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Explanations of the late-time cosmic acceleration within the framework of general relativity are
plagued by difficulties. General relativistic models are mostly based on a dark energy field with
fine-tuned, unnatural properties. There is a great variety of models, but all share one feature in
common – an inability to account for the gravitational properties of the vacuum energy, and a failure
to solve the so-called coincidence problem. Two broad alternatives to dark energy have emerged as
candidate models: these typically address only the coincidence problem and not the vacuum energy
problem. The first is based on general relativity and attempts to describe the acceleration as an
effect of inhomogeneity in the universe. If this alternative could be shown to work, then it would
provide a dramatic resolution of the coincidence problem; however, a convincing demonstration of
viability has not yet emerged. The second alternative is based on infra-red modifications to general
relativity, leading to a weakening of gravity on the largest scales and thus to acceleration. Most
examples investigated so far are scalar-tensor or brane-world models, and we focus on the simplest
candidates of each type: f(R) models and DGP models respectively. Both of these provide a new
angle on the problem, but they also face serious difficulties. However, investigation of these models
does lead to valuable insights into the properties of gravity and structure formation, and it also
leads to new strategies for testing the validity of General Relativity itself on cosmological scales.

I. INTRODUCTION

The current “standard model” of cosmology is the inflationary cold dark matter model with
cosmological constant Λ, usually called LCDM, which is based on general relativity and particle
physics (i.e., the Standard Model and its minimal supersymmetric extensions). This model provides
an excellent fit to the wealth of high-precision observational data, on the basis of a remarkably
small number of cosmological parameters [1]. In particular, independent data sets from cosmic
microwave background (CMB) anisotropies, galaxy surveys and supernova luminosities, lead to a
consistent set of best-fit model parameters (see Fig. 1) – which represents a triumph for LCDM.

The standard model is remarkably successful, but we know that its theoretical foundation,
general relativity, breaks down at high enough energies, usually taken to be at the Planck scale,

E & Mp ∼ 1016 TeV . (1)

The LCDM model can only provide limited insight into the very early universe. Indeed, the crucial
role played by inflation belies the fact that inflation remains an effective theory without yet a basis
in fundamental theory. A quantum gravity theory will be able to probe higher energies and earlier
times, and should provide a consistent basis for inflation, or an alternative that replaces inflation
within the standard cosmological model.

An even bigger theoretical problem than inflation is that of the late-time acceleration in the
expansion of the universe [2, 3]. In terms of the fundamental energy density parameters, the data
indicates that the present cosmic energy budget is given by (see Fig. 1)
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Here H0 = 100hkm(s Mpc)−1 is the present value of the Hubble parameter, Λ is the cosmological
constant, K is spatial curvature, ρm0 is the present matter density and ρr0 is the present radiation
density. Newton’s constant is related to the Planck mass by G = M−2

p (we use units where the
speed of light, c = 1 and Planck’s constant ~ = 1).
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The scale factor, which is related to the cosmological redshift by z = a−1 − 1. (We normalize the
present scale factor to a0 = 1.) Together with the energy conservation equation this implies
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. (4)

The observations, which together with Eq. (3) lead to the values given in Eq. (2), produce via
Eq. (4) the dramatic conclusion that the universe is currently accelerating,
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)

> 0 . (5)

This conclusion holds only if the universe is (nearly) homogeneous and isotropic, i.e., a
Friedmann-Lemâıtre model. In this case the distance to a given redshift z, and the time elapsed
since that redshift, are tightly related via the only free function of this geometry, a(t). If the
universe instead is isotropic around us but not homogeneous, i.e., if it resembles a Tolman-Bondi–
Lemâıtre solution with our galaxy cluster at the centre, then this tight relation between distance
and time for a given redshift would be lost and present data would not necessarily imply acceler-
ation – or the data may imply acceleration without dark energy. This remains a controversial and
unresolved issue (see e.g. [5]).

Of course isotropy without homogeneity violates the Copernican Principle as it puts us in the
centre of the Universe. However, it has to be stressed that up to now observations of homogeneity
are very limited, unlike isotropy, which is firmly established. Homogeneity is usually inferred
from isotropy together with the Copernican principle. With future data, it will in principle be
possible to distinguish observationally an isotropic but inhomogeneous universe from an isotropic
and homogeneous universe (see e.g. [6]). Testing the Copernican Principle is a crucial aspect of
testing the standard cosmological model. But in the following, we will assume that the Copernican
Principle applies.

The data also indicate that the universe is currently (nearly) spatially flat,

|ΩK | ≪ 1 . (6)

It is common to assume that this implies K = 0 and to use inflation as a motivation. However,
inflation does not imply K = 0, but only ΩK → 0. Even if this distinction may be negligible in the
present universe, a nonzero curvature can have significant implications for the onset of inflation(see
e.g. [7]). In fact, if the present curvature is small but non-vanishing, neglecting it in the analysis
of Supernova data can sometimes induce surprisingly large errors [8].

The simplest way to explain acceleration is probably a cosmological constant, i.e., the LCDM
model. Even though the cosmological constant can be considered as simply an additional gravi-
tational constant (in addition to Newton’s constant), it enters the Einstein equations in exactly
the same way as a contribution from the vacuum energy, i.e., via a Lorentz-invariant energy-
momentum tensor T vac

µν = −(Λ/8πG)gµν . The only observable signature of both a cosmological
constant and vacuum energy is their effect on spacetime – and so a vacuum energy and a classical
cosmological constant cannot be distinguished by observation. Therefore the ‘classical’ notion of
the cosmological constant is effectively physically indistinguishable from quantum vacuum energy.

Even though the absolute value of vacuum energy cannot be calculated within quantum field
theory, changes in the vacuum energy (e.g. during a phase transition) can be calculated, and they
do have a physical effect – for example, on the energy levels of atoms (Lamb shift), which is well
known and well measured. Furthermore, differences of vacuum energy in different locations, e.g.,
between or on one side of two large metallic plates, have been calculated and their effect, the
Casimir force, is well measured [9]. Hence, there is no doubt about the reality of vacuum energy.
For a field theory with cutoff energy scale E, the vacuum energy density scales with the cutoff as
ρvac ∼ E4, corresponding to a cosmological constant Λvac = 8πGρvac. If E = Mp, this yields a
näıve contribution to the ‘cosmological constant’ of about Λvac ∼ 1038GeV2, whereas the measured
effective cosmological constant is the sum of the ‘bare’ cosmological constant and the contribution
from the cutoff scale,

Λeff = Λvac + Λ ≃ 10−83 GeV2 . (7)

Hence a cancellation of about 120 orders of magnitude is required. This is called the fine-tuning or
size problem of dark energy: a cancellation is needed to arrive at a result which is many orders of
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FIG. 1: Observational constraints in the (Ωm, ΩΛ) plane: joint constraints from supernovae (SNe), baryon
acoustic oscillations (BAO) and CMB (from [4]).

magnitude smaller than each of the terms.1 It is possible that the quantum vacuum energy is much
smaller than the Planck scale. But even if we set it to the lowest possible SUSY scale, Esusy ∼ 1TeV,
arguing that at higher energies vacuum energy exactly cancels due to supersymmetry, the required
cancellation is still about 60 orders of magnitude.

A reasonable attitude towards this open problem is the hope that quantum gravity will explain
this cancellation. But then it is much more likely that we shall obtain directly Λvac + Λ = 0 and
not Λvac + Λ ≃ 24πGρm(t0). This unexpected observational result leads to a second problem, the

coincidence problem: given that

ρΛ =
Λeff

8πG
= constant , while ρm ∝ (1 + z)3 , (8)

why is ρΛ of the order of the present matter density ρm(t0)? It was completely negligible in most
of the past and will entirely dominate in the future.

These problems prompted cosmologists to look for other explanation of the observed accelerated
expansion. Instead of a cosmological constant, one may introduce a scalar field or some other
contribution to the energy-momentum tensor which has an equation of state w < −1/3. Such a
component is called ‘dark energy’. So far, no consistent model of dark energy has been proposed
which can yield a convincing or natural explanation of either of these problems (see, e.g. [10]).

Alternatively, it is possible that there is no dark energy field, but instead the late-time ac-
celeration is a signal of a gravitational effect. Within the framework of general relativity, this
requires that the impact of inhomogeneities somehow acts to produce acceleration, or the appear-
ance of acceleration (within a Friedman-Lemâıtre interpretation). A non-Copernican possibility
is the Tolman-Bondi–Lemâıtre model [5]. Another (Copernican) possibility is that the ‘backre-
action’ of inhomogeneities on the background, treated via nonlinear averaging, produces effective
acceleration [11].

A more radical version is the ‘dark gravity’ approach, the idea that gravity itself is weakened
on large-scales, i.e., that there is an “infrared” modification to general relativity that accounts for

1 In quantum field theory we actually have to add to the cut-off term Λvac ≃ E4
c /M2

pl
the unmeasurable ‘bare’

cosmological constant. In this sense, the cosmological constant problem is a fine tuning between the unobservable
‘bare’ cosmological constant and the term coming from the cut-off scale.
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the late-time acceleration. The classes of modified gravity models which have been most widely
investigated are scalar-tensor models [12] and brane-world models [13].

Schematically, we are modifying the geometric side of the field equations,

Gµν +Gdark
µν = 8πGTµν , (9)

rather than the matter side,

Gµν = 8πG
(

Tµν + T dark
µν

)

, (10)

as in the general relativity approach. Modified gravity represents an intriguing possibility for re-
solving the theoretical crisis posed by late-time acceleration. However, it turns out to be extremely
difficult to modify general relativity at low energies in cosmology, without violating observational
constraints – from cosmological and solar system data, or without introducing ghosts and other
instabilities into the theory. Up to now, there is no convincing alternative to the general relativity
dark energy models – which themselves are not convincing.

The plan of the remainder of this chapter is as follows. In Section 2 we discuss constraints
which one may formulate for a dark energy or modified gravity theory from basic theoretical
requirements. In Section 3 we briefly discuss models that address the dark energy problem within
general relativity. In Section 4 we present modified gravity models. In Section 5 we conclude. This
article is based on a previous review published in [14].

II. CONSTRAINING EFFECTIVE THEORIES

Theories of both dark matter and dark energy often have very unusual Lagrangians that cannot
be quantized in the usual way, e.g. because they have non-standard kinetic terms. We then simply
call them ‘effective low energy theories’ of some unspecified high energy theory which we do not
elaborate. In this section, we want to point out a few properties which we nevertheless can require
of low energy effective theories. We first enumerate the properties which we can require from a
good basic physical theory at the classical and at the quantum level. We then discuss which of
these requirements are inherited by low energy effective descriptions.

A. FUNDAMENTAL PHYSICAL THEORIES

Here we give a minimal list of properties which we require from a fundamental physical theory.
Of course, all the points enumerated below are open for discussion, but at least we should be aware
of what we lose when we let go of them.

In our list we start with very basic requirements which become more strict as we go on. Even
though some theorists would be able to live without one or several of the criteria discussed here, we
think they are all very well founded. Furthermore, all known current physical theories, including
string- and M-theory, do respect them.

1. A physical theory allows a mathematical description

This is the basic idea of theoretical physics.

2. A fundamental physical theory allows a Lagrangian formulation

This requirement is of course much stronger than the previous one. But it has been extremely
successful in the past and was the guiding principle for the entire development of quantum
field theory and string theory in the 20th century.

Some ‘varying speed of light theories’ without Lagrangian formulation leave us more or less
free to specify the evolution of the speed of light during the expansion history of the universe.
However, if we introduce a Lagrangian formulation, we realize that most of these theories
are simply some variant of scalar-tensor theories of gravity, which are well defined and have
been studied in great detail.

If we want to keep deep physical insights like Nöther’s theorem, which relates symmetries
to conservation laws, we need to require a Lagrangian formulation for a physical theory. A
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basic ingredient of a Lagrangian physical theory is that every physical degree of freedom
has a kinetic term which consists (usually) of first order time derivatives and may also have
a ‘potential term’ which does not involve derivatives. In the Lagrangian formulation of a
fundamental physical theory, we do not allow for external, arbitrarily given functions. Every
function has to be a degree of freedom of the theory so that its evolution is determined
self-consistently via the Lagrangian equations of motion, which are of first or second order.
It is possible that the Lagrangian contains also higher than first order derivatives, but such
theories are strongly constrained by the problem of ghosts which we mention below, and by
the fact that the corresponding equations of motion are usually described by an unbounded
Hamiltonian, i.e. the system is unstable (Ostrogradski’s theorem [15, 16]).

3. Lorentz invariance

We also want to require that the theory be Lorentz invariant. Note that this requirement
is much stronger than demanding simply ‘covariance’. It requires that there be no ‘absolute
element’ in the theory apart from true constants. Lorentz covariance can always be achieved
by rewriting the equations. As an example, consider a Lagrangian given in flat space by
(∂tφ)2 − (∂xφ)2. This is clearly not Lorentz invariant. However, we can trivially write this
term in the covariant form αµν∂ν∂µφ, by setting (αµν) = diag(1,−1, 0, 0). Something like
this should of course not be allowed in a fundamental theory. A term of the form αµν∂ν∂µφ is
only allowed if αµν is itself a dynamical field of the theory. This is what we mean by requiring
that the theory is not allowed to contain ‘absolute elements’, i.e. it is Lorentz invariant and
not simply covariant.

4. Ghosts

Ghosts are fields whose kinetic term has the wrong sign. Such a field, instead of slowing down
when it climbs up a potential, is speeding up. This unstable situation leads to severe problems
when we want to quantize it, and it is generally accepted that one cannot make sense of such
a theory, at least not at the quantum level. This is not surprising, since quantization usually
is understood as defining excitations above some ground state, and a theory with a ghost has
no well defined ground state. Its kinetic energy has the wrong sign and the larger φ̇2 is, the
lower is the energy.

5. Tachyons

These are degrees of freedom that have a negative mass squared, m2 < 0. Using again the
simple scalar field example, this means that the second derivative of the potential about the
‘vacuum value’ (φ = 0 with ∂φV (0) = 0) is negative, ∂2

φV (0) < 0. In general, this need not
mean that the theory makes no sense, but rather that φ = 0 is a bad choice for expanding
around, since it is a maximum rather than a minimum of the potential and therefore an
unstable equilibrium.

This means also that the theory cannot be quantized around the classical solution φ = 0,
but it may become a good quantum theory by a simple shift, φ → φ − φ0, where φ0 is the
minimum of the potential. If the potential of a fundamental scalar field has no minimum but
only a maximum, the situation is more severe. Then the theory is truly unstable.

The last two problems, together with the Ostrogradski instability that appears in theories
with higher derivatives, can be summarized in the requirement that a meaningful theory
needs to have an energy functional which is bounded from below.

6. Superluminal motion and causality

A fundamental physical theory which does respect Lorentz invariance must not allow for
superluminal motions. If this condition is not satisfied, we can construct closed curves along
which a signal can propagate [17]. (See Fig. 2.)

At first sight one might think that a Lorentz invariant Lagrangian will automatically forbid
superluminal motions. But the situation is not so simple. Generic Lorentz invariant higher
spin theories, s ≥ 1, lead to superluminal motion [18]. While the equations are manifestly
Lorentz invariant, their characteristics in general do not coincide with the light cone and can
very well be spacelike. There are exceptions, among which are Yang Mills theories for spin 1
and the linearized Einstein equations for spin 2.
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FIG. 2: We assume a signal that can propagate at speeds v1 , v2 > 1. The frame R’ with coordinates
(t′, x′) moves with speed v < 1 in the x-direction. The speed v is chosen such that both, v1 , v2 > 1/v. A
signal is sent with velocity v1 from q0 to q1 in the frame R. Since v1 > 1/v, this signal travels backward
in time with respect to frame R′. Then a signal is sent with speed v2 from q1 to q2. Since |v2| > 1/v,
this signal, which is sent forward in time in frame R′, travels backward in time with respect to R and can
arrive at an event q2 with t2 < 0. The loop generated in this way is not ‘causal’ since both the trajectory
from q0 to q1 and the one from q1 to q2 are spacelike. So we cannot speak of the formation of closed causal
loops, but it is nevertheless a closed loop along which a signal can propagate and which therefore enables
the construction of a time machine, leading to the usual problems with causality and entropy. (From [17].)

One may object to this restriction, on the grounds that general relativity, which is certainly
a theory that is acceptable (at least at the classical level), can lead to closed causal curves,
even though it does not admit superluminal motion [19–22].

The situation is somewhat different if superluminal motion is only possible in a background
which breaks Lorentz-invariance. Then one has in principle a preferred frame and one can
specify that perturbations should always propagate with the Green’s function that corre-
sponds to the retarded Green’s function in this frame [23]. Nevertheless, one has to accept
that there will be boosted frames relative to which the Cauchy problem for the superluminal
modes is not well defined. The physics experienced by an observer in such a frame is most
unusual (to say the least).

Causality of a theory is intimately related to the analyticity properties of the S-matrix of
scattering, without which perturbative quantum theory does not make sense. Furthermore,
we require the S matrix to be unitary. Important consequences of these basic requirements
are the Kramers Kronig dispersion relations, which are a result of the analyticity properties
and hence of causality, and the optical theorem, which is a result of unitarity. The analyticity
properties have many further important consequences, such as the Froissart bound, which
implies that the total cross section converges at high energy [24].

B. LOW ENERGY EFFECTIVE THEORIES

The concept of low energy effective theories is extremely useful in physics. As one of the most
prominent examples, consider superconductivity. It would be impossible to describe this phe-
nomenon by using full quantum electrodynamics with a typical energy scale of MeV, where the
energy scale of superconductivity is milli-eV and less. However, many aspects of superconduc-
tivity can be successfully described with the Ginzburg-Landau theory of a complex scalar field.
Microscopically, this scalar field is to be identified with a Cooper pair of two electrons, but this is
irrelevant for many aspects of superconductivity.

Another example is weak interaction and four-Fermi theory. The latter is a good approximation
to weak interactions at energy scales far below the Z-boson mass. Most physicists also regard the
standard model of particle physics as a low energy effective theory which is valid below some high
energy scale beyond which new degrees of freedom become relevant, be this supersymmetry, GUT
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or string theory.
We now want to investigate which of the properties in the previous subsection may be lost if

we ‘integrate out’ high energy excitations and consider only processes which take place at energies
below some cutoff scale Ec. We cannot completely ignore all particles with masses above Ec, since
in the low energy quantum theory they can still be produced ‘virtually’, i.e., for a time shorter
than 1/Ec. This is not relevant for the initial and final states of a scattering process, but plays a
role in the interaction.

Coming back to our list in the previous subsection, we certainly want to keep the first point –
a mathematical description. But the Lagrangian formulation will also survive if we proceed in a
consistent way by simply integrating out the high energy degrees of freedom.

What about higher order derivatives in the Lagrangian? The problem is that, in general, there
is no Hamiltonian that is bounded from below if the Lagrangian contains higher derivatives, i.e.
the system is unstable [16]. Of course it is possible to find well behaved solutions of this system,
since for a given solution energy is conserved. But as soon as the system is interacting, with
other degrees of freedom, it will lower its energy and produce more and more modes of these other
degrees of freedom. This is especially serious when one quantizes the system. The vacuum is
exponentially unstable to simultaneous production of modes of positive and negative energy. Of
course one cannot simply ‘cut away’ the negative energy solutions without violating unitarity. And
even if the theory under consideration is only a low energy effective theory, it should at least be
‘unitary at low energy’. Introducing even higher derivatives only worsens the situation, since the
Hamiltonian acquires more unstable directions.

For this argument, it does not matter whether the degrees of freedom we are discussing are
fundamental or only low energy effective degrees of freedom. Even if we modify the Hamiltonian
at high energies, the instability, which is a low energy problem, will not disappear. There are only
two ways out of the Ostrogradski instability: Firstly, if the necessary condition that the lagrangian
be non-degenerate is not satisfied. The second possibility is via constraints, whereby one might be
able to eliminate the unstable directions. In practice, this has to be studied on a case by case basis.
An important example for the dark energy problem, which avoids the Ostrogradski instability via
constraints, are modified gravity Lagrangians of the form f(R), discussed below.

If the Ostradgradski theorem does not apply, we have still no guarantee that the theory has no
ghosts or that the potential energy is bounded from below (no ‘serious’ tachyon). The limitation
from the Ostragradski theorem, but also the ghost and tachyon problem, can be cast in the re-
quirement that the theory needs to have an energy functional which is bounded from below. This
condition can certainly not disappear in a consistent low energy version of a fundamental theory
which satisfies it.

The high energy cut-off will be given by some mass scale, i.e. some Lorentz invariant energy scale
of the theory, and therefore the effective low energy theory should also admit a Lorentz invariant
Lagrangian. Lorentz invariance is not a high energy phenomenon which can simply be lost at low
energies.

What about superluminal motion and causality? We do not want to require certain properties
of the S matrix of the low energy theory, since the latter may not have a meaningful perturbative
quantum theory; like the 4-Fermi theory, it may not be renormalizable. Furthermore, one can argue
that in cosmology we do have a preferred frame, the cosmological frame, hence Lorentz-invariance
is broken and we can simply demand that all superluminal modes of a field propagate forward in
cosmic time. Then no closed signal curves are possible.

But this last argument is very dangerous. Clearly, most solutions of a Lagrangian theory do
break several or most of the symmetries of the Lagrangian spontaneously. But when applying a
Lorentz transformation to a solution, we produce a new solution that, from the point of view of the
Lagrangian, has the same right of existence. If some modes of a field propagate with superluminal
speed, this means that their characteristics are spacelike. The condition that the mode has to
travel forward in time with respect to a certain frame implies that one has to use the retarded
Green’s function in this frame. Since spacelike distances have no frame-independent chronology, for
spacelike characteristics this is a frame-dependent statement. Depending on the frame of reference,
a given mode can represent a normal propagating degree of freedom, or it can satisfy an elliptic
equation, a constraint.

Furthermore, to make sure that the mode propagates forward with respect to one fixed reference
frame, one would have to use sometimes the retarded, sometimes the advanced and sometimes a
mixture of both functions, depending on the frame of reference. In a cosmological setting this can
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be done in a consistent way, but it is far from clear that such a prescription can be unambiguously
implemented for generic low energy solutions. Indeed in Ref. [25] a solution is sketched that would
not allow this, so that closed signal curves are again possible.

Therefore, we feel that Lorentz invariant low energy effective Lagrangians which allow for su-
perluminal propagation of certain modes, have to be rejected. Nevertheless, this case is not as
clear-cut and there are opposing opinions in the literature, e.g. [23].

With the advent of the ‘landscape’ [26], physicists have begun to consider anthropic arguments
to justify their theory, whenever it fits the data. Even though the existence of life on earth is
an experimental fact, we consider this argument weak, nearly tantamount to giving up physics:
‘Things are like they are since otherwise we would not be here’. We nevertheless find it important
to inquire also from a purely theoretical point of view, whether really ‘anything goes’ for effective
theories. In the following sections we shall come back to the basic requirements which we have
outlined in this section.

III. GENERAL RELATIVISTIC APPROACHES

We give a very brief overview of models for the late-time acceleration within general relativity,
before moving on to the main topic of modified gravity.

The “standard” general relativistic interpretation of dark energy is based on the cosmological
constant as vacuum energy:

Gµν = 8πG
[

Tµν + T vac
µν

]

, T vac
µν = − Λeff

8πG
gµν , (11)

where the vacuum energy-momentum tensor is Lorentz invariant. This approach faces the prob-
lem of accounting for the incredibly small and highly fine-tuned value of the vacuum energy, as
summarized in Eq. (7).

String theory provides a tantalising possibility in the form of the “landscape” of vacua [26]. There
appears to be a vast number of vacua admitted by string theory, with a broad range of vacuum
energies above and below zero. The idea is that our observable region of the universe corresponds
to a particular small positive vacuum energy, whereas other regions with greatly different vacuum
energies will look entirely different. This multitude of regions forms in some sense a “multiverse”.
This is an interesting idea, but it is highly speculative, and it is not clear how much of it will
survive the further development of string theory and cosmology.

An alternative view of LCDM is the interpretation of Λ as a classical geometric constant [27],
on a par with Newton’s constant G. Thus the field equations are interpreted in the geometrical
way,

Gµν + Λgµν = 8πGTµν . (12)

In this approach, the small and fine-tuned value of Λ is no more of a mystery than the host of other
fine-tunings in the constants of nature. For example, more than a 2% change in the strength of
the strong interaction means that no atoms beyond hydrogen can form, so that stars and galaxies
would not emerge. But it is not evident whether this distinction between Λ and ρvac is really a
physical statement, or a purely theoretical statement that cannot be tested by any experiments.
Furthermore, this classical approach to Λ does not evade the vacuum energy problem – it simply
shifts that problem to “why does the vacuum not gravitate?” The idea is that particle physics
and quantum gravity will somehow discover a cancellation or symmetry mechanism to explain why
ρvac = 0. This would be a simpler solution than that indicated by the string landscape approach,
and would evade the disturbing anthropic aspects of that approach.

Within general relativity, various alternatives to LCDM have been investigated, in attempt to
address the coincidence problem.

A. DYNAMICAL DARK ENERGY: QUINTESSENCE

Here we replace the constant Λ/8πG by the energy density of a scalar field ϕ, with Lagrangian

Lϕ = −1

2
gµν∂µϕ∂νϕ− V (ϕ) , (13)
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so that in a cosmological setting,

ρϕ =
1

2
ϕ̇2 + V (ϕ) , pϕ =

1

2
ϕ̇2 − V (ϕ) , (14)

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , (15)

H2 +
K

a2
=

8πG

3
(ρr + ρm + ρϕ) . (16)

The field rolls down its potential and the dark energy density varies through the history of the
universe. “Tracker” potentials have been found for which the field energy density follows that of
the dominant matter component. This offers the possibility of solving or alleviating the fine tuning
problem of the resulting cosmological constant. Although these models are insensitive to initial
conditions, they do require a strong fine-tuning of the parameters of the Lagrangian to secure recent
dominance of the field, and hence do not evade the coincidence problem. An attempt to address
the coincidence problem is proposed in [28], where the transition from the tracker behavior to dark
energy domination is tied to the neutrino mass.

More generally, the quintessence potential, somewhat like the inflaton potential, remains arbi-
trary, until and unless fundamental physics selects a potential. There is currently no natural choice
of potential.

In conclusion, there is no compelling reason as yet to choose quintessence above the LCDM model
of dark energy. Quintessence models do not seem more natural, better motivated or less contrived
than LCDM. Nevertheless, they are a viable possibility and computations are straightforward.
Therefore, they remain an interesting target for observations to shoot at [10].

B. DYNAMICAL DARK ENERGY: MORE GENERAL MODELS

It is possible to couple quintessence to cold dark matter without violating current constraints
from fifth force experiments. This could lead to a new approach to the coincidence problem, since
a coupling may provide a less unnatural way to explain why acceleration kicks in when ρm ∼ ρde.
In the presence of coupling, the energy conservation equations in the background become

ϕ̇ [ϕ̈+ 3Hϕ̇+ V ′(ϕ)] = Q , (17)

ρ̇dm + 3Hρdm = −Q , (18)

where Q is the rate of energy exchange. It is relatively simple to match the geometric data on the
background expansion history [29]. The perturbations show that there is a momentum transfer
as well as an energy transfer. Analysis of the perturbations typically leads to more stringent
constraints, with some forms of coupling being ruled out by instabilities [30].

Another possibility is a scalar field with non-standard kinetic term in the Lagrangian, for exam-
ple,

Lϕ = F (ϕ,X) − V (ϕ) where X ≡ −1

2
gµν∂µϕ∂νϕ . (19)

The standard Lagrangian has F (ϕ,X) = X . Some of the non-standard F models may be ruled
out on theoretical grounds. An example is provided by “phantom” fields, with negative kinetic
energy density (ghosts), F (ϕ,X) = −X . They have w < −1, so that their energy density grows

with expansion. This bizarre behaviour is reflected in the instability of the quantum vacuum for
phantom fields.

Another example is “k-essence” fields [31], which have F (ϕ,X) = ϕ−2f(X). These theories have
no ghosts, and they can produce late-time acceleration. The sound speed of the field fluctuations
for the Lagrangian in Eq. (19) is

c2s =
F,X

F,X + 2XF,XX
. (20)

For a standard Lagrangian, c2s = 1. But for the class of F that produce accelerating k-essence
models, it turns out that there is always an epoch during which c2s > 1, so that these models may
be ruled out according to our causality requirement. They violate standard causality [32].
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For models not ruled out on theoretical grounds, there is the same general problem as with
quintessence, i.e. that no model is better motivated than LCDM, none is selected by fundamental
physics and any choice of model is more or less arbitrary. Quintessence then appears to at least
have the advantage of simplicity – although LCDM has the same advantage over quintessence.

When investigating generic dark energy models we always have to keep in mind that since both
dark energy and dark matter are only detected gravitationally, we can only measure the total
energy momentum tensor of the dark component,

T dark
µν = T de

µν + T dm
µν . (21)

Hence, if we have no information on the equation of state of dark energy, there is a degeneracy
between the dark energy equation of state w(t) and Ωdm. Without additional assumptions, we
cannot measure either of them by purely gravitational observations [33]. This degeneracy becomes
even worse if we allow for interactions between dark matter and dark energy.

C. DARK ENERGY AS A NONLINEAR EFFECT FROM STRUCTURE

As structure forms and the matter density perturbation becomes nonlinear, there are two ques-
tions that are posed: (1) what is the back-reaction effect of this nonlinear process on the background
cosmology? (2) how do we perform a covariant and gauge-invariant averaging over the inhomoge-
neous universe to arrive at the correct FRW background? The simplistic answers to these questions
are: (1) the effect is negligible since it occurs on scales too small to be cosmologically relevant;
(2) in light of this, the background is independent of structure formation, i.e., it is the same as
in the linear regime. A quantitative analysis is needed to fully resolve both issues. However, this
is very complicated because it involves the nonlinear features of general relativity in an essential
way.

There have been claims that these simplistic answers are wrong, and that, on the contrary, the
effects are large enough to mimic an accelerating universe. This would indeed be a dramatic and
satisfying resolution of the coincidence problem, without the need for any dark energy field. This
issue is discussed in [11]. Of course, the problem of why the vacuum does not gravitate would
remain.

However, these claims have been disputed, and it is fair to say that there is as yet no convincing
demonstration that acceleration could emerge naturally from nonlinear effects of structure forma-
tion [34]. We should however note that backreaction/averaging effects could significantly affect our
estimations of cosmological parameters, even if they do not lead to acceleration [35].

It is in principle also possible that the universe around us resembles more a spherically symmetric
but inhomogeneous solution of Einstein’s equation, a Tolman-Bondi-Lemâıtre universe, than a
Friedmann-Lemâıtre universe. In this case, what appears as cosmic acceleration to us could perhaps
be explained within simple matter models which only contain dust [5]. However, this would imply
that we are situated very close to the centre of a huge (nearly) spherical structure. Apart from
violating the Copernican principle, this poses another fine tuning problem, and it also not clear
to us whether these models are consistent with all observations – not just supernova, but baryon
acoustic oscillations, CMB anisotropies, and weak lensing.

IV. THE MODIFIED GRAVITY APPROACH: DARK GRAVITY

Late-time acceleration from nonlinear effects of structure formation is an attempt, within general
relativity, to solve the coincidence problem without a dark energy field. The modified gravity
approach shares the assumption that there is no dark energy field, but generates the acceleration
via “dark gravity”, i.e. a weakening of gravity on the largest scales, due to a modification of general
relativity itself.

Could the late-time acceleration of the universe be a gravitational effect? (Note that in general
also this does not remove the problem of why vacuum energy does not gravitate or is very small.)
A historical precedent is provided by attempts to explain the anomalous precession of Mercury’s
perihelion by a “dark planet, named Vulcan. In the end, it was discovered that a modification to
Newtonian gravity was needed.
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As we have argued in Section II, a consistent modification of general relativity requires a co-
variant formulation of the field equations in the general case, i.e., including inhomogeneities and
anisotropies. It is not sufficient to propose ad hoc modifications of the Friedman equation, of the
form

f(H2) =
8πG

3
ρ or H2 =

8πG

3
g(ρ) , (22)

for some functions f or g. Apart from the fundamental problems outlined in Section II, such a
relation allows us to compute the supernova distance/ redshift relation using this equation – but we
cannot compute the density perturbations without knowing the covariant parent theory that leads
to such a modified Friedman equation. And we also cannot compute the solar system predictions.

It is very difficult to produce infrared corrections to general relativity that meet all the minimum
requirements:

• Theoretical consistency in the sense discussed in Section II.

• Late-time acceleration consistent with supernova luminosity distances, baryon acoustic oscil-
lations and other data that constrain the expansion history.

• A matter-dominated era with an evolution of the scale factor a(t) that is consistent with the
requirements of structure formation.

• Density perturbations that are consistent with the observed growth factor, matter power
spectrum, peculiar velocities, CMB anisotropies and weak lensing power spectrum.

• Stable static spherical solutions for stars, and consistency with terrestrial and solar system
observational constraints.

• Consistency with binary pulsar period data.

One of the major challenges is to compute the cosmological perturbations for structure formation
in a modified gravity theory. In general relativity, the perturbations are well understood. The
perturbed metric in Newtonian gauge is

ds2 = −(1 + 2Ψ)dt2 + a2(1 + 2Φ)d~x 2, (23)

and the metric potentials define two important combinations:

Φ+ =
1

2
(Φ + Ψ) , Φ− =

1

2
(Φ − Ψ) . (24)

In the Newtonian limit Ψ = −Φ = −Φ− is the ordinary Newtonian potential and Φ+ = 0. The
potential Φ+ is sourced by anisotropic stresses. It vanishes if the gravitational field is entirely
due to non-relativistic matter or a perfect fluid. The (comoving) matter density perturbation
∆ = δ − 3aHv obeys the Poisson and evolution equations on sub-Hubble scales:

k2Φ = 4πGa2ρ∆ , (25)

∆̈ + 2H∆̇ − 4πGρ∆ = 0 . (26)

These equations are exact on all scales, if perturbations are purely matter (w = 0) and there
are no anisotropic stresses. On super-Hubble scales (and for adiabatic perturbations, but in the
presence of anisotropic stresses), the evolution of the perturbations is entirely determined by the
background [36] (and the anisotropic stresses which relate the potentials Ψ and Φ)

Φ′′ − Ψ′′ − H ′′

H ′
Φ′ −

(

H ′

H
− H ′′

H ′

)

Ψ = 0 , (27)

where a prime denotes d/d ln a.
The large-angle anisotropies in the CMB temperature encode a signature of the formation of

structure. They are determined by the propagation of photons along the geodesics of the perturbed
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geometry. For adiabatic perturbations one obtains on large scales the following expression [37] for
the temperature fluctuation in direction n:

δT

T
(n)

∣

∣

∣

∣

SW

=

[

1

3
Ψ +

2

3
HΦ̇ +

1

4
∆r + Vb · n

]

(xdec, tdec) − 2

∫

aΦ̇−(x(v), t(v)) dv . (28)

The integral is along the (unperturbed) trajectory of the light ray with affine parameter v, from
last scattering to today. The position at decoupling, xdec, depends on n. The same integral also
determines the weak lensing signal, since the deflection angle is given by (see e.g. [37])

~α = 2

∫

~∇⊥Φ− dv , (29)

where ∇⊥ is the gradient operator in the plane normal to n.
The first term in the square brackets of Eq. (28) is called the ordinary Sachs Wolfe effect (OSW),

the second term is usually small since at the time of decoupling the Universe is matter dominated
and this term vanishes in a purely matter dominated Universe. The third term is responsible for
the acoustic peaks in the CMB anisotropy spectrum and the fourth term is the Doppler term,
due to the motion of the emitting electrons, Vb is the baryon velocity field. The integral is the
integrated Sachs Wolfe effect (ISW). It comes from the fact that the photons are blue shifted when
they fall into a gravitational potential and redshifted when they climb out of it. Hence if the
potential varies during this time, they acquire a net energy shift.

In a modified gravity theory, which we assume to be a metric theory obeying energy-momentum
conservation, Eq. (23) still holds, and so does the super-Hubble evolution equation (27), and the
SW and lensing relations (28) and (29). But in general

Φ+ 6= 0 , (30)

even in the absence of matter anisotropic stress – the modified-gravity effects produce a “dark”
anisotropic stress. In addition, the Poisson equation and the evolution of density perturbations
will be modified.

A. f(R) AND SCALAR-TENSOR THEORIES

General relativity has a unique status as a theory where gravity is mediated by a massless spin-2
particle, and the field equations are second order. Consider modifications to the Einstein-Hilbert
action of the general form

−
∫

d4x
√−g R → −

∫

d4x
√−g f(R,RµνR

µν , CµναβC
µναβ) , (31)

where Rµν is the Ricci tensor, Cµναβ is the Weyl tensor and f(x1, x2, x3) is an arbitrary (at
least three times differentiable) function. Since the curvature tensors contain second derivatives
of the metric, the resulting equations of motion will in general be fourth order, and gravity is
carried also by massless spin-0 and spin-1 fields. However Ostrogradski’s theorem applies: The
usual Hamiltonian formulation of general relativity leads to six independent metric components
gij which all acquire higher derivative terms. There is actually only one way out, which is the case
∂2f = ∂3f = 0, i.e., f may only depend on the Ricci scalar.2 The reason is that in the Ricci scalar
R, only a single component of the metric contains second derivatives. In this case, the consequent
new degree of freedom can be fixed completely by the g00 constraint, so that the only instability
in f(R) theories is the usual one associated with gravitational collapse [16].

2 Another possibility is the addition of a Gauss Bonnet term,
√
−gf(LGB), where LGB = R2 − 4RµνRµν +

RµνσρRµνσρ. In four dimensions
√
−gLGB contributes only a surface term and does not enter the equations of

motion. However,
√
−gf(LGB) is non-trivial. Such a term also becomes interesting in scalar-tensor theories of

gravity where one may consider a contribution of the form
√
−gφLGB to the Lagrangian.
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FIG. 3: Left: The ISW potential, (Φ − Ψ)/2, for f(R) models, where the parameter B0 indicates the
strength of deviation from general relativity [see Eq. (43)].
Right: The large-angle CMB anisotropies for the models of the left figure. (For more details see [43], where
this figure is taken from.)

Therefore, the only acceptable low-energy generalizations of the Einstein-Hilbert action of general
relativity are f(R) theories, with f ′′(R) 6= 0. The field equations are

f ′(R)Rµν − 1

2
f(R)gµν − [∇µ∇ν − gµν∇α∇α] f ′(R) = 8πGTµν , (32)

and standard energy-momentum conservation holds:

∇νT
µν = 0 . (33)

The trace of the field equations is a wave-like equation for f ′, with source term T = Tµ
µ:

3∇α∇αf
′(R) +Rf ′(R) − 2f(R) = 8πGT . (34)

This equation is important for investigating issues of stability in the theory, and it also implies
that Birkhoff’s theorem does not hold.

There has been a revival of interest in f(R) theories due to their ability to produce late-time
acceleration [38]. However, it turns out to be extremely difficult for this simplified class of modified
theories to pass the observational and theoretical tests. A simple example of an f(R) model is [39]

f(R) = R− µ

R
. (35)

For |µ| ∼ H4
0 , this model successfully achieves late-time acceleration as the µ/R term starts to dom-

inate. But the model strongly violates solar system constraints, can have a strongly non-standard
matter era before the late-time acceleration, and suffers from nonlinear matter instabilities [41].

In f(R) theories, the additional degree of freedom can be interpreted as a scalar field, and in
this sense, f(R) theories are mathematically equivalent to scalar-tensor theories via

ψ ≡ f ′(R) , U(ψ) ≡ −ψR(ψ) + f(R(ψ)) , (36)

L = − 1

16πG

√−g [ψR+ U(ψ)] . (37)

This Lagrangian is the Jordan-frame representation of f(R). It can be conformally transformed
to the Einstein frame, via the transformation

g̃µν = ψgµν , ϕ =

√

3

4πG
lnψ . (38)
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In terms of g̃µν and ϕ the Lagrangian then becomes a standard scalar field Lagrangian,

L =
−1

16πG

√

−g̃
[

R̃+
1

2
g̃µν∂µϕ∂νϕ+ V (ϕ)

]

, (39)

where

V (ϕ) =
U(ψ(ϕ))

ψ(ϕ)2
. (40)

This example shows that modifying gravity (dark gravity) or modifying the energy momentum
tensor (dark energy) can be seen as a different description of the same physics. Only the coupling
of the scalar field ϕ to ordinary matter, shows that this theory originates from a scalar-tensor
theory of gravity – and this non-standard coupling reflects the fact that gravity is also mediated
by a spin-0 degree of freedom, in contrast to general relativity with a standard scalar field.

The spin-0 field is precisely the cause of the problem with solar system constraints in most f(R)
models, since the requirement of late-time acceleration leads to a very light mass for the scalar.
The modification to the growth of large-scale structure due to this light scalar may be kept within
observational limits. But on solar system scales, the coupling of the light scalar to the sun and
planets, induces strong deviations from the weak-field Newtonian limit of general relativity, in
obvious violation of observations. In terms of the Lagrangian (39) this scalar has an associated
Brans-Dicke parameter that vanishes, ωBD = 0, whereas solar system and binary pulsar data
currently require ωBD > 40000.

The only way to evade this problem is to increase the mass of the scalar near massive objects
like the sun, so that the Newtonian limit can be recovered, while preserving the ultralight mass
on cosmological scales. This “chameleon” mechanism can be used to construct models that evade
solar system/ binary pulsar constraints [42]. However the price to pay is that additional parameters
must be introduced, and the chosen f(R) tends to look unnatural and strongly fine-tuned. An
example is

f(R) = R+ λR0

[

(

1 +
R2

R2
0

)−n

− 1

]

, (41)

where λ,R0, n are positive parameters.
Cosmological perturbations in f(R) theory are well understood [40]. The modification to general

relativity produces a dark anisotropic stress

Φ+ ∝ f ′′(R)

f ′(R)
, (42)

and deviations from general relativity are conveniently characterized by the dimensionless param-
eter

B =
dR/d ln a

d lnH/d ln a

f ′′(R)

f ′(R)
. (43)

If we invoke a chameleon mechanism, then it is possible for these models to match the observed
large-angle CMB anisotropies (see Fig. 3) and linear matter power spectrum [43]. However, there
may also be fatal problems with singularities in the strong gravity regime, which would be incom-
patible with the existence of neutron stars [44]. These problems appear to arise in the successful
chameleon models, and they are another unintended, and unexpected, consequence of the scalar
degree of freedom, this time at high energies.

It is possible that an ultraviolet completion of the theory will cure the high-energy singularity
problem. If we assume this to be the case, then f(R) models that pass the solar system and late-
time acceleration tests are valuable working models for probing the features of modified gravity
theories and for developing tests of general relativity itself. In order to pursue this programme,
one needs to compute not only the linear cosmological perturbations and their signature in the
growth factor, the matter power spectrum and the CMB anisotropies – but also the weak lensing
signal. For this, we need the additional step of understanding the transition from the linear to the
nonlinear regime. Scalar-tensor behaviour on cosmological scales relevant to structure formation in
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the linear regime, must evolve to Newtonian-like behaviour on small scales in the nonlinear regime
– otherwise we cannot recover the general relativistic limit in the solar system. This means that the
standard fitting functions in general relativity cannot be applied, and we require the development
of N-body codes in f(R) theories [46].

More general scalar-tensor theories [45], which may also be motivated via low-energy string
theory, have an action of the form

−
∫

d4x
√−g

[

F (ψ)R +
1

2
gµν∂µψ∂νψ + U(ψ)

]

, (44)

where ψ is the spin-0 field supplementing the spin-2 graviton. In the context of late-time accel-
eration, these models are also known as “extended quintessence”. Scalar-tensor theories contain
two functions, F and U . This additional freedom allows for greater flexibility in meeting the ob-
servational and theoretical constraints. However, the price we pay is additional complexity – and
arbitrariness. The f(R) theories have one arbitrary function, and here there are two, F (ψ) and
U(ψ). There is no preferred choice of these functions from fundamental theory.

Modifications of the Einstein-Hilbert action, which lead to fourth-order field equations, either
struggle to meet the minimum requirements in the simplest cases, or contain more complexity and
arbitrary choices than quintessence models in general relativity. Therefore, none of these models
appears to be a serious competitor to quintessence in general relativity.

B. BRANE-WORLD MODELS

Modifications to general relativity within the framework of quantum gravity are typically ultra-
violet corrections that must arise at high energies in the very early universe or during collapse to a
black hole. The leading candidate for a quantum gravity theory, string theory, is able to remove the
infinities of quantum field theory and unify the fundamental interactions, including gravity. But
there is a price – the theory is only consistent in 9 space dimensions. Branes are extended objects
of higher dimension than strings, and play a fundamental role in the theory, especially D-branes,
on which open strings can end. Roughly speaking, the endpoints of open strings, which describe
the standard model particles like fermions and gauge bosons, are attached to branes, while the
closed strings of the gravitational sector can move freely in the higher-dimensional “bulk” space-
time. Classically, this is realised via the localization of matter and radiation fields on the brane,
with gravity propagating in the bulk (see Fig. 4).

e−

e+

γ

G

FIG. 4: The confinement of matter to the brane, while gravity propagates in the bulk (from [47]).
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The implementation of string theory in cosmology is extremely difficult, given the complexity
of the theory. This motivates the development of phenomenological models, as an intermediary
between observations and fundamental theory. Brane-world cosmological models inherit some
aspects of string theory, but do not attempt to impose the full machinery of the theory. Instead,
simplifications are introduced in order to be able to construct cosmological models that can be
used to compute observational predictions (see [48] for reviews in this spirit). Cosmological data
can then be used to constrain the brane-world models, and hopefully provide constraints on string
theory, as well as pointers for the further development of string theory.

It turns out that even the simplest (5D, we effectively assume that 5 of the extra dimensions
in the “parent” string theory may be ignored at low energies) brane-world models are remarkably
rich – and the computation of their cosmological perturbations is complicated, and in many cases
still incomplete. A key reason for this is that the higher-dimensional graviton produces a tower of
4-dimensional massive spin-0, spin-1 and spin-2 modes on the brane, in addition to the standard
massless spin-2 mode on the brane (or in some cases, instead of the massless spin-2 mode). In the
case of some brane models, there are in addition a massless gravi-scalar and gravi-vector which
modify the dynamics.

Most brane-world models modify general relativity at high energies. The main examples are
those of Randall-Sundrum (RS) type [51], where a FRW brane is embedded in a 5D anti de Sitter
bulk, with curvature radius ℓ. At low energies Hℓ≪ 1, the zero-mode of the graviton dominates on
the brane, and general relativity is recovered to a good approximation. At high energies, Hℓ≫ 1,
the massive modes of the graviton dominate over the zero-mode, and gravity on the brane behaves
increasingly five-dimensional. On the brane, the standard conservation equation holds,

ρ̇+ 3H(ρ+ p) = 0 , (45)

but the Friedmann equation is modified by an ultraviolet correction:

H2 +
K

a2
=

8πG

3
ρ

(

1 +
2πGℓ2

3
ρ

)

+
Λ

3
. (46)

The ρ2 term is the ultraviolet correction. At low energies, this term is negligible, and we recover
H2 +K/a2 ∝ ρ + Λ/8πG. At high energies, gravity “leaks” off the brane and H2 ∝ ρ2. This 5D
behaviour means that a given energy density produces a greater rate of expansion than it would
in general relativity. As a consequence, inflation in the early universe is modified in interesting
ways [48].

By contrast, the brane-world model of Dvali-Gabadadze-Porrati [49] (DGP), which was general-
ized to cosmology by Deffayet [50], modifies general relativity at low energies. This model produces
‘self-acceleration’ of the late-time universe due to a weakening of gravity at low energies. Like the
RS model, the DGP model is a 5D model with infinite extra dimension.

The action is given by

−1

16πG

[

1

rc

∫

bulk

d5x
√

−g(5)R(5) +

∫

brane

d4x
√−g R

]

. (47)

The bulk is assumed to be 5D Minkowski spacetime. Unlike the AdS bulk of the RS model, the
Minkowski bulk has infinite volume. Consequently, there is no normalizable zero-mode of the 4D
graviton in the DGP brane-world. Gravity leaks off the 4D brane into the bulk at large scales,
r ≫ rc, where the first term in the sum (47) dominates. On small scales, gravity is effectively
bound to the brane and 4D dynamics is recovered to a good approximation, as the second term
dominates. The transition from 4D to 5D behaviour is governed by the crossover scale rc. For a
Minkowski brane, the weak-field gravitational potential behaves as

Ψ ∝
{

r−1 for r ≪ rc
r−2 for r ≫ rc

(48)

On a Friedmann brane, gravity leakage at late times in the cosmological evolution can initiate
acceleration – not due to any negative pressure field, but due to the weakening of gravity on the
brane. 4D gravity is recovered at high energy via the lightest massive modes of the 5D graviton,
effectively via an ultra-light metastable graviton.
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FIG. 5: The confidence contours for supernova data in the DGP density parameter plane. The blue (solid)
contours are for SNLS data, and the brown (dashed) contours are for the Gold data. The red (dotted)
curve defines the flat models, the black (dot-dashed) curve defines zero acceleration today, and the shaded
region contains models without a big bang. (From [52].)
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FIG. 6: Joint constraints [solid thick (blue)] from the SNLS data [solid thin (yellow)], the BAO peak at
z = 0.35 [dotted (green)] and the CMB shift parameter from WMAP3 [dot-dashed (red)]. The left plot
show DGP models , the right plot shows LCDM. The thick dashed (black) line represents the flat models,
ΩK = 0. (From [52].)

The energy conservation equation remains the same as in general relativity, but the Friedmann
equation is modified:

ρ̇+ 3H(ρ+ p) = 0 , (49)

H2 +
K

a2
− 1

rc

√

H2 +
K

a2
=

8πG

3
ρ . (50)

To arrive at Eq. (50) we have to take a square root which implies a choice of sign. As we shall see,



18

the above choice has the advantage of leading to acceleration but the disadvantage of the presence
of a ’ghost’ in this background. It is not clear whether these facts are related. We shall discuss
the ’normal’ DGP model, where the opposite sign of the square root is chosen in the next section.

From Eq. (50) we infer that at early times, i.e., Hrc ≫ 1, the general relativistic Friedman
equation is recovered. By contrast, at late times in an expanding CDM universe, with ρ ∝ a−3 → 0,
we have

H → H∞ =
1

rc
, (51)

so that expansion accelerates and is asymptotically de Sitter. The above equations imply

Ḣ − K

a2
= −4πGρ

[

1 +
1

√

1 + 32πGr2cρ/3

]

. (52)

In order to achieve self-acceleration at late times, we require

rc & H−1
0 , (53)

since H0 . H∞. This is confirmed by fitting supernova observations, as shown in Fig. 5. The
dimensionless cross-over parameter is defined as

Ωrc
=

1

4(H0rc)2
, (54)

and the LCDM relation,

Ωm + ΩΛ + ΩK = 1 , (55)

is modified to

Ωm + 2
√

Ωrc

√

1 − ΩK + ΩK = 1 . (56)

LCDM and DGP can both account for the supernova observations, with the fine-tuned values
Λ ∼ H2

0 and rc ∼ H−1
0 respectively. When we add further constraints on the expansion history

from the baryon acoustic oscillation peak at z = 0.35 and the CMB shift parameter, the DGP
flat models are in strong tension with data, whereas LCDM models provide a consistent fit. This
is evident in Fig. 6. The open DGP models provide a somewhat better fit to the geometric data
– essentially because the lower value of Ωm favoured by supernovae reduces the distance to last
scattering and an open geometry is able to extend that distance. For a combination of SNe, CMB
shift and Hubble Key Project data, the best-fit open DGP also performs better than the flat
DGP [53], as shown in Fig. 7.

Observations based on structure formation provide further evidence of the difference between
DGP and LCDM, since the two models suppress the growth of density perturbations in different
ways [54]. The distance-based observations draw only upon the background 4D Friedman equa-
tion (50) in DGP models – and therefore there are quintessence models in general relativity that
can produce precisely the same supernova distances as DGP. By contrast, structure formation
observations require the 5D perturbations in DGP, and one cannot find equivalent quintessence
models [56]. One can find 4D general relativity models, with dark energy anisotropic stress and
variable sound speed, that can in principle mimic DGP [58]. However, these models are highly
unphysical and can be discounted on grounds of theoretical consistency.

For LCDM, the analysis of density perturbations is well understood. For DGP the perturbations
are much more subtle and complicated [13]. Although matter is confined to the 4D brane, gravity
is fundamentally 5D, and the 5D bulk gravitational field responds to and back-reacts on 4D density
perturbations. The evolution of density perturbations requires an analysis based on the 5D nature
of gravity. In particular, the 5D gravitational field produces an effective “dark” anisotropic stress on
the 4D universe. If one neglects this stress and other 5D effects, and simply treats the perturbations
as 4D perturbations with a modified background Hubble rate – then as a consequence, the 4D
Bianchi identity on the brane is violated, i.e., ∇νGµν 6= 0, and the results are inconsistent. When
the 5D effects are incorporated [56, 57], the 4D Bianchi identity is automatically satisfied. (See
Fig 8.)

There are three regimes governing structure formation in DGP models:
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FIG. 7: The difference in χ2 between best-fit DGP (flat and open) and best-fit (flat) LCDM, using SNe,
CMB shift and H0 Key Project data. (From [53].)

• On small scales, below the so-called Vainshtein radius (which for cosmological purposes is
roughly the scale of clusters), the spin-0 scalar degree of freedom becomes strongly coupled,
so that the general relativistic limit is recovered [59].

• On scales relevant for structure formation, i.e. between cluster scales and the Hubble radius,
the spin-0 scalar degree of freedom produces a scalar-tensor behaviour. A quasi-static ap-
proximation to the 5D perturbations shows that DGP gravity is like a Brans-Dicke theory
with parameter [56]

ωBD =
3

2
(β − 1), (57)

where

β = 1 + 2H2rc

(

H2 +
K

a2

)−1/2
[

1 +
Ḣ

3H2
+

2K

3a2H2

]

. (58)

At late times in an expanding universe, whenHrc & 1, it follows that β < 1, so that ωBD < 0.
(This signals a pathology in DGP which is discussed below.)

• Although the quasi-static approximation allows us to analytically solve the 5D wave equation
for the bulk degree of freedom, this approximation breaks down near and beyond the Hubble
radius. On super-horizon scales, 5D gravity effects are dominant, and we need to solve
numerically the partial differential equation governing the 5D bulk variable [57].

On sub-horizon scales relevant for linear structure formation, 5D effects produce a difference
between Φ an −Ψ:

k2Φ = 4πGa2

(

1 − 1

3β

)

ρ∆ , (59)

k2Ψ = −4πGa2

(

1 +
1

3β

)

ρ∆ , (60)

so that there is an effective dark anisotropic stress on the brane:

k2(Φ + Ψ) = −8πGa2

3β2
ρ∆ . (61)
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FIG. 8: The growth factor g(a) = ∆(a)/a for LCDM (long dashed) and DGP (solid, thick), as well as for a
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the incorrect result in which the 5D effects are set to zero. (From [56].)

The density perturbations evolve as

∆̈ + 2H∆̇− 4πG

(

1 − 1

3β

)

ρ∆ = 0 . (62)

The linear growth factor, g(a) = ∆(a)/a (i.e., normalized to the flat CDM case, ∆ ∝ a), is shown
in Fig. 8. This shows the dramatic suppression of growth in DGP relative to LCDM – from both
the background expansion and the metric perturbations. If we parameterize the growth factor in
the usual way, we can quantify the deviation from general relativity with smooth dark energy [55]:

f :=
d ln ∆

d ln a
= Ωm(a)γ , γ ≈

{

0.55 + 0.05[1 + w(z = 1)] GR, smooth DE
0.68 DGP

(63)

Observational data on the growth factor [60] are not yet precise enough to provide meaningful
constraints on the DGP model. Instead, we can look at the large-angle anisotropies of the CMB, i.e.
the ISW effect. This requires a treatment of perturbations near and beyond the horizon scale. The
full numerical solution has been given by [57], and is illustrated in Fig. 9. The CMB anisotropies
are also shown in Fig. 9, as computed in [62] using a scaling approximation to the super-Hubble
modes [61] (the accuracy of the scaling ansatz is verified by the numerical results [57]).

It is evident from Fig. 9 that the DGP model which provides a best fit to the geometric data (see
Fig. 7), is in serious tension with the WMAP5 data on large scales. The problem arises form the
large deviation of Φ− = (Φ−Ψ)/2 in the DGP model from the LCDM model. This deviation, i.e.
a stronger decay of Φ−, leads to an over-strong ISW effect [see Eq. (28)], in tension with WMAP5
observations.

As a result of the combined observations of background expansion history and large-angle CMB
anisotropies, the DGP model provides a worse fit to the data than LCDM at about the 5σ level [62].
Effectively, the DGP model is ruled out by observations in comparison with the LCDM model.

In addition to the severe problems posed by cosmological observations, a problem of theoretical
consistency is posed by the fact that the late-time asymptotic de Sitter solution in DGP cosmo-
logical models has a ghost. The ghost is signaled by the negative Brans-Dicke parameter in the
effective theory that approximates the DGP on cosmological sub-horizon scales:

ωBD < 0 . (64)

The existence of the ghost is confirmed by detailed analysis of the 5D perturbations in the de Sitter
limit [63, 64]. The DGP ghost is a ghost mode in the scalar sector of the gravitational field – which
is more serious than the ghost in a phantom scalar field. It effectively rules out the DGP, since it
is hard to see how an ultraviolet completion of the DGP can cure the infrared ghost problem..
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FIG. 9: Left: Numerical solutions for DGP density and metric perturbations, showing also the quasistatic
solution, which is an increasingly poor approximation as the scale is increased. (From [57].)
Right: Constraints on DGP (the open model that provides a best fit to geometric data) from CMB
anisotropies (WMAP5). The DGP model is the solid curve, QCDM (short-dashed curve) is the quintessence
model with the same background expansion history as the DGP model, and LCDM is the dashed curve (a
slightly closed model that gives the best fit to WMAP5, HST and SNLS data). (From [62].)

C. DEGRAVITATION AND NORMAL DGP

The self-accelerating DGP is effectively ruled out as a cosmological model by observations and
by the problem of the ghost in the gravitational sector. Indeed, it may be the case that self-
acceleration comes with the price of ghost states. An alternative idea is that massive-graviton
theories (like the DGP) may lead to degravitation [65], i.e., the feature that the vacuum energy
(cosmological constant), does not gravitate at the level expected [as in Eq. (7)], and possibly not
at all.

To achieve a reduction of gravitation on very large scales, degravitation, Newton’s constant is
promoted to a ’high-pass filter’ and Einstein’s equations are modified to

G−1(L2�)Gµν = 8πTµν . (65)

We want G(L2�) to act as a high pass filter: for scales smaller than L it is constant while scales
much larger than L are filtered out, degravitated. For this to work, G−1 must contain inverse
powers of �, hence it must be non-local. Furthermore, this equation cannot describe a massless
spin 2 graviton with only two degrees of freedom, but it leads, at the linear level to massive gravitons
with mass 1/L or a superposition (spectral density) of massive gravitons. These are known to carry
three additional polarizations two of helicity 1 and one helicity 0 state. The latter couples to the
trace of the energy momentum tensor and remains present also in the zero-mass limit, the well
known van Dam-Veltman-Zakharov discontinuity of massive gravity [66]. This problem might be
solved on small scales, where the extra polarizations become strongly coupled due to non-linear
self interactions [67]. One can show that in regions where the curvature exceeds L−2, the extra
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FIG. 10: Left: The embedding of the self-accelerating and normal branches of the DGP brane in a
Minkowski bulk. (From [64].)
Right: Joint constraints on normal DGP (flat, K = 0) from SNLS, CMB shift (WMAP3) and BAO
(z = 0.35) data. The best-fit is the solid point, and is indistinguishable from the LCDM limit. The shaded
region is unphysical and its upper boundary represents flat LCDM models. (From [70].)

polarizations are suppressed by powers of L and we recover ordinary spin-2 gravity.
Contrary to the models discussed so far, these theories can in principle address the cosmological

constant problem: the cosmological constant is not necessarily small, but we cannot see it in
gravitational experiments since it is (nearly) degravitated. On the other hand, the problem of the
present cosmological acceleration is not addressed.

Apart from a simple massive graviton, the simplest example of degravitation is provided by
the so-called “normal” (i.e., non-self-accelerating and ghost free) branch of the DGP [68], which
arises from a different embedding of the DGP brane in the Minkowski bulk (see Fig. 10). In the
background dynamics, this amounts to a replacement rc → −rc in Eq. (50) – and there is no longer
late-time self-acceleration. It is therefore necessary to include a Λ term in order to accelerate the
late universe:

H2 +
K

a2
+

1

rc

√

H2 +
K

a2
=

8πG

3
ρ+

Λ

3
. (66)

(Normal DGP models with a quintessence field have also been investigated [69].) Using the di-
mensionless crossover parameter defined in Eq. (54), the densities are related at the present time
by

√

1 − ΩK = −
√

Ωrc
+

√

Ωrc
+ Ωm + ΩΛ , (67)

which can be compared with the self-accelerating DGP relation (56).
The degravitation feature of normal DGP is that Λ is effectively screened by 5D gravity effects.

This follows from rewriting the modified Friedmann equation (66) in standard general relativistic
form, with

Λeff = Λ − 3

rc

√

H2 +
K

a2
< Λ . (68)

Thus 5D gravity in normal DGP can in principle reduce the bare vacuum energy significantly.
However, figure 10 shows that best-fit flat models, using geometric data, only admit insignificant
screening [70]. The closed models provide a better fit to the data [71], and can allow a bare vacuum
energy term with ΩΛ > 1, as shown in Fig. 11. This does not address the fundamental problem
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FIG. 11: Left: Joint constraints on normal DGP from SNe Gold, CMB shift (WMAP3) and H0 data in the
projected curvature-Λ plane, after marginalizing over other parameters. The best-fits are the solid points,
corresponding to different values of Ωm. (From [71].)
Right: Numerical solutions for the normal DGP density and metric perturbations, showing also the qua-
sistatic solution, which is an increasingly poor approximation as the scale is increased. Compare with the
self-accelerating DGP case in Fig. 9. (From [57].)

of the smallness of ΩΛ, but it is nevertheless an interesting feature. We can define an effective
equation of state parameter via

Λ̇eff + 3H(1 + weff)Λeff = 0 . (69)

At the present time (setting K = 0 for simplicity),

weff,0 = −1 − (Ωm + ΩΛ − 1)Ωm

(1 − Ωm)(Ωm + ΩΛ + 1)
< −1 , (70)

where the inequality holds since Ωm < 1. This reveals another important property of the normal
DGP model: effective phantom behaviour of the recent expansion history. This is achieved with-
out any pathological phantom field (similar to what can be done in scalar-tensor theories [45]).
Furthermore, there is no “big rip” singularity in the future associated with this phantom acceler-
ation, unlike the situation that typically arises with phantom fields. The phantom behaviour in
the normal DGP model is also not associated with any ghost problem – indeed, the normal DGP
branch is free of the ghost that plagues the self-accelerating DGP [64].

Perturbations in the normal branch have the same structure as those in the self-accelerating
branch, with the same regimes – i.e. below the Vainshtein radius (recovering a GR limit), up to the
Hubble radius (Brans-Dicke behaviour), and beyond the Hubble radius (strongly 5D behaviour).
The quasistatic approximation and the numerical integrations can be simply repeated with the
replacement rc → −rc (and the addition of Λ to the background). In the sub-Hubble regime, the
effective Brans-Dicke parameter is still given by Eqs. (57) and (58), but now we have ωBD > 0 –
and this is consistent with the absence of a ghost. Furthermore, a positive Brans-Dicke parameter
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signals an extra positive contribution to structure formation from the scalar degree of freedom, so
that there is less suppression of structure formation than in LCDM – the reverse of what happens
in the self-accelerating DGP. This is confirmed by computations, as illustrated in Fig. 11.

The closed normal DGP models fit the background expansion data reasonably well, as shown
in Fig. 11. The key remaining question is how well do these models fit the large-angle CMB
anisotropies, which is yet to be computed at the time of writing. The derivative of the ISW
potential Φ̇− can be seen in Fig. 11, and it is evident that the ISW contribution is negative relative
to LCDM at high redshifts, and goes through zero at some redshift before becoming positive. This
distinctive behaviour may be contrasted with the behaviour in f(R) models (see Fig. 3): both
types of model lead to less suppression of structure than LCDM, but they produce different ISW
effects. However, in the limit rr → ∞, normal DGP tends to ordinary LCDM, hence observations
which fit LCDM will always just provide a lower limit for rc.

V. CONCLUSION

The evidence for a late-time acceleration of the universe continues to mount, as the number of
experiments and the quality of data grow. This revolutionary discovery by observational cosmology,
confronts theoretical cosmology with a major crisis – how to explain the origin of the acceleration.
The core of this problem may be “handed over” to particle physics, since we require at the most
fundamental level, an explanation for why the vacuum energy either has an incredibly small and
fine-tuned value, or is exactly zero. Both options violently disagree with naive estimates of the
vacuum energy.

If one accepts that the vacuum energy is indeed nonzero, then the dark energy is described by
Λ, and the LCDM model is the best current model. The cosmological model requires completion
via developments in particle physics that will explain the value of the vacuum energy. In many
ways, this is the best that we can do currently, since the alternatives to LCDM, within and beyond
general relativity, do not resolve the vacuum energy crisis, and furthermore have no convincing
theoretical motivation. None of the contenders so far appears any better than LCDM, and it is fair
to say that at the theoretical level, there is as yet no serious challenger to LCDM. One consequence
of this is the need to develop better observational tests of LCDM, which could in principle rule it
out, e.g. by showing, to some acceptable level of statistical confidence, that w 6= −1. However,
observations are still quite far from the necessary precision for this.

It remains necessary and worthwhile to continue investigating alternative dark energy and dark
gravity models, in order better to understand the space of possibilities, the variety of cosmological
properties, and the observational strategies needed to distinguish them. The lack of any consistent
and compelling theoretical model means that we need to keep exploring alternatives – and also to
keep challenging the validity of general relativity itself on cosmological scales.

We have focused in this chapter on two of the simplest infrared-modified gravity models: the
f(R) models (the simplest scalar-tensor models), and the DGP models (the simplest brane-world
models). In both types of model, the new scalar degree of freedom introduces severe difficulties at
theoretical and observational levels. Strictly speaking, the f(R) models are probably ruled out by
the presence of singularities that exclude neutron stars (even if they can match all cosmological
observations, including weak lensing). And the DGP models are likely ruled out by the appearance
of a ghost in the asymptotic de Sitter state – as well as by a combination of geometric and structure-
formation data.

Nevertheless, the intensive investigation of f(R) and DGP models has left an important legacy
– in a deeper understanding of

• the interplay between gravity and expansion history and structure;

• the relation between cosmological and local observational constraints;

• the special properties of general relativity itself;

• the techniques needed to distinguish different candidate models, and the limitations and
degeneracies within those techniques;

• the development of tests that can probe the validity of general relativity itself on cosmological
scales, independent of any particular alternative model.
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The last point is one of the most important by-products of the investigation of modified gravity
models. It involves a careful analysis of the web of consistency relations that link the background
expansion to the evolution of perturbations [72], and opens up the real prospect of testing general
general relativity well beyond the solar system and its neighbourhood.
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