar(r) = 0. This
means that the only degree of freedom of the vector field
is At(r) which is then completely determined by
the metric through the unit time-like constraint.
We do not study in this specific case in this paper,
but rather concentrate on the other possibility
Ar(r) 6= 0. Nevertheless the former solution could
be relevant in some particular cases. For exam-
ple in [21], it has been shown that in the usual
Einstein-Aether theory, corresponding to n = 0,
there are regular perfect fluid stars with a static
(i.e. Ar(r) = 0) aether exterior.

The choice Ar(r) 6= 0 implies that the parameters
c1, c2 and c3 satisfy the constraint

(c1+c2+c3)s
2−3(c1+c2+c3)s−2(c1−c2+c3) = 0 , (24)

for some positive integer s.
We have explicitly calculated the case s = 1, which

corresponds to the constraint c3 = −c1. From the posi-
tive orders in rs

r we find that a1 is unconstrained. If we
set a1 = −1 to recover Newton’s theory, we find

b1 = 1 +O(10−9) and a2 =
1

2
+O(10−9) , (25)

which is in complete agreement with the observations
which measure

bobs
1 = 1 ± 10−3 and aobs

2 =
1

2
± 10−5 . (26)

Moreover, we find that c1 no longer has to be equal to
zero. We have four solutions for c1 and c2 which are
negative and therefore causal [12]. They are given in
appendix C 4. In each solution, c1 and c2 are of the order

of
(

B̃2

Mrs

)2
1

α2

1

. Since
(

B̃2

Mrs

)2

∼ 10−18, either α1 must be

very small, or c1 and c2 are very small.

FIG. 1: The metric fields gtt and grr as functions of r, in
the aether theory (solid line) and in general relativity (dot-
ted line). We see that at the scale rm ' 1015 km the two
models start to diverge. rgm ' 1011 km is the scale at

which all growing corrections are expected to start

to dominate.

In figure 1 we plot gtt(r) = −eν(r) and grr(r) = eξ(r)

(solid line) for the values of a1 to a4, b1 to b4, A1, A2

and B1 calculated in appendix C 4b. We find that B2

is unconstrained by the equation of motion, except that
|B2| < 5 · 10−9 (see table I). We choose to saturate this
maximum value for the plot. We also plot gtt and grr

from General Relativity, i.e. the Schwarzschild metric

up to the order
(

rs

r

)4
(dotted line). We see that inside

the Solar System (r ≤ 109 km) the two models are equiv-
alent, but at a scale rm ' 1015 km they start to diverge.
The Schwarzschild metric tends to gtt = −1 and grr = 1,
whereas the aether metric starts to grow. The scale
rm is the one at which the first two growing cor-
rections (r and r2) become dominant. The sub-
sequent growing terms could start to grow ear-
lier. Nevertheless the limits set by hand on the
coefficients Ai and Bi (see table I) ensure that
they cannot become important inside the Solar
System. Moreover rgm = 1011 km is the scale
at which modifications of gravity should occur.
Hence we expect the growing terms to remain
small for r <∼ rgm. Nevertheless, only the full cal-
culation of all the coefficients could confirm this
limit. Note that gtt(r) passes through zero at r ' 1016

km and is therefore singular. However the series (19)
cannot be taken seriously for r > rgm, where they may
not converge.

Finally we have determined the structure of the equa-
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tions at each order. For negative powers in r (s > 1),

S











as

bs
ds

es











=











H
(s)
1

H
(s)
2

H
(s)
3

H
(s)
4











, where (27)

S≡











−1 0 0 −2

0 s(s− 1) 0 0

−s −s 0 0
d1s(s−1)

2 0 − c1(s−1)(s−2)
4

d1s(s−1)
2











(28)

and H
(s)
i are functions of the previous coefficients –

a1, ...as−1, b1, ..., bs−1, d1, .., ds−1, e1, .., es−1. Therefore
at order s a unique solution (as, bs, ds, es) exists if

detS = −c1
2
s2(s− 1)2(s− 2) 6= 0 . (29)

Since c1 6= 0, this condition is satisfied for s > 2. The
order s = 2, for which the determinant vanishes, has been
solved explicitly. The solutions are not unique and are
given in appendix C 4. For each order s > 2, we can find
the unique solution as a function of the lower orders.

The same structure repeats for positive powers of r
(s > 2):

Ŝ











Ãs

B̃s

D̃s

Ẽs











=











Ĥ
(s)
1 + Q̂

(s)
1

Ĥ
(s)
2 + Q̂

(s)
2

Ĥ
(s)
3 + Q̂

(s)
3

Ĥ
(s)
4 + Q̂

(s)
4











, where (30)

Ŝ≡















1 0 0 2

0 −s(s+ 1) 0 0

s s 0 0

c1s(s+1)d1

2 0
[c2(14− s)d2

1−
c1(s−1)(s−2)

4 ]
c1s(s+1)d1

2















(31)

and Ĥ
(s)
i are functions of a1, b1, d1 and e1, and

of the previous coefficients – Ã1, ..., Ãs−1, B̃1, ..., B̃s−1,
D̃1, ..., D̃s−1,Ẽ1, ..., Ẽs−1. In appendix C 2 we argue that
these functions are at most of the same order of mag-

nitude as the coefficient of order s. The Q̂
(s)
i are func-

tions of the coefficients Ãs+1, Ãs+2, ..., B̃s+1, ..., D̃s+1, ...,

Ẽs+1, .... Generically the Ĥ
(s)
i are much larger than the

Q̂
(s)
i since the constraints on the coefficients Ãs are much

more stringent for larger s. We can, in general, therefore

neglect the Q̂
(s)
i . (See appendix C2 for a more detailed

discussion).

A unique solution (Ãs, B̃s, D̃s, Ẽs) exists then at order
s if

det Ŝ = −2s2(s+1)
(

c2(14−s)d2
1−

c1
4

(s−1)(s−2)
)

6= 0 .

(32)

The order s = 0, 1 and 2 have been calculated in appendix
C 4. For each of the solutions (C42) to (C45) we find that

det Ŝ 6= 0 ∀ s.
The structure of equations (27) and (30) shows that

there exist solutions to the equations of motion that can
be expressed as the expansions (19) for the metric and
(21) for the vector field. Indeed, since at each order the

determinants detS and det Ŝ are non zero, we are en-
sured that a solution exists. We conclude that it is not
sufficient to calculate the first two orders, even if we are
only interested in the values of the Post-Newtonian pa-
rameters. In order to be sure that we have a bona fide

solution of the equations of motion and that we will not
encounter an inconsistency at any given order, we need
to calculate the determinant of the system at every order.

IV. CONCLUSION

In this paper, we have studied the constraints we im-
posed from Solar System observations on generalized
Einstein-Aether theory. We have considered an expan-
sion of the metric around the Newtonian solution includ-
ing the usual Post-Newtonian terms, which are negative
powers of the distance r from the Sun, but also terms
increasing with the distance (positive powers of r). The
aim of this complete expansion is to take into account
in the Solar System the effect of modification of gravity
at large (Galactic and cosmological) scales. These effects
are usually neglected in the Solar System and one con-
siders only the decreasing terms in the metric expansion
[15, 16, 22]. Nevertheless, as long as the increasing terms
are sufficiently small to be consistent with observations,
nothing forces them to be completely absent in the Solar
System. Moreover in the case of generalized Einstein-
Aether theory, we found that the increasing terms play a
crucial role, since without them the theory suffers from
acausality. Indeed, if we neglect them, the equations of
motion imply that one parameter of the theory c1 = 0,
leading to superluminal propagation of the aether field
perturbations. If we consider the full expansion, the
pathology disappears.

Moreover, we found that the Post-Newtonian parame-
ters related to the precession of the perihelion of Mercury
and the time delay of radio pulses are in agreement with
observations. We found also constraints on the increasing
terms coming from these observations, and constraints on
the parameters c1, c2, c3 and α1 from the equations of mo-
tion. TomTom Comments Follow: Indeed, whereas
the αi represent behaviour in a particular regime of the
theory (i.e. quasistatic configurations where the gravita-
tional field is typically much larger than the mass scale
M), the ci can be expected to appear in calculations
throughout. It may be shown [12, 23] that simultane-
ous consideration of very weak gravitational fields, the
requirement for a realistic background cosmology, and
suitable growth of large scale structure will favour the ci
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to be O(1). We may immediately see then from equations
(C42)-(C45) that this will tend to correspond to an upper
limit on the number α1 of 10−9 to 10−8. It is interesting
to compare this bound to that obtained by rather consid-
ering the influence of such a term on the Poisson equation
then deducing the perihelion precession due to the extra
force provided by the modified potential in the context
of Newtonian gravity. This was done in [4] where it was
found that the resulting perihelion shift δφα of Mercury’s
orbit per revolution, to lowest order in eccentricity, was
given by:

δφα ∼ 10πMα1
r2

rs
(33)

where r is the semi-major axis length of Mercury’s or-
bit. Taking M = 1.2 × 10−8cm/s2, this yields a preces-
sion per revolution which is approximately α1/5 of the
prediction due to general relativity. Therefore, as ob-
servation agrees with the prediction of general relativity
to within ∼ 10−3, it was argued, α1 must be less than
around 5 × 10−3, therefore several orders of magnitude
greater than our analysis will allow. Clearly then, a ben-
efit of recovering the modified Poisson equation from a
set of generally covariant field equations has been to al-
low a broadening of the scope of analysis of the theory’s
implications in the solar system and in this case, in con-
cert with additional constraints placed on the theory’s
parameters in other regimes, this has allowed for a sig-
nificantly more severe restriction on the permissable size
of such a modification. Comments Ended

Furthermore, we have developed a general method to
test that the metric expansion is a solution of the equa-
tions of motion. The constraints that we obtain must be
interpreted, in part, as consistency conditions on the the-
ory. Indeed, it is not sufficient to calculate the first coeffi-
cients in the expansion to confront the theory with Solar
System observations, but one has to study carefully the
structure of the equations at each order to be sure that
no inconsistency will invalidate the results. Our results
show that, even though we have an infinite hierarchy of
equations, these are solvable in terms of the fundamental
parameters of the theory. Hence, generalized Einstein-
Aether theories are viable theories of gravity within the
Solar System.
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APPENDIX A: SPECIFIC EXPRESSION OF THE

EQUATIONS OF MOTION

The explicit expression for K in the spherically sym-
metric and static metric is

M2K = (Ar)2

[

(c1 + c3)
( 2

r2
+

2ξ′

r
+
ν′2

4
+

3ξ′2

4

)

+ c2

( 4

r2
+

2ν′

r
+

6ξ′

r
+

3ν′ξ′

2
+
ν′2

4
+

9ξ′2

4

)

]

+
[

(c1 + c3)ξ
′ + c2

(4

r
+ ν′ + 3ξ′

)]

ArAr′

(A1)

+ eν−ξ(c3 − c1)
[ν′2

2
(At)2 + ν′AtAt′

]

+ (c1 + c2 + c3)(A
r′

)2 − c1e
ν−ξ(At′)2 .

The functions appearing in the equations of motions
(11), (12) and (13) are given by:

f1 =
eξ

2

[

(c1 + c3)
(ν′2

2
+

3ν′ξ′

2
+

2ν′

r
+ ν′′

)

, (A2)

+c2

( 4

r2
+

4(ν′ + 3ξ′)

r
+

(ν′ + 3ξ′)2

2
+ ν′′ + 3ξ′′

)]

,

f2 = −(c1 + c3)ν
′ − c2

(

ν′ + 3ξ′ +
4

r

)

,

f3 = eξ
[

(c1 + c3)ν
′ +

c2
2

(

3ν′ + 9ξ′ +
12

r

)]

,

f4 =
eν

2
(c3 − c1)

(3ν′2

2
+
ν′ξ′

2
+

2ν′

r
+ ν′′

)

,

f5 = −e
ν

2
(c3 − c1)ν

′ ,

f6 = eν
[c3

2

(4

r
+ ξ′ + 5ν′

)

− c1ν
′
]

,

g1 = −e
ξ

2

[

(c1 + c3)
(ν′2

2
+

3ξ′2

2
+

4ξ′

r
+

4

r2

)

,

+c2

( 8

r2
+
ν′2

2
+

9ξ′2

2
+

4(ν′ + 3ξ′)

r
+ 3ν′ξ′

)

]

,

g2 = −eξ
[

(c1 + c3)ξ
′ + c2

(

ν′ + 3ξ′ +
4

r

)]

,

h1 = −c1
(

ν′2 +
4

r2
+

2(ν′ + ξ′)

r
+ ν′′ − ξ′′

)

,

+c3

(

ν′ξ′ − 4

r2
+

2(ν′ − ξ′)

r
+ ν′′ + ξ′′

)

,

+c2

(

ν′′ + 3ξ′′ − 4

r2

)

,

h2 = c1(ν
′ − ξ′) − c2

(

ν′ + 3ξ′ +
4

r

)

− c3(ν
′ + ξ′) ,

h3 = −c1
(

3ν′ + ξ′ +
4

r

)

and
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h4 = (c1 + c2 + c3)
(

ν′ + 3ξ′ +
4

r

)

APPENDIX B: ORDER OF MAGNITUDE OF

THE VECTOR FIELD PERTURBATIONS

In this appendix, we compare orders of magnitude of
the different field perturbations. We know that in the
Solar System the metric perturbations are of the order
φ(r) ' ψ(r) ' rs

r . We want to calculate the order of mag-
nitude of the vector field perturbations α(r) and β(r).

At first order in the perturbations:

ν′ =

(

eν
)′

eν
' φ′ , ξ′ ' ψ′ , (B1)

At′ = β′ and Ar′

= α′ .

The constraint (7) gives

−(1 + φ)(1 + β)2 + (1 + ψ)α2 = −1 . (B2)

At the lowest order in each perturbation we have

−φ− 2β + α2 = 0 . (B3)

We have four possibilities:

1. The three terms are or the same order of magnitude
β ∼ α2 ∼ φ which implies α2 = φ+ 2β ;

2. α2 � φ ∼ β which implies φ ' −2β;

3. β � φ ∼ α2 which implies α2 ' φ;

4. φ� β ∼ α2 which implies α2 ' 2β .

We see directly that case 3 is not possible, since φ =
−rs/r < 0 at first order in the Solar system. We use
equation (13) to exclude the possibilities 1 and 4. In-
deed, in these two cases we have α � β, φ. Using these
constraints we find

K =
1

M2

[2α(c1 + 2c2 + c3)

r2
+

4α′αc2
r

(B4)

+ (c1 + c2 + c3)α
′2
]

,

and equation (13) becomes

0 = 2(c1 + c2 + c3)
[

− 2
α

r2
+ 2

α′

r
+ α′′

]

K

−
[

c2
α

r
+ (c1 + c2 + c3)α

′
]

K′ = 0 . (B5)

The only solution of this equation is α(r) = 0, which
implies that equation (13) doesn’t allow the spatial com-
ponent Ar to be much larger than the other perturba-
tions. So the only possibility is that the dominant con-
tribution to the time component of the vector field is
β = − rs

2r , and that the dominant contribution to the
space component satisfies α2 � rs

r . So it is legitimate to
assume that also α ∼ rs

r at first order.

APPENDIX C: RESOLUTION

In this appendix we present the detailed derivation of
the solutions. The aim is to take the expansion (19) for
the metric and (21) for the vector field, to insert it in
the equations of motions and to solve order by order in
power of r, using a perturbative expansion for the posi-
tive powers of r. The orders r−1 and r−2 give the values
of the post-Newtonian parameters b1 and a2. The or-
ders r−3, r−4 and r0, r1 and r2 allow us to constrain
the values of the ci which are compatible with the data.
Nevertheless it is not sufficient to calculate only these
orders. Indeed, each equation generates an infinite num-
bers of positive and negative orders, and the expansions
(19) and (21) are solutions of the equations of motion
only if each of these equations has a solution. Therefore,
it is crucial to understand the structure of the equations
at each order and to verify that one introduces a suffi-
cient number of new coefficients at each order so that
the equations do not lead to constraints between coeffi-
cients which have already been determined, leading to a
possible inconsistency.

In C 1, we consider only the terms with negative powers
of r, that means the terms which appear in the usual
Post-Newtonian parametrization . In C 2 we will consider
the positive powers. Finally, in C 3 and C 4 we apply our
result to equations (11), (12), (13) and (7).

1. Negative powers of r

We have four fields Ar, At, eξ and eν , satisfying four
equations. Three fields, At, eξ and eν have an expansion
of the form

eν = 1 +

∞
∑

n=1

anx
n , (C1)

where x = rs

r . The other field has no constant term in
the expansion

Ar =

∞
∑

n=1

dnx
n . (C2)

In the following we restrict ourselves to the two fields:
Ar and eν and two equations. The generalization for the
four fields will then be straightforward.

We assume that the two equations governing the two
fields have the form

m
∑

i=1

fir
σi (eν)αi(eν ′)βi(eν ′′)γi(Ar)µi(Ar ′)νi(Ar ′′)ρi = 0 ,

(C3)
where a′ stands for d

dr and the exponents are all positive
integers or null, except σi which is negative. Actually
αi will in principle be negative, since ν ′ = (eν)′(eν)−1

and ν′′ = (eν)′′(eν)−1 − (eν ′)2(eν)−2, but we can always
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multiply by (eν)j so that αi is a positive integer or null
for all i.

The form (C3) is not exactly the one which appears in
equations (11) and (12), because of the term Kn, where
n is an integer or a half integer. Nevertheless, we will see
later that we can rewrite the problem in such a way that
the equation is the form (C3).

Since all the terms in the sum must have the same
dimension, we have that −σi + βi + 2γi + νi + 2ρi = c is
the same for all i. Therefore, we can solve for σi, and then
multiply every term by rc. We insert then the expansion
(C1) and (C2), and their derivatives to obtain

m
∑

i=1

fi(−1)βi+νix−(βi+2γi+νi+2ρi)

(

1 +
∞
∑

n=1

anx
n

)αi

·
( ∞
∑

n=1

nanx
n+1

)βi
( ∞
∑

n=1

n(n+ 1)anx
n+2

)γi

·
( ∞
∑

n=1

dnx
n

)µi
( ∞
∑

n=1

ndnx
n+1

)νi

·
( ∞
∑

n=1

n(n+ 1)dnx
n+2

)ρi

= 0 . (C4)

Each term of the product can be expanded in power of x
using the binomial theorem

(

eν
)αi

=

(

1 +

∞
∑

n=1

anx
n

)αi

= 1 + αia1x+ ... (C5)

(

Ar
)µi

=

( ∞
∑

n=1

dnx
n

)µi

(C6)

= dµi

1 x
µi + µid

µi−1
1 d2x

µi+1 + ...

+
{

µid
µi−1
1 ds + gs(d1, · · · , ds−1)

}

xµi+s−1 + ...

where gs(d1, · · · , ds−1) is a function of the coefficients of
order 1 to s− 1.

(

eν′)βi
=

( ∞
∑

n=1

nanx
n+1

)βi

= dβi

1 x
2βi + · · · (C7)

and the same for Ar ′′.
We can insert these developments in equation (C4) and

solve order by order in x. The lowest order is

∑

i∈O1

fi(−1)βi+νi2γi+ρiaβi+γi

1 dµi+νi+ρi

1 xβi+γi+µi+νi+ρi = 0 ,

(C8)

where O1 =
{

i ∈ {1, ...,m} such that βi + γi + µi + νi +

ρi = δ is the smallest exponent of the sum
}

.

The next order in x contains two different contribu-
tions. The first contribution comes from the terms in
O1 where we take the next order in the expansion for
one term of the product, and the lowest order for the
others. This contribution contains two new coefficients
a2 and d2 which appear linearly, and also the previous
coefficients a1 and d1. The second contribution comes

from other terms in the sum, i ∈ O2, where O2 =
{

i ∈

{1, ...,m} such that βi + γi + µi + νi + ρi = δ+ 1
}

. This

contribution contains only a1 and d1. The next order
xδ+1 is therefore
∑

i∈O1

fi(−1)βi+νi2γi+ρi

{

(2βi + 3γi)a
βi+γi−1
1 dµi+νi+ρi

1 a2

+(µi + 2νi + 3ρi)a
βi+γi

1 dµi+νi+ρi−1
1 d2

}

xδ+1

+H
(1)
1 (a1, d1)x

δ+1 = 0 . (C9)

More generally, at the order xδ+s−1 (s > 1) the two equa-
tions have the form

F
(s)
1 (a1, d1) · as +G

(s)
1 (a1, d1) · ds

= H
(s)
1 (a1, · · · , as−1, d1, · · · , ds−1) ,

F
(s)
2 (a1, d1) · as +G

(s)
2 (a1, d1) · ds

= H
(s)
2 (a1, · · · , as−1, d1, · · · , ds−1) , (C10)

where

F
(s)
1 (a1, d1) =

∑

i∈O1

fi(−1)βi+νi2γi+ρi−1·

×
(

2sβi + s(s+ 1)γi

)

aβi+γi−1
1 dµi+νi+ρi

1

G
(s)
1 (a1, d1) =

∑

i∈O1

fi(−1)βi+νi2γi+ρi−1

×
(

2µi + 2sνi + s(s+ 1)ρi

)

aβi+γi

1 dµi+νi+ρi−1
1 ,

(C11)

and H
(s)
1 (a1, · · · , as−1, d1, · · · , ds−1) is a function of the

coefficients of order less than s. F
(s)
2 (a1, d1) and

G
(s)
2 (a1, d1) have the same form but with different fi and

O1.
A unique solution (as, ds) exists at order s if

det

(

F
(s)
1 (a1, d1) G

(s)
1 (a1, d1)

F
(s)
2 (a1, d1) G

(s)
2 (a1, d1))

)

6= 0 . (C12)

Since the functions F
(s)
j and G

(s)
j contain only a1, d1

and the parameters fi for i ∈ O1, it is easy to calculate
them at each order, without solving the entire system.
We only have to solve explicitly the first order. Then
if the determinant is non zero for all s > 1 we know
that a unique solution exists which can be determined
as a function of the previous coefficients. On the other
hand if the determinant vanishes at some order s, an
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inconsistency may occur. Indeed, equations (C10) can
become a constraint between the previous coefficients and
lead to a contradiction. Therefore, if one wants to test
the validity of a theory in the PPN parametrization, it
is not sufficient to calculate the first coefficients in the
expansion and to compare them with the observations.
One has also to calculate the determinant (C12) at each
order s, to insure that no additional constraints on the
first coefficients will occur from higher orders.

The generalization of this method to four equations
with four fields is straightforward. Each field with no
constant component generates a function of the form

F
(s)
j , whereas fields with a constant component gener-

ate a function of the form G
(s)
j .

2. Positive powers of r

In this section, we add positive powers of r to the ex-
pansions (C1) and (C2):

eν = 1 +

∞
∑

n=1

An

(

r

rgm

)n

+

∞
∑

n=1

anx
n

= 1 +

∞
∑

n=1

Anε
n 1

xn
+

∞
∑

n=1

anx
n ,

(C13)

where ε = rs

rgm
' 10−11. Equivalently for Ar

Ar =
∞
∑

n=0

Dnε
n 1

xn
+

∞
∑

n=1

dnx
n . (C14)

These new terms add an infinite number of contribu-
tions to each previous order xδ+s. Furthermore they gen-
erate new lower orders xδ−s. To simplify the problem
we must take into account the fact that the coefficients
in front of the negative orders Anε

n (respectively Dnε
n)

have to be small in order not to be observed in the Solar
System. Indeed the constraints of table I are equivalent

to |An|εn <∼ δa2

(

rs

rM

)n

� 1. Therefore, we use a per-

turbative expansion for Anε
n and Dnε

n. Furthermore
since rs

rM
' 5 · 10−8 � 1 we have the following hierarchy:

1 � |A1|ε � |A2|ε2.... (And similarly for the Dnε
n) So

we start studying the effect of D0 (remember that A0 has
been put to zero by a rescaling of t and r), then A1ε

x and
D1ε
x and so on. And we neglect all these new terms with

respect to 1. In other words, we take them into account
only when they introduce a new order to the equation
xδ−s.

Let us define new coefficients to simplify the formulae.

Ãn = εnAn D̃n = εnDn . (C15)

In terms of these coefficients, the constraints coming
from observations are as follows:

eν eξ At, Ar

Ã0 = 0 B̃0 = 0 |D̃0|, |Ẽ0| <
∼ 3 · 10−9

|Ã1| <
∼ 10−25 |B̃1| <

∼ 10−22 |D̃1|, |Ẽ1| <
∼ 10−17

|Ã2| <
∼ 10−32 |B̃2| <

∼ 5 · 10−31 |D̃2|, |Ẽ2| <
∼ ·10−26

TABLE II: Constraints from observations on the new coeffi-
cients .

a. Effect of D̃0

(

D̃0 +

∞
∑

n=1

dnx
n

)µi

= D̃0d
µi−1
1 xµi−1+dµi

1 x
µi+· · ·O(D̃2

0)

(C16)

The term D̃0 introduces a new order xδ−1

∑

i∈O1

fi(−1)βi+νi2γi+ρiaβi+γi

1 dµi+νi+ρi−1
1 D̃0 ·xδ−1 (C17)

b. Effect of Ã1x
−1 and D̃1x

−1

At first order in Ã1 and D̃1 we have

(eν)
αi =

(

1 +
Ã1

x
+

∞
∑

n=1

anx
n

)αi

= αi
Ã1

x
+ 1 + αia1x+ · · · (C18)

(Ar)
µi =

(

D̃1

x
+

∞
∑

n=1

dnx
n

)µi

= µiD̃1d
µi−1
1 xµi−2

+ µi(µi − 1)D̃1d
µi−2
1 d2x

µi−1 + dµi

1 x
µi + · · ·

(C19)

(

eν ′)βi
=

(

Ã1 −
∞
∑

n=1

nanx
n+1

)βi

=

(−1)βi−1βi(βi − 1)

2
Ã1a

βi−1
1 x2βi−2

+ (−1)βi−1βi(βi − 1)2Ã1a
βi−2
1 a2x

2βi−1

+(−1)βiβia
βi

1 x
2βi + · · · ,

(C20)

and equivalently for Ar ′. eν ′′ and Ar ′′ remain the same
as previously. Therefore, we see that Ã1x

−1 and D̃1x
−1

introduce a new order xδ−2 and also a contribution to
the order xδ−1.

c. General: Ãsx
−s and D̃sx

−s

More generally, the term Ãsx
−s introduces a low-

est order xδ−s−1 linear in Ãs. The following terms
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Ãs+1, Ãs+2... also contribute to the order xδ−s−1, but
there are negligible with respect to Ãs. Furthermore, the
previous terms Ãs−1, Ãs−2... also appear at order xδ−s−1,
but non-linearly. We can show from the observational
constraints that we have on the coefficients, that these
non-linear contributions can be at most of the same or-
der of magnitude as Ãs, but not larger, since they contain
a term of the order εs. Of course the same kind of terms
are introduced by D̃sx

−s.
Therefore, the equations at order xδ−s−1 (s ≥ 0) are

F̂
(s)
1 (a1, d1) · Ãs + Ĝ

(s)
1 (a1, d1) · D̃s

= Ĥ
(s)
1 (Ã1, ..., Ãs−1, D̃1, ..., D̃s−1, a1, d1)

+Q̂
(s)
1 (Ãs+1, ..., D̃s+1, ...)

F̂
(s)
2 (a1, d1) · Ãs + G̃

(s)
2 (a1, d1) · D̃s

= Ĥ
(s)
2 (Ã1, ..., Ãs−1, D̃1, ..., D̃s−1, a1, d1)

+Q̂
(s)
2 (Ãs+1, ..., D̃s+1, ...)

(C21)

where

F̂
(s)
1 (a1, d1) =

∑

i∈O1

fi(−1)βi+νi−12γi+ρi−1

×
(

2sβi − s(s− 1)γi

)

aβi+γi−1
1 dµi+νi+ρi

1 ,

Ĝ
(s)
1 (a1, d1) =

∑

i∈O1

fi(−1)βi+νi−12γi+ρi−1

×
(

− 2µi + 2sνi − s(s− 1)ρi

)

aβi+γi

1 dµi+νi+ρi−1
1 .

(C22)

Ĥ
(s)
j can be at most of the order of magnitude of Ãs

and D̃s whereas Q̂
(s)
j are much smaller since they are of

the order of magnitude of Ãs+1 and D̃s+1.
A unique solution (Ãs, D̃s) exists at order s if

det

(

F̂
(s)
1 (a1, d1) Ĝ

(s)
1 (a1, d1)

F̂
(s)
2 (a1, d1) Ĝ

(s)
2 (a1, d1))

)

6= 0 . (C23)

In this case, we can determine the solution at order s as
a function of the previous coefficients and the following

coefficients. Generically the contribution Ĥ
(s)
i from the

previous coefficients is much larger than the one from

the following coefficients Q̂
(s)
i , since the constraints on

the previous coefficients is less stringent (see table II).
We can therefore neglect the following coefficients and at
each order determine the solution as function of the pre-
vious coefficients. Nevertheless for some specific case the
contribution from the previous coefficients can become
very small and even vanish. In this case, we have to take
into account the contribution of the following coefficients.
This means that the solution (Ãs, D̃s) will be of the order

of magnitude of (Ãs+1, D̃s+1). At order s+1 we can then

neglect Ãs and D̃s in Ĥ
(s+1)
i which appear non-linearly

and are therefore much smaller than the order s+ 1 lin-
early. This means that we can determine (Ãs+1, D̃s+1)
as a function of the previous coefficients, but neglecting
the order s. If the determinant (C23) is non zero for all
s ≥ 0, we can find a solution order by order. On the
other hand if the determinant vanishes for some s, the
equations can lead to inconsistencies.

One remark has to be made about the order of mag-
nitude of the coefficients. In the general case with
four fields, we have found constraints on the coefficients
Ãn, B̃n, D̃n and Ẽn from the observations. Since the dif-
ferent fields are not related to the same observation, the
constraints are different for each field. We have therefore
found that D̃n and Ẽn can be much larger than Ãn and
B̃n for small n, see table (II). For large n the situation
is reversed. Nevertheless, from the previous analysis of
the equations, we see that this situation is not satisfy-
ing. Indeed, if two coefficients are much larger than the
two others at order s, it means that we can neglect the
two small coefficients. Therefore, we introduce four new
equations at order s but only two new coefficients and
the determinant (C23) vanishes. Hence we can not insure
that a solution exists. Therefore, even if the observations
allow less stringent constraints on the order of magnitude
of some coefficients, the equations of motion generically
imply that all the coefficients can have at most the order
of magnitude of the smallest one at each order.

3. Application to our problem

We need to transform the four equations of motion to
apply the method described above. First, we multiply
each equation by the correct power of eν and eξ such
that each power in the equation (C3) is positive or null.

After this modification, equation (7) and (13) have the
correct form and the method can be applied directly. For
n = 1/2, which is the case we consider in detail, equation
(12) reduces to

(

ξ′ + ν′

r
+
ξ′2

4
+
ξ′ν′

2

)√
K = 0 . (C24)

We can expand the two terms f =
(

ξ′+ν′

r + ξ′2

4 + ξ′ν′

2

)

and g =
√
K in power of x, using the method described

above. Let’s call ρ the lowest order of the development
of f , containing only the coefficients a1, b1, d1 and e1 and
σ the lowest order of g.

At lowest order the equation becomes

f (ρ)g(σ) = 0 . (C25)

We have three possibilities:

• f (ρ) = 0 and g(σ) 6= 0. The following order is then:
f (ρ+1)g(σ) = 0. Since g(σ) 6= 0, it implies f (ρ+1) =
0. The same development can be made at each
order, and therefore we find f ≡ 0.
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• f (ρ) 6= 0 and g(σ) = 0. As previously this implies
g ≡ 0. This case is the trivial case K = 0 and is
therefore not interesting.

• f (ρ) = g(σ) = 0.

In this case, the following order is f (ρ+1)g(σ+1) = 0,
which has exactly the same form as equation (C25)
and implies therefore either f ≡ 0 or g ≡ 0.

Since we want K 6= 0, equation (12) becomes

f =

(

ξ′ + ν′

r
+
ξ′2

4
+
ξ′ν′

2

)

= 0 (C26)

at each order. We recover one of the Schwarzschild
equation for which the method can be applied easily.
Note that for the three equations (7), (13) and (C26),
the relations between the usual coefficients of Post-
Newtonian parametrization are not modified by the addi-
tional coefficients up to an order 10−9 which is the order
of magnitude of the largest additional coefficient.

Equation (11) is slightly different. Indeed, the left-
hand side is proportional to Kn+1, that means pro-

portional to
(

1
Mrs

)2(n+1)

, whereas the right-hand side

is proportional to
(

1
Mrs

)2

. So the left-hand side is
(

1
Mrs

)2n

' (1023)2n times larger than the right-hand

side. Therefore, this equation can modify the relation be-
tween the usual coefficients. Indeed, we will now mix the
usual coefficients coming from the right-hand side, with
the additional coefficients of the left-hand side which are

multiplied by
(

1
Mrs

)2n

.

We consider in the following the case n = 1/2. The
lowest order of the left-hand side is 8 whereas the lowest
order of the right-hand side is 5. At order 5 equation
(11) will then have the following form

1

Mrsα
F (Ã1, B̃1, D̃1, Ẽ1, a1, b1, d1, e1) = G(a1, b1, c1, d1) ,

(C27)

where F is proportional to Ã1, B̃1, D̃1 and Ẽ1. This
equation gives a relation between the usual and the ad-
ditional coefficients.

Orders 6 and 7 have the same form, except that they
contain also the coefficients a2, b2... and D̃0. Order 8 is
different. Indeed, at this order the left-hand side con-
tains also a1, b1, d1 and e1. Since they are multiplied by
1023, we can neglect the terms coming from the right-
hand side. The same occurs for all the following orders.
Therefore, for orders 8 and larger, equation (11) becomes

(

ξ′′ + 2
ξ′

r
+
ξ′2

4

)

Kn+1 = 0 . (C28)

The same argument as in Eq. (C24) implies that

(

ξ′′ + 2
ξ′

r
+
ξ′2

4

)

= 0 . (C29)

This is the second Schwarzschild equation, but it is valid
only for orders larger than 7 in the development in power
of x. For smaller orders we have to take into account the
right-hand side.

The same situation occurs for powers smaller than 5.
The left-hand side can be neglected with respect to the
right-hand side, and therefore we can apply the method
to equation (C29).

To summarize, the method can be directly applied to
equations (7), (13) and (C26) which replace (12). Then
we have to solve orders x5, x6 and x7 of equation (11).
Our method can then be applied to equation (C29) for
orders larger than x7 and smaller than x5.

4. Solutions

Let us divide each equation by the correct power of x
such that the lowest order , containing only a1, b1, d1 and
e1 is x for each equation. Concerning equation (11), this
means that we have to divide by x6.

At order x for the equations (7), (13) and (C26) we
find:

b1 = −a1 ,

e1 = −a1

2
,

0 = (c1 + c3)d1 . (C30)

Order x of equation (11) will be treated separately

since it contains also Ã1, B̃1, D̃1 and Ẽ1.
We impose a1 = −1 to recover Newton’s theory and

therefore we find

b1 = 1 ,

e1 = 1/2 . (C31)

¿From the last equality of equation (C30) we have two
possibilities: either d1 = 0 or c3 = −c1.

a. d1 = 0

At order x2 equation (13) implies

−8(c1 + c3)d2 = 0 . (C32)

Hence, either c3 = −c1 or d2 = 0. At order x3 we have

[

c2 − (c1 + c3)
]

d3 = 0. (C33)
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Again we have two possibilities: either c2 = c1 + c3, or
d3 = 0. The situation is the same at each order. Indeed if
we assume that we have chosen d1 = d2 = ... = ds−1 = 0
from the order x to xs−1, order xs gives

[

(c1+c2+c3)s
2−3(c1+c2+c3)s−2(c1−c2+c3)

]

ds = 0 .

(C34)
This means that the only possibility to have at least

one of the ds 6= 0, is to satisfy one of the relation

(c1 + c2 + c3)s
2 − 3(c1 + c2 + c3)s− 2(c1 − c2 + c3) = 0 ,

(C35)
for some positive integer s. Therefore, we have to con-

sider two situations: either ds = 0 +O(D̃0, Ẽ0) for all s,
or one of the relation (C35) is satisfied.

In the first case, the usual parameters ds are equal to
zero up to the order of magnitude of the additional coef-
ficients which of course modify equation (C34). We can
calculate the positive order x, x2... including the addi-
tional coefficients. And we have also the negative order
x0, x−1, .... We can show that these sets of equations
imply either

ds ∼ D̃0 , ∀s and D̃0 ∼ D̃1 ∼ D̃2... ∼ D̃∞ (C36)

or

d1 ∼ Ẽ0d2 ∼ Ẽ2
0d3 ∼ ... ∼ Ẽ∞

0 d∞

ds ∼ Ẽ0ds+1 ∼ Ẽ2
0ds+2 ∼ ... ∼ Ẽ∞

0 d∞

D̃0 ∼ Ẽ0d1 ∼ Ẽ∞
0 d∞

D̃s ∼ Ẽ0D̃s−1 ∼ ... ∼ Ẽ∞
0 d∞ (C37)

Since D̃∞ → 0 in order that the expansion (21) con-
verges in the Solar System, the first case implies Ar(r) =
0.

In the second case, since Ẽ∞
0 → 0 and d∞ is finite, we

also have Ar(r) = 0.
Hence At(r) becomes the only degree of free-

dom of the vector field, which is then completely
determined by the constraint (7).

In the following we will study in details the sec-
ond situation where one of the ds at least is different from
zero. We consider the simplest case where d1 6= 0 and
therefore c3 = −c1.

b. c3 = −c1

¿From order x2 of the four equations (7), (13), (C26)
and (C29), and using eq. (C31) we find

a2 =
1

2
,

b2 =
3

8
,

e2 =
1

8
+
d2
1

2
,

0 = 2c2d
2
1 − 4c2d1 + c1 −

1

2
c2 . (C38)

We see that b1 = 1 and a2 = 1/2 are in complete
agreement with the observations. The additional coef-
ficients imply only a contribution of order 10−9, which
we have safely neglected since they are well beyond the
precision of the measurements. The last equation allows
to calculate d1 as a function of c1 and c2.

We have to determine the equations for orders x3 and
x4 which come from the mixed terms of equation (11).
We use the solutions for the previous coefficients.

¿From order x3, we then find

a3 = − 3

16
,

b3 =
1

16
,

e3 =
1

32
+

3

4
d2
1 + d1d2 ,

d3 =
1

8c2

(

− 8d2c2 − 4c1d1 − 24c1d
3
1 + 52d3

1c2

+4c1d2 + c2d1 + 32d2c2d
2
1

)

. (C39)

¿From the order x4 we obtain

a4 =
1

16
,

b4 =
1

256
,

e4 =
1

128c2

(

c2 + 80c2d
2
1 + 64d1d2c2 + 64d1c1d2

+816c2d
4
1 − 64c1d

2
1 − 384c1d

4
1 + 512d2c2d

3
1

+64d2
2c2

)

d4 =
1

192c22

(

− 104c1d2c2 + 70c1d1c2 − 208c1d
3
1c2

+16c21d2 − 16c21d1 − 32c1d2c2d
2
1 − 96c21d

3
1

−3264c1d
5
1c2 + 132d2c

2
2 − 652d3

1c
2
2 − 7d1c

2
2

−384d2c
2
2d

2
1 + 3840c22d

4
1d2 + 7104c22d

5
1

+384c22d1d
2
2

)

. (C40)

We also need to solve for the negative powers. Using
the hierarchy between the additional coefficients |Ã1| �
|Ã2|... we find from equations (7), (13) and (C26) at order
x0, x−1 and x−2 that

D̃0 = − 3B̃2

16d1c2

(

24c2d
4
1 − 8c1d

2
1 + 14c2d

2
1 − 11c2 − 2c1

)
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Ã1 = B̃2 , B̃1 =
5B̃3

4
, Ẽ1 = − B̃2

2
, D̃1 =

3B̃2

4d1
,

Ã2 = −B̃2 , Ẽ2 =
B̃2

2
, D̃2 =

B̃2c1
8c2d1

. (C41)

We remark that B̃1 is of the order of B̃3, therefore it
can be neglected with respect to Ã1, D̃1 and Ẽ1, but also
with respect to the order 2. B̃2 remains undetermined.
B̃3 will be determined by the lower order x−3, but we are
not interested in its value here.

We now consider equation (11) at the order x, x0 and
x−1, which contains both the coefficients of negative and
positive powers. We solve this system of three equations
plus the equation (C30) with the help of maple. It con-

tains the five variables d1, d2, c1, c2 and B̃2 and the two
parameters α1 and M . We find a set of solutions, from
which we only consider those with c1 and c2 negative in
order to ensure a positive-definite Hamiltonian for per-
turbations and non superluminal propagation of spin-
0 degrees of freedom in the approximately-Minkowski
regime of the theory [24]

c1 =
−33.11

α2
1

( B̃2

Mrs

)2

, c2 =
−30.75

α2
1

( B̃2

Mrs

)2

,

d1 = 0.16 , d2 = −0.62 , (C42)

c1 =
−0.48

α2
1

( B̃2

Mrs

)2

, c2 =
−6.36

α2
1

( B̃2

Mrs

)2

,

d1 = −0.10 , d2 = 0.28 , (C43)

c1 =
−24.11

α2
1

( B̃2

Mrs

)2

, c2 =
−143.48

α2
1

( B̃2

Mrs

)2

,

d1 = −0.80 , d2 = 0.72 , (C44)

c1 =
−140.29

α2
1

( B̃2

Mrs

)2

, c2 =
−61.93

α2
1

( B̃2

Mrs

)2

,

d1 = 0.66 , d2 = −7.89 . (C45)

Each solution implies a strong constraint on the pa-

rameters c1, c2 and α1. Indeed B̃2 = B2

(

rs

rgm

)2

can be

at most 10−32 in order not the be detectable in the So-

lar System, and therefore
(

B̃2

Mrs

)2

' 10−18. This means

that either c1 and c2 or α1 has to be very small if α1 6= 0.
Finally, we have to calculate the determinant of the

system to determine if a solution exists at each order.
Using the method described above we find from the pos-
itive powers in x (which correspond to negative powers
in r)(s > 1)

S











as

bs
ds

es











=











H
(s)
1

H
(s)
2

H
(s)
3

H
(s)
4











where (C46)

S =











−1 0 0 −2

0 s(s− 1) 0 0

−s −s 0 0
d1s(s−1)

2 0 − c1(s−1)(s−2)
4

d1s(s−1)
2











(C47)

and H
(s)
i are functions of the previous coefficients

a1, ...as−1, b1, ..., bs−1, d1, .., ds−1, e1, .., es−1. Therefore,
at order s a unique solution (as, bs, ds, es) exists if

detS = −c1
2
s2(s− 1)2(s− 2) 6= 0 . (C48)

Since c1 6= 0, the condition is satisfied for s > 2. The
order s = 2 for which the determinant vanishes has been
solved explicitly above and leads to no inconsistency. The
solution is not unique, since we have found four different
values for d2. For each order (s > 2) the determinant
is non zero and therefore we can determine the unique
solution as a function of the previous orders.

The same structure repeats for positive powers of r
(s > 2)

Ŝ











Ãs

B̃s

D̃s

Ẽs











=











Ĥ
(s)
1 + Q̂

(s)
1

Ĥ
(s)
2 + Q̂

(s)
2

Ĥ
(s)
3 + Q̂

(s)
3

Ĥ
(s)
4 + Q̂

(s)
4











where (C49)

Ŝ =















1 0 0 2

0 −s(s+ 1) 0 0

s s 0 0

c1s(s+1)d1

2 0
c2(14 − s)d2

1−
c1(s−1)(s−2)

4

c1s(s+1)d1

2















(C50)

and Ĥ
(s)
i are functions of a1, b1, d1 and e1, and

of the previous coefficients Ã1, ..., Ãs−1, B̃1, ..., B̃s−1,

D̃1, ..., D̃s−1,Ẽ1, ..., Ẽs−1, and Q̂
(s)
i � Ĥ

(s)
i . A unique

solution exists at order s if

det Ŝ = −2s2(s+1)
(

c2(14−s)d2
1−

c1
4

(s−1)(s−2)
)

6= 0 .

(C51)
The orders s = 0, 1 and 2 have been calculated above.
For each of the solutions (C42) to (C45) we find that

det Ŝ 6= 0 ∀ s.
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