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In their recent paper “Faraday rotation of the cosmic microwave background polarization by a
stochastic magnetic field”, Kosowsky et al. [2] have commented about our paper [1], in which we
derived very strong limits on the amplitude of a primordial magnetic field from gravitational wave
production. They argue that our limits are erroneous. In this short comment we defend our result.
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In Ref. [1] we have shown that, if a magnetic field
is present on super-horizon scales in the early universe,
its power is very efficiently converted into gravitational
waves during its evolution from super- to sub-horizon
scales. We used this fact to derive stringent limits on
the amplitude of a magnetic field created before the nu-
cleosynthesis epoch.

In their recent paper [2], Kosowsky et al. state that
our limits are not valid. In the discussion section, they
argue “... the expansion rate of the universe is the same
whether energy density is converted from magnetic fields
into gravity waves or not, since the energy density of
both scale the same way with the expansion of the uni-
verse. So the actual constraint is on the total radiation
energy density in the magnetic field, which is constrained
to be about 1% of the total energy density in the usual
manner... The corresponding limit on the total comoving
mean magnetic field strength is around 10−8Gauss, not
the 10−27Gauss claimed in [1].”

We now explain why this conclusion is wrong. We em-
ploy the same notation convention as [1], and we always
consider the comoving amplitude of the magnetic field.
For magnetic fields with spectral index n > −3, the mag-
netic field energy at wave number k is given by

dΩB(k)

d log(k)
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B2
λ
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(kλ)n+3
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2 )

, (1)

where Bλ is the magnetic field amplitude at some fixed
reference scale λ. This energy spectrum is always blue,
and therefore dominated by its value at the upper cutoff
kc. This cutoff scale is time dependent, kc(η). We set the
magnetic field to zero on scales which are already sub-
horizon at the time η∗ of formation of the magnetic field,
since we cannot be sure that its spectrum is a power law
on these very small scales. Therefore, the upper cutoff
at the time of formation of the magnetic field is given
by k∗ = η−1

∗ (where η denotes conformal time). This
assumption is a conservative one for the derivation of
our result.
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At later times, the magnetic field is damped on scales
smaller than a time dependent damping scale, which
gives us the cutoff kD(η) [3, 4]. We therefore obtain the
cutoff function

kc(η) = min (k∗, kD(η)) . (2)

Of course at formation k∗ = 1/η∗ � kD(η∗), while at
later time kD(η) is decreasing, and eventually becomes
smaller that k∗. The magnetic field energy density at a
given time η is therefore given by

ΩB(η) = ΩB(kc(η)) =

∫ kc(η)

0

dk
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In our paper [1], we have shown that at the time a given
scale crosses the horizon, and for the maximally allowed
magnetic fields which are such that ΩB ∼ Ωrad, a con-
siderable fraction1 of the magnetic field energy density
is converted into gravitational wave energy density (see
Eqs. (24) and (26) in Ref. [1]):
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(for a more precise estimate, cf Eqs. (23) and (25) of
[1]).

The order of magnitude of this surprising result can
also be obtained as follows: On super-Hubble scales,
k � H (here H = aH denotes the conformal Hubble
parameter), Einstein’s equations to first order perturba-
tion theory δGµν = 8πGT B

µν reduce to

H
2h ∼ 8πGB2a2 .

1 For some values of the spectral index we obtain more energy
in gravity waves than in the magnetic field. This comes from
the fact that we linearize the problem and therefore do not take
into account back-reaction. We expect the correct fraction of
the energy in gravity waves to lie between 30% and 100% of the
magnetic field energy density.
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Here h is the (tensor) metric perturbation (we drop the
indices for simplicity), T B

µν is the magnetic field energy

momentum tensor, and B2 is the energy density of the
magnetic field. The energy density in gravitational waves
is given by ρG ∼ ḣ2/8πG. On large scales, ḣ ∼ Hh so
that

ρG ∼
(Hh)2

8πG
∼

8πG

H2
B4a2

'
ρ2

B

ρrad
. (5)

Dividing both sides by ρc we obtain

ΩG ∼
1

Ωrad
Ω2

B (6)

which, for ΩB ∼ Ωrad agrees with Eq.(4). In the exact
result presented in Ref. [1] there is an additional numer-
ical factor 24 and a considerable logarithm due to the
logarithmic build up of gravity wave since the generation
of the magnetic field until horizon entry.

As time goes on, the magnetic field is damped by
plasma viscosity on sub-horizon scales k > kD(η) � 1/η,
while the gravitational waves are not damped, since af-
ter formation they no longer interact with the matter
and the radiation in the universe. This is the main point
which Kosowsky et al. have missed. The magnetic field
density parameter at nucleosynthesis is given by

ΩB(ηnuc) =
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where we have integrated up to the cutoff at nucleosyn-
thesis, kD(ηnuc); while the gravitational wave density pa-
rameter is

ΩG ' ΩB(η∗) =
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, (8)

where we integrate up to the cutoff corresponding to the
time of creation of the magnetic field: gravitational wave
production for a magnetic mode k takes place before hori-
zon crossing, before the magnetic field is damped by in-
teraction with the cosmic plasma. A considerable part of
the magnetic energy is therefore converted into gravita-
tional waves.

After their generation, gravitational waves are de-
coupled from matter and radiation: consequently, the
amount of gravitational wave energy density present on
sub-horizon scales at nucleosynthesis is not affected by
the process of dissipation of the magnetic field, and by
the subsequent injection of energy in the plasma [5]. Even
in the limiting case of complete dissipation (all the mag-
netic energy is converted into heat by the time of nu-
cleosynthesis), one would still obtain roughly the same
amount of gravity waves ΩG at nucleosynthesis : by the
time a given mode enters the horizon and gets dissipated,
the gravity waves have already been created. The energy
dissipated into heat can contribute significantly to the ra-
diation density but always by a factor of less than 2, since

we start with a magnetic field energy which is less than
the radiation energy density (otherwise we could not ap-
ply a perturbative treatment), and we loose a significant
fraction of it by gravity wave production.

From (7) and (8), one can see that the ratio be-
tween the two energy densities is ΩB(ηnuc)/ΩG '

(kD(ηnuc)/k∗)
n+3. Only for n ' −3 or η∗ ' ηnuc this

factor is of order unity; in this case the nucleosynthesis
bounds for ΩG or ΩB lead to the same constraint. In
most cases considered in the literature, however, the ra-
tio is huge. Let us consider the example of magnetic field
generation at the electroweak phase transition. In [1]
we calculate kD(ηnuc) ' 6 × 10−7sec−1 ∼ 60 pc−1, and
ηew ' 4 × 104 sec. Taking into account that electroweak
magnetic field generation is causal (not inflationary), and
therefore n = 2 (see [6]), we obtain
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' (kD(ηnuc)ηew)5 ' 8 × 10−9 , (9)

and by no means one! If the magnetic field is generated
during inflation, one is no longer forced to have n = 2,
but can have arbitrary values of n > −3. If we take
n ' 0, for an inflation scale of 1015 GeV, we have k∗ =
1/ηinf ' 1013/ηew, and we obtain
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3
' 10−43 !! (10)

We can conclude that, applying the nucleosynthesis
bound on ΩG, we find much stronger constraints on Bλ,
due to the fact that a seizable fraction of the magnetic
field energy is converted into gravitational waves before
the damping process.

Apart from not taking into account this damping, there
is a second point that has been missed in Kosowsky et

al. We specifically pronounce a limit for the amplitude
of the stochastic magnetic field smoothed over a scale
λ ∼ 0.1 Mpc. On the contrary, they talk about ‘the total
comoving mean magnetic field’, which is largely domi-
nated by its value on small scales, hence B(kD(ηnuc)).
The value of the field at this scale is limited to a few
10−8Gauss by the constraint ΩB < 0.1 Ωrad at nucle-
osynthesis. But this field value has no relevance at late
times, for two reasons. First of all, because the damping
scale will grow, which means that B(kD(ηnuc)) will be
damped away before it can ever give rise to magnetic
fields in galaxies. Typically, the highest mode which
survives damping is kD(ηrec) ' 10 Mpc−1, much smaller
than kD(ηnuc) [3, 4]. Secondly, the scale relevant for mag-
netic fields in galaxies and clusters is λ ∼ 0.1—1 Mpc,
and we have thus formulated limits for this scale. If
B(kD(ηnuc))kD(ηnuc)

3/2 ≡ BkD
. 10−8Gauss, the limit

on the scale λ � 1/kD(ηnuc) is much smaller, namely
Bλ = B(k = 1/λ)λ−3/2 = BkD

(kD(ηnuc)λ)−(n+3)/2 .
10−8Gauss × 10−6(n+3)/2. For a spectral index n = 2,
for example, Bλ is smaller than the maximal field by a
factor of about 1015, namely Bλ . 10−23 Gauss.
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In conclusion, even if the magnetic field and gravita-
tional wave energy densities scale in the same way with
the expansion of the universe, applying the nucleosyn-
thesis bound on the induced gravitational wave energy
density gives a much stronger constraint on the ampli-
tude of the magnetic field. Both the magnetic field and
gravitational wave energy spectra are blue, and therefore
dominated by their value at the upper cutoff. However,
the upper cutoff for the gravitational wave spectrum is
much higher than the one for the magnetic field spectrum
at the epoch of nucleosynthesis: η−1

∗ � kD(ηnuc). The
reason for this being, that the conversion of magnetic
field energy into gravitational waves takes place when a
given mode enters the horizon, before the magnetic field
is dissipated by interaction with the cosmic fluid.

Furthermore, the interesting limit is not the one on the
‘mean magnetic field’ which is dominated by the value at
the smallest scale, but the limit on the field amplitude
at some scale λ which is relevant for galactic magnetic
fields, and certainly has to be larger than the damping
scale at the redshift of galaxy formation.

Of course, these limits apply for magnetic fields gener-
ated before the epoch of nucleosynthesis. Moreover, they
are valid in the context of linear perturbation theory:
we have neglected back-reaction effects of the generated

gravitational waves on the source magnetic field (in [1]
we present a very qualitative discussion of some possible
consequences of back-reaction). The mutual interaction
of a magnetic field and a pre-existing background of grav-
itational waves (from inflation) is studied in Refs .[7, 8],
where it is found that this coupling may lead to an ampli-
fication of the seed magnetic field. If this mechanism can
be seen as a possible back-reaction effect for our case,
then it would go in the direction of strengthening our
limits on the seed magnetic field. We suppose that the
combination of the two processes, conversion of magnetic
energy in gravitational waves leading to a reduction of
the magnetic field on the one hand and amplification of
the magnetic field by this gravitational radiation, should
reach at some point an equilibrium, in which a consider-
able fraction of magnetic energy is converted into gravity
waves.
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