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1 A remainder of the mathematical formalism of
QM.

In this chapter we simply list important definitions and theorems that you
should already know from Mécanique Quantique I. For details and explana-
tions see Shankar, Sects. 1.1–1.3.2, 1.5–1.8, 1.10.

Linear vector spaces of finite dimension. Definition of linear spaces
over the complex numbers, V n(C); linear independence, dimension of the
space, basis.
Inner product; orthonormal basis:

|V 〉 =
∑
i

vi|i〉 , |W 〉 =
∑
j

wj |j〉 ⇒ 〈V |W 〉 =
∑
i

v∗iwi . (1.1)

Dual spaces and Dirac notations (bra and kets); adjoint operation, 〈aV | =
〈V |a∗.

Linear operators. Definitions; commutators, matrix elements, projection
operators, identity operator,

I =
n∑
i=1

|i〉〈i| . (1.2)

Definitions of adjoint operator. Hermitean, anti-hermitian, and unitary op-
erators. We will often use the notation Ω|ψ〉 = |Ωψ〉 and 〈ψ|Ω† = 〈Ωψ|.

Active and passive transformations: transforming all vectors in the linear
space as |V 〉 → U |V 〉 is equivalent to keeping the vectors fixed and trans-
forming the operators Ω as Ω→ U †ΩU .

Eigenvectors and eigenvalues (in vector space of finite dimension).

Theorem: every operator in V n(C) has n eigenvalues.
Theorem: the eigenvalues of a Hermitian operators are real. Eigenfunc-

tions belonging to different eigenvalues are orthogonal.
Theorem: the eigenvectors of hermitian operators (in finite dimension!)

form a complete set.
Theorem: Every hermitian operator can be diagonalized by a unitary

change of basis.
Theorem: if Ω and Λ are hermitian and [Ω,Λ] = 0, there exists (at least)

one basis of common eigenvectors that diagonalizes both.
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Functions of operators, Definition by Taylor expansion. Example: eΩ. Deriva-
tive of operators with respect to parameters; e.g.

d

dt
etΩ = ΩetΩ = etΩΩ . (1.3)

Here it works as for c-numbers. However, e.g.

eAeB 6= eA+B , (1.4)

unless [A,B] = 0. A useful formula: if [A,B] is a c-number,

eAeB = eA+B+ 1
2

[A,B] . (1.5)

Vector spaces of infinite dimension (Hilbert spaces).

Example. The space of functions f(x) over an interval [a, b]. Scalar product:

〈f |g〉 =

∫ b

a
dx f∗(x)g(x) . (1.6)

The basis vector |x〉. Completeness and orthogonality,∫ b

a
dx |x〉〈x| = I , (1.7)

〈x|x′〉 = δ(x− x′) . (1.8)

Definition of the Dirac delta and of its derivative.

Operators in infinite dimension. Example: the derivative operator,

D|f〉 ≡ |df/dx〉 . (1.9)

Matrix elements: multiplying by 〈x| and inserting a complete set using (1.7),∫
dx′ 〈x|D|x′〉〈x′|f〉 =

df

dx
, (1.10)

so

〈x|D|x′〉 = δ(x− x′) d

dx′
= δ′(x− x′) . (1.11)

Hermiticity. It now depends also on the boundary conditions. Example:
when is K ≡ −id/dx hermitian, i.e. when

〈g|K|f〉 = 〈f |K|g〉∗ ? (1.12)
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Write

〈g|K|f〉 =

∫ b

a
dx

∫ b

a
dx′〈g|x〉〈x|K|x′〉〈x′|f〉

=

∫ b

a
dx g∗(x)(−i) df

dx
. (1.13)

Integrating by parts (without forgetting the boundary terms!) we get that
K is hermitian only in the space of functions that satisfy the condition

g∗(b)f(b) = g∗(a)f(a) . (1.14)

This is satisfied by functions that vanish at x = a and x = b, or by periodic
functions, f(a) = f(b).

Eigenvectors of hermitian operators. In a vector space of infinite dimension
it can happen that the eigenvectors are no longer normalizable. E.g. if
K = −id/dx,

K|k〉 = k|k〉 ⇒ ψk(x) ≡ 〈k|x〉 = Aeikx , (1.15)

and
〈k|k′〉 ∝ δ(k − k′) . (1.16)

(Choosing A = 1/(2π)1/2 the proportionality constant is one.) These are
called improper vectors. In general, in a vector space of infinite dimension
the eigenvectors fall into two categories:

• discrete spectrum. The eigenvalues are separated from each other.
These state are normalizable (proper vectors).

• continuous spectrum. These are improper vectors, and can only be
normalized to a Dirac delta. They are not physical; e.g. |ψk(x)|2 is a
constant all over an infinite space for ψk(x) = eikx and −∞ < x <∞,
so the probability of finding this state within any finite volume is
zero! Physical states in this case are given by wave-packets. However,
improper states are useful mathematical idealizations.

In infinite dimension the theorem that states that the eigenvectors of
a hermitian operator form a complete set no longer holds. However this
property is essential to the internal consistency of QM, so we define as
observables the hermitian operators whose eigenvectors do form a complete
set.
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2 The postulates of QM

(Here again most of the material should be familiar from Mécanique Quan-
tique I. However, we will take a somewhat more abstract point of view, es-
pecially when discussing representation theory)

I. The state of a particle is represented by a vector |ψ(t)〉 in Hilbert
space.

II. The variables x and p of classical mechanics are replaced by hermitian
operators X and P satisfying1

[X,P ] = i~ . (2.1)

The operator corresponding to a classical quantity ω(x, p) is the her-
mitian operator Ω(X,P ) = ω(x→ X, p→ P ).2

III. If the particle is in a state |ψ〉, normalized so that 〈ψ|ψ〉 = 1, a mea-
surement of the variable corresponding to an operator Ω will yield one
of its eigenvalues ω, with a probability

P (ω) = |〈ω|ψ〉|2 . (2.2)

The state of the system changes from |ψ〉 to |ω〉 as a result of the
measurement.

IV. The state vector |ψ(t)〉 obeys the Schrödinger equation,

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉 , (2.3)

where H(X,P ) = H(x→ X, p→ P ) is the quantum Hamiltonian op-
erator and H the Hamiltonian for the corresponding classical problem.

If the operator Ω has degenerate eigenvalues, postulate III must be general-
ized. Consider for instance the case where two eigenvalues are degenerate,
ω1 = ω2 ≡ ω. In this degenerate subspace, choose a orthonormal basis |ω, 1〉,
|ω, 2〉. Then postulate III is generalized by

P (ω) = |〈ω, 1|ψ〉|2 + |〈ω, 2|ψ〉|2 . (2.4)

1We consider here a one-dimensional system. The (trivial) generalization to many
dimensions will come below.

2When in the classical variable appears the product of powers of x and p there is an
ordering ambiguity in this prescription. For a simple term such as xp the rule is to use
the symmetric sum (XP + PX)/2, which is hermitian.
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It is useful to introduce the projection operator for the eigenspace,

Pω = |ω, 1〉〈ω, 1|+ |ω, 2〉〈ω, 2| . (2.5)

so that
P (ω) = 〈ψ|Pω|ψ〉 . (2.6)

The average value of the operator Ω in a (normalized) state |ψ〉 is defined
as

〈Ω〉 ≡
∑
ω

ωP (ω) , (2.7)

i.e. is the sum over the possible outcomes, each one weighted with its prob-
ability. Using eq. (2.2), toghether with Ω|ω〉 = ω|ω〉 and

∑
ω |ω〉〈ω| = I,

〈Ω〉 =
∑
ω

ω〈ψ|ω〉〈ω|ψ〉

=
∑
ω

〈ψ|Ω|ω〉〈ω|ψ〉

= 〈ψ|Ω|ψ〉 . (2.8)

Therefore the average value is equal to the expectation value of the operator
over the state |ψ〉.

See Shankar, Sect. 4.1, for a clear discussion of these postulates.

Collapse of the wave function. According to postulate III, the effect
of the measurement which gives the eigenvalue ω changes the state of the
system as follows:

|ψ〉 → |Pωψ〉
〈Pωψ|Pωψ〉1/2

. (2.9)

In this form, it holds even if ω is a degenerate eigenvalue.

Remark. If the measurement gives a non-degenerate eigenvalue ω, we know
that the system after the measurement is in the state |ω〉, even if we did
not know the initial state |ψ〉. If ω is degenerate the situation is different:
if we did not know the initial state |ψ〉, we only know that the final state
is somewhere in the space spanned by |ω, 1〉 and |ω, 2〉. If instead we knew
|ψ〉, then the final state is fixed by eq. (2.9).

Representation theory. Consider the commutator (2.1). For the moment
we can think to X and P as abstract mathematical objects, defined by the
fact that they satisfy eq. (2.1), which is called the Heisenberg algebra. We
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now wish to attach to these abstract objects some concrete meaning, inter-
preting them as operators acting on some space, and whose action is such
that they satisfy eq. (2.1). In the mathematical language, such a concrete
expression for X and P is called a representation of the Heisenberg algebra.
Such explicit expression of X and P will also depend on the space on which
the operators act. In the mathematical language, this space is called the
basis for the representation.

As an example, let us choose as basis the space of (differentiable) func-
tions of a variable x. In this space, we define the action of X and P as

Xf(x) = xf(x) , Pf(x) = −i~ df
dx

. (2.10)

Therefore

(XP − PX)f = x

(
−i~ df

dx

)
−
(
−i~ d

dx

)
(xf) = i~f . (2.11)

Since this holds for any function f , we can write it in operator form as
XP − PX = i~, so the assignement

X → x , P → −i~ d
dx

(2.12)

indeed provides a representation of the Heisenberg algebra. This is called
the coordinate representation, since the basis is given by functions of the
coordinate x. In terms of the Hilbert space vector

|f〉 =

∫
dx f(x)|x〉 , (2.13)

eq. (2.10) reads

X|f〉 = x|f〉 , P |f〉 = −i~|df/dx〉 . (2.14)

Using eqs. (1.8) and (1.11) we find the matrix elements of X and P in the
coordinate representation,

〈x|X|x′〉 = xδ(x− x′) , (2.15)

〈x|P |x′〉 = −i~δ(x− x′) d

dx′
. (2.16)

The coordinate representation is by no means the only possible representa-
tion of the Heisenberg algebra. For instance we can consider the momentum
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representation, that is, we consider as basis the space of functions of mo-
mentum, f̃(p), and we make the assignements

P f̃(p) = pf̃(p) , Xf̃(p) = +i~
df̃

dp
, (2.17)

which again satisfies the Heisenberg algebra. So, in the coordinate represen-
tation X just multiplies f by x while P is a differential operator. Conversely,
in the momentum representation P just multiplies by p while X is a differ-
ential operator.

Below we will recall the harmonic oscillator and we will see that in its
study it is useful to introduce a third representation, based on creation and
annihilation operators a, a†, where neither X nor P are diagonal.

Remark. Consider, in the coordinate representation, the assignement

X → x , P → −i~ d
dx

+ α(x) , (2.18)

where α(x) is an arbitrary real function. This assignement satisfies the
Heisenberg algebra and, if α(x) is real, it does not spoil the hermiticity of
P , so eq. (2.18), even if unconventional, gives a fully acceptable expressions
for P in the coordinate basis. Consider the state

|x̃〉 = e−iβ(x)/~|x〉 . (2.19)

With the assignement (2.18) we have

P |x̃〉 = e−iβ(x)/~
(
−i~ d

dx
+ α− β′

)
|x〉 . (2.20)

Choosing β so that β′ = α we get

P |x̃〉 = e−iβ(x)/~
(
−i~ d

dx

)
|x〉 . (2.21)

Thus, using the unconventional definition (2.18) is equivalent to using the
conventional one, P → −i~d/dx, and then multiplying all vectors of the
Hilbert space by the common phase factor, exp{−(i/~)

∫ x
dxα(x)}. Such an

overall phase factor cancels in all matrix elements, and is therefore unobserv-
ables. In other words, the representations (2.12) and (2.18) are physically
equivalent. (See Shankar, Ex. 7.4.9)
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3 The Schrödinger equation

In the Schrödinger picture the operators X and P are time-independent
quantities, while the states |ψ(t)〉 evolve according to the Schrödinger equa-
tion (2.3). We consider a Hamiltonian of the form

H =
P 2

2m
+ V (X) . (3.1)

Equation (2.3) gives the Schrödinger equation in an abstract vector form.
To obtain its explicit form in the coordinate representation we multiply both
sides by 〈x|, so

i~
∂

∂t
〈x|ψ(t)〉 = 〈x|H|ψ(t)〉 . (3.2)

We write
〈x|ψ(t)〉 ≡ ψ(x, t) , (3.3)

while, using V (X)|x〉 = V (x)|x〉 and V (X) = V †(X),

〈x|V (X)|ψ(t)〉 = V (x)〈x|ψ(t)〉 = V (x)ψ(x, t) . (3.4)

To compute 〈x|P 2|ψ(t)〉 we insert twice a complete set as in eq. (1.7)

〈x|P 2|ψ(t)〉 =

∫ ∞
−∞

dx′
∫ ∞
−∞

dx′′〈x|P |x′〉〈x′|P |x′′〉〈x′′|ψ(t)〉 . (3.5)

Using eq. (2.16),

〈x|P 2|ψ(t)〉 = (−i~)2d
2ψ

dx2
. (3.6)

So eq. (2.3) becomes

i~
∂

∂t
ψ(x, t) =

(
− ~2

2m

d2

dx2
+ V (x)

)
ψ(x, t) . (3.7)

This is the Schrödinger equation in the coordinate representation. In other
words, to pass from the Schrödinger equation written in abstract vector form,
to the Schrödinger equation in the coordinate representation, we replace
|ψ(t)〉 → ψ(x, t), X → x and P → −i~d/dx. We now restrict to a time-
independent Hamiltonian. Writing

ψ(x, t) = e−iEt/~ψE(x) , (3.8)
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we get the time-independent Schrödinger equation in the coordinate repreen-
tation, (

− ~2

2m

d2

dx2
+ V (x)

)
ψE(x) = EψE(x) , (3.9)

Remark. Rather than using the coordinate representation, we might equally
well choose to work in the momentum representation, in which case, ac-
cording to eq. (2.17), we would replace |ψ(t)〉 → ψ(p, t), P → p and X →
+i~d/dp. The fact that the coordinate representation of the Schrödinger
equation is the most commonly used stems from the fact that the kinetic
energy T (P ) has a very simple quadratic dependence on P , T (P ) = P 2/2m
while, usually, the potential V (X) is a more complicated function of X.
So, it is convenient to choose a representation where x is diagonal, in order
to simplify as much as possible the potential term. Consider for instance
the case V (X) = 1/ cosh2X. In coordinate space the time-independent
Schrödinger equation is(

− ~2

2m

d2

dx2
+

1

cosh2 x

)
ψE(x) = EψE(x) (3.10)

which is a second-order differential equation. In the momentum representa-
tion, we would have(

− p2

2m
+

1

cosh2(i~ d/dp)

)
ψE(p) = EψE(p) , (3.11)

which is a horrible equation containing derivatives of arbitrarily high order,
obtained from the Taylor expansion of 1/ cosh2(i~ d/dp).

However, there can be exception to this rule. If the potential is linear in
X, V (X) = −fX (corresponding to an external classical force f acting on
the system), in the momentum representation we get a first-order differential
equations, (

− p2

2m
− i~f d

dp

)
ψE(p) = EψE(p) , (3.12)

while in the coordinate representation we have a second-order equation,(
− ~2

2m

d2

dx2
− fx

)
ψE(x) = EψE(x) . (3.13)

Another exception is the harmonic oscillator, since the potential term is
quadratic in X, and is as simple as the kinetic term; in this case the solution
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can be obtained very elegantly in a basis where neither X nor P are diagonal,
as we will see below. (References: Shankar, Sect. 4.3, page 149.)

We discuss now the general approach to the solution. We consider again
a time-independent Hamiltonian, and we denote by |E〉 its eigenvectors,
H|E〉 = E|E〉. The formal solution of eq. (2.3) is obtained by writing

|ψ(t)〉 =
∑
E

|E〉〈E|ψ(t)〉 ≡
∑
E

aE(t)|E〉 . (3.14)

The Schrödinger equation becomes

i~ȧE = EaE , (3.15)

(we used the fact that the states |E〉 are linearly independent) so

aE(t) = aE(0)e−iEt/~ , (3.16)

and therefore
|ψ(t)〉 = U(t)|ψ(0)〉 (3.17)

where
U(t) =

∑
E

e−iEt/~|E〉〈E| . (3.18)

Using I =
∑

E |E〉〈E| and H|E〉 = E|E〉 we can observe that

e−iHt/~ = e−iHt/~
∑
E

|E〉〈E| =
∑
E

e−iHt/~|E〉〈E|

=
∑
E

e−iEt/~|E〉〈E| , (3.19)

and therefore
U(t) = e−iHt/~ . (3.20)

The operator U(t) is called the propagator. If H is hermitian, U(t) is unitary,
and the norm 〈ψ(t)|ψ(t)〉 is invariant under time evolution, as is necessary
for the probabilistic interpretation of QM.
(References: Shankar, Sect. 4.3)

Evolution in the Heisenberg picture.

Consider a generic matrix element 〈ψ1(t)|Ω|ψ2(t)〉. In the formalism that
we have discussed above the kets evolve as

|ψ(t)〉 = e−iHt/~|ψ(0)〉 , (3.21)
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so the bra evolve as
〈ψ(t)| = 〈ψ(0)|e+iHt/~ , (3.22)

while the operators X and P are time-independent. This way of describing
the time evolution is called the Schrödinger picture. There is an equiva-
lent way of describing the time evolution based on the observation that the
physics is contained in the matrix elements, and

〈ψ1(t)|Ω|ψ2(t)〉 = 〈ψ1(0)|e+iHt/~Ωe−iHt/~|ψ2(0)〉 . (3.23)

Therefore, an equivalent description of the time-evolution is obtained by
saying that the states do not evolve in time, while operators Ω such as X,
P and their combinations that do not involve an explicit time dependence,
evolve as

Ω(t) = e+iHt/~Ω(0)e−iHt/~ . (3.24)

This description of the time evolution is called the Heisenberg picture. From
eq. (3.24) it follows that, in the Heisenberg picture,

dΩ

dt
= − i

~
[Ω, H] . (3.25)

Sometimes one encounters operators that have an explicit time-dependence.
For instance, the Hamiltonian describing the interaction with a classical
time-dependent force f(t) is H = P 2/(2m) − f(t)X. In this case, in the
Schrödinger picture H depends on time only through f(t), while in the
Heisenberg picture it depends on time through f(t) and through X(t), P (t).
For a generic operator Ω with an explicit time dependence, eq. (3.25) gen-
eralizes to

dΩ

dt
= − i

~
[Ω, H] +

∂Ω

∂t
. (3.26)

If we denote by ΩS an operator in the Schrödinger picture and by ΩH the
corresponding operator in the Heisenberg picture, we have

ΩH(t) = e+iHt/~ΩSe
−iHt/~ (3.27)

(observe that the Hamiltonian is the same, HS = HH ≡ H, since H com-
mutes with e−iHt/~), while the states are related by

|ψ〉H = e+iHt/~|ψ〉S . (3.28)

In particular PH(t) = e+iHt/~PSe
−iHt/~ and XH(t) = e+iHt/~XSe

−iHt/~.
From [XS , PS ] = i~ it follows that

[XH(t), PH(t)] = i~ . (3.29)
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Observe that the canonical commutation relation, in the Heisenberg picture,
holds only at equal time. In general [XH(t), PH(t′)] with t′ 6= t is not simply
equal to i~.

We will normally work in the Schrödinger picture. However, the Heisen-
berg picture is interesting for making contact with classical mechanics. Note
in fact the similarity between eq. (3.25) and the classical equation

dω

dt
= {ω,H} , (3.30)

where ω is the classical variable corresponding to the quantum operator Ω, H
is the classical Hamiltonian, and { , } is the Poisson bracket. 3 (References:
Shankar, page 490-491)

Ehrenfest’s theorem.

Consider an operator Ω, with no explicit time dependence, in the Schrödinger
picture. Then

d

dt
〈ψ(t)|Ω|ψ(t)〉 = 〈ψ̇(t)|Ω|ψ(t)〉+ 〈ψ(t)|Ω| ˙ψ(t)〉 , (3.31)

where

|ψ̇(t)〉 ≡ d

dt
|ψ(t)〉 = − i

~
H|ψ(t)〉 , (3.32)

and therefore 〈ψ̇(t)| = +(i/~)〈ψ(t)|H. Then we get

d

dt
〈ψ(t)|Ω|ψ(t)〉 = − i

~
〈ψ(t)|[Ω, H]|ψ(t)〉 , (3.33)

or, using the notation 〈ψ(t)|Ω|ψ(t)〉 ≡ 〈O〉,

d

dt
〈O〉 = − i

~
〈[Ω, H]〉 , (3.34)

3Furthermore, the Heisenberg picture is the natural one in relativistic quantum field
theory. This follows from the fact that in quantum field theory the operators are fields,
i.e. they depend on the space variable x (think for instance to the electromagnetic field).
In the Heisenberg picture therefore they depend both on space and time, i.e. they are
of the form φH(x, t), while in the Schrödinger picture they are only function of space,
φS(x). The Heisenberg picture is therefore more natural from the point of view of Lorentz
covariance, since it treats x and t on the same footing. Quantum field theory will be the
subject of the course “Champs et Particules”, in the 4th year.
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which is Ehrenfest’s theorem. Let us now consider a Hamiltonian of the
form H = P 2/(2m) + V (X). Setting Ω = X in eq. (3.34), we get

d

dt
〈X〉 =

1

m
〈P 〉 , (3.35)

while setting Ω = P we get

d

dt
〈P 〉 = − dV

dX
. (3.36)

We can rewrite these equations as

d

dt
〈X〉 = 〈∂H

∂P
〉 , (3.37)

d

dt
〈P 〉 = 〈−∂H

∂X
〉 . (3.38)

This is the analogous of the Hamilton equations in classical mechanics.
When quantum fluctuations are small, we can replace

〈H(X,P )〉 → H (〈X〉, 〈P 〉) , (3.39)

and we get the Hamilton equations for the expectation values of X and P .
(References: Shankar, page 179-184)
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4 The harmonic oscillator

(We conclude our reminder of Mécanique Quantique I with the harmonic
oscillator, paying special attention to the formulation in terms of lowering
and raising operators)

The Hamiltonian is
P 2

2m
+

1

2
mω2X2 . (4.1)

Coordinate basis. In the coordinate representation, the time-independent
Schrödinger equation is(

− ~2

2m

d2

dx2
+

1

2
mω2x2

)
ψE(x) = EψE(x) . (4.2)

This equation can be solved by series. Imposing the boundary condition
ψ → 0 as x→ ±∞, the solution exists only when E takes one of the values
En given by

En = ~ω
(
n+

1

2

)
, n = 0, 1, 2 . (4.3)

Defining
y = (mω/~)1/2x , (4.4)

the corresponding wave-functions are

ψn(y) = cnHn(y)e−y
2/2 , (4.5)

where

cn =
1

π1/42n/2(n!)1/2
(4.6)

is a normalization constant4 and Hn(y) are polynomials of degree n, known
as Hermite polinomials. They can be written as

Hn(y) = (−1)ney
2 dn

dyn
e−y

2
. (4.7)

(Rodrigues formula). For instance,

H0(y) = 1 , (4.8)

H1(y) = 2y , (4.9)

H2(y) = 4y2 − 2 . (4.10)

4Equations (4.5) and (4.6) give the wavefunction normalized so that |ψn(y)|2dy is the
probabilty that the particle is between y and y + dy. Since dy = (mω/~)1/2dx, the
wavefunction ψn(x) that gives the probability that the particle is between x and x + dx
has a further factor (mω/~)1/4.
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They satisfy the useful recursion relations

H ′n(y) = 2nHn−1 , (4.11)

Hn+1(y) = 2yHn(y)− 2nHn−1(y) . (4.12)

Observe that for n even the wavefunctions are invariant under y → −y while
for n odd they change sign (and therefore vanish in y = 0). We refer to such
wavefunctions are even and odd, respectively, under parity.

Some observations on the probability distribution |ψn(y)|2 are useful to
illustrate some general features of quantum mechanics.

1) Classically, an oscillator with energy En has turning points at y ≡ ±ymax,
where ymax = (2n+1)1/2. The quantum probability distribution extend well
beyond these classical points, for small n. In the large n limit, however, the
excursion outside the turning points becomes smaller and smaller. See Figs.
1, 2 and 3.

2) In the classical case, the position of the oscillator is of course known
exactly, in principle. Suppose however that we have a collection of a very
large number of particles, moving in the same harmonic oscillator potential
(and non interacting among themselves). In this case, we could resort to the
methods of classical statistical mechanics and ask what is the probability of
finding a particle between y and y+ dy. The answer is that this probability
density is proportional to the time that the particle spents between y and
y + dy, and therefore is inversely proportional to the velocity in y,

Pclass(y) ∝ 1

v(y)
∝ 1

[y2
max − y2]1/2

, (4.13)

where y = ±ymax are the classical turning points. Normalizing the classical
distribution so that ∫ ymax

−ymax

dy Pclass(y) = 1 (4.14)

we get

Pclass(y) =
1

π[y2
max − y2]1/2

. (4.15)

This distribution is peaked at the turning points, where v = 0, and is lowest
at y = 0, where the velocity is maximum. This behavior is just the inverse
of the probability distribution for the quantum harmonic oscillator in the
ground state, compare with Fig. 1! However, for large values of the quantum
number n the situation is different. We see from Fig. 4 that for large n the
quantum probability distribution oscillates very quickly. If we have only a
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Figure 1: The probability distribution for the harmonic oscillator with n = 0,
compared to the classical turning points (black lines).

coarse-grained spatial resolution, what we actually measure is an average
over adjacent wiggles, and this coincides indeed, in the large n limit, with
the classical probablity distribution. This is an example of the corresponence
principle.

(References: Shankar, Sect. 7.3, and Griffiths, Sect. 2.3.2)
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Figure 2: The probability distribution for the harmonic oscillator with n = 1,
compared to the classical turning points (black lines).
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Figure 3: The probability distribution for the harmonic oscillator with n =
10, compared to the classical turning points (black lines).
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Figure 4: The probability distribution for the quantum harmonic oscillator
with n = 20 (dashed line), compared to the classical probability distribition
(solid line).

22



Raising and lowering operators. We define the operator

a =
(mω

2~

)1/2
X +

i

(2mω~)1/2
P , (4.16)

and its adjoint

a† =
(mω

2~

)1/2
X − i

(2mω~)1/2
P . (4.17)

They satisfy
[a, a†] = 1 . (4.18)

In terms of a, a† the Hamiltonian of the harmonic oscillator can be written
as

H = ~ω
(
a†a+

1

2

)
≡ ~ω

(
N +

1

2

)
. (4.19)

For reasons that will become clear below, N is called the number operator.
It satisfies

[N, a†] = +a† , [N, a] = −a . (4.20)

Suppose that |s〉 is an eigenvector of N with eigenvalue s. Then, using
eq. (4.20), we find that

N
(
a†|s〉

)
=
(

[N, a†] + a†N
)
|s〉 = (s+ 1)a†|s〉 , (4.21)

and similarly N(a|s〉) = (s− 1)(a|s〉). Therefore, if |E〉 is an eigenvector of
the Hamiltonian (4.19) with eigenvalue E, then a|E〉 is also an eigenvector,
with eigenvalue E − ~ω, aa|E〉 is an eigenvector with eigenvalue E − 2~ω,
etc. while a†|E〉 has eigenvalue E + ~ω, etc. For this reason a and a† are
called lowering and rising operators, respectively.

It now looks as if the Hamiltonian were unbounded from below, since
repeated applications of a lower indefinitely the eigenvalue. This cannot be
true, since X and P are Hermitian, so on any state |ψ〉

〈ψ|X2|ψ〉 = 〈Xψ|Xψ〉 ≥ 0 , (4.22)

and similarly for 〈ψ|P 2|ψ〉, so 〈ψ|H|ψ〉 ≥ 0. The loophole in the above
reasoning is that a|E〉 is an eigenvector of the Hamiltonian with eigenvalue
E − ~ω, unless it vanishes. So, there must exist a state, that we denote by
|0〉, such that

a|0〉 = 0 , (4.23)
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and the process of lowering the eigenvalue terminates.5 It then follows that

N(a†|0〉) = (a†|0〉) (4.24)

N(a†a†|0〉) = 2(a†a†|0〉) , (4.25)

and, in general, the state obtained appling n times the raising operator a†

to the vacuum is an eigenvector of N with integer eigenvalue n.
We normalize |0〉 so that 〈0|0〉 = 1, and we denote by |n〉 the eigenvector

of N with eigenvalue n, again normalized so that 〈n|n〉 = 1. With this
normalization, a|n〉, with n > 0, will be proportional to |n− 1〉, times some
proportionality constant Cn,

a|n〉 = Cn|n− 1〉 . (4.26)

Combining this with the adjoint equation

〈n|a† = 〈n− 1|C∗n , (4.27)

we get
〈n|a†a|n〉 = |Cn|2〈n− 1|n− 1〉 . (4.28)

Using a†a|n〉 = n|n〉 and 〈n− 1|n− 1〉 = 1 we get Cn = n1/2 (a part from a
phase that we fix to zero), so

a|n〉 = n1/2|n− 1〉 . (4.29)

Similarly we find
a†|n〉 = (n+ 1)1/2|n+ 1〉 . (4.30)

The states |n〉 satisfy

H|n〉 = ~ω
(
n+

1

2

)
|n〉 , n = 0, 1, 2, . . . . (4.31)

The introduction of a, a† allowed us to find directly a basis which diagonalize
the Hamiltonian, without going first to the coordinate representation, that
diagonalizes X. The states |n〉 define the energy representation. In the en-
ergy representation, X and P are not diagonal. In fact, inverting eqs. (4.16)

5Do not make confusion between the state that we denote as |0〉, which is just a state
in the sense of quantum mechanics, i.e. it belongs to a Hilbert space of vectors, and the
number zero on the right-hand side of eq. (4.23)!
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and (4.17),

X =

(
~

2mω

)1/2

(a† + a) , (4.32)

P = i

(
mω~

2

)1/2

(a† − a) . (4.33)

From eqs. (4.29) and (4.30) (recalling that eigenvectors of hermitian opera-
tors with different eigenvalues are orthogonal, so 〈n′|n〉 = 0 if n 6= n′)

〈n′|a|n〉 = n1/2δn′,n−1 , (4.34)

〈n′|a†|n〉 = (n+ 1)1/2δn′,n+1 . (4.35)

Then

〈n′|X|n〉 =

(
~

2mω

)1/2 [
n1/2δn′,n−1 + (n+ 1)1/2δn′,n+1

]
, (4.36)

and similarly for P .

Remark. (see Shankar, page 209). It is interesting to compare the computa-
tion of matrix elements in the energy representation and in the coordinate
representation. Consider for instance the matrix element of X3 between
the state |n〉 with n = 2 and 〈n′| with n′ = 3, 〈3|X3|2〉. In the coordinate
representation we must compute the integral∫ +∞

−∞
dxψ∗n′=3(x)x3ψn=2(x) ∝

∫ +∞

−∞
dy H3(y)H2(y)y3e−y

2
, (4.37)

see eq. (4.5). The integral is elementary, since the Hn(y) are polynomials.
However, if one compute it by writing explicitly the Hermite polynomials,
there are many terms (even more if we consider larger values of n and n′),
and the explicit computation would be quite tedious. In the energy repre-
sentation, we rather have to compute

〈3|(a+ a†)3|2〉 . (4.38)

This can be done using eqs. (4.29) and (4.30). In this way we see that only
terms with two raising and one lowering operators, such as a†a†a, contribute
to this matrix element, so the computation is straightforward. Observe that,
in the formulation in terms of a, a†, it is trivial to see that, e.g 〈7|X3|2〉 = 0.
Simply, there are at most 3 operators a† in X3, so the state |2〉 can be raised
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at most up to |5〉, but not up to |7〉. In the coordinate representation, the
vanishing of ∫ +∞

−∞
dy H7(y)H2(y)y3e−y

2
, (4.39)

comes instead from the cancellation among the various terms present in the
polynomials Hn(y), and is far less obvious.

The wave-functions ψn(x), that we obtained by solving the Schrödinger
equation in the coordinate basis, can also be derived very simply from the
solution in the energy basis. We start from eq. (4.23), which implies that
〈x|a|0〉 = 0, and we insert a complete set,∫ ∞

−∞
dx′ 〈x|a|x′〉〈x′|0〉 = 0 . (4.40)

Using eq. (4.16), together with eqs. (2.15) and (2.16), we get[(mω
2~

)1/2
x+

(
~

2mω

)1/2 d

dx

]
ψ0(x) = 0 , (4.41)

where ψ0(x) = 〈x|0〉. In other words, we have projected the equation a|0〉 =
0 onto the coordinate basis, which in practice amounts to replacing

|0〉 → ψ0(x) , (4.42)

and

a→
(mω

2~

)1/2
x+

(
~

2mω

)1/2 d

dx
. (4.43)

Using the dimensionless variable y as in eq. (4.4), the above relation reads
simply

a→ 1√
2

(
y +

d

dy

)
, (4.44)

and eq. (4.41) becomes (
y +

d

dy

)
ψ0(y) = 0 , (4.45)

whose solution is
ψ0 = Ae−y

2/2 , (4.46)
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with A a normalization constant. We have therefore recovered the ground
state wave-function already found in eqs. (4.5) and (4.8). The wave-functions
of the excited states can be obtained using

a† → 1√
2

(
y − d

dy

)
, (4.47)

and applying it repeatedly to ψ0(y). (Reference: Shankar, Sect. 7.5).

Remark. The fact that the energy levels of the harmonic oscillator are uni-
formly spaced allows for the following interpretation. We can pretend that,
associated to a quantum oscillator with frequency ω, there exist fictitious
particles with energy ~ω. The term n~ω in eq. (4.3) can then be interpreted
as the energy due to n of these quanta (non-interacting among them) while
the term (1/2)~ω is the energy of a state with no quanta: a “vacuum en-
ergy”. In this picture, the state |0〉 is called the “vacuum”. Acting with
a† on any state creates a quantum, while a destroys a quantum (unless it
acts on |0〉, where there are no more quanta to destroy; then a|0〉 = 0).
In this context a and a† are called the destruction and creation operator,
respectively.

In non-relativistic quantum mechanics, the use of these words is just a
matter of semantics. However, if you will study quantum field theory (next
year) you will see that free fields, such as for instance the electromagnetic
field, can be quantized in a way that formally reduces them to a collection of
harmonic oscillators,6 so the description in terms of quanta becomes really
meaningful. For the electromagnetic field these quanta will be the photons,
for the excitation in a solid they could be phonons, excitons, polaritons, etc.
All particles in relativistic quantum field theory are described in this way.
Observe that N = a†a is the number of these quanta, and is therefore called
the number operator.

6More precisely, we will have a collection of operators ak, a†k that destroy and create

particles with momentum k. If the particle has spin, we will have operators ak,s, a
†
k,s

where the label s takes spin into account.
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5 Symmetries in quantum mechanics

In classical mechanics, symmetries correspond to conservation laws. E.g.
invariance under space translations implies momentum conservation, invari-
ance under time translation implies conservation of energy, and invariance
under rotation gives the conservation of angular momentum.

The implementation of symmetries into the formalism of quantum me-
chanics gives rise to a richer mathematical structure. The underlying math-
ematics is that of group theory. While this mathematical formalism in itself
might seem quite abstract at a first encounter, it is really useful in order to
get a deep understanding of the concept of spin, that does not have a classi-
cal counterpart, or to understand issues such as the composition of angular
momenta.

We will not develop the mathematical formalism of group theory in ab-
stract form, but we will rather get acquainted to it through examples and
applications. We will begin with the simpler cases of invariance under spatial
or temporal translations, and we will then move on to the more complicated
case of invariance under rotations.

5.1 Spatial translations

In classical mechanics, an infinitesimal spatial translation is defined as the
transformation of the coordinate and momentum x, p, given by

x→ x+ ε , p→ p . (5.1)

In quantum mechanics, we define it in terms of expectation values,

〈ψ|X|ψ〉 → 〈ψ|X|ψ〉+ ε , 〈ψ|P |ψ〉 → 〈ψ|P |ψ〉 . (5.2)

We still have the freedom to say that the state transform, while the operators
do not, or viceversa (active or passive transformations, see page 1). In active
form,

|ψ〉 → |ψε〉 ≡ T (ε)|ψ〉 (5.3)

while X → X and P → P . The operator T (ε) is defined requiring that

〈ψε|X|ψε〉 = 〈ψ|X|ψ〉+ ε , (5.4)

〈ψε|P |ψε〉 = 〈ψ|P |ψ〉 . (5.5)

In the passive point of view, we rather transform the operators as

X → T †(ε)XT (ε) , P → T †(ε)PT (ε) , (5.6)
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and we require that

T †(ε)XT (ε) = X + εI , T †(ε)PT (ε) = P . (5.7)

We consider first the active point of view. To determine T (ε) we ask how it
should act on a ket of definite position |x〉. A sensible ansatz is

T (ε)|x〉 = |x+ ε〉 . (5.8)

Then

T (ε)|ψ〉 = T (ε)

∫ ∞
−∞

dx |x〉〈x|ψ〉

=

∫ ∞
−∞

dx |x+ ε〉〈x|ψ〉

=

∫ ∞
−∞

dx′ |x′〉〈x′ − ε|ψ〉 (5.9)

where x′ = x+ ε. So

ψε(x) ≡ 〈x|T (ε)|ψ〉 = ψ(x− ε) . (5.10)

Then

〈ψε|X|ψε〉 =

∫ ∞
−∞

dxψ∗ε (x)xψε(x) =

∫ ∞
−∞

dxψ∗(x− ε)xψ(x− ε)

=

∫ ∞
−∞

dxψ∗(x) (x+ ε)ψ(x) = 〈ψ|X|ψ〉+ ε . (5.11)

Similarly you can verify that∫ ∞
−∞

dxψ∗ε (x)

(
−i~ d

dx

)
ψε(x) =

∫ ∞
−∞

dxψ∗(x)

(
−i~ d

dx

)
ψ(x) , (5.12)

so also eq. (5.5) holds.7 Then, the operator T (ε), defined by eq. (5.8) indeed
does the job. Since ε is infinitesimal, we can write

T (ε) = I − iε

~
G . (5.13)

7One might try the more general ansatz T (ε)|x〉 = eiα(x)|x+ ε〉, with α(x) an arbitrary
function. It is easy to check that eq. (5.10) is still obeyed, independently of a(x). However,
eq. (5.12) only holds if a(x) is a constant and, if α(x) is independent of x, we can set it
to be zero without loss of generality.
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The operator G is called the generator of translations. The factor i in
front has been inserted in the definition so that, if T is unitary, then G is
Hermitian (verify it!). From

〈x|T (ε)|ψ〉 = ψ(x− ε) = ψ(x)− ε d
dx
ψ(x) (5.14)

it follows that G is the operator that, in the coordinate representation, is
given

G = −i~ d
dx

. (5.15)

Therefore the generator of translations is noting but the momentum P .
Having defined translation, we can now define translation invariance,

by requiring that the expectation value of Hamiltonian H on any state |ψ〉
satisfies

〈ψ|H|ψ〉 = 〈ψε|H|ψε〉 . (5.16)

This means that

〈ψ|H|ψ〉 = 〈ψ|T †(ε)HT (ε)|ψ〉

= 〈ψ|H|ψ〉+
iε

~
〈ψ|[P,H]|ψ〉 . (5.17)

Thus, invariance under translations is equivalent to saying that P commutes
with the Hamiltonian,

[P,H] = 0 . (5.18)

This is the quantum mechanics equivalent of the fact that, for a classical
system invariant under translation, momentum is conserved.

In the passive point of view, we rather start from eq. (5.7) and we expand
again T as in eq. (5.13). This gives

[X,G] = i~ , [P,G] = 0 , (5.19)

whose solution is again G = P . Translation invariance is defined, as before,
by requiring that 〈ψ|H|ψ〉 is invariant, which in the passive picture gives

T †(ε)HT (ε) = H , (5.20)

and hence again [H,G] = 0.
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Finite translations. We can now find the operator corresponding to a
finite translation T (a). We split the finite interval a into N parts of size
ε = a/N . Then

T (a) = lim
N→∞

[T (a/N)]N = e−iaP/~ . (5.21)

In the x-representation, we therefore have

T (a)ψ(x) = e−a
d
dxψ(x) , (5.22)

which in fact is the full Taylor expansion of ψ(x− a). Verify that

T (a)T (b) = T (a+ b) , (5.23)

as indeed we expect from the combination of two translations.

(Reference: Shankar, Sect. 11.2).

5.2 Time translations

If at time t1 we prepare a system in a state |ψ0〉 and we evolve it for a time
∆t = ε, for a generic time-dependent Hamiltonian we end up with the state

|ψ(t1 + ε)〉 =

[
I − iε

~
H(t1)

]
|ψ0〉 . (5.24)

If we rather prepare the system in the same state |ψ0〉, but at a different
time t2, and we evolve it for a time ε, we get

|ψ(t2 + ε)〉 =

[
I − iε

~
H(t2)

]
|ψ0〉 . (5.25)

Invariance under time translations means that |ψ(t1 + ε)〉 = |ψ(t2 + ε)〉 for
all |ψ0〉, and therefore H(t1) = H(t2). That is, invariance under time trans-
lations means that the Hamiltonian is time-independent.

According to eqs. (3.17) and (3.18), for a time-independent Hamiltonian

|ψ(t)〉 = e−iHt/~|ψ(0)〉 . (5.26)

Comparing with eq. (5.21) we see that H is the generator of time translation,
just as P is the generator of spatial translations.
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5.3 Parity

This is a different kind of symmetry, since it is a discrete, rather than a
continuous transformation. Classically, in one dimension it is defined by
x → −x and p → −p and, in three dimensions, by x → −x and p → −p.8

In QM, in the active viewpoint (and using the notation appropriate to three
diminsions), we define it on the kets by

Π|x〉 = |−x〉 , Π|p〉 = |−p〉 . (5.27)

In the |x〉 basis, we therefore have

〈x′|Π|x〉 = δ(3)(x + x′) , (5.28)

where δ(3)(x) is the three-dimensional Dirac delta, that satisfies∫
d3x δ(3)(x) = 1 . (5.29)

Observe, from eq. (5.28) that 〈x′|Π|x〉 = 〈x|Π|x′〉∗, so Π is a hermitian
operator, Π† = Π. From this it follows that

〈x|Π = 〈x|Π† = (Π|x〉)† = |−x〉†

= 〈−x| . (5.30)

Therefore, if we denote as usual 〈x|ψ〉 = ψ(x), we have

〈x|Π|ψ〉 = ψ(−x) . (5.31)

Observe that Π2 = I and therefore its eigenvalues are ±1. In the coordinate
representation, where under Π we have ψ(x) → ψ(−x), the eigenfunctions
with eigenvalues +1 are the even functions, ψ(−x) = +ψ(x), while those
with eigenvalue −1 are the odd functions, ψ(−x) = −ψ(x).

If [Π, H] = 0, we can diagonalize Π and H simultaneously, which means
that the eigenfunctions of the energy can be classified into even and odd
functions. (Compare with the harmonic oscillator, where we found that the
states with n even are also even under parity, and those with n odd are odd
under parity.)

8Note that in two dimensions the transformation (x, y)→ (−x,−y) is rather a rotation
by 180◦ in the (x, y) plane. We always define parity so that, on the coordinates, is
represented by a matrix with determinant −1. So, in two dimensions, one can rather
consider the transformations (x, y)→ (−x, y) or (x, y)→ (x,−y).
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In the passive viewpoint, we do not transform the states, and we rather
define parity through its action on the operators,

Π†XΠ = −X , Π†PΠ = −P . (5.32)

Observe that Π = Π−1 (since Π2 = I) and Π = Π†, as we saw above, so
Π = Π† = Π−1.

Consider now the nuclear β-decay

60Co→ 60Ni + e− + ν̄e . (5.33)

The nucleus of 60Co has spin S. We denote by Pe the momentum of the
electron. Consider the observable S ·Pe. Under parity S is a pseudovector
(just as orbital angular momentum) so it does not change sign, while Pe →
−Pe, as any momentum. Then

Π†S ·PeΠ = −S ·Pe . (5.34)

If parity were a symmetry of nature, on any state |ψ〉 we should have

〈ψ|S ·Pe|ψ〉 = 〈ψ|Π†S ·PeΠ|ψ〉 , (5.35)

and therefore
〈ψ|S ·Pe|ψ〉 = −〈ψ|S ·Pe|ψ〉 = 0 . (5.36)

The experiment shows instead that the expectation value of S·Pe, in the final
state of the decay (5.33), is non-zero. The electron comes out preferentially
in the direction opposite to the spin of the 60Co nucleus. Thus, parity is
violated in this process. More generally, parity is conserved in processes
involving only the electromagnetic or the strong interaction, but it can be
violated in processes involving weak interactions, such as β-decay.

(Reference: Shankar, Sect. 11.4)

5.4 Rotations in two dimensions

We now consider rotations, starting from the simpler case of rotations in the
(x, y) plane, i.e. rotations around the z-axis. Classically, if we perform a
rotation by an angle φ around the z axis, the coordinates (x, y) of a particle
transform as

x → x cosφ− y sinφ ,

y → x sinφ+ y cosφ . (5.37)
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In quantum mechanics, following the same procedure discussed above for
translations, we define the transformation in terms of the expectation values
of the operators X and Y on the state |ψ〉 of the particle,

〈ψ|X|ψ〉 → 〈ψ|X|ψ〉 cosφ− 〈ψ|Y |ψ〉 sinφ ,
〈ψ|Y |ψ〉 → 〈ψ|X|ψ〉 sinφ+ 〈ψ|Y |ψ〉 cosφ . (5.38)

In the active viewpoint, the operators do not transform, while the state |ψ〉
transform as

|ψ〉 → |ψR〉 = U(R)|ψ〉 . (5.39)

Similarly to eq. (5.13), we define the action of U(R) on the position eigenkets
by9

U(R)|x, y〉 = |x cosφ− y sinφ, x sinφ+ y cosφ〉 . (5.40)

Consider now an infinitesimal rotation, by an angle φ ≡ ε. To first order in
ε, eq. (5.40) becomes

U(R)|x, y〉 = |x− εy, y + εx〉 . (5.41)

Projecting onto the coordinate basis, and proceeding as we did in eq. (5.9),
we get

〈x, y|U(R)|ψ〉 =

∫
dx′dy′〈x, y|U(R)|x′y′〉〈x′y′|ψ〉

=

∫
dx′dy′〈x, y|x′ − εy′, y′ + εx′〉〈x′y′|ψ〉

=

∫
dx′dy′δ[x′ − (x+ εy)]δ[y′ − (y − εx)]ψ(x′, y′)

= ψ(x+ εy, y − εx)

= ψ(x, y) + ε (y∂x − x∂y)ψ(x, y) . (5.42)

where we used the notation

∂x ≡
∂

∂x
, ∂y ≡

∂

∂y
(5.43)

and the fact that, to first order in ε, x = x′− εy′ is equivalent to x′ = x+ εy.
Since ε is infinitesimal, we can write

U(ε) = I − iε

~
Lz . (5.44)

9In principle, we could add an arbitrary phase factor. Just as with translation, setting
this phase to zero gives the correct transformation properties for the momentum, which in
this case must transform just as the coordinates, or any other vector, i.e. px → px cosφ−
py sinφ and py → px sinφ+ py cosφ.
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The operator Lz is called the generator of rotations around the z axis [just
as in eq. (5.13)]. Comparing with eq. (5.42) we see that, in the coordinate
representation,

Lz → −i~(x∂y − y∂x) . (5.45)

Since, in the coordinate representation, Px → −i~∂x and Py → −i~∂y,
eq. (5.45) is just the projection, onto the coordinate representation, of the
operator relation

Lz = XPy − Y Px , (5.46)

and we discover that Lz is nothing but the z component of the angular
momentum: angular momentum is the generator of rotations.

If we use polar coordinates (ρ, φ) instead of cartesian coordinates (x, y),
eq. (5.45) becomes

Lz = −i~ ∂

∂φ
≡ −i~∂φ , (5.47)

as you can check performing the change of variables in the derivative,

∂

∂φ
=
∂x

∂φ
∂x +

∂y

∂φ
∂y . (5.48)

For a finite rotation, the same argument used for translations show that

U(φ) = exp{−iφLz/~} . (5.49)

In the passive viewpoint, we rather transform the operators by requiring
that, for ε infinitesimal,

U †(R)XU(R) = X − εY , (5.50)

U †(R)Y U(R) = Y + εX , (5.51)

U †(R)PxU(R) = Px − εPy , (5.52)

U †(R)PyU(R) = Py + εPx . (5.53)

Writing U(R) as in eq. (5.44), and expanding the left-hand sides to first
order in ε, we get

[X,Lz] = −i~Y , (5.54)

[Y, Lz] = +i~X , (5.55)

[Px, Lz] = −i~Py , (5.56)

[Py, Lz] = +i~Px . (5.57)

You can check that Lz = XPy − Y Px satisfy these commutations relations
(you can also show that it is in fact the unique solution).
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Similarly to what we have done for translations, we define invariance un-
der rotations by requiring that 〈ψ|H|ψ〉 is invariant. Similarly to eq. (5.16),
in the active picture this means that

〈ψ|H|ψ〉 = 〈ψR|H|ψR〉 (5.58)

while in the passive picture it means that

H = U †(R)HU(R) . (5.59)

In both cases, expanding to first order in ε, we get

[Lz, H] = 0 , (5.60)

which expresses the conservation of angular momentum in quantum me-
chanics.

The eigenvalue problem for Lz Consider the eigenvalue equation

Lz|lz〉 = lz|lz〉 . (5.61)

Projecting it on the space of functions of polar coordinates (ρ, φ), defining

ψlz(ρ, φ) = 〈ρ, φ|lz〉 , (5.62)

and using eq. (5.47), we get

− i~∂φψlz(ρ, φ) = lzψlz(ρ, φ) , (5.63)

whose solution is
ψlz(ρ, φ) = R(ρ)eilzφ/~ , (5.64)

where the radial function R(ρ) is arbitrary. Proceeding as in eqs. (1.12)–
(1.14), we find that Lz is hermitian only if ψlz(ρ, φ) is periodic,

ψlz(ρ, φ) = ψlz(ρ, φ+ 2π) . (5.65)

Then eq. (5.64) gives
lz = m~ , (5.66)

where m = 0,±1,±2, . . . is an integer. We will refer to Lz as an orbital angu-
lar momentum, to distinguish it from spin, an intrinsic angular momentum
to be introduced below. We have therefore found that the orbital angular
momentum Lz is quantized, and is given by an integer number m, times ~.
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5.5 Angular momentum in three dimensions

We found above that the generator of rotations around the z axis is Lz =
XPy−Y Px. Repeating the same reasoning, the generator of rotations around
the x axis is Lx = Y Pz − ZPy and the generator of rotations around the y
axis is Ly = ZPx −XPz. In compact form,

Li = εijkXjPk , (5.67)

where the sum over repeated indices is understood. From [Xi, Pj ] = i~δij it
follows that

[Li, Lj ] = i~εijkLk . (5.68)

This is called the algebra of angular momenta. Observe that rotations
around different axes do not commute; e.g.

eiθxLx/~eiθyLy/~ 6= eiθyLy/~eiθxLx/~ (5.69)

since [Lx, Ly] 6= 0. However, rotations form a group. The composition of
two rotations is still a rotation (and there is the identity element, the inverse
of any rotation, and the composition is associative).

Since there is nothing special about the choice of the z axis in eq. (5.49),
the operator that describes a finite rotations, by an angle θ, around a generic
axis identified by the unit vector n̂ is

U(R) = exp{−iθ·L/~} . (5.70)

where θ = θn̂. We can check this result observing that, when a vector r is
rotated by an infinitesimal angle δθ, it changes to r + δθ×r. Therefore we
demand that the wavefunction transforms as

ψ(r) → ψ(r− δθ×r)

= ψ(r)− (δθ×r)·∇ψ

= ψ(r)− εijkδθixj∂kψ . (5.71)

where ∂k = ∂/∂xk. On the other hand, θ·L = θiLi = θiεijkXjPk. Acting on
function of coordinates, Xj → xj and Pk → −i~∂k, so

− i

~
θ·Lψ(r) = −εijkθixj∂kψ . (5.72)

Therefore, for δθ infinitesimal,

exp{−iδθ·L/~}ψ(r) = ψ(r)− εijkδθixj∂kψ , (5.73)
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showing that θ·L is indeed the generator of rotations around the θ̂ axis.

The total angular momentum operator squared is

L2 = L2
x + L2

y + L2
z . (5.74)

Observe that
[L2, Li] = 0 , (5.75)

for i = x, y, z. Similarly to what we have seen for translations and for
rotations in a plane, a Hamiltonian is invariant under rotations if

U †(R)HU(R) = H , (5.76)

which implies
[H,Li] = 0 , (5.77)

and therefore [H,L2] = 0. If a problem is invariant under rotations, we can
therefore diagonalize simultaneously H, L2, and one of the components Li,
conventionally chosen as Lz. Observe that we cannot diagonalize simulta-
neously different components of Li.
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5.5.1 The eigenvalue problem for L2, Lz

The determination of the possible eigenvalues of L2, Lz is conceptually simi-
lar to the dermination of the eigenvalues of the Hamiltonian of the harmonic
oscillator using the rasing and lowering operators a, a†, that we discussed in
Section 4. We assume that we have found a state |αβ〉 such that

L2|αβ〉 = α|αβ〉 , (5.78)

Lz|αβ〉 = β|αβ〉 . (5.79)

We define the raising and lowering operators

L± = Lx ± iLy . (5.80)

They satisfy
[Lz, L±] = ±~L± , (5.81)

and
[L2, L±] = 0 . (5.82)

Then, L+ raises the eigenvalue of Lz by ~, while leaving the eigenvalue of
L2 invariant

Lz(L+|αβ〉) = (β + ~)(L+|αβ〉) , (5.83)

L2(L+|αβ〉) = α(L+|αβ〉) . (5.84)

(verify this!) and similarly L− lowers the eigenvalue of Lz by ~, while leaving
the eigenvalue of L2 invariant.

The fact that we can apparently raise or lower indefinitely β gives raise
to a problem similar to the fact that in the harmonic oscillator it seemes
that we could lower indefinitely the eigenvalue of the Hamiltonian. In fact,
from the hermiticity of Lx and Ly, it follows that, on any state |αβ〉,

〈αβ|L2
x + L2

y|αβ〉 ≥ 0 . (5.85)

On the other hand L2
x + L2

y = L2 − L2
z, so

〈αβ|L2
x + L2

y|αβ〉 = α− β2 , (5.86)

and therefore
β2 ≤ α . (5.87)

This means that it is impossible to raise, or to lower, β indefinitely, at fixed
α. There must exists a maximum value βmax such that

L+|αβmax〉 = 0 . (5.88)
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Acting with L− and using L−L+ = L2 − L2
z − ~Lz, we get

(L2 − L2
z − ~Lz)|αβmax〉 = 0 , (5.89)

and therefore
α = βmax(βmax + ~) . (5.90)

Similarly, from L−|αβmin〉 = 0, acting with L+, we get α = βmin(βmin − ~)
and therefore βmin = −βmax. Since we go from βmin to βmax applying an
integer number of time, say k, the raising operator, raising each time β by
~, we have βmax − βmin = 2βmax = ~k, so

βmax =
~k
2
, (5.91)

where k can take the values 0, 1, 2, . . .. We write βmax = l~, so that l =
0, 1/2, 1, . . .. From eq. (5.90),

α = ~2l(l + 1) . (5.92)

We have therefore found that the common eigenvectors of L2 and Lz have
the form |lm〉, where l is an integer or an half-integer, while m takes the
value between −l and l, in integer steps, and

L2|lm〉 = ~2l(l + 1)|lm〉 , (5.93)

Lz|lm〉 = ~m|lm〉 . (5.94)

If we compare with our discussion of rotations in a plane, the quantization of
angular momentum that we have found is quite unexpected. In fact, beside
the integer values of m, that we found already in eq. (5.66), we also find
half-integer values. The reason is that what we have done in this section is
purely algebraic, and follows simply from the angular momentum algebra.
Nowhere we used the explicit expression of the angular momentum Li in
terms of X and P .

Let us then enlarge our setting, and define in general angular momentum
any vector whose components satisfy the angular momentum algebra. In
this more general setting we denote angular momentum by Ji. Thus, the
components Ji are defined by the fact that they satisfy

[Ji, Jj ] = i~εijkJk . (5.95)

One particular solution of this algebraic equation is given by Li = εijkXjPk,
that we now call the orbital angular momentum.
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So we have found that, if we only require that the algebra (5.95) is
satisfied, the possible eigenvectors and eigenvalues satisfy

J2|jm〉 = ~2 j(j + 1)|jm〉 , (5.96)

Jz|jm〉 = ~m|jm〉 , (5.97)

where j can be either and integer or an half integer, j = 0, 1/2, 1, 3/2, . . .
and, for each j, m goes from −j to +j in integer steps. So, for instance, we
can have

j = 0, m = 0 , (5.98)

j =
1

2
, m = −1

2
,+

1

2
, (5.99)

j = 1, m = −1, 0, 1 , (5.100)

j =
3

2
, m = −3

2
,−1

2
,+

1

2
,
3

2
, (5.101)

and so on.
For orbital angular momentum, however, the situation is different. Once

we use the explicit expression in terms of X and P , we have found in
eq. (5.47) that Lz = −i~∂φ, where φ is the angle in the (x, y) plane. Its
eigenfunctions are therefore proportional to eimφ, as we saw in eq. (5.64),
and requiring the hermiticity of Lz restricts the space of wavefunction to
functions periodic under φ→ φ+ 2π, and therefore to integer m. The half-
integer solutions are not allowed, for orbital angular momentum. We will
see below, however, that half-integer solutions reappear in a more general
context, and are indeed physically very important.

5.5.2 The matrix elements of Ji

We want to determine the matrix elements 〈j′m′|Ji|jm〉. (We use the more
general notation Ji rather than Li, since we will not use the explicit form of
the orbital angular momentum, but only the angular momentum algebra).
We proceed just as we did for the harmonic oscillator to get 〈n′|X|n〉, in
eqs. (4.26) to (4.36). Since J±, applied to |jm〉, raise or lower m while
leaving j unchanges, we must have

J+|jm〉 = C+(j,m)|j,m+ 1〉 , (5.102)

J−|jm〉 = C−(j,m)|j,m− 1〉 . (5.103)

To determine C±(j,m) we take the adjoint of eq. (5.102), and we use the

fact that J†+ = J−, see eq. (5.80), so

〈jm|J− = 〈j,m+ 1|C∗+(j,m) . (5.104)
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Multiplying this by eq. (5.102) and using

J−J+ = J2 − J2
z − ~Jz (5.105)

we get

C+(j,m) = ~[j(j + 1)−m(m+ 1)]1/2 = ~[(j −m)(j +m+ 1)]1/2 . (5.106)

Similarly,

C−(j,m) = ~[j(j + 1)−m(m− 1)]1/2 = ~[(j +m)(j −m+ 1)]1/2 . (5.107)

Observe that C+(j,m) vanishes when m = j and C−(j,m) vanishes when
m = −j, as they should. Writing Jx = (J+ + J−)/2 we find

〈j′m′|Jx|jm〉 =
1

2
δjj′

[
δm′,m+1C+(j,m) + δm′,m−1C−(j,m)

]
, (5.108)

and similarly, from Jy = (J+ − J−)/(2i),

〈j′m′|Jy|jm〉 =
1

2i
δjj′

[
δm′,m+1C+(j,m)− δm′,m−1C−(j,m)

]
, (5.109)

while, of course,
〈j′m′|Jz|jm〉 = ~mδjj′δmm′ . (5.110)

5.5.3 The eigenfunctions of Li

We now restrict to orbital angular momentum Li. In this case, we have its
explicit form in the coordinate representation,

Li = εijkXjPk → −i~ εijkxj∂k . (5.111)

It is convenient to use polar coordinates (r, θ, φ) rather than cartesian coor-
dinates (x, y, z). Then, performing the change of variables, we find

Lx → i~ (sinφ∂θ + cosφ cot θ ∂φ) , (5.112)

Ly → i~ (− cosφ∂θ + sinφ cot θ ∂φ) , (5.113)

Lz → −i~ ∂φ , (5.114)

where we used the shorthand notation

∂θ =
∂

∂θ
, ∂φ =

∂

∂φ
. (5.115)
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From this it also follows that

L± → ±~ e±iφ (∂θ ± i cot θ ∂φ) , (5.116)

and

L2 → −~2

[
1

sin θ
∂θ (sin θ ∂θ) +

1

sin2 θ
∂2
φ

]
. (5.117)

Consider now the vector equations

L2|lm〉 = ~2 l(l + 1)|lm〉 , (5.118)

Lz|lm〉 = ~m|lm〉 . (5.119)

Just as in the case of rotations in two dimensions (see page 36), the condi-
tion that Lz by hermitian requires that m, and therefore l, be integer, and
excludes the half-integer values. Therefore, while the angular momentum
algebra admits representations with both integer or half-integer values of
l, if one uses the explicit form (5.111) of the orbital angular momentum
operator, only integer values of l are allowed.

Projecting eqs. (5.118) and (5.119) onto the (polar) coordinate represen-
tation, defining

Ylm(θ, φ) = 〈θφ|lm〉 , (5.120)

and using eqs. (5.117) and (5.114) we get[
1

sin θ
∂θ (sin θ ∂θ) +

1

sin2 θ
∂2
φ

]
Ylm = −l(l + 1)Ylm , (5.121)

−i∂φYlm = mYlm . (5.122)

The functions Ylm that satisfy eqs. (5.121) and (5.122) are called spherical
harmonics. They have the form

Ylm(θ, φ) = clme
imφPlm(cos θ) , (5.123)

where clm is a normalization constant, and Plm(cos θ) is a polynomial in
cos θ and sin θ, called the associated Legendre polynomial. For explicit form
of the spherical harmonics with l = 0, 1, 2 see Shankar, eq. (12.5.39) or
Griffiths, page 139.

Spherical harmonics with different values of l,m are orthogonal, in the
sense that ∫

dΩY ∗lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ . (5.124)
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Observe that the Laplacian, in polar coordinates, can be written as

∇2 =
1

r2
∂r(r

2∂r) +
1

r2

[
1

sin θ
∂θ (sin θ ∂θ) +

1

sin2 θ
∂2
φ

]
,

=
1

r2
∂r(r

2∂r)−
L2

~2r2
, (5.125)

and therefore, since Ylm(θ, φ) are independent of r, eq. (5.121) can be written
as

∇2Ylm(θ, φ) = − l(l + 1)

r2
Ylm(θ, φ) . (5.126)

Another useful relation satisfied by the spherical harmonics can be obtained
projecting the equation

L±|lm〉 = C±(l,m)|l,m± 1〉 , (5.127)

onto the polar coordinate representation, and using (5.116):

e±iφ (∂θ±i cot θ ∂φ)Ylm(θ, φ) = [l(l+1)−m(m±1)]1/2Yl,m±1(θ, φ) . (5.128)

The fact that the spherical harmonics indeed satisfy this relation can also
be checked from their explicit expression.

(Reference: Shankar, Section 12.5)

5.5.4 Solution of rotationally invariant problems

Consider the time-independent Schrödinger equation in three dimension,
with a spherically symmetric potential V (r),[

−~2

2m
∇2 + V (r)

]
ψE(r, θ, φ) = EψE(r, θ, φ) . (5.129)

Equation (5.126) allows us to perform the separation of variables. Writing

ψE(r, θ, φ) = RElm(r)Ylm(θ, φ) , (5.130)

we get an equation involving only the radial wave function RElm(r),{
−~2

2m

[
1

r2

d

dr

(
r2 d

dr

)
− l(l + 1)

r2

]
+ V (r)

}
RElm(r) = ERElm(r) .

(5.131)
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Observe that the equation depends on l but not on the quantum mumber
m, so we can drop the index m in RElm(r) and write it simply as REl(r).
It is useful to introduce a new radial function UEl(r) defined by

REl(r) =
1

r
UEl(r) . (5.132)

Then eq. (5.131) becomes simpler,{
d2

dr2
+

2m

~2

[
E − V (r)− ~2l(l + 1)

2mr2

]}
UEl(r) = 0 . (5.133)

Formally, this is the same as a Schrödinger equation in one dimension, on
the half-line 0 ≤ r <∞, with an effective potential

Veff(r) = V (r) +
~2l(l + 1)

2mr2
. (5.134)

Observe that angular momentum generates a repulsive potential. This cor-
responds just to the centrifugal potential in classical mechanics.

The boundary conditions to be imposed on U(r) at r = 0 and as r →∞
are as follows. Using eq. (5.124),∫

d3x |ψElm|2 =

∫ ∞
0

dr r2|REl|2

=

∫ ∞
0

dr |UEl|2 . (5.135)

Thus, in order to have a state normalizable to unity (i.e. a bound states), it
is necessary that UEl(r)→ 0 as r →∞, sufficiently fast so that the integral
converges. If, instead,

UEl(r)→ eikr , (5.136)

we have a state normalizable to a Dirac delta, i.e. an unbound state.
At r = 0, requiring that the Schrödinger equation is satisfied, one finds

that we must have UEl(r) → 0, unless the potential has a Dirac delta sin-
gularity in the origin (see Shankar, pages 340–343).
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6 Spin

We have seen above that angular momentum, in QM, is defined as the vector
J whose components Ji satisfy

[Ji, Jj ] = i~εijkJk . (6.1)

Using only this algebraic relation, we have proved that the eigenvectors have
the form |jm〉, where j = 0, 1/2, 1, etc. and m takes the values between −j
and +j, in integer steps. We have also found, again using only the algebra
(6.1), the matrix elements 〈j′m′|Ji|jm〉, see eqs. (5.108)–(5.110).

We have then seen that a particular solution of eq. (6.1) is given by
Ji = Li, where Li is called the orbital angular momentum, Li = εijkXjPk.
We have found however that in this case hermiticity restricts the quantum
number j (which, when we consider orbital angular momentum, is rather
denoted as l) to integer values, while half-integers are not allowed. We can
check explicitly that this expression for the operators Li gives the matrix
elements of eqs. (5.108)–(5.110), writing the matrix elements in the (polar)
coordinate representation: by making use of eqs. (5.112)–(5.114), we get

〈l′m′|Lx|lm〉 = i~
∫
dΩY ∗l′m′(θ, φ) (sinφ∂θ + cosφ cot θ ∂φ)Ylm(θ, φ), (6.2)

〈l′m′|Ly|lm〉 = i~
∫
dΩY ∗l′m′(θ, φ) (− cosφ∂θ + sinφ cot θ ∂φ)Ylm(θ, φ) ,

(6.3)

〈l′m′|Lz|lm〉 = −i~
∫
dΩY ∗l′m′(θ, φ)∂φYlm(θ, φ) . (6.4)

Using the explicit expression of the spherical harmonics, we can verify that
eqs. (5.108)–(5.110) are indeed obeyed.10

In the language of group theory, the explicit expression Li given by the
right-hand side of eqs. (5.112)–(5.114) is just a particular representation of
the angular momentum algebra (6.1). That is, the abstract mathematical
objects Ji, defined by the fact that they satisfy eq. (6.1), have been given an
explicit form, in terms of operators acting on some space. This is completely
analogous to the fact that, when confronted with the Heisenberg algebra
[X,P ] = i~, we have found an explicit representation given by X → x and
P → −i~∂x. In both cases the space on which the operators act (called the

10Actually, eqs. (6.2)–(6.4) follow automatically from the property (5.128) of the spher-
ical harmonics, which is just the transcription of eq. (5.127) in the polar coordinate rep-
resentation.

46



basis of the representation, in the mathematical language) is the space of
functions of coordinates, and the operators Ji are represented by differential
operators Li acting on these functions, given by Li = −i~εijkxj∂k or, in
polar coordinates, by the right-hand side of eqs. (5.112)–(5.114).

We now want to look for more general representations of the angular
momentum algebra, and in particular we want to understand the appear-
ance of half-integer values of j in the algebraic solution. To begin, rather
than considering representations of the algebra (6.1) in terms of operators
acting on a space of functions (i.e. representations whose base space is
infinite-dimensional) we start from something more elementary, namely rep-
resentations in terms of matrices of finite dimensions.

Consider a state |jm〉. Under rotations, it transforms as

|jm〉 → U(R)|jm〉 = exp{−i θiJi/~}|jm〉 . (6.5)

The fact that the states |jm〉 form a basis for a representation of angular
momentum means that, when acting on it, the ‘abstract’ operators Ji, de-
fined by the fact that they satisfy the algebra (6.1), take a concrete form
as operators, which depends on the representation chosen. The action of
the operators Ji on the representation |jm〉 is given by eqs. (5.102), (5.103)
and (5.97). From this we see that, acting with any of the Ji over the state
|jm〉, we do not change the value of j, while Jx and Jy change the value of
m. Therefore, under a generic rotation, the state |jm〉 is sent into a com-
bination of states with, in general, different values of m, but with the same
value of j. In the language of representation theory, this means that the
states |jm〉, with j fixed (to an integer or half-integer value) and m ranging
from −j to j in integer steps, form a representation of the rotation group.
The corresponding dimension of the representation is 2j + 1, which is the
number of possible values of m for given j. In other words, the kets |jm〉
with j fixed and m taking the (2j + 1) values from −j to j in integer steps,
transform among them under rotations.

This allows us to construct all possible finite-dimensional representation
of the angular momentum algebra. The most obvious one corresponds to
j = 0 (and therefore m = 0). This is a single object, |00〉, on which the
generators take the value Ji = 0, which is the trivial solution of the algebra
(6.1). Such an object is invariant under rotation, i.e. U(R) = I on it.

We next consider the two-dimensional representation corresponding to
j = 1/2.
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6.1 Spin 1/2

Consider now j = 1/2. In this case the base space |jm〉 is two-dimensional,
and a basis is given by

|1
2
,+

1

2
〉 , |1

2
,−1

2
〉 . (6.6)

A generic ket in this space has the form

|ξ〉 = α |1
2
,+

1

2
〉+ β |1

2
,−1

2
〉 , (6.7)

with α and β complex numbers. Let us denote such a ket as a column,

ξ =

(
α
β

)
; (6.8)

ξ is called a spinor.11 It is an element of the vector space spanned by |12 ,+
1
2〉

and |12 ,−
1
2〉. In this notation, |12 ,+

1
2〉 is written as the spinor

ξ+ =

(
1
0

)
(6.9)

while |12 ,−
1
2〉 is written as

ξ− =

(
0
1

)
, (6.10)

and a generic spinor ξ is written as

ξ = αξ+ + βξ− . (6.11)

We have already found the matrix elements of Ji for j,m arbitrary, see
eqs. (5.108)–(5.110). For j = 1/2, these matrix elements can be arranged
into a 2× 2 matrix. Using the shorthand notation

|1
2
,+

1

2
〉 = |+〉 , |1

2
,−1

2
〉 = |−〉 (6.12)

we write

(Ji)αβ =

(
〈+|Ji|+〉 〈+|Ji|−〉
〈−|Ji|+〉 〈−|Ji|−〉

)
αβ

, (6.13)

11More precisely, we will see below that a spinor is defined as a two-component object
with a well-defined transformation law under rotations.
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where the indices α and β run over the values 1, 2. Using the explicit ex-
pressions (5.108)–(5.110) we find that, for j = 1/2,

Ji =
~
2
σi , (6.14)

where

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (6.15)

The matrices σi are called the Pauli matrices. Observe that they satisfy the
relations

σ2
x = σ2

y = σ2
z = I , (6.16)

where I is the 2× 2 identity matrix, and

σxσy = iσz , (6.17)

plus its cyclic permutations. These relations can be summarized compactly
as

σiσj = δijI + iεijkσk . (6.18)

The explicit expression of Ji given in (6.14) must satisfy the angular mo-
mentum algebra by construction, since the matrix elements (5.108)–(5.110)
have been determined requiring that the Ji satisfy it. We can easily check
it explicitly: using eq. (6.18) and the antisymmetry of εijk, we have

σiσj − σjσi = 2iεijkσk , (6.19)

and therefore Ji = σi/2 satisfies the angular momentum algebra.
What we have done, in mathematical terms, is to find a new representa-

tion of the angular momentum algebra. This representation has nothing to
do with the representation of orbital angular momentum discussed above.
Even the base space is completely different. Above, the basis was the space
of functions of the variables θ, φ. As any functional space, this is a vector
space of infinite dimension, recall our discussion on page 6. Here, in contrast,
the basis is a vector space of finite dimension, actually two-dimensional, see
eqs. (6.7) or (6.11).

Observe that, on the spinors ξ± given in eqs. (6.9) and (6.10), we have

Jzξ± =
~
2
σzξ± =

~
2

(
1 0
0 −1

)
ξ± = ±ξ± . (6.20)
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Therefore ξ+ can be visualized as a state carrying an arrow pointing upward,
corresponding to Jz = +~/2, and ξ− as a state carrying an arrow pointing
downward, corresponding to Jz = −~/2. Such an angular momentum is
called spin angular momentum, or simply spin, to distinguish it from orbital
angular momentum, and we use the symbol Si to denote it.

Since in ξ+ and ξ− there is no reference to the spatial coordinates, we can
think to them as describing a state carrying an intrinsic arrow, and located
at some fixed point in space. We can add a spatial dependence considering
a spinor of the form

ξ(x) =

(
ξ1(x)
ξ2(x)

)
. (6.21)

This quantity is now a basis for the representation of both orbital angu-
lar momentum Li and of spin Si. Orbital angular momentum acts on the
coordinates, so for instance Lz, acting on ξ(x), produces the spinor

Lzξ(x) =

(
Lzξ

1(x)
Lzξ

2(x)

)
= −i~

(
(x∂y − y∂x)ξ1(x)
(x∂y − y∂x)ξ2(x)

)
, (6.22)

compare with eq. (5.45). If we prefer to use polar coordinates (r, θ, φ),

Lzξ(r, θ, φ) = −i~
(
∂φξ

1(r, θ, φ)
∂φξ

2(r, θ, φ)

)
, (6.23)

see eq. (5.47). In contrast, Sz acts on ξ(x) as

Szξ(x) =
~
2

(
1 0
0 −1

)(
ξ1(x)
ξ2(x)

)
=

~
2

(
ξ1(x)
−ξ2(x)

)
, (6.24)

while, e.g.

Sxξ(x) =
~
2

(
0 1
1 0

)(
ξ1(x)
ξ2(x)

)
=

~
2

(
ξ2(x)
ξ1(x)

)
. (6.25)

In other words, denoting generically the two components ξ1(x) and ξ2(x) of
the spinor as ξα(x), the spin Si is represented as a matrix (Si)αβ acting on
the index α = 1, 2, while it leaves the x dependence unaffected.

One might be tempted to interpret physically spin as the angular mo-
mentum due to the rotation of the particle around one of its axes. So, the
fact that an electron in the hydrogen atom is characterized both by orbital
angular momentum and by spin could be seen as analogous to the fact that a
macroscopic body, such as the Earth in orbit around the Sun, performs both
a motion of revolution around the Sun (orbital angular momentum) and a
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motion of rotation around its axis (spin). However, such a classical analogy
has its limitations and, if carried too far, leads to erroneous predictions (for
instance for the magnetic moment of particles), as we will see below.12 Spin
is actually a genuinely quantum property of matter.

6.1.1 Transformation of spinors under rotations

In eq. (6.8) we have defined spinors has objects with two complex com-
ponents. However, if you think for instance to the definition of a vector
v = (vx, vy, vz), you realize immediately that it is not enough to say that
it is a set of three objects. We must also requires that these three objects
transform in an appropriate way under rotations. Similarly, the definition
of spinor is completed by stating what is its transformation under a generic
rotation. Consider first a spinor ξ with no spatial dependence. Its transfor-
mation under a rotation by an angle θ is defined by

ξ → exp{−iθ·S/~} ξ (6.26)

where

Si =
~
2
σi , (6.27)

and σi are the Pauli matrices. Observe that exp{−iθ·S/~} = exp{−iθ·σ/2}
is a 2× 2 matrix, acting on the two-component spinor

ξ =

(
ξ1

ξ2

)
. (6.28)

In other words, as we already stressed below eq. (6.5), as long as Ji are
defined abstractly as operators that satisfy the angular momentum algebra,
the generic, abstract, form of the rotation operator is

U(R) = exp{−iθ·J/~} . (6.29)

Any given, explicit solution of the angular momentum algebra provides a
representation of the algebra. In particular, the x-independent spinors ξ
provide a basis for a representation of the angular momentum algebra, where
the abstract operators J takes the explicit form (6.14). Since Ji are repre-
sented as 2 × 2 matrices, this is called a two-dimensional representation of

12Furthermore, in modern quantum field theory particles such as the electron (or more
generally all leptons and quarks) are structureless, at least down to the shortest distances
probed by accelerators (which are of order 10−17 cm), so it is not clear in what sense such
pointlike objects could rotate around their axis.
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the angular momentum algebra. On the spinor representation, the abstract
operator U(R) given in eq. (6.29) takes the explicit form

exp{−iθ·σ/2} . (6.30)

To understand how a x-dependent spinor should transform, recall first how
a scalar function transform. The transformation of a scalar function ψ(x)
under rotation is given by (see eq. (5.70))

ψ(x)→ exp{−iθ·L/~}ψ(x) , (6.31)

where L is the orbital angular momentum operator. In the mathematical
language of representation theory, the space of functions is a basis for the
representation of the angular momentum algebra, where the abstract oper-
ator Ji are represented as orbital angular momentum Li, i.e. as differential
operators acting on the coordinates, and on this representation the abstract
rotation operator U(R) given in eq. (6.29) takes the explicit form

exp{−iθ·L/~} , (6.32)

where Li are the differential operator −i~εijkxj∂k. Observe that this rep-
resentation is infinite-dimensional, since the space of functions has infinite
dimension.

If we consider for instance a rotation by an angle α around the z-axis,
using eq. (5.114) and working in polar coordinates,

ψ(r, θ, φ) → exp{−iαLz/~}ψ(r, θ, φ)

= exp{−α∂φ}ψ(r, θ, φ)

= ψ(r, θ, φ− α) . (6.33)

So, the role of exp{−iθ·L/~} is to transform the argument x of ψ.13 Con-
sider now an x-dependent spinor ξ(x). When we perform a rotation, first
of all the argument x changes. This change simply reflects the fact that a
point that was labeled x in a frame is now labeled x′ in the rotated frame,
and therefore this change is the same as for a scalar function. This effects is
taken into account by applying the angular momentum operator separately
to the two components ξ1(x) and ξ2(x). Furthermore, the two components

13We can take for instance the passive point of view for rotations, that is we rotate the
reference frame counterclockwise by an angle α around the z axis. Then a point that had
polar coordinate (r, θ, φ) in the old frame has coordinates (r, θ, φ− α) in the new frame.
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of the spinor will mix among themselves, and this is taken into account by
the spin angular momentum, as in eq. (6.26). Thus,

ξ(x) =

(
ξ1(x)
ξ2(x)

)
→ e−iθiSi/~

(
e−iθiLi/~ξ1(x)

e−iθiLi/~ξ2(x)

)
= e−iθiSi/~

(
e−iθiLi/~ 0

0 e−iθiLi/~

)
ξ(x) . (6.34)

We use the notation(
e−iθiLi/~ 0

0 e−iθiLi/~

)
ξ(x) = e−iθiLi/~ξ(x) , (6.35)

Observe that Li acts on the variables x, but not on the spinor indices.
Conversely, Si is a matrix in the space of spinor indices but does not act on
the coordinates. Therefore

[Si, Lj ] = 0 , (6.36)

since they act on different space, and we can rewrite eq. (6.34) as

ξ(x)→ e−iθi(Li+Si)/~ξ(x) , (6.37)

showing that the generator of rotations, on a spinor function, is a sum of
orbital angular momentum and spin,

Ji = Li + Si . (6.38)

Having determined how a spinor function transforms, let us see what hap-
pens under a rotation by an angle α around the z axis. The effect of orbital
angular momentum is computed as in eq. (6.33), so(

ξ1(r, θ, φ)
ξ2(r, θ, φ)

)
→ e−iασ3/2

(
ξ1(r, θ, φ− α)
ξ2(r, θ, φ− α)

)
=

(
e−iα/2 0

0 e+iα/2

)(
ξ1(r, θ, φ− α)
ξ2(r, θ, φ− α)

)
. (6.39)

Consider now α = 2π. Taking ξ1 and ξ2 single-valued, we get

ξ(x)→ −ξ(x) . (6.40)

At first sight this is quite surprising, since a rotation by 2π should be the
same as the identity transformation, so we should rather expect that ξ stays
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unchanged. However, this behavior is fully acceptable, both physically and
mathematically.

Physically, we should not forget that the spinor is a wavefunction. Thus,
ξ1(x) gives the probability amplitude of finding a particle at x and with
Sz = +~/2, while ξ2(x) gives the probability amplitude of finding a particle
at x and with Sz = −~/2. Probabilities themselves are obtained taking the
squared modulus of the wavefunction, so the probability remains invariant
under a rotation by 2π. Mathematically, the issue is more subtle, and has to
do with the difference between the groups SO(3) and SU(2), that we briefly
discuss below.

6.2 The rotation groups SO(3) and SU(2) and their represen-
tations

The group O(3) is defined as the group of linear transformations of a vector
x = (x1, x2, x3), i.e. transformations of the form

xi → x′i = Rijxj , (6.41)

that leave invariant the quadratic form x2 = x2
1 + x2

2 + x2
3. Therefore we

require that
RijRikxjxk = δjkxjxk (6.42)

for all x. This means that RijRik = δjk or, in matrix notation

TRR = I , (6.43)

where T denotes the transpose matrix. Therefore, the group O(3) is the
group of orthogonal matrices. Since det(TR) = detR and det(AB) =
det(A) det(B), from eq. (6.43) it follows that (detR)2 = 1, i.e. det(R) = ±1.
The set of matrices with detR = +1 form a subgroup, called SO(3). This
is the group of rotations of 3-dimensional space that we normally consider
in classical physics.14

The groups SO(3) is parametrized by 3 parameters, that for instance can
be chosen as the Euler angles. More generally, groups that are parametrized
in a continuous (and differentiable) way by N parameters θa, a = 1, . . . , N ,
are called Lie groups.

It can be shown that the elements g(θ) of a Lie group can always be
written in the form

g(θ) = eiθ
aTa , (6.44)

14Restricting from O(3) to SO(3) eliminates discrete symmetries such as parity, that
still leave invariant x21 + x22 + x23.
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where θ denotes collectively the parameters θa.15 The quantities T a are
called the generators of the Lie group. For an infinitesimal transformation,

g(θ) = I + iθaT a +O(θ2) . (6.45)

It can also be shown16 that the generators satisfy an algebraic relation of
the form

[T a, T b] = ifabcT c , (6.46)

called the Lie algebra of the group. The constants fabc are called the struc-
ture constants of the group. Each Lie group is characterized by its structure
constants.

For the group SO(3), we have seen that there are 3 parameters, hence
3 generators. These 3 generators are nothing but the components Li of
angular momentum, as we saw in eqs. (5.70)–(5.73), and therefore the Lie
algebra of SO(3) is just the angular momentum algebra that we have studied
above.

Consider now the group SU(2), defined as the group of unitary 2 × 2
matrices, with unit determinant. A generic complex 2 × 2 matrix U has
4 complex matrix elements, i.e. 8 real parameters. Requiring UU † = I
gives 4 real equations, which reduce the independent real parameters to 4,
and the condition detU = +1 reduces it further to 3. Therefore SU(2) has
3 parameters and 3 generators, just as SO(3). Writing U = exp{iH}, U
unitary means that H is a hermitian matrix, and detU = 1 is equivalent
to TrH = 0, since det exp{A} = exp{TrA}. Since the 3 Pauli matrices
are hermitian, traceless, and linearly independent, the most general 2 × 2
traceless hermitian matrix can be written as a combination of them,

H =
1

2
θaσa , (6.47)

(the factor 1/2 is a convenient choice of normalization for the parameters
θa) so the most general element of SU(2) can be written as

U = exp

{
iθa

σa

2

}
. (6.48)

15More precisely, this is true for connected groups; otherwise, it holds only for the part
connected with the identity.

16For the proof, see e.g. M. Maggiore, A Modern Introduction to Quantum Field Theory,
pages 13–15.
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This shows that (apart from a normalization factor, which is always ar-
bitrary) we can identify the generators T a of SU(2) with σa/2. Using
eq. (6.19), we see that the Lie algebra of SU(2) is

[T a, T b] = [
σa

2
,
σb

2
] = iεabc

σc

2
= iεabcT c , (6.49)

which is again the angular momentum algebra. This shows that the groups
SO(3) and SU(2) have the same Lie algebra. This does not mean that,
as groups, they are the same, since the Lie algebra only reflects the group
properties close to the identity element. In particular, in SO(3) a rotation
by angle 2π around any axis is the same as the identity element, while in
SU(2) we see from eq. (6.48) that this is not the case. Rather, in SU(2)
a rotation by 4π corresponds to the identity.17 This fact has important
consequences for the representation of the two groups. Let us first define
more precisely what a representation is.

6.2.1 Representations

A (linear) representation R of a group is an operation that assigns to a
generic, abstract element g of a group a linear operator DR(g) defined on a
linear space,

g 7→ DR(g) (6.50)

with the properties that

(i): DR(e) = I, where e is the identity element of the group and I is the
identity operator, and

(ii): DR(g1)DR(g2) = DR(g1g2), so that the mapping preserves the
group structure.

The space on which the operators DR act is called the basis for the
representation R. A typical example of a representation is a matrix repre-
sentation. In this case the basis is a vector space of finite dimension n, and
an abstract group element g is represented by a n × n matrix (DR(g))i j ,
with i, j = 1, . . . , n. The dimension of the representation is defined as the
dimension n of the base space. Writing a generic element of the base space
as (φ1, . . . , φn), a group element g induces a transformation of the vector
space

φi → (DR(g))i jφ
j . (6.51)

17Mathematically, SU(2) is called the double covering of SO(3): to each element of
SO(3) correspond 2 elements of SU(2) (and this correspondence is respected by group
multiplication).
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Equation (6.51) allows us to attach a physical meaning to a group element:
before introducing the concept of representation, a group element g is just
an abstract mathematical object, defined by its composition rules with the
other group members. Choosing a specific representation instead allows us
to interpret g as a transformation on a certain space; for instance, taking as
group SO(3) and as base space the spatial vectors v, an element g ∈ SO(3)
can be interpreted physically as a rotation in three-dimensional space.

A representation R is called reducible if it has an invariant subspace, i.e.
if the action of any DR(g) on the vectors in the subspace gives another vector
of the subspace. Conversely, a representation with no invariant subspace is
called irreducible. A representation is completely reducible if, for all elements
g, the matrices DR(g) can be written, with a suitable choice of basis, in block
diagonal form. In other words, in a completely reducible representation the
basis vectors φi can be chosen so that they split into subsets that do not mix
with each other under eq. (6.51). This means that a completely reducible
representation can be written, with a suitable choice of basis, as the direct
sum of irreducible representations.

Two representations R,R′ are called equivalent if there is a matrix S,
independent of g, such that for all g we have DR(g) = S−1DR′(g)S. Com-
paring with eq. (6.51), we see that equivalent representations correspond to
a change of basis in the vector space spanned by the φi.

Rather than consider representations of a Lie group, we can consider the
representation of its Lie algebra. In abstract form, the Lie algebra is given in
eq. (6.46). Any specific solution of this algebraic equations gives a concrete
expression for the generators, i.e. a representation of the Lie algebra. If
we denote by T aR the explicit form of the generators in a representation R,
we might think that this generates automatically a representation R of the
abstract group elements g, using eq. (6.44),

DR(g(θ)) = eiθ
aTaR . (6.52)

However, we must recall the property (i) above: when g is the identity
element of the group, DR(g) must be the identity operator.

For SO(3), the representations on the basis |lm〉 with l half-integer do
not satisfy this requirement. A rotation by an angle 2π is the same as the
identity element, and must be represented as +I, not as −I. Therefore, half-
integer representations are not acceptable for SO(3), as indeed we found,
with a different argument based on hermiticity, in eq. (5.66).

In contrast, for SU(2) a transformation with θ = 2π is not the same as
the identity, so need not be represented as the identity operation. Rather,
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a transformation with θ = 4π must be represented by the identity operator,
but this is true also for the half-integer representations. Therefore, for SU(2)
the representations |jm〉 are perfectly acceptable even when j is an half-
integer.

Physically, we have seen that these representations are acceptable, be-
cause even if the wavefunction changes sign under a rotation by 2π, the
physical quantities are the probabilities, which are the squared modulus of
the wavefunctions, and are therefore unchanged. It is therefore an exper-
imental issue whether Nature makes uses of these representations or not.
Experimentally, particles with spin 1/2 do exists, which means that the
symmetry group of Nature under rotation is SU(2) rather than SO(3).

6.3 Spin 1

We can study similarly the representation with spin 1. This representation
is 3-dimensional, and a basis is given by the kets |jm〉 with j = 1 and
m = −1, 0, 1,

|1,−1〉 |10〉 , |1, 1〉 . (6.53)

It is convenient to introduce a new basis |1〉, |2〉, |3〉,

|1〉 ≡ 1√
2

(|1, 1〉 − i|1,−1〉) , (6.54)

|2〉 ≡ 1√
2

(|1, 1〉+ i|1,−1〉) , (6.55)

|3〉 ≡ |10〉 . (6.56)

A generic ket in this space therefore has the form

|v〉 = v1|1〉+ v2|2〉+ v3|3〉 , (6.57)

for some coefficients vi. We write them as a column vector,

v =

 v1

v2

v3

 , (6.58)

compare with eq. (6.8). By definition, this spin-1 state transforms under
rotations as

v→ exp{−iθ·S/~}v , (6.59)

where S is the explicit representation of the angular momentum algebra in
terms of 3× 3 matrices (compare with eq. (6.26) for the spin 1/2 case). The
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matrix elements 〈1m′|Si|1m〉 can be read from the general result found in
eqs. (5.108)–(5.110). Rewriting it in terms of the basis |k〉 with k = 1, 2, 3
we find

(Si)kl ≡ 〈k|Si|l〉 = ~iεikl . (6.60)

Under an infinitesimal rotation therefore vk transforms as

vk → [1− iθiSi/~]klvl

= vk + θiεiklvl

= vk − εkilθivl , (6.61)

or
v→ v − θ×v . (6.62)

However, this is just the transformation law of a spatial vector (as was
already implicitly suggested by the notation v). We therefore see that the 3
components of a spin-1 state are equivalent to the 3 components of a vector.

For the moment v has no spatial dependence, so it represents an “arrow”
at a fixed location in space. Just as we did for spinors, we can add a spatial
dependence considering

v(x) =

 v1(x)
v2(x)
v3(x)

 . (6.63)

With the same argument used for spinors, we find that under rotations it
transforms as

v(x)→ exp{−iθ·(L + S)/~}v(x) , (6.64)

where the orbital angular momentum L acts on the coordinates while the
spin S mixes the different component according to eq. (6.61). In other words,
when we perform a rotation of the reference frame, a vector v(x) changes
both because the point that was labeled x in a frame is now labelled x′ in
the rotated frame, and because the projections of the components along the
axis of the new frame are a combination of the components in the initial
frame. The former change is implemented by exp{−iθ·L/~} and the latter
by exp{−iθ·S/~}.

In conclusion, a spin-0 particle is described by a scalar wavefunction ψ(x). A
spin-1/2 particle by a spinor wavefunction ξ(x), which has two components
that mix among them under rotation, and describe the two states with Sz =
±~/2. A spin-1 particle is described by a vector wavefunction v(x), whose
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three components v1(x), v2(x) and v3(x) mix among them under rotation,
and are in correspondence with the three states with Sz = −~, 0,+~: v3(x)
describes the states with Sz = 0 while the states with Sz = ±~ are described
by the combinations v1(x)± iv2(x).

This can be generalized to higher spins. A generic spin-j representation
has dimension 2j + 1 (since m takes the 2j + 1 values −j,−j + 1, . . . ,+j).
Representations with integer j are both representations of SU(2) and of
SO(3) and therefore can be put in correspondence with tensor represen-
tations of SO(3). For instance, a spin-2 state has 5 degrees of freedom
(j = 2,m = −2,−1, 0,+1,+2), that can be written in terms of the five inde-
pendent components of a traceless symmetric tensor hij .

18 Representations
with half-integer j instead are only allowed in SU(2).

6.4 Spin dynamics

In classical electromagnetism, a particle with charge q moving with velocity
v in a circular orbit of radius r generates a current

I =
qv

2πr
, (6.65)

and has a magnetic moment µ whose modulus is

µ =
qv

2πr

πr2

c
=
( q

2mc

)
mvr . (6.66)

Observe that mvr = |L| ≡ L, where L is the orbital angular momentum.
The magnetic moment vector is

µ =
( q

2mc

)
L . (6.67)

In an external magnetic field B, classically a magnetic moment has an inter-
action energy E = −µ·B. Therefore, in quantum mechanics, for a particle
with orbital angular momentum L in a magnetic field B, the Hamiltonian
operator contains an interaction term19

Hint = −µ·B = −
( q

2mc

)
L ·B . (6.68)

18The irreducible tensor representations of SO(3) are given by tensor that are symmetric
and traceless in all their pairs of indices. So we have scalars ψ, vectors vi, tensors hij with
hij = hji and hii = 0, tensors with 3 indices Tijk symmetric and traceless with respect to
any pair of indices, etc.

19In a later section, when we study in general the coupling to electromagnetic fields, we
will see how this term derives from the prescription of minimal coupling.
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If one uses the intuitive picture of spin as due to the angular momentum
of a particle spinning around its axis, it would be natural to associate to
a charged particle a similar interaction term. So, for the electron (charge
q = −e, where e > 0, and mass me) we would be lead to

Hint
?
=

e

2mec
S ·B =

e~
4mec

σ·B . (6.69)

However, as we mentioned already, the semiclassical view of spin as due
to the intrinsic rotation of a particle is not correct, and as a consequence
eq. (6.69) is not correct either. The fact that the coupling of spin to electro-
magnetic field is proportional to S ·B is however still true. In fact, we can
simply demand that the spin S be coupled to electromagnetic field so to pre-
serve invariance under rotation and parity (since electromagnetic interaction
preserve parity). The spin S is a pseudovector, just as any angular momen-
tum. This follows simply from the fact that, in the angular momentum
algebra, appears the tensor εijk, that is a pseudotensor under parity. Thus,
the only possibility is a scalar product between S, and another pseudovector,
and for the electromagnetic field the only available one is B. However, the
constant in front is not fixed by symmetry principles, so we write generically
the coupling of the electron spin to the electromagnetic field as

Hint = g

(
eh

4mec

)
σ·B . (6.70)

where g is a dimensionless constant. In other words, Hint = −µ·B, where
the intrinsic magnetic moment of the electron is

µ = − ge

2mc
S ≡ γS , (6.71)

where γ is known as the gyromagnetic ratio. For the electron, g is very close
to 2. The experimentally measured value is

g − 2

2
|exp = 0.001 165 9208(6) . (6.72)

This result is nowadays understood using quantum field theory, in particular
quantum electrodynamics (QED), that gives a theoretical prediction

g − 2

2
|th = 0.001 165 9181(7) . (6.73)

The agreement between theory and experiment is among the most accurate
in physics, and is a great triumph for QED. However, you will to wait for a
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quantum field theory course to understand how such a results comes out.20

For objects such as protons and neutrons, the value of g is different. For the
proton,

µp = +
ge

2mpc
S . (6.74)

where mp is the proton mass. and g ' 5.6. Observe that also the neutron,
even if it is zero total charge, has a non-vanishing magnetic dipole moment,

µn = +
ge

2mnc
S , (6.75)

with g ' −3.8.21 We can now study the evolution of the spin in a magnetic
field. We consider a spin 1/2 particle at rest in a magnetic field, and we
consider only the evolution of the spin degree of freedom. In a magnetic
field B = Bẑ we have

Hint = −γBSz = −γB~
2

σz . (6.76)

The eigenstates of Hint are the same as those of Sz, and are the spinors ξ±
given in eqs. (6.9) and (6.10),

Hintξ+ = −γB~
2

ξ+ ≡ E+ξ+ (6.77)

Hintξ− = +
γB~

2
ξ− ≡ E−ξ− . (6.78)

20A more advanced note: the prediction g = 2 is often presented as one of the suc-
cesses of the Dirac equation, that will be studied in the course Champs et Particules.
Actually, even if historically this success was very important for understanding how to
build a relativistic generalization of quantum mechanics, nowadays the correct context for
discussing these results is quantum field theory. The Dirac equation, when used simply
as a relativistic generalization of the Schrödinger equation, leads to pathologies (such as
unbounded negative energies, and the lack of a probabilistic interpretation) that only find
their resolution in the broader context of quantum field theory. Furthermore, even the
very fact that the Dirac equation really “predicts” g = 2 is quite questionable. This only
happens if one couples the electromagnetic field to the electron using the so-called minimal
coupling (that, for the Schrödinger equation, we will study in due course). Other types
of coupling are in principle possible, which would modify the prediction into g = 2 + a
with a an arbitrary constant. The fact that this arbitrary constant is suppressed can be
understood only in the context of quantum field theory, and is related to the fact that it is
associated to a non-renormalizable interaction term, see Weinberg, The Quantum Theory
of Fields, Vol. I, page 14.

21The fact the the values of g for the proton and for the neutron are not close to 2 is
due to the fact that, at a fundamental level, they are made by three spin-1/2 particles
(quarks), and their total magnetic moment results from the composition of the magnetic
moments of the quarks.
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The Schrödinger equation is

i~
∂ξ

∂t
= Hintξ . (6.79)

The states ξ± evolve as

ξ+(t) = e−iE+t/~ξ+(0) , (6.80)

ξ−(t) = e−iE−t/~ξ−(0) . (6.81)

Consider a generic spinor ξ that at time t = 0 has the form αξ+ +βξ−, with
|α|2 + |β|2 = 1. It evolves as

ξ(t) = αξ+(t) + βξ−(t) =

(
α e−iE+t

β e−iE−t

)
. (6.82)

We compute now the expectation value of Sx, Sy and Sz on this state. In
the bra and ket notation, we have a state

|ξ〉 = αe−iE+t|1
2
,+

1

2
〉+ βe−iE−t|1

2
,−1

2
〉 , (6.83)

and we want to compute 〈ξ|Si|ξ〉. In the spinor notation, where |ξ〉 is rather
written as a column vector ξ, this is equivalent to computing ξ†(t)Siξ(t). It
is convenient to write α = cos(θ/2), β = sin(θ/2) and define ω = γB. So,
consider for instance

〈Sx〉 = ξ†(t)Sxξ(t)

= (cos(θ/2)e−iωt/2, sin(θ/2)eiωt/2)
~
2

(
0 1
1 0

)(
cos(θ/2)eiωt/2

sin(θ/2)e−iωt/2

)
=

~
2

sin θ cosωt . (6.84)

Similarly

〈Sy〉 = −~
2

sin θ sinωt , (6.85)

and

〈Sz〉 =
~
2

cos θ . (6.86)

So, 〈S〉 makes an angle θ with the z axis, and rotates in the (x, y) plane
with the Larmor frequency

ω = γB . (6.87)

This is the Larmor precession.

(Reference: Griffiths, Sect. 4.4.2).
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7 Addition of angular momenta

7.1 Example: composition of two spin 1/2

(Ref: Shankar, Section 15.1, pages 403–408).
We consider the tensor product

|s1m1, s2m2〉 ≡ |s1m1〉 ⊗ |s2m2〉 . (7.1)

Define |++〉, |+−〉, |−+〉, |−−〉 as

|++〉 = |s1 = 1/2,m1 = +1/2, s2 = 1/2,m2 = +1/2〉 ,
|+−〉 = |s1 = 1/2,m1 = +1/2, s2 = 1/2,m2 = −1/2〉 ,
|−+〉 = |s1 = 1/2,m1 = −1/2, s2 = 1/2,m2 = +1/2〉 ,
|−−〉 = |s1 = 1/2,m1 = −1/2, s2 = 1/2,m2 = −1/2〉 . (7.2)

The total spin is
S = S1 + S2 , (7.3)

since it generates the rotation of the ket (7.1). Observe that it still satisfies
the angular momentum algebra. In the basis |++〉, |+−〉, |−+〉, |−−〉, Sz is
diagonal

Sz = ~

++ +− −+ −−
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 . (7.4)

To compute the matrix elements of S2, we write

S2 = S2
1 + S2

2 + 2S1 · S2 . (7.5)

Since we are composing two spin-1/2 particles, we have

S2
1 = S2

2 = ~2s(s+ 1) (7.6)

with s = 1/2, so S2
1 = S2

2 = (3/4)~2. Then, for instance, the matrix element
〈++|S2|++〉 is given by

〈++|S2|++〉 =
3

2
~2 + 2〈++|S1 · S2|++〉

=
3

2
~2 + 2〈+|(S1)i|+〉〈+|(S2)i|+〉 . (7.7)
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The matrix elements in the spin-1/2 representation have been computed in
eqs. (6.12) and (6.13), and are given by the Pauli matrices,

〈+|Si|+〉 =
~
2

(σi)11 =
~
2
δi3, . (7.8)

Then, we get
〈++|S2|++〉 = 2~2 . (7.9)

Computing similarly the other matrix elements we get

S2 = ~2

++ +− −+ −−
2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

 (7.10)

This matrix can be diagonalized by changing basis. The eigenvectors of the
total spin are

|s = 1,m = +1〉 = |++〉 (7.11)

|s = 1,m = 0〉 =
1√
2

(|+−〉+ |−+〉) (7.12)

|s = 1,m = −1〉 = |−−〉 (7.13)

|s = 0,m = 0〉 =
1√
2

(|+−〉 − |−+〉) . (7.14)

The resulting diagonal matrix is

S2 = ~2

11 10 1-1 00
2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0

 (7.15)

Since s(s + 1) = 2 when s = 1, we see that the first 3 × 3 block spanned
by |s = 1,m = +1〉, |s = 1,m = 0〉 and |s = 1,m = −1〉 corresponds to total
spin equal to 1, while the state |s = 0,m = 0〉 has spin 0. In the language
of representation theory introduced in the previous section, we have de-
composed the tensor product of two spin 1/2 representation into irreducible
representations. Simbolically,

1

2
⊗ 1

2
= 0⊕ 1 . (7.16)

65



Observe that the total-s states have also definite symmetry under the ex-
change of the two particles. The triplets are symmetric and the singlet is
antisymmetric.

7.2 The general problem

We study now the composition of angular momenta J1 and J2 generic. As
before, we start from the tensor product basis

|j1m1, j2m2〉 ≡ |j1m1〉 ⊗ |j2m2〉 . (7.17)

where j1 and j2 are fixed. Since m1 takes 2j1 +1 values and m2 takes 2j2 +1
values, this space has dimension (2j1 + 1)(2j2 + 1). The total Jz is already
diagonal

Jz|j1m1, j2m2〉 = ~(m1 +m2)|j1m1, j2m2〉 , (7.18)

while J2 is not. The problem is therefore to find the change of basis that
diagonalizes J2, i.e. a basis |jm〉, with m = −j, . . .+ j, and j ranging over
some set of values, such that

J2|jm〉 = ~2j(j + 1)|jm〉 , (7.19)

Jz|jm〉 = ~m|jm〉 . (7.20)

For j1 = j2 = 1/2, this basis was found in eqs. (7.11)–(7.14), and we saw
that the allowed value of j were j = 0, 1.

If j1 and j2 have been specified, the problem just amounts to diagonal-
izing the matrix J2 (although, in practice, there is a more clever algebraic
method to solve the problem for j1 and j2 generic, see Shankar pages 409–
412, based on the use of rasing and lowering operators J±). The result is
that J2 is diagonalized in a basis |jm〉 where, for each allowed j, m takes
all values between −j and +j in integer steps, and j takes all the values
between |j1 − j2| and j1 + j2, in integer steps,

j = |j1 − j2|, |j1 − j2|+ 1, . . . , j1 + j2 . (7.21)

This generalizes the result that we found above, when we took j1 = j2 = 1/2
and we found that the possible values of j were j = 0, 1. From eq. (7.18),
we see that m = m1 +m2.

As a check of this result, we can verify that the kets |jm〉 with m =
−j,−j + 1, . . . , j and j as in eq. (7.21) span a vector space of dimension

66



(2j1 + 1)(2j2 + 1), just as the kets |j1m1, j2m2〉 given in eq. (7.17). Indeed,
at each level j we have 2j + 1 states, and

j1+j2∑
j=|j1−j2|

(2j + 1) =

j1+j2∑
j=0

(2j + 1)−
j=|j1−j2|−1∑

j=0

(2j + 1) . (7.22)

Using
N∑
n=0

n =
N(N + 1)

2
(7.23)

this gives indeed (2j1 +1)(2j2 +1). In the language of representation theory,
this can be expressed as

j1 ⊗ j2 = |j1 − j2| ⊕ (|j1 − j2|+ 1)⊕ . . .⊕ (j1 + j2) , (7.24)

which is the generalization of eq. (7.16) to j1 and j2 arbitrary. For instance,

1⊗ 1 = 0⊕ 1⊕ 2 . (7.25)

We also want to know the explicit form of the kets |jm〉 in terms of the
kets |j1m1, j2m2〉. For j1 and j2, fixed, the kets |j1m1, j2m2〉 with m1 =
−j1, . . . j1 and m2 = −j2, . . . j2 span the whole Hilbert space, so we have the
completeness relation

j1∑
m1=−j1

j2∑
m2=−j2

|j1m1, j2m2〉〈j1m1, j2m2| = 1 . (7.26)

We write as |jm, j1j2〉 the eigenstates of J2 and Jz, obtained composing the
angular momenta j1 and j2. Then

|jm, j1j2〉 =

j1∑
m1=−j1

j2∑
m2=−j2

|j1m1, j2m2〉〈j1m1, j2m2|jm, j1j2〉 . (7.27)

We can rewrite this as

|jm, j1j2〉 =
∑
m1,m2

Cj1j2jm1m2m|j1m1, j2m2〉 , (7.28)

where
Cj1j2jm1m2m = 〈j1m1, j2m2|jm, j1j2〉 (7.29)
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are called the Clebsch-Gordan coefficients. From the results found above,
it follows that they are non-vanishing only if |j1 − j2| ≤ j ≤ j1 + j2, and if
m = m1 + m2. It can be shown that they can be chosen to be real, and,
if we change simultaneously the sign of m, m1 and m2, they acquire a sign
(−1)j1+j2−j ,

〈j1,−m1; j2,−m2|j,−m; j1j2〉 = (−1)j1+j2−j〈j1,m1; j2,m2|jm, j1j2〉 .
(7.30)

Equation (7.28) generalizes eqs. (7.11)–(7.14) to j1, j2 arbitrary. If we as-
semble the Clebsch-Gordan coefficients into a matrix relating the (2j1 +
1)(2j2 + 1) states |jm〉 to the (2j1 + 1)(2j2 + 1) states |m1m2〉, we find
that this matrix is orthogonal, since it gives the transformation between
two orthonormal basis.

For each fixed choice of j1, j2, the Clebsch-Gordan coefficients can be
computed performing explicitly the diagonalization of J2. Tables of Clebsch-
Gordan coefficients are given in many books of quantum mechanics.

7.3 Addition of L generic and spin 1/2

When we study the hydrogen atom, we will be confronted with the addition
of orbital angular momentum L, whose eigenvector we denote as |l,ml〉, and
the spin S of the electron, which has s = 1/2, and eigenvectors |1/2,ms〉. We
compute the Clebsch-Gordan coefficients for this case, with arbitrary l, using
an algebraic method, rather than performing explicitly the diagonalization
of J2.

We denote by |jm〉 the eigenstates of total angular momentum and by
|l,ml; 1/2,ms〉 the tensor product of the eigenstate of orbital angular mo-
mentum and of spin. The allowed values of j are l±1/2 if l 6= 0, and j = 1/2
if l = 0. Therefore, considering only the non-trivial case l 6= 0, we have in
general

|j = l +
1

2
,m〉 = α|l,m− 1

2
;
1

2
,
1

2
〉+ β|l,m+

1

2
;
1

2
,−1

2
〉 , (7.31)

|j = l − 1

2
,m〉 = α′|l,m− 1

2
;
1

2
,
1

2
〉+ β′|l,m+

1

2
;
1

2
,−1

2
〉 . (7.32)

Orthonormality requires

α2 + β2 = 1 , α′
2

+ β′
2

= 1 , αα′ + ββ′ = 0 . (7.33)
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A fourth equation is obtained observing that

J2|j = l +
1

2
,m〉=~2(l +

1

2
)(l +

3

2
)|j = l +

1

2
,m〉 (7.34)

=~2(l +
1

2
)(l +

3

2
)

(
α|l,m− 1

2
;
1

2
,
1

2
〉+ β|l,m+

1

2
;
1

2
,−1

2
〉
)
.

On the other hand, J2 = L2 + S2 + 2LzSz + L−S+ + L+S−, so

J2|j = l +
1

2
,m〉 =(L2 + S2 + 2LzSz + L−S+ + L+S−)(

α|l,m− 1

2
;
1

2
,
1

2
〉+ β|l,m+

1

2
;
1

2
,−1

2
〉
)
. (7.35)

We now use

L2|l,m− 1

2
;
1

2
,
1

2
〉 = ~2l(l + 1)|l,m− 1

2
;
1

2
,
1

2
〉 , (7.36)

S2|l,m− 1

2
;
1

2
,
1

2
〉 = ~2 1

2
(
1

2
+ 1)|l,m− 1

2
;
1

2
,
1

2
〉 , (7.37)

LzSz|l,m−
1

2
;
1

2
,
1

2
〉 = ~2(m− 1

2
)
1

2
|l,m− 1

2
;
1

2
,
1

2
〉 , (7.38)

L−S+|l,m−
1

2
;
1

2
,
1

2
〉 = 0 , (7.39)

L+S−|l,m−
1

2
;
1

2
,
1

2
〉 = C+(l,m− 1

2
)C−(

1

2
,
1

2
)|l,m+

1

2
;
1

2
,−1

2
〉(7.40)

(and similarly for the action on |l,m+ 1
2 ; 1

2 ,−
1
2〉) where C±(j,m) were given

in eqs. (5.106) and (5.107). Comparing the result with eq. (7.34) we get one
more equation that can be solved for β/α. Putting it together with eq. (7.33)
we can solve for α, β, α′, β′. The result is

|j = l ± 1

2
,m〉 =

1

(2l + 1)1/2

[
±(l +

1

2
±m)1/2|l,m− 1

2
;
1

2
,
1

2
〉

+(l +
1

2
∓m)1/2|l,m+

1

2
;
1

2
,−1

2
〉
]
.(7.41)
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8 The hydrogen atom

(This is a subject that you already studied in Mécanique Quantique I. How-
ever, it is one of the most important applications of quantum mechanics, and
it is useful to see it again, with the better understanding of the formalism
that you should now have, especially for what concerns angular momentum
and spin.)

8.1 Explicit solution of the Schrödinger equation

We follow Shankar, Chapter 13, and Griffiths, Sect. 4.2. Here we just sum-
marize the results. The potential is V (r) = −e2/r. We perform the separa-
tion of variables as in eqs. (5.130) and (5.132), and eq. (5.133) becomes{

d2

dr2
+

2me

~2

[
E +

e2

r
− ~2l(l + 1)

2mer2

]}
UEl(r) = 0 . (8.1)

We look for solutions with E < 0. As r → ∞ the terms ∼ 1/r and ∼ 1/r2

can be dropped and the solutions of eq. (8.1) are

UEl(r) ∼ e±κr , (r →∞) . (8.2)

where κ = (−2meE/~2)1/2. Only the one with the minus sign is physically
acceptable. As r → 0, if l 6= 0 the dominant term in the square bracket
in eq. (8.1) is the centrifugal potential ∼ l(l + 1)/r2, and we see that the
solution is

UEl(r) ∼ rl+1 , (r → 0) . (8.3)

Equation (8.2) suggests the introduction of the dimensionless variable

ρ = κr = (−2meE/~2)1/2 r , (8.4)

and the asymptotic behaviors found above suggests the ansatz

UEl(ρ) = e−ρ vEl(ρ) , (8.5)

with

vEl(ρ) = ρl+1
∞∑
k=0

Ckρ
k . (8.6)
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8.1.1 The energy levels

Just as with the harmonic oscillator, plugging this ansatz into eq. (8.1) one
finds a recursion relation giving Ck+1/Ck as a function of the index k and of
E, l. Looking at the asymptotics for k →∞ we find that, if the series does
not terminates, it goes as e+2ρ, transforming the asymptotic behavior of U(ρ)
into e+ρ. This is clearly the other possible asymptotic solution of eq. (8.1),
but it is unacceptable physically, so we require that the series terminates for
some value of k, that we call kmax. This result in the quantization condition

En = − mee
4

2~2n2
, (8.7)

where
n = kmax + l + 1 , (8.8)

Since the possible values of kmax are 0, 1, 2, . . ., n takes the values 1, 2, 3, . . ..
The integer n is called the principal quantum number of the hydrogen atom.
Observe that l no longer appear explicitly in eq. (8.7). Thus, states with
the same n and different l are degenerate. From eq. (8.8), for fixed n, the
allowed values of l are

l = 0, 1, . . . , n− 1 . (8.9)

The quantity

Ry ≡ mee
4

2~2
' 13.6 eV (8.10)

is called the Rydberg, so En = −Ry/n2. The Rydberg is the binding energy
of hydrogen in its ground state, n = 1. In terms of the fine structure constant

α =
e2

~c
' 1

137
, (8.11)

we can rewrite

Ry =
1

2
mec

2α2 , (8.12)

showing that this is smaller than the electron’s rest energy mec
2 by a factor

O(α2). It is common to refer to the states with l = 0, 1, , 2, 3, 4, . . . as
s, p, d, f, g, h, . . .. Then the lowest lying level are

1s (n = 1, l = 0) , E = −Ry , (8.13)

2s, 2p (n = 2, l = 0, 1) , E = −Ry/4 , (8.14)

3s, 3p, 3d (n = 3, l = 0, 1, 2) , E = −Ry/9 , (8.15)

and so on.
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8.1.2 The wavefunctions

Once we require that the recurrence equation terminates, the function vEl(ρ)
becomes equal to ρl+1 times a polynomial of degree k = n − l − 1, and
the recurrence relation allows us to compute them, in terms of the first
coefficient, which is then chosen so that the wave-function is normalized to
one. In terms of the original wavefunction

ψnlm(r, θ, φ) =
1

r
Unl(r)Ylm(θ, φ) (8.16)

the (normalized) wavefunction of the lowest-lying states are

ψ100 =
1

(πa3
0)1/2

e−r/a0 , (8.17)

ψ200 =
1

(32πa3
0)1/2

(
2− r

a0

)
e−r/2a0 , (8.18)

ψ210 =
1

(32πa3
0)1/2

r

a0
e−r/2a0 cos θ , (8.19)

ψ21,±1 = ∓ 1

(64πa3
0)1/2

r

a0
e−r/2a0 e±iφ sin θ , (8.20)

where

a0 =
~2

me2
' 0.529× 10−8 cm = 0.529 Å (8.21)

is called the Bohr radius, and gives the typical size of the hydrogen atom.
The general solution can be written in terms of associated Laguerre polyno-
mials, see Griffiths, pages 152–153. See also the plots of |ψnlm|2 for various
n, l,m, in Griffiths, pages 156–157.

Computing the expectation value of r, and using the properties of the
Laguerre polynomial, one finds

〈r〉nlm =
a0

2
[3n2 − l(l + 1)] . (8.22)

So a0 is indeed the typical size of the hydrogen atom in a low-lying state.
Observe that this size grows with n as n2. A hydrogen atom in the 3s state
has a typical radius 9 times larger than in the fundamental state.

8.1.3 Transitions among stationary states

Stationary states are, indeed, stationary, only in the absence of external per-
turbations. However, such perturbations are always present. For instance,
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atoms can collide among them, or can interact with external electromagnetic
fields. We will learn how to compute these effects in due course, when we
study perturbation theory. For the moment, we just observe that only the
ground state, i.e. the 1s state, is really stable. All the other excited states
decay to lower-lying states, and finally to the ground state. The simplest
process is the decay with emission of a single photon of frequency ν. As you
saw in Mécanique Quantique I, such a photon carries an energy

Eγ = hν = ~ω , (8.23)

where ω = 2πν. In a transition from an initial level with principal quantum
number ni to a level with principal quantum number nf < ni, conservation
of energy gives Eni = Enf + Eγ , so

hν = Ry

(
1

n2
f

− 1

n2
i

)
, (8.24)

or, in terms of the wavelength λ = 1/ν,

1

λ
= RH

(
1

n2
f

− 1

n2
i

)
, (8.25)

where RH ' 1.097× 105 cm−1.

Transitions of the hydrogen atom to the ground state (nf = 1) form
the Lyman series. The transition ni = 2 → nf = 1 is called Lyman-α, or
Lα, and has a wavelength λ ' 1216 Å, in the ultraviolet. The transition
ni = 3 → nf = 1 is called Lβ, etc. All transitions of the Lyman series are
in the UV.

Transitions to nf = 2 for the Balmer series, and are in the visible part
of the spectrum. The transition ni = 3 → nf = 2 is called Balmer-α, or
Hα, and has λ ' 6563 Å(it is red); ni = 4 → nf = 2 is called Hβ, and has
λ ' 4861 Å(it is turquoise), while Hγ (ni = 5 → nf = 2, λ ' 4340 Å) is
blue. The Balmer series is the characteristic spectrum of hydrogen seen in
the spectra of most stars. Transitions to nf = 3 form the Paschen series,
Pα, Pβ, . . . , in the infrared.

A free electron, with a kinetic energy Ee > 0 and a continuous spectrum,
can also be captured by a proton forming a hydrogen atom in a state with
quantum number n, emitting a photon whose energy satisfies

Ee = Eγ −
Ry

n2
, (8.26)
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or

hν =
Ry

n2
+ Ee . (8.27)

Since Ee ≥ 0 is continuous, this gives a continuous spectrum. Capture to
n = 1 gives rise to the Lyman continuum, that starts at hν = Ry, i.e. has
a continuos spectrum on all wavelengths shorter than 912 Å.

8.1.4 Modified spectroscopic notation

For the moment, the spin of the electron played no role. We will see later
that the spin of the electron actually couples to the spin of the proton,
giving rise to the hyperfine splitting of the energy levels. For the moment,
spin does not appear in the Hamiltonian, so it is just a “spectator” degree
of fredom. However, the existence of the electron spin changes the total
angular momentum state of the atom. The combination of spin 1/2 with
orbital angular momentum l give rise to states with total angular momentum
j. According to our discussion of the composition of angular momenta, if
l = 0, the only possibility is j = 1/2, while for each l 6= 0 we have two
possible values of the total angular momentum, j = l ± 1/2.

To take this into account, the states of the hydrogen atom, and more
generally of multi-electron atoms, are then labeled as 2S+1LJ , where the
meaning of the symbols is as follows.

• The capital letter L = S, P,D, . . . denotes orbital angular momentum,
with S corresponding to l = 0, P to l = 1, etc. For the hydrogen
atom this will be the angular momentum of the only electron present.
For a more general atom, it will be result from the composition of the
orbital angular momentum of all the electrons.

• The subscript J to the right indicates the total angular momentum

• The superscript 2S + 1 to the left of L denotes the total spin. For a
single electron S = 1/2, so 2S + 1 is always equal to 2. For an atom
with two electrons such as Helium, the total spin S can be 0 or 1, so
2S + 1 can be equal to 1 (the singlet state) or 3 (the triplet state).

For instance, the symbol 2P3/2 denotes a state with l = 1, s = 1/2, and
j = 3/2, while 2P1/2 denotes a state with l = 1, s = 1/2, and j = 1/2.
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8.2 Understanding the physics of the hydrogen atom with
order-of-magnitude estimates. Units ~ = c = 1

Most of the physics of the hydrogen atom can be understood without ac-
tually solving explicitly the Schrödinger equation, simply by using some
elementary physical input, and dimensional analysis.22 Such estimates are
much simplified by the use of units ~ = c = 1. To understand the meaning of
these units, observe first of all that ~ and c are universal constants, i.e. they
have the same numerical value for all observers. The speed of light has the
value c = 299 792 458 m/s, with no error because, after having defined the
unit of time from a particular atomic transition (a hyperfine transition of
cesium-133) this value of c is taken as the definition of the meter. However,
instead of using the meter, we can decide to use a new unit of length (or a
new unit of time) defined by the statement that in these units c = 1. Then,
the velocity v of a particle is measured in units of the speed of light, which is
very natural since in particle physics we typically deal with relativistic ob-
jects. In these units 0 ≤ v < 1 for massive particles, and v = 1 for massless
particles.

The Planck constant ~ is another universal constant, and it has dimen-
sions [energy] × [time] or [length] × [momentum] as we see for instance
from the uncertainty principle. We can therefore choose units of energy
such that ~ = 1. Then all multiplicative factors of ~ and c disappear from
our equations and formally, from the point of view of dimensional analysis,

[velocity] = pure number , (8.28)

[energy] = [momentum] = [mass] , (8.29)

[length] = [mass]−1 . (8.30)

The first two equations follow immediately from c = 1 while the third follows
from the fact that ~/(mc) is a length. Thus all physical quantities have
dimensions that can be expressed as powers of mass or, equivalently, as
powers of length. For instance an energy density, [energy]/[length]3, becomes
a [mass]4. Units ~ = c = 1 are called natural units.

The fine structure constant α = e2/(~c) ' 1/137 is a pure number, and
therefore in natural units the electric charge e becomes a pure number.23

22The following part is taken from Maggiore, A Modern Introduction to Quantum Field
Theory, pages 4–6.

23There are different possible convention foir the unit of electric charge. We are following
here the convention of Shankar, where α = e2/(~c). Another commont system of units
rather gives α = e2/(4π~c), where α always has the same numerical value ' 1/137.
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To make numerical estimates, it is useful to observe that ~c, in ordinary
units, has dimensions [energy×time]×[velocity] = [energy]×[length]. In par-
ticle physics a useful unit of energy is the MeV (= 106 eV) and a typical
length-scale is the fermi: 1 fm = 10−13 cm; one fm is the typical size of a
proton. Expressing ~c in MeV×fm, one gets

~c ' 200 MeV fm (8.31)

(The precise value is 197.326 968 (17) MeV fm.) Then, in natural units,
1 fm ' 1/(200 MeV). Note that in units c = 1 masses are expressed simply
in MeV, as energies. Let us make some expample of the use of these units.

The Compton radius. The simplest length-scale associated to a particle
of mass m in its rest frame is its Compton radius, rC = 1/m. In particular,
for the electron

rC =
1

me
' 200 MeV fm

0.5 MeV
= 4× 10−11 cm . (8.32)

Since rC does not depend on α, it is the relevant length-scale in situations
in which there is no dependence on the strength of the interaction. His-
torically, rC made its first appearance in the Compton scattering of X-rays
off electrons. Classically, the wavelength of the scattered X-rays should be
the same as the incoming waves, since the process is described in terms of
forced oscillations. Quantum mechanically, treating the X-rays as photons,
we understand that part of the momentum hν of the incoming photon is
used to produce the recoil of the electron, so the momentum of the outgoing
photon is smaller, and its wavelength is larger. The wavelength of the out-
going photon is fixed by energy–momentum conservation, and therefore is
independent of α, so the relevant length-scale must be rC . Indeed, a simple
computation gives

λ′ − λ = rC(1− cos θ) , (8.33)

where λ, λ′ are the initial and final X-ray wavelengths and θ is the scattering
angle.

The hydrogen atom. If we want to make dimensional estimates in the
hydrogen atom the two parameters that enter are the fine structure constant
α ' 1/137 and the reduced mass of the electron–proton system; since mp '
938 MeV is much bigger than me we can identify the reduced mass with me,
within a precision of 0.05 per cent.
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Let us first estimate the Bohr radius rB. The only mass that enters
the problem is me, Dimensionally, again rB ∼ 1/me, but now α enters.
Clearly, the radius of the bound state is smaller if the interaction responsible
for the binding is stronger, while it must go to infinity in the limit α →
0, so α must be in the denominator and it is very natural to guess that
rB ∼ 1/(meα). This is indeed the case, as can be seen with the following
argument: by the uncertainty principle, an electron confined in a radius r has
a momentum p ∼ 1/r. If the electron in the hydrogen atom is non-relativistic
(we will verify the consistency of this hypothesis a posteriori) its kinetic
energy is p2/(2me) ∼ 1/(2mer

2). This kinetic energy must be balanced
by the Coulomb potential, so at the equilibrium radius 1/(2mer

2) ∼ α/r,
which indeed gives rB ∼ 1/(meα). In principle factors of 2 are beyond the
power of dimensional estimates, but here it is quite tempting to observe
that the virial theorem of classical mechanics states that, for a potential
proportional to 1/r, at equilibrium the kinetic energy is one half of the
absolute value of the potential energy, so we would guess, more precisely,
that 1/(2mer

2
B) = α/(2rB), i.e.

rB =
1

meα
' 0.5× 10−8 cm , (8.34)

which is indeed the definition of the Bohr radius as found in the quantum
mechanical treatment. The typical potential energy of the hydrogen atom
is then

〈V 〉 ∼ V (rB) = − α

rB
= −meα

2 , (8.35)

and, again using the virial theorem, the kinetic energy is

E = −1

2
V ∼ 1

2
meα

2 . (8.36)

This is the kinetic energy of a non-relativistic electron with typical velocity

v ∼ α . (8.37)

Since α� 1, our approximation of a non-relativistic electron is indeed con-
sistent. This of course was expected, since we know that, in a first approx-
imation, the non-relativistic Schrödinger equation gives a good description
of the hydrogen atom.

The sum of the kinetic and potential energy is−(1/2)meα
2 so the binding

energy of the hydrogen atom is

binding energy =
1

2
meα

2 (8.38)
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and we have indeed found back the Rydberg, see eq. (8.12). In units ~ =
c = 1 the energy levels of the hydrogen atom predicted by the Schrödinger
equations are

En = −meα
2

2n2
. (8.39)
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9 Identical particles

9.1 Permutation symmetry in quantum mechanics

(Reference: Shankar, Section 10.3)
In classical mechanics we can distinguish among identical particles by fol-

lowing their trajectories. In quantum mechanics this is not possible (with-
out disturbing the system). Therefore, two configurations related by the
exchange of identical particles must be described by the same state vector.
Let us see what are the consequences of this.

Consider first two distinguishable particles, that is, two particles which
differ in some property such as the mass, the charge or other quantities. For
example, consider an electron and a proton. We can measure the position of
the first particle (say the electron) and we find it at x = a, and of the second
(the proton), and we find it at x = b. The state just after the measurement
is written as

|ψ〉 = |x1 = a, x2 = b〉 ≡ |ab〉 , (9.1)

while
|ψ〉 = |x1 = b, x2 = a〉 ≡ |ba〉 , (9.2)

represents the state where the electron is in b while the proton is in a.
Clearly, for distinguishable particles |ab〉 6= |ba〉, if a 6= b.

Suppose now that the two particles are identical, e.g. two electrons.
We find one electron in x = a and one in x = b. Is the state vector after
measurement |ab〉 or |ba〉 ? In fact, it is neither. Rather, if we demand that
the exchange of the particle gives the same physical state, the state vector
|ψ(a, b)〉 must satisfy

|ψ(a, b)〉 = α|ψ(b, a)〉 (9.3)

with α a phase. Neither |ab〉 nor |ba〉 satisfy this requirement. However,
consider a general superposition of these states,

|ψ〉 = c1|ab〉+ c2|ba〉 . (9.4)

requiring (9.3) we get

c1|ab〉+ c2|ba〉 = α(c1|ba〉+ c2|ab〉) , (9.5)

so
c1 = αc2 , c2 = αc1 , (9.6)

which implies α2 = 1, i.e.
α = ±1 , (9.7)
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and the allowed states are the symmetric and the antisymmetric combina-
tions,

|ab, S〉 ≡ |ab〉+ |ba〉 , (9.8)

|ab,A〉 ≡ |ab〉 − |ba〉 . (9.9)

One can now prove that a given species of particle choose once and for all be-
tween S and A states, simply because otherwise the superposition of generic
symmetric and antisymmetric states gives back states with no symmetry
under the exchange. Particles that choose the symmetric state are called
bosons. Those in antisymmetric state are called fermions. In general, a par-
ticle will be labeled by a set of commuting quantum numbers {a1, a2, . . . an}
(e.g. the three components of the position, and its spin component sz).
The states S,A are then the states symmetric and antisymmetric under the
simultaneous exchange of all quantum numbers. Observe that, if we take
a = b, |aa,A〉 = 0: two fermions cannot be in the same state. This is
the Pauli exclusion principle, and forbids the states in which all quantum
numbers are simultaneously equal.

In the context of quantum field theory on can prove a theorem (the
spin-statistic theorem), that states that particles whose spin is an integer
(in units of ~) are bosons, while particles with half-integer spin are fermions.
For example the electron, the muon, the proton, the neutron, are all spin
1/2 particles and therefore fermions, while the pions (π0, π±) are spin-0
particles, so they are bosons.

The symmetry of the state vector (A or S) has observable consequences.
Consider a two-particle system in which one particle is found in the state
|a〉, with 〈x|a〉 = ψa(x), and the other in the state |b〉, with 〈x|b〉 = ψb(x)
and a 6= b. The labels a and b denote here generically the quantum numbers
of the particles, and do not refer necessarily to position. They could label,
for instance, the energy level in a potential well, or the momentum of a free
particle, etc. We neglect (only for the moment!) the spin degree of freedom.
Then the S and A states have wavefunction

ψS/A(x1, x2) =
1√
2

[ψa(x1)ψb(x2)± ψb(x1)ψa(x2)] (9.10)

and the probability of finding one particle in x1 and the other in x2 is
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proportional to24

PS/A(x1, x2) = |ψa(x1)ψb(x2)± ψb(x1)ψa(x2)|2

= |ψa(x1)ψb(x2)|2 + |ψb(x1)ψa(x2)|2

±2 Re [ψa(x1)ψb(x2)ψ∗b (x1)ψ∗a(x2)] . (9.11)

The sum of the first two terms gives the probability of finding two distin-
guishable particle (i.e. particles carrying a label, but otherwise identical),
one in the state a and the other in the state b, regardless of which one is
where,

PD(x1, x2) ≡ |ψa(x1)ψb(x2)|2 + |ψb(x1)ψa(x2)|2 . (9.12)

(The subscript D denotes distinguishable particles). The last term is called
the interference term, and is a purely quantum phenomenon. We see that
the sign is observables, since it affects the probabilities. In the extreme case
x1 = x2, we have PA(x, x) = 0, (Pauli principle), while

PS(x, x) = 4|ψa(x)ψb(x)|2 = 2PD(x, x) , (9.13)

so PS(x, x) is twice as large as the probability for distinguishable particles.
This result can be described by saying that in the antisymmetric state two
identical particles have a tendency to repel each other, while in the symmet-
ric state they attract each other. This is a purely quantum phenomenon,
which is sometimes ascribed to “exchange forces”. However, it is important
to realize that it is not really a force, and there is no potential in the Hamil-
tonian describing this effect. It is a purely mathematical consequence of the
symmetrization/antisymmetrization procedure.

The fact that we must symmetrize or antisymmetrize the wavefunction
among all possible identical particles leads to a puzzle. Imagine that we
have one particle in the lab and a second identical particle in a far galaxy.
Should we really symmetrize or antisymmetrize among these two particles?
Physical intuition tells us that in such cases it should be possible to forget
about symmetrization or antisymmetrization. In fact, this happens because
the interference term is negligible in this case. See the discussion in Shankar,
pages 274–277.

24One should be careful about factors of 2 in the proportionality factor, due to
the fact that this probability gives one when integrated over distinct configuration, so
(1/2)

∫∞
−∞ PS/Adx1dx2 = 1 , where the 1/2 is due to the fact that we should actually

integrate only over the region x1 < x2. See Shankar, eq. (10.3.15) and (10.3.16).
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For three or more identical particles the situation is similar. Consider
three particles in the states a, b, c. If they are bosons, the state must be
symmetric under the exchange of any pair of particles, so it is

|ψS〉 =
1√
3!

(|abc〉+ |acb〉+ |bca〉+ |bac〉+ |cba〉+ |cab〉) , (9.14)

or, in coordinate space,

ψS(x1, x2, x3) =
1√
3!

[ψa(x1)ψb(x2)ψc(x3) + ψa(x1)ψc(x2)ψb(x3)

+ψb(x1)ψc(x2)ψa(x3) + ψb(x1)ψa(x2)ψc(x3)

+ψc(x1)ψb(x2)ψa(x3) + ψc(x1)ψa(x2)ψb(x3)] .(9.15)

For three fermions, the state must be antysymmetric under the exchange of
any pair of particles. This is given by

ψA(x1, x2, x3) =
1√
3!

[ψa(x1)ψb(x2)ψc(x3)− ψa(x1)ψc(x2)ψb(x3)

+ψb(x1)ψc(x2)ψa(x3)− ψb(x1)ψa(x2)ψc(x3)

−ψc(x1)ψb(x2)ψa(x3) + ψc(x1)ψa(x2)ψb(x3)] .(9.16)

Equation (9.16) can be rewritten more elegantly as a determinant,

ψA(x1, x2, x3) =
1√
3!

∣∣∣∣∣∣
ψa(x1) ψb(x1) ψc(x1)
ψa(x2) ψb(x2) ψc(x2)
ψa(x3) ψb(x3) ψc(x3)

∣∣∣∣∣∣ . (9.17)

In this form, it readily generalizes to n identical fermions (with a normal-
ization factor 1/

√
n!). This is called the Slater determinant.

9.2 Inclusion of spin

In equations such as (9.10) we have neglected the spin of the particle, and
therefore the spin wavefunction. We now include its effect, considering for
definiteness a spin-1/2 particle, such as the electron. We denote by |ψ〉 the
ket describing the orbital state of the system, i.e. ψ(x) ≡ 〈x|ψ〉 gives the
probability amplitude for the coordinates x. For instance, |ψ〉 could be the
state |nlm〉 of an electron in the hydrogen atom, in which case ψnlm(x) =
〈x|nlm〉 would be the wavefunction of the hydrogen atom in the state with
quantum numbers n, l,m, see eqs. (8.17)–(8.20). The Hilbert space of a
spin-1/2 particle is a tensor product

|ψ〉 ⊗ |ξ〉 (9.18)
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with |ξ〉 is an element of the Hilbert space spanned by the two vectors
|1/2,+1/2〉 and |1/2,−1/2〉, that as usual we denotes simply as |+〉 and
|−〉,

|ξ〉 = α|+〉+ β|−〉 . (9.19)

For two spin-1/2 particles, the Hilbert space is again the tensor product of
the orbital and spin degrees of freedom, as in eq. (9.18). However, now |ψ〉
describes the joint probability amplitude in space of the two particles,

〈x1,x2|ψ〉 = ψ(x1,x2) , (9.20)

while ξ is an element of the Hilbert space spanned by the four vectors

|s1,m1〉 ⊗ |s2,m2〉 ≡ |s1,m1; s2,m2〉 , (9.21)

with s1 = s2 = 1/2, m1 = ±1/2 and m2 = ±1/2. As in eqs. (7.1)–(7.2) we
use the simpler notation |++〉, |+−〉, |−+〉, |−−〉. It is convenient to use
the basis (7.11)–(7.14) since these spin state have definite symmetry under
the exchange of the two particles: the triplet is symmetric and the singlet
is antisymmetric.

Now, the total state of two fermions must be antisymmetric. Therefore,
if the spin wavefunction is symmetric, the coordinate wavefunction must be
antisymmetric, and viceversa, if the spin wavefunction is antisymmetric, the
coordinate wavefunction must be symmetric.

Thus, if the two electrons are found in state with orbital wavefunctions
ψa and ψb, the possible states of the system are

[ψa(x1)ψb(x2)− ψb(x1)ψa(x2)]⊗ |++〉 , (9.22)

[ψa(x1)ψb(x2)− ψb(x1)ψa(x2)]⊗ |+−〉+ |−+〉√
2

, (9.23)

[ψa(x1)ψb(x2)− ψb(x1)ψa(x2)]⊗ |−−〉 , (9.24)

[ψa(x1)ψb(x2) + ψb(x1)ψa(x2)]⊗ |+−〉 − |−+〉√
2

. (9.25)

The first three states describe a two-electron system with total spin s = 1
and sz = +1, 0,−1 respectively (i.e. the spin triplet). The spin wavefunction
is symmetric, so the coordinate wavefunction must be antisymmetric. The
fourth state has s = 0 and is the spin singlet; its spin wavefunction is
antisymmetric, so the coordinate wavefunction must be symmetric.

Application: covalent bond. See Griffiths, pages 209–210.
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10 Multi-electron atoms. Periodic table

10.1 Helium

(We follow Griffiths, pages 212–213).25 For Helium Z = 2, and the Hamil-
tonian of the two electrons in the electric field of the nucleous with charge
+2e is

H =

[
− ~2

2me
∇2

1 −
2e2

r1

]
+

[
− ~2

2me
∇2

2 −
2e2

r2

]
+

e2

|r1 − r2|
. (10.1)

If we simply ignore the last term (the repulsion between the two electron),
the Schrödinger equation factorizes and the coordinate wave-function of the
two electrons, before symmetrization or antisymmetrization, is the product
of two hydrogen-like wave-functions,

ψ(r1, r2) = ψnlm(r1)ψn′l′m′(r2) , (10.2)

while the energy levels are obtained from eq. (8.39) by replacing α→ Zα =
2α,

Enn′ = −4

(
Ry

n2
+

Ry

n′2

)
. (10.3)

The total wavefunction is the product of the coordinate and spin wavefunc-
tions. We saw that the composition of two spin 1/2 can give a total spin s = 0
(singlet, antisymmetric) or s = 1 (triplet, symmetric). The singlet states
are called parahelium, and the triplet orthohelium. For parahelium, the co-
ordinate wave-function must be symmetric, since the spin wavefunction is
antisymmetric. Conversely, for orthohelium the coordinate wave-function
must be antisymmetric. In turn this means that for orthohelium the states
where simultaneously n = n′, l = l′ and m = m′ are forbidded by the Pauli
principle.

The lowest energy in eq. (10.3) is obtained setting n = n′ = 1. This
implies l = m = 0 and l′ = m′ = 0, so it is not allowed for orthohelium. So,
the ground state of helium (at least in the approximation of neglecting the
electron repulsion term, that we are using) is a spin singlet, and the orbital
wavefunction is

ψ(r1, r2) = ψ100(r1)ψ100(r2) =
8

πa3
0

e−2(r1+r2)/a0 , (10.4)

25For the electric charge, we are using units that, in the notation of Griffiths, correspond
to ε0 = 1/(4π).
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where we used eq. (8.17) with the replacement e2 → 2e2 and therefore
a0 → a0/2. Its energy should be

E00 = −8 Ry ' −109 eV . (10.5)

Of course, this result cannot be numerically accurate, since the repulsion be-
tween the two electrons is not a small effect compared to the proton-electron
attraction. We will learn in due course how to include this effect, when we
study perturbation theory and variational methods. Experimentally, it turns
out that the ground state of He is indeed a spin singlet, as suggested by our
crude approximation, and its binding energy is E ' −78.975 eV. So, it is less
bound compared to our estimate (10.5), as it should be, since we neglected
a repulsive interaction.

The energy levels are summarized in Fig. 5.2 of Griffiths, for para- and
ortho-helium. Observe that in that figure the energies are relative to the
ground state of ionized Helium, He+. For states with energies larger than
the energy of the ground state of He+ it is energetically favorable to decay
emitting a free electron, He→ He+e−. In particular, only the states where
one electron is in an excited state but the other is in the ground state, can
have an energy lower than the ground state of He+, which is E = −4 Ry '
−54.4 eV, so we need to consider only the states of the form

ψ(r1, r2) = ψnlm(r1)ψ100(r2) , (10.6)

since the others decay immediately into ionized He and a free electron.

10.2 Multielectron atoms

Here again we must resort to approximation methods, or to numerical solu-
tions of the Schrödinger equation. The simplest approximation generalizes
what we have done for He: we neglect altogether the repulsion among the
electrons, and we say that the individual electrons occupy one-particle hy-
drogenic states (n, l,m), called orbitals, in the Coulomb field of a nucleus
with charge +Ze.

To obtain the ground state configuration, we then fill up the orbitals
respecting the Pauli principle, which means that at each level (n, l,m) we
can put two electrons (setting them in the spin singlet configuration). For
each n, the number of allowed values of (l,m) is

n−1∑
l=0

l∑
m=−l

=
n−1∑
l=0

(2l + 1) = n2 . (10.7)
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In our (very rough!) approximation these n2 states are degenerate. These
n2 orbitals are said to form a shell.

A better approximation, due to Hartree, is as follows. Each electron
moves in a potential determined by the nucleus and by all other electrons.
If the b-th electron has coordinate wavefunction ψb(x

′), its charge density is
−e|ψb(x′)|2, and its contribution to the potential at the point x is

− e
∫
d3x′

|ψb(x′)|2

|x− x′|
. (10.8)

Thus the total potential experienced by the a-th electron is

Va(x) = −Ze
2

r
+ e2

∑
b 6=a

∫
d3x′

|ψb(x′)|2

|x− x′|
. (10.9)

In a first approximation, we expect that this potential is approximately
spherically symmetric, because the term Ze2/r is spherically symmetric and
is larger by a factor of Z than each of the separate term in the sum, while
the Z−1 terms in the sum average among them, producing something closer
to symmetric even when the separate terms are not. Furthermore, in each
term there is an integral over the distribution probability of the b-th electron
which, expecially for low values of l, also has the effect of suppressing non-
central contributions. This suggests that, in a first approximation, we can
replace Va(x) by its angular average over the solid angle,

Va(x)→ Va(r) =

∫
dΩ

4π
Va(x) . (10.10)

We then consider the Schrödinger equation for ψa in this potential Va(r),[
− ~2

2me
∇2 + Va(r)

]
ψa(x) = Eaψa(x) , (10.11)

or, explicitly,− ~2

2me
∇2 − Ze2

r
+ e2

∑
b 6=a

dΩ

4π

∫
d3x′

|ψb(x′)|2

|x− x′|

ψa(x) = Eaψa(x) ,

(10.12)
where r = |x| and dΩ is the unit solid angle relative to the variable x,
i.e. d3x = r2drdΩ, Of course, dealing with a spherically symmetric po-
tential greatily simplifies the problem, since it allows us to separate the
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wavefunction into a radial part times the spherical harmonics. However,
this potential depends of the wavefunction of all the other electrons, that
must be determined similarly. One then proceed recursively. We begin with
a zeroth-order ansatz for Va(r), e.g. we neglect all the interactions among
the electrons (this was the approximation used previously). We determine
the wavefunctions under this approximation, and we use them to compute
a new, improved potential Va(r). We then solve the Schrödinger equation
in this new potential, using the Pauli principle to fill up the levels, and we
use the wave-function that we find to improve again the potential, and we
proceed iteratively until a good convergence is obtained.

The states found in this way are still labeled by a set (n, l,m) of hydrogen-
like quantum number for each electron, since we have a potential with spher-
ical symmetry. The total wavefunction is taken to be the product of the
single-electron wavefunctions, determined in this way,

ψ(x1,x2, . . . ,xZ) = ψ1(x1)ψ2(x2) . . . ψZ(xZ) . (10.13)

Therefore, in this approximation the correlation between the positions of the
electrons are lost. The orbital wavefunction is then antisymmetrized among
all electrons by means of the Slater determinant.

The most important qualitative difference compared to the hydrogenic
levels is that the energies of the electrons are no longer degenerate in l.
Mathematically, this is because the degeneracy in l of the hydrogen atom is
a peculiar characteristic of a 1/r potential. It is actually due to the existence
of a constant of motion specific to the 1/r potential, the Runge-Lenz vector

N =
p×L

m
− e2

r
r . (10.14)

In classical mechanics, the conservation of this vector is responsible for the
fact that the bound-state orbits are closed (angular momentum conserva-
tion only implies that they are in a plane). In quantum mechanics, it is
responsible for the degeneracy in l (see Shankar, page 360).

Physically, the fact that the degeneracy in l is lifted is because states
with low l experience a lower centrifugal barrier and therefore have a larger
amplitude of being near the origin, where they see the full “unshielded”
charge of the nucleus, and therefore they are more strongly bound. As a
result,

at each n, the energy grows with l = 0, . . . , n− 1.
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10.3 The Periodic Table

We now have all the elements to understand, at least qualitatively, the
structure of the Periodic Table. The ground state of an atom with generic
Z is obtained by piling up the electrons in the various levels, according to the
Pauli exclusion principle. Of course it is convenient to put the electrons in
the lowest possible energy state. This means that each level (n, l,m) can be
filled with two electrons, which must be in a spin singlet state (antisymmetric
spinor wavefunction), so that their orbital quantum numbers (n, l,m) can
be equal.

If we have only one electron, we put it in a n = 1, l = 0 state. It
necessarily has m = 0, while sz can be +1/2 or −1/2. This is the ground
state of the hydrogen atom. In the spectroscopic notations discussed above,
it is denoted as (1s) or, in the 2S+1LJ notation, it is 2S1/2.

Helium (He) has two electrons in the n = 1, l = 0 state, which is written
as (1s)2. The two electrons are in the spin singlet state, to satisfy the Pauli
principle. Therefore, this state is more precisely written as 1S0.

Recall that an “atomic shell” is defined as the set of levels with l =
0, . . . , n − 1, for given n. A filled shell is obtained when all the levels with
l = 0, . . . , n− 1 are completely filled. According to eq. (10.7), the n-th shell
is filled by 2n2 electrons, where the factor 2 is the spin multiplicity. Thus the
n = 1 shell contains two electron, the n = 2 shell has 8 more electrons, and
so on. In a closed shell the total electronic charge is spherically symmetric,
since

|Rnl(r)|2
l∑

m=−l
|Ylm(θ, φ)|2 (10.15)

is independent of θ, φ. So this configuration shields the charge of the nucleus
very effectively, and has no tendency to attract one more electron. A filled
shell also has little tendency to have electrons in the excited state, since the
next excited state is in a new shell with higher n, and there is a large energy
gap to cross. Therefore these atoms are chemically inert, and form the noble
gases. Thus He is inert because it has just filled the n = 1 shell.

The next entry is Lithium, with 3 protons in the nucleus and 3 electrons.
Two of them fill the n = 1 shell as in He, and the remaining electron goes
in a n = 2, l = 0 state. The electron in the 2s state is farther away from
the nucleus, see eq. (8.22), and basically sees a spherical charge distribution
with total charge −2e due to the n = 1 electronic shell, which partially
screens the charge +3e of the nucleus, so its chemical properties are similar
to that of hydrogen, and in the periodic it goes in the column below it.

88



Since it is farther away, and it sees a shielded charge, this electron has a
relatively small binding energy, so Li has a strong tendency to donate it.
The chemical properties of the elements are determined by their outermost
electrons. The electrons that do not belong to filled shells, and that can
be donated in chemical reactions, are called “valence” electrons. Elements
which like to donate electrons are called metals, so Li is a metal.

The ground state configuration of Li is denoted as (1s)2(2s) or, more
simply, as (He)(2s). Since the n = 1 filled shell has zero total angular
momentum (the electrons are in spin singlet, and each one has l = 0), the
total J is given by the spin of the electron in the 2s state, so J = 1/2, which
means that the ground state of Li, in the generalized spectroscopic notation,
is 2S1/2.

The next element is Be, which fills the two n = 2, l = 0 levels, with
the two electrons at level n = 2, l = 0 in spin singlet state. Even if it
has two outer electrons, its properties are not the same as He, because it
does not fill completely the n = 2 shell, so in the Periodic Table we put
it into a new column. To fill the n = 2 shell we still must fill the levels
n = 2, l = 1,m = −1, 0, 1, each one with two electrons in spin singlet. This
gives 6 chemical elements, Boron to Neon, and Neon is inert because it has
the n = 2 shell filled.

By definition, a subshell is formed by the states with m = −l, . . . , l, at
fixed (n, l). Some (but not all) elements with filled subshells are also inert,
again because of a spherical charge distribution (which is assured by the sum
over m in eq. (10.15)) and sometimes they can also have a large excitation
gap. For instance, Be has filled the subshell n = 2, l = 0 and Mg has filled
the subshell n = 3, l = 0; however, the gap to the levels n = 2, l = 1 (or,
respectively, n = 3, l = 1) is not large, so they are not inert. Rather, they
can be easily excited and can donate their valence electrons, so they are
metals. In contrast, Ar has filled the subshell n = 3, l = 1 and is inert,
because the subshell n = 3, l = 2 has a large energy with respect to subshell
n = 3, l = 1, up to the point that, before filling it, it is filled the n = 4, l = 0
subshell (K, Ca). This is due to the fact that sometimes the raise in energy
with l, discussed on page 87, can overcome the raise in energy with n.

Below we show the periodic table, and a more detailed discussion of it,
taken from F. H. Shu, “The physical Universe. An Introduction to Astron-
omy, (1982)”,26 and a table taken from Griffiths.

26Incidentally, this is a beautiful book. Despite the fact that, from the point of view of
astrophysics, it is by now outdated, it still provides an excellent elementary introduction
to the “physics of astrophysics”.
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11 Applications of the Pauli principle to many-
electron systems

11.1 The free electron gas

(Reference: Griffiths, Sect. 5.3).
Consider a system of electrons in an infinite potential well, so V (x, y, z) = 0
if, simultaneously, 0 < x < lx, 0 < y < ly and 0 < z < lz, while V (x, y, z) =
∞ otherwise. The Schroedinger equation factorizes, and the solution is
(apart from a normalization factor)

ψ(x, y, z) = sin(kxx) sin(kyy) sin(kzz) , (11.1)

where
kx =

nxπ

lx
, ky =

nyπ

ly
, kz =

nzπ

lz
, (11.2)

and ni are positive integers,

nx = 1, 2, 3, . . . , ny = 1, 2, 3, . . . , nz = 1, 2, 3, . . . . (11.3)

In k-space, we have one state in a volume

π3

lxlylz
=
π3

V
, (11.4)

and each state can be occupiated by 2 electrons. Therefore, if we have N
total electrons, with N large, in k space we fill an octant of a sphere with a
radius kF given by

N
π3

V
= 2× 1

8

(
4

3
πk3

F

)
, (11.5)

so
kF = (3π2ne)

1/3 , (11.6)

where ne = N/V is the number density (number of electrons per unit vol-
ume) of the electron gas. The boundary between filled and empty states is
called the Fermi surface, and

EF ≡
~2k2

F

2me
=

~2

2me
(3π2ne)

2/3 (11.7)

is called the Fermi energy. The total energy of the gas is obtained observing
that a shell between k and k + dk contains a volume

1

8
4πk2dk =

1

2
πk2dk . (11.8)
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Since each state occupies a volume π3/V and we can put 2 electrons in each
state, the total number of electron in this shell is

2
(1/2)πk2dk

(π3/V )
=
V

π2
k2dk . (11.9)

Each electron has energy ~2k2/(2m), so

Etot =

∫ kF

0

~2k2

2m

V

π2
k2dk ,

=
~2k5

FV

10π2me

=
~2(3π2N)5/3

10π2me
V −2/3 . (11.10)

This corresponds to a pressure

Pdeg = −
(
∂Etot

∂V

)
N

=
2

3

Etot

V

= (3π2)2/3 ~2

5me
n5/3
e . (11.11)

This is called the degeneracy pressure. It represents the resistance to com-
pression of the (non-relativistic) free electron gas, due to the Pauli principle.
Observe that this pressure is independent of the temperature and is present
even if the temperature of the gas vanishes.

11.1.1 The stability of white dwarfs

During their lifetime, the equilibrium of stars is determined by the balance
between the gravitational attraction, that tends to provoke the collapse of
the star under its own weight, and the pressure of the photons liberated by
the thermonuclear reactions in the core, that try to make their way toward
the surface of the star. When the nuclear fuel terminates, a complex dy-
namics takes place, in which the external layers are ejected explosively, and
a remaining core, with no more support from the thermonuclear reactions,
begins to collapse under its own weight. At some point, however, the elec-
tron degeneracy pressure becomes important. White dwarfs are remnant
of stars, whose collapse has been halted by the degeneracy pressure of the
electron.
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To estimate the radius at which this can happen, we proceed as follows.
The pressure Pc in the center of a star of mass M and radius R, due to the
weight of the star itself, can be estimated as

Pc ∼
1

4πR2

GM2

R2
=
GM2

4πR4
(11.12)

since GM2/R2 is the typical magnitude of the gravitational self-force and
4πR2 is the available scale for an area. Alternatively, we can estimate the
typical gravitational self-energy of a sphere of mass M and radius R as

Egrav ∼ −
GM2

R
, (11.13)

and the pressure required to support this weight (equal to minus the pressure
−∂Egrav/∂V exerted by the gas) is

Pc ∼
∂Egrav

∂V
=

1

dV/dR

∂Egrav

∂R

=
1

4πR2

GM2

R2
. (11.14)

A more precise value can be obtained by integrating the equation of the
hydrostatic equilibrium inside the star, and gives

Pc ' 0.770
GM2

R4
. (11.15)

[(An aside that can be skipped). The hydrostatic equilibrium inside the star is
governed by the equation

∇P = −ρ∇Φ , (11.16)

where Φ is the gravitational potential. In spherical symmetry, this becomes

dP

dr
= −Gρm(r)

r2
, (11.17)

where

m(r) = 4π

∫ r

0

dr′ r′
2
ρ(r′) . (11.18)

We can combine these equations into

d

dr

(
r2

ρ

dP

dr

)
= −4πGr2ρ(r) . (11.19)
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Using an equation of state of the form P = KρΓ, with Γ > 1, this becomes a

differential equations for ρ, that gives the profile ρ(r) in terms of the initial condi-

tions ρ(0), and dρ/dr(0). We require that the derivative dρ/dr(0) vanishes, because

m(r) ∼ r3 near the center of the star. Then, eq. (11.17) shows that dP/dr = 0

at the center, and therefore, since we are assuming P = KρΓ, also dρ/dr vanishes

at the center. Then, we get the solution as a function of the central density ρ(0),

which is then fixed requiring that the integral of ρ(r) over the volume gives the

total mass M . For a gas with equation of state P ∝ ρ5/3, as in eq. (11.11), this

gives eq. (11.15).]

This gravitational pressure is balanced by the degeneracy pressure (11.11).
We can express it in terms of the mass density ρ observing that, if the
star were made by electrons and protons, because of charge neutrality ne =
np, and the mass is dominated by the protons, so ρ = mpnp, and ne =
ρ/mp. More precisely, if the positive charge is provided mostly by nuclei
with atomic weight A, charge Z and number density n+, we have ne = Zn+

and ρ = Ampn+, so

ne =
Z

A

ρ

mp
. (11.20)

The central density ρ is related to M and R by

ρ ∼ M

R3
. (11.21)

Again, the precise numbers can be found integrating the hydrostatic equa-
tion, and one finds ρ ' 1.43M/R3. So (apart from numerical factors of order
one) the degeneracy pressure of the electrons can be written as

Pdeg ' (3π2)2/3 ~2

5mem
5/3
p

(
Z

A

)5/3

ρ5/3

∼ (3π2)2/3 ~2

5mem
5/3
p

(
Z

A

)5/3 M5/3

R5
. (11.22)

Observe that the degeneracy presure of the positively charge ions is much
smaller, since the factor 1/me in Pdeg replaced by 1/(Amp). Requiring that
this balances the gravitational pressure (11.12) we get

(3π2)2/3 ~2

5mem
5/3
p

(
Z

A

)5/3 M5/3

R5
' GM2

R4
, (11.23)
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This gives (inserting the correct numerical values)

R ' 0.114
(2π~)2

Gmem
5/3
p

(
Z

A

)5/3

M−1/3 , (11.24)

which is the mass-radius relation of white dwarfs. Observe that, the larger
the mass, the smaller is the radius of the white dwarf. For M = 1M� and
Z/A = 0.5, this gives R of the order of the Earth radius.

[Note: The above equations assumed that the electron gas can be treated as non-

relativistic. If we increase the mass, the radius R in eq. (11.24) becomes smaller, and

therefore also the interdistance between the electrons gets smaller and smaller. In

this situation the electrons finally become relativistic, and for a relativistic electron

gas the degeneracy pressure grows with ρ only as P ∼ ρ4/3, and this leads to a

maximum value of the mass for which the degeneracy pressure can balance the

gravitational pressure. Therefore there is a maximum allowed value for the mass

of the white dwarf, known as the Chandrasekhar mass, which is about 1.4M�.]

11.2 Band structure in solids

(Reference: Griffiths, Sect. 5.3.2). Consider a periodic potential with period
a,

V (x+ a) = V (x) . (11.25)

Then Bloch’s theorem states the solutions of the Schrödinger equation can
be taken to satisfy

ψ(x+ a) = eiKaψ(x) . (11.26)

The proof is obtained introducing the displacement operator Da, defined by

Daf(x) = f(x+ a) . (11.27)

If the potential in the Hamiltonian is periodic with period a, we have
[Da, H] = 0, and therefore Da and H can be diagonalized simultaneously.
This means that the eigenfunctions ψ of the Hamiltonian can be chosen so
that Daψ = λψ, i.e.

ψ(x+ a) = λψ(x) . (11.28)

Clearly, λ 6= 0, since otherwise we get ψ = 0. Then, we can always write
λ = eiKa, for some (possibly complex) constant K. We will see in a moment
that K is actually real.

Of course a solid has edges, which spoil the exact periodicity. However,
as long as we are far from the edges, their effect should be negligible. We
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therefore make a negligible error if we artificially modify the problem so to
have exact periodicity. For a (one-dimensional) solid with N lattice spacing
[with N huge, e.g. O(1023)], we can obtain this by wrapping the x-axis in a
circle, i.e. by imposing

ψ(x+Na) = ψ(x) . (11.29)

With this modification Bloch theorem now holds, so in particular eq. (11.26)
gives

ψ(x+Na) = eiKNaψ(x) (11.30)

for some K. Combining eqs. (11.29) and (11.30) we find that K must be of
the form

K =
2πn

Na
, n = 0,±1,±2, . . . . (11.31)

In particular, this means that K is real, as we anticipated, so eiKa is a phase.
Equation (11.26) then implies

|ψ(x+ a)|2 = |ψ(x)|2 , (11.32)

so the probability is periodic, as one would expect. Now, consider the “Dirac
comb” potential

V (x) = α

N−1∑
j=0

δ(x− ja) , (11.33)

which can be taken as a rough schematization of the interaction of an elec-
tron with the nuclei of a one-dimensional lattice. Actually, the detailed form
of the potential will not be important for what follows, and the main results
are really a consequence of the periodic structure of the potential.

The solution of the Schrödinger equation in the cell 0 < x < a is

ψ(x) = A sin(kx) +B cos(kx) (0 < x < a). (11.34)

Using Bloch’s theorem, in the cell immediately to the left we have

ψ(x) = e−iKa[A sin k(x+ a) +B cos k(x+ a)] (−a < x < 0). (11.35)

We can now match these solutions in x = 0. We recall (see Griffiths,
Sect. 2.5.2) that in a Dirac delta potential V (x) = αδ(x), the wavefunc-
tion ψ(x) is continuous in x = 0,

lim
x→0+

ψ(x) = lim
x→0−

ψ(x) , (11.36)
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while the derivative has a jump,

( lim
x→0+

− lim
x→0−

)
dψ(x)

dx
=

2mα

~2
ψ(0) . (11.37)

Imposing the two conditions (11.36) and (11.37) on the solution (11.34),
(11.35) we find the ratio A/B,27

A sin(ka) = [eiKa − cos(ka)]B (11.38)

and an equation for k,

cos(Ka) = cos(ka) +
mα

~2k
sin(ka) . (11.39)

Introducing z = ka and β = mαa/~2, and using eq. (11.31), this equation
can be rewritten as

cos

(
2πn

N

)
= f(z) (11.40)

where

f(z) ≡ cos z + β
sin z

z
. (11.41)

The function f(z) is not limited to the range −1 < f(z) < 1. For z such that
|f(z)| > 1 the equation cos(Ka) = f(z) clearly has no solution. These values
of k correspond to forbidden energy. These forms gaps between allowed
regions. In contrats, if f(z) goes from -1 to +1 in the interval z1 < z < z2,
eq. (11.40) has N solutions in this interval, corresponding to the N possible
values of n from n = 0 to n = N−1 (the solution with n = N is the same as
that with n = 0). Since N is huge, say O(1023), this looks like a continuum
of allowed energies, and forms a band. Thus, the energy spectrum consists
of allowed bands separated by gaps.

This band structure determines the property of the material. If each
atom of the lattice has q valence electrons, there are Nq free electrons.
Because of the Pauli principle, only two electrons can go in the same state.
So, if q = 1, the first band will be half-filled, if q = 2 we completely fill
the first band, etc. If a band is entirely filled, it is very difficult to excite
an electron, since it has to jump to the next band, and it must overcome
a large energy gap. These materials are therefore electric insulators. If,
however, a band is only half-filled, very little energy is needed to excite an
electron. We then have a conductor. If we dope an insulator adding a few

27Of course an overall common numerical factor in A and B is determined by the
normalization of the wavefunction.
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atoms with larger q we have extra electrons in the next higher band, which
are easily excited. Similarly, adding atoms with lower q creates “holes” in
the lower band. In both cases, weak electric currents can flow, and we have
a semiconductor.
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12 Time-independent perturbation theory

12.1 The general formalism

(See Shankar, Section 17.1). Consider a Hamiltonian of the form

H = H0 +H1 , (12.1)

where H1 contains a small expansion parameter.
Let |n0〉 be the eigenkets of H0,

H0|n0〉 = E0
n|n0〉 . (12.2)

We write the eigenkets of the full Hamiltonian as

|n〉 = |n0〉+ |n1〉+ |n2〉+ . . . (12.3)

and their eigenvalues as

En = E0
n + E(1)

n + E(2)
n + . . . . (12.4)

Solving order by order the equation H|n〉 = En|n〉 we get, to first order,

H0|n1〉+H1|n0〉 = E0
n|n1〉+ E(1)

n |n0〉 . (12.5)

Multiplying both sides by 〈n0| and using 〈n0|H0 = E0
n〈n0| we get

E0
n〈n0|n1〉+ 〈n0|H1|n0〉 = E0

n〈n0|n1〉+ E(1)
n (12.6)

and therefore
E(1)
n = 〈n0|H1|n0〉 . (12.7)

This gives the shift in the energy levels, to first order in perturbation theory.
We also want to find the change in the eigenstate due to the perturbation,

which, to first order, is |n1〉. To this purpose we multiply eq. (12.5) by 〈m0|,
with m0 6= n0. Using 〈m0|H0|n1〉 = E0

m〈m0|n1〉 on the left-hand side, and

E
(1)
n 〈m0|n0〉 = 0 on the right-hand side, we get

(E0
n − E0

m)〈m0|n1〉 = 〈m0|H1|n0〉 . (12.8)

We now write |n1〉 = |n1
‖〉 + |n1

⊥〉, where |n1
‖〉 is the projection of |n1〉 in

the direction of |n0〉, and |n1
⊥〉 is the component of |n1〉 orthogonal to |n0〉.

The space of vectors orthogonal to |n0〉 is spanned by the kets |m0〉 with
m0 6= n0. Therefore

|n1〉 = |n1
‖〉+

∑
m 6=n

cm|m0〉 . (12.9)
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Inserting this decomposition into eq. (12.8) we see that |n1
‖〉 drops and there-

fore cannot be determined from this equation. Instead, for the coefficients
cm, using

〈m0|
∑
m′ 6=n

cm′ |m′
0〉 = cm (12.10)

we get
(E0

n − E0
m)cm = 〈m0|H1|n0〉 . (12.11)

If E0
n 6= E0

m, i.e. if there is no degeneracy in the spectrum, we therefore find

|n〉 = |n0〉+ |n1
‖〉+

∑
m 6=n

|m0〉 〈m0|H1|n0〉
E0
n − E0

m

. (12.12)

(The degenerate case will be examined later). The component |n1
‖〉 can

instead be obtained imposing the normalization condition 〈n|n〉 = 1. To
first-order in perturbation theory, this simply gives |n1

‖〉 = 0 [see Shankar

eqs. (17.1.9)–(17.1.14) for the explicit computation]. Therefore

|n〉 = |n0〉+
∑
m 6=n

|m0〉 〈m0|H1|n0〉
E0
n − E0

m

. (12.13)

The result is consistent only if the first-order term are indeed perturbation
of the zero-th order results, which means that En−Em cannot be small with
respect to 〈m0|H1|n0〉. In particular, this excludes the case of degenerate
eigenvalues, that will be treated separately below.

We can continue the procedure to higher orders. To second order, H|n〉 =
En|n〉 gives

H0|n2〉+H1|n1〉 = E0
n|n2〉+ E(1)

n |n1〉+ E(2)
n |n0〉 . (12.14)

We take the scalar product with 〈n0|, and we use the fact that, on the left-
hand side, 〈n0|H0|n2〉 = E0

n〈n0|n2〉, which cancels the term coming from the
first term on the right-hand side. Furthermore, we found above that |n1〉 is
orthogonal to |n0〉. Then we get

E(2)
n = 〈n0|H1|n1〉

=
∑
m6=n

〈n0|H1|m0〉〈m0|H1|n0〉
E0
n − E0

m

(12.15)

=
∑
m6=n

|〈m0|H1|n0〉|2

E0
n − E0

m

. (12.16)
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So, in general to compute the shift in the energy levels to second order, we
must compute an infinite number of matrix elements 〈m0|H1|n0〉, for all
m0 6= n0.

Fortunately, often only a finite number of matrix elements actually con-
tribute, due to the existence of selection rules, as we discuss below. When
all matrix element contribute, we can often still use eq. (12.16) to get a

rigorous upper bound on E
(2)
n . Consider for instance the hydrogen atom,

with unperturbed states |nlm〉, so the ground state is |100〉. To first order
the shift in the ground state energy due to some perturbation H1 is

E
(1)
100 = 〈100|H1|100〉 . (12.17)

The second order term is

E
(2)
100 =

∑
nlm

′ |〈nlm|H1|100〉|2

E0
100 − E0

nlm

, (12.18)

where the prime means that, in the sum over n, l,m, we must omit the state
n = 1, l = m = 0. Since the unperturbed energy levels are

E0
nlm = −Ry

n2
, (12.19)

we see that E
(2)
100 < 0, and for its absolute value, we have the bound

|E(2)
100| <

1

|E0
n=1 − E0

n=2|
∑
nlm

′

〈100|H1|nlm〉〈nlm|H1|100〉 (12.20)

Since ∑
nlm

′

|nlm〉〈nlm| = I − |100〉〈100| , (12.21)

we get

|E(2)
100| <

1

|E0
n=1 − E0

n=2|
[
〈100|(H1)2|100〉 − |〈100|H1|100〉|2

]
. (12.22)

12.2 Selection rules

(Shankar, page 458). Perturbation theory can be greatly simplified by the
fact that many matrix elements of H1 vanish. For instance, suppose that
an operator Ω commutes with the perturbation H1,

[Ω, H1] = 0 . (12.23)
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We denote the states of the systems as |αω〉, where ω is the eigenvalue of Ω
and α denotes collectively all the other quantum numbers, Then

〈α2ω2|H1|α1ω1〉 ∝ δω1ω2 . (12.24)

Proof:

0 = 〈α2ω2|ΩH1 −H1Ω|α1ω1〉 = (ω2 − ω1)〈α2ω2|H1|α1ω1〉 . (12.25)

Example: if H1 = λz, then [Lz, H
1] = 0 and

〈n′l′m′|H1|nlm〉 ∝ δmm′ . (12.26)

An equivalent way of deriving this result is to observe that, if [Ω, H1] = 0
and

Ω|ω1〉 = ω1|ω1〉 , (12.27)

then
Ω(H1|ω1〉) = H1(Ω|ω1〉)) = ω1(H1|ω1〉) , (12.28)

so the application of H1 to |ω1〉 does not change its eigenvalue with re-
spect to Ω. Then, eq. (12.24) expresses the orthogonality of eigenvectors (of
hermitian operators) with different eigenvalues.

This result can be generalized to operators that change the eigenvalue ω
in a definite way. Consider in particular the angular momentum states |lm〉,
and consider the matrix elements 〈l2m2|xi|l1m1〉. Performing the explicit
calculation in coordinate space, you will see in the exercise session that

〈l2m2|z|l1m1〉 = 0 unless l2 = l1 ± 1 and m2 = m1 . (12.29)

Similarly

〈l2m2|x|l1m1〉 = 0 unless l2 = l1 ± 1 and m2 = m1 ± 1 . (12.30)

and the same for 〈l2m2|y|l1m1〉. This is called the dipole selection rule. The
reason for this name is that the interaction of the electric dipole moment, for
instance of the hydrogen atom, with an external electric field E is given by
the Hamiltonian H1 = d ·E , where d = ex is the electric dipole moment,
and x is the relative distance of the electron and the proton. Therefore,
taking the matrix elements between the unperturbed states of the hydrogen
atom,

〈n′l′m′|H1|nlm〉 = eE·〈n′l′m′|x|nlm〉 , (12.31)

and the selection rule discussed above applies.
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These selection rule can be understood in a more formal language, ob-
serving that the components of a vector operator V transform, under rota-
tions, as the three components of a spin-1 state |1m〉, with m = −1, 0, 1.
More precisely, comparing the transformation law of a vector under rota-
tions with the transformation of the states |1m〉 under rotations (that we
know because we know how the generator of rotations, Ji, are represented
as explicit 3×3 matrices on the spin-1 representation, see Sections 5.5.2 and
6.3), one finds that the components Vm with m = 0,±1 defined by

V±1 = ∓ 1√
2

(Vx ± iVy) , V0 = Vz . (12.32)

transform in the same way as |1m〉. Thus, under rotations, Vm|l1m1〉 trans-
forms as the tensor product

|1m〉 ⊗ |l1m1〉 . (12.33)

However, we already know that this tensor product can be decomposed into
irreducible representation of the rotation group, and that the resulting ket
is a superposition of angular momenta l = l1 − 1, l1 and l1 + 1, while it has
lz = m+m′. Therefore the matrix element

〈l2m2|Vm|l1m1〉 (12.34)

can be different from zero only for l2 = l1±1 or l2 = l1, and m2 = m+m1.28

Thus, the properties of the operator x under rotations require that the
matrix elements 〈l2m2|x|l1m1〉 are non-vanishing only for l2 = l1 ± 1 or for
l2 = l1. The latter possibility is however forbidden by parity. In fact, in
terms of the polar angles (θ, φ) (with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π), a parity
transformation x → −x becomes θ → π − θ and φ → φ + π. Under this
transformation, the spherical harmonics transform as

Ylm(θ, φ)→ Ylm(π − θ, φ+ π) = (−1)lYlm(θ, φ) . (12.35)

Writing the matrix element 〈l2m2|x|l1m1〉 in the (polar) coordinate repre-
sentation, we have

〈l2m2|xi|l1m1〉 =

∫
dΩY ∗l2m2

(θ, φ)xiYl1m1(θ, φ) . (12.36)

In the integration over the solid angle dΩ, for each direction n̂ there is
a corresponding direction −n̂, so the integral is non-vanishing only if the

28This construction can be generalized to tensor operators, leading to the Wigner-Eckart
theorem. The interested reader can find it in Shankar, Section 15.3.
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integrand is even under parity. Now, under parity Yl1m1 picks a factor
(−1)l1 , Y ∗l2m2

picks a factor (−1)l2 , and xi picks a factor (−1). In total, the

integrand picks a factor (−1)l1+l2+1. Therefore, among the three possibilities
l2 = l1± 1 and l2 = l1 selected above, only l2 = l1± 1 are allowed by parity,
while the matrix element for l2 = l1 vanishes.

12.3 Degenerate perturbation theory

(Reference: Shankar, Sect. 17.3). The perturbative scheme described above
works if, for all m0 6= n0, ∣∣∣∣〈m0|H1|n0〉

E0
n − E0

m

∣∣∣∣� 1 , (12.37)

compare with eq. (12.13). Therefore, it fails in the case of degenerate eigen-
values. This failure can be understood as follows. Suppose that H0 has
two degenerate eigenvalues, while H0 + H1 is non-degenerate. Consider
H = H0 + λH1 and vary continuously λ from λ = 1 down to λ = 0. Each
eigenvalue |n〉 of H0+λH1 changes continuously, and becomes a correspond-
ing eigenvalue |n0〉 of H0. However, for λ = 0, two eigenkets |na〉 and |nb〉,
which for λ 6= 0 have different eigenvalues, reduce to kets |n0

a〉 and |n0
b〉 with

the same eigenvalue. The procedure is of course reversible. If we start from
|n0
a〉 and |n0

b〉 and we switch on the interaction, these states smootly go into
|na〉 and |nb〉.

However, in the degenerate space spanned by |n0
a〉 and |n0

b〉, we could
start from different linear combinations of |n0

a〉 and |n0
b〉, and these jump

discontinuously when we switch on the interaction. This is the source of
non-analiticity signaled by the vanishing of the denominator in eq. (12.37)

So, we must start from the “right” basis when we have a degenerate
subspace. This is the basis that diagonalizes H1 within the degenerate
subspace. Consider in fact eq. (12.8),

(E0
n − E0

m)〈m0|n1〉 = 〈m0|H1|n0〉 . (12.38)

In the non-degenerate case we used it to determine 〈m0|n1〉. If instead
E0
n − E0

m = 0 while 〈m0|H1|n0〉 6= 0, it gives a divergent result for 〈m0|n1〉,
signaling the breaking of the approach. However, if also 〈m0|H1|n0〉 = 0
when m0 6= n0, then this equation is simply a harmless identity 0 = 0,
and no divergence appears. So, in this basis we can apply the “naive” non-
degenerate perturbation theory and, since in this subspace we have already
diagonalized H1, the shift in the energy levels can be obtained immediately.
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Consider for instance the hydrogen atom in the n = 2 state, and the
Hamiltonian

H1 = eEz . (12.39)

This is the interaction due to the electric dipole of the electron with an
electric field along the z axis, and gives rise to the so-called Stark effect. If
we naively applied eq. (12.7), we would conclude that the energy shift in the
state |2lm〉 is

E1
n

?
= eE〈2lm|z|2lm〉 . (12.40)

Because of parity, this is zero (recall the dipole selection rule studied above).
However, eq. (12.40) is not correct, since |n1〉 given in eq. (12.13) diverges,
and the whole perturbative approach, in this form, is meaningless. Rather,
we must start from the states that diagonalize H1. The explicit computation
shows that, in the basis |200〉, |210〉, |211〉, |21− 1〉,

H1 → ∆


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , (12.41)

where ∆ = −3eEa0. Observe that the fact that the only non-vanishing
matrix element is

〈210|z|200〉 (12.42)

together with 〈200|z|210〉 = 〈210|z|200〉∗, is a consequence of the dipole
selection rule. Even if the diagonal elements in eq. (12.41) are zero, there
are non-vanishing elements off-diagonal. H1 is diagonalized using

|±〉 ≡ 1√
2

(|200〉 ± |210〉) (12.43)

and, in the basis |+〉, |−〉, |211〉, |21− 1〉, we have

H1 → ∆


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 . (12.44)

Then the eigenstates of the Hamitonian H0 +H1 are |+〉, |−〉, |211〉, |21− 1〉.
The first two have eigenvalues

E± = −Ry

4
±∆ (12.45)
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where −Ry/4 is the unperturbed energy of the hydrogen atom in the state
n = 2, while |211〉 and |21− 1〉 have the same energy −Ry/4 as in the
absence of the perturbation.

Observe that the eigenvalues |+〉 and |−〉 are mixtures of states with
l = 0 and with l = 1. Thus they have indefinite parity and can have a
non-vanishing dipole moment.
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13 Applications of perturbation theory

13.1 The fine structure of the hydrogen atom

(Reference: M. Maggiore, “A modern introduction to quantum field theory”,
pages 74–79. In this subsection we use units ~ = c = 1.)

The Schrödinger equation receives relativistic corrections, that can be
computed from the Dirac equation, or more generally in the framework
of relativistic quantum field theory, as you will study next year. The re-
sult is that, in the non-relativistic limit, the Dirac equation reduces to a
Schrödinger equations, of the form[

p2

2m
+ V − p4

8m3
− e

4m2
σ·(E× p)− e

8m2
(∇·E)

]
ψ = εψ , (13.1)

where V (x) is the interaction potential. For the hydrogen atom V = V (r)
and therefore

eE = −∇V = −r

(
1

r

dV

dr

)
, (13.2)

so that

− e

4m2
σ·(E× p) =

1

2m2

1

r

dV

dr
S·(r× p) =

1

2m2

1

r

dV

dr
S·L (13.3)

where S = σ/2 is the spin of the electron and L is the orbital angular
momentum. Therefore, in a radial potential V (r), the first relativistic cor-
rection to the Schrödinger equation is given by[

p2

2m
+ V − p4

8m3
+

1

2m2

1

r

dV

dr
S·L− e

8m2
(∇·E)

]
ψ = εψ . (13.4)

The correction term −p4/(8m3) is easily understood, since it comes from
the expansion of the relativistic expression ε = (p2 + m2)1/2. The term
∼ S · L is called the spin–orbit coupling and the term ∼ ∇·E is known as
the Darwin term.

Restricting now to the Coulomb potential

V (r) = −Zα
r

(13.5)

we have
1

r

dV

dr
=
Zα

r3
. (13.6)
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Using

∇2 1

r
= −4πδ(3)(x) (13.7)

(see, e.g. Jackson (1975), Section 1.7 for the proof) we find

− e∇·E = +∇2V = −Zα∇2 1

r
= 4πZα δ(3)(x) . (13.8)

We can therefore write
(H0 +Hpert)ψ = εψ (13.9)

where H0 = p2/(2m) + V is the unperturbed Hamiltonian of the hydrogen
atom and

Hpert = − p4

8m3
+

Zα

2m2r3
S·L +

πZα

2m2
δ(3)(x) . (13.10)

The spin-orbit term can be understood physically as follows. From eq. (6.70)
we know that an electron with spin Se = σ/2 in a magnetic field B has an
interaction energy

HB =
e

m
Se·B , (13.11)

where we used ge ' 2 (recall also that in this section we set ~ = c = 1).
Examine the situation in the electron rest frame. In this frame, the nucleus
rotates around the electron and generates a current I = Ze/T , where T is
the orbital period. The period can be written in terms of the modulus L
of the orbital angular momentum of the electron in the rest frame of the
proton, using the fact that, for a circular orbit L = mrv = 2πmr2/T . Using
the Biot-Savart law,

B =
2πI

r
=

2πZe

rT
=

Ze

mr3
L . (13.12)

and, since the magnetic field and the angular momentum point in the same
direction,

B =
Ze

mr3
L . (13.13)

Therefore we would expect to have in the Hamiltonian a term

Zα

m2r3
S·L . (13.14)

This agrees with eq. (13.10), except for a factor of 2. This is due to the fact
that the electron rest frame is non-inertial, since the electron accelerates as
it goes around the nucleus. The correct kinematic transformation gives the
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missing factor 1/2, and this effect goes under the name of Thomas precession.
Dirac equation has the correct kinematic factor automatically built in, since
it is the correct relativistic equation. Comparing with eq. (13.10), we see
that the spin-orbit interaction is equivalent to the interaction of the spin
with an internal magnetic field

Bint =
Ze

2mr3
L . (13.15)

The unperturbed levels of the hydrogen atom are highly degenerate, since
they depend only on n. So, if we want to use non-degenerate perturba-
tion theory, according to the discussion in Section 12.3 we must choose the
“good” basis in each degenerate subspace, i.e. for each n.

For n given, there are two natural bases for an electron with angular
momentum l and spin s = 1/2. One is given by the tensor products

|llz〉 ⊗ |ssz〉 , (13.16)

and the other by the kets
|jjz; ls〉 (13.17)

which represent a state with total angular momentum j, made by the com-
position of orbital angular momentum l and spin s. The two bases are
related by the Clebsch-Gordan coefficients. We saw that the “good” basis
is the one which diagonalizes the perturbation Hamiltonian. Because of the
spin-orbit term, lz and sz are not good quantum numbers, since

[Lz,S·L] 6= 0 , [Sz,S·L] 6= 0 . (13.18)

In contrast, l and s are good quantum numbers, since

[L2,S·L] = [S2,S·L] = 0 . (13.19)

Furthermore, all the components Ji of the total angular momentum com-
mute with the Hamiltonian, so in particular Jz and J2 commute. This fol-
lows automatically from the fact that the Hamiltonian is invariant under ro-
tation, but we can also easily check it explicitly: writing J2 = L2 +S2 +2S·L
and using eq. (13.19), we see immediately that [J2,S·L] = 0. Furthermore,

[Jz, 2S·L] = [Jz,J
2 − L2 − S2]

= [Jz,J
2]− [Lz + Sz,L

2]− [Lz + Sz,S
2] = 0 . (13.20)

So, the “good” basis, that allows to use non-degenerate perturbation theory,
is |njjz; ls〉. We will omit the label s, which for the electron has the fixed
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value s = 1/2. Furthermore, it is clear from rotational invariance that the
perturbed energy levels will not depend on jz. Formally, this follows from
the fact that [J±, H] = 0, and J± raise and lower the eigenvalue of Jz by
one unit. So, we can also omit jz, and to first order in perturbation theory
the correction to the energy levels is given by

(∆E)njl = 〈njl|Hpert|njl〉 . (13.21)

We must therefore compute the following expectation values:

(1) 〈njl|p4|njl〉: if ψnjl is a solution of the unperturbed Schrödinger
equation, then by definition (p2/(2m) + V )ψnjl = εnψnjl, or

p2

2m
ψnjl =

(
εn +

Zα

r

)
ψnjl (13.22)

where

εn = −mZ
2α2

2n2
(13.23)

are the unperturbed energy levels. Therefore∫
d3xψ∗njl p

4ψnjl = 4m2〈njl|
(
εn +

Zα

r

)2

|njl〉 . (13.24)

For a Coulomb potential V = −Zα/r one has

〈njl| 1
r
|njl〉 =

mαZ

n2
, 〈njl| 1

r2
|njl〉 =

(mαZ)2

n3(l + 1
2)

(13.25)

and therefore

〈njl| p4 |njl〉 = 4(mZα)4

(
− 3

4n4
+

1

n3(l + 1
2)

)
. (13.26)

(2) 〈njl|S · L/r3|njl〉: from J = L + S it follows that, when acting on
|njl〉,

j(j + 1) = l(l + 1) + s(s+ 1) + 2S · L (13.27)

with s = 1/2, and using the wave function of the hydrogen atoms one has

〈njl| 1

r3
|njl〉 =

(mαZ)3

n3l(l + 1
2)(l + 1)

, if l 6= 0 , (13.28)
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while, when l = 0, we have j = s so, according to eq. (13.27), 〈njl|S · L|njl〉 =
0 if l = 0. Therefore

〈njl| 1
r3

S · L|njl〉 = (1−δl,0)
(mαZ)3

2n3l(l + 1
2)(l + 1)

[j(j+1)−l(l+1)−3

4
] . (13.29)

(3) 〈njl|δ3(x)|njl〉: this is easily computed:

〈njl|δ3(x)|njl〉 =

∫
d3x|ψnjl(x)|2δ3(x) = |ψnjl(0)|2 =

(mαZ)3

πn3
δl,0 .

(13.30)
Putting all contributions together and considering the two cases j =

l ± 1/2 when l 6= 0, and j = 1/2 when l = 0, we find that the result
can always be expressed only in terms of n, j, and there is no separate
dependence on l. The final result is

(∆E)njl = −m(Zα)4

2n3

[
1

j + 1
2

− 3

4n

]
. (13.31)

Therefore the fine structure removes the degeneracy between states with
the same principal quantum number n but different values of j. However,
states with the same n, j and different l, as the states 2S1/2 and 2P1/2,
are still degenerate at the level of the Dirac equation, i.e. at the level of
the first relativistic correction. In principle one might look for higher-order
corrections coming from the Dirac equation, using perturbation theory with
respect to Hpert at higher orders (indeed, it is even possible to find a closed
form for the energy levels predicted by the Dirac equation to all orders in α),
but physically this is not meaningful since, starting from the next order, the
corrections due to the quantum nature of the electromagnetic field come into
play, and the correct framework for computing these corrections is quantum
electrodynamics, rather than the Dirac equation where Aµ is treated as an
external, given, classical field.

The structure of the energy levels of the hydrogen atom, including the
fine structure correction (13.31) is shown in Fig. 5.

For instance, the separation between the states 2P3/2 and 2P1/2 of the
hydrogen is, from eq. (13.31)

E2P3/2
− E2P1/2

= −mα
4

16

1

8
+
mα4

16

5

8
=
mα4

32
' 4.53× 10−5 eV , (13.32)

corresponding to a frequency f = ω/(2π) ' 10.9 GHz, in the domain of
microwaves. Actually, the levels 2S1/2 and 2P1/2 are not exactly degenerate,
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Figure 5: The lowest lying energy levels of the hydrogen atom. Note that
the figure is not to scale. In reality, the fine structure splittings are smaller
by a factor ∼ 10−5 compared to the separation between the levels 2S1/2

and 1S1/2, and the Lamb shift and the hyperfine structure are smaller by a
factor ∼ 10 compared to the fine structure.
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as predicted by eq. (13.31), but rather have a splitting

E2S1/2
− E2P1/2

' 1057 MHz (13.33)

know as the Lamb shift. The explanation for this splitting was, historically,
one of the first successes of QED. At a comparable level, we find the hyperfine
structure, due to the interaction between the spin of the nucleus and the
spin of the electron, that we compute next.

13.2 Hyperfine structure

(Reference: Griffiths, Sect. 6.5). According to eqs. (6.71) and (6.74), the
magnetic moments of the proton and of the electron are

µp =
gpe

2mpc
Sp , µe = − gee

2mec
Se , (13.34)

where ge ' 2.0 and gp ' 5.6. A magnetic dipole µ generates a magnetic
field

B =
1

r3
[3(µ·r̂)r̂− µ] +

8π

3
µ δ(3)(r) . (13.35)

Then the Hamiltonian of the electron in the magnetic field of the proton is

H1 = −µe·B (13.36)

=
gpe

2mpc

gee

2mec

1

r3
[3(Sp·r̂)(Se·r̂)− Sp · Se]

+
8π

3

gpe

2mpc

gee

2mec
Sp · Seδ(3)(r) .

To first-order in perturbation theory the corresponding shift of the unper-
turbed energy levels of the hydrogen atom is therefore

E1 = 〈njl|H1|njl〉 . (13.37)

We compute it for l = 0 (which also fixes lz = 0). In this case ψn00(x)
depends only on r, so∫

d3xψ∗n00(x)
1

r3
[3(Sp·r̂)(Se·r̂)− Sp · Se]ψn00(x)

=

∫ ∞
0

dr r2|ψn00(r)|2 1

r3

∫
dΩ [3(Sp·r̂)(Se·r̂)− Sp · Se] . (13.38)

For any two fixed vectors a and b, we have∫
dΩ [3(a·r̂)(b·r̂)− a · b] = 0 . (13.39)
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(Verify it!). Thus, the first term in H1 does not contribute to the energy
shift of the states l = 0.29 The second term gives

E1 =
2π

3

gegpe
2

mpmec2
|ψn00(0)|2 Sp · Se . (13.40)

So, there is an effective spin-spin coupling between the proton and the elec-
tron.30 In the presence of this coupling, the spin of the electron and of
the proton are not separately conserved, but the total spin S = Sp + Se is

conserved. In fact, observing that [Sie, S
j
p] = 0,

[Sie,Sp · Se] = [Sie, S
j
eS

j
p] = iεijkSkeS

j
p (13.41)

is non-zero, but

[Sip, S
j
pS

j
e ] = iεijkSkpS

j
e = −iεijkSkeSjp , (13.42)

so
[Sie + Sip, S

j
eS

j
p] = 0 . (13.43)

Therefore, S2 and Sz are good quantum numbers. We use the operator
identity

S2 = S2
p + S2

e + 2Sp · Se (13.44)

together with

S2
p = ~2 1

2

(
1

2
+ 1

)
=

3

4
~2 , (13.45)

and similarly S2
e = (3/4)~2. On the other hand, the conposition of two spin

1/2 gives a total spin S = 0 (singlet) or S = 1 (triplet), and

S2 = ~2S(S + 1) . (13.46)

29Actually, the radial integral diverges at r = 0 since, on the states l = 0, ψnlm(r)
goes to a constant as r → 0. However, this expression for the hydrogen wavefunction
is certainly not valid down to r = 0, i.e. inside the nucleus. So we can simply cutoff
the radial integral at a value rmin. The radial integral then becomes finite and, when we
multiply by the angular integral, which vanishes exactly, we get zero.

30More precisely, the wavefunctions of the initial and final states are a tensor product
of the orbital and spin wavefunctions, as in eq. (9.18). We are actually separating the
problem of computing the matrix element into two steps. First, we have computed the
matrix element with respect to the orbital wavefunction, remaining with an operator in
the spin variables, and then we compute the matrix elements of this operator with respect
to the spin states.
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Thus

Sp · Se =
~2

2

[
S(S + 1)− 3

2

]
= ~2

{
−3/4 (S = 0)
+1/4 (S = 1)

(13.47)

Thus, each level splits into a triplet and a singlet. For instance, for the
ground state n = 1, using eq. (8.17) we have

|ψ100(0)|2 =
1

πa3
0

, (13.48)

so finally

E1S1/2,triplet − E1S1/2,singlet =
2

3

gegpe
2

mpmec2

~2

a3
0

' 5.88× 10−6 eV , (13.49)

or

ν =
E1S1/2,triplet − E1S1/2,singlet

2π~
' 1420.4 MHz . (13.50)

The corresponding wavelength is λ = c/ν ' 21.105 cm, in the radio waves.
This line is of great importance in astrophysics for investigating the pres-
ence of neutral hydrogen in our and in other galaxies because radio waves,
compared to most other wavelengths, are much less affected by absorption
in the interstellar medium, and propagate to a very large distance. Further-
more, the temperature T such that kBT ' 5.88 × 10−6 eV is T ' 0.07 K.
Therefore, even in interstellar gas at very low temperatures, collisions easily
excite the hydrogen atom into the triplet 1S1/2 state, from where it then
decays into the (singlet) ground state, emitting radiation at λ ' 21 cm.

13.3 Zeeman effect

(Reference: Griffiths, Sect. 6.4). In the precence of an external magnetic
field Bext, the electron in the hydrogen atom acquires an interaction energy

HZ = −(µL + µS)·Bext , (13.51)

where
µL = − e

2mec
L , (13.52)
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is the magnetic moment associated to the orbital motion, and

µS = − gee

2mec
S ' − e

mec
S , (13.53)

is the spin magnetic moment. Therefore

HZ '
e

2mec
(L + 2S)·Bext . (13.54)

The effect of this perturbation (which is called the Zeeman effect) depends
critically on whether the field Bext is smaller or larger than the typical mag-
netic field felt by the electron. The latter has been computed in eq. (13.15)
and, taking L ∼ ~, is of order 6 Tesla.

13.3.1 Weak-field Zeeman effect

If Bext � Bint, the effect of the external magnetic field is much smaller than
the fine structure perturbation. In this case we consider HZ as a perturba-
tion of the Hamiltonian H0 +Hpert given in eqs. (13.9) and (13.10), i.e. the
Zeeman effect is a small perturbation of the fine-structure perturbation.

Therefore, when Bext � Bint, we take as unperturbed Hamiltonian the
Hamiltonian H0 of the hydrogen atom plus the relativstic correction Hpert

given in eq. (13.10), and we classify the unperturbed states as |njjzl〉, as
we already did in eq. (13.21), except that there we omitted jz, since H0 +
Hpert is rotationally invariant, so the levels cannot depend on jz. Here the
Zeeman perturbation will remove this degeneracy, so we keep jz explicit.
The perturbation Hamiltonian is HZ , and the shift of the levels, to first
order, is31

∆Enjjzl = 〈njjzl|HZ |njjzl〉 =
eB

2mec
〈njjzl|Lz + 2Sz|njjzl〉 , (13.55)

where we have chosen the z axis along the direction of Bext, so Bext = Bẑ.
Writing Lz + 2Sz = Jz + Sz we have

〈jjzl|Lz + 2Sz|jjzl〉 = ~jz + 〈jjzl|Sz|jjzl〉 . (13.56)

31In principle, since the unperturbed states are degenerate with respect to jz and l,
here we should in principle consider the full matrix 〈njjzl|HZ |njj′zl′〉, with jz, j

′
z, l and

l′ generic, and diagonalize it. However, the operator Lz + 2Sz is clearly invariant un-
der rotations around the z axis, so it commutes with Jz, and the matrix elements are
automatically diagonal in jz. Similarly, Lz + 2Sz commutes with L2.
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where we suppressed the quantum number n, since this matrix of Sz does
not depend on it. The action of Sz is known in the basis |llz; ssz〉, where of
course we have

Sz|llz; ssz〉 = ~sz|llz; ssz〉 . (13.57)

Thus, we must write the basis |jjz; ls〉 in terms of the basis |llz; ssz〉. The cor-
responding Clebsch-Gordan coefficients have already been computed explic-
itly in eq. (7.41). Recall that, for l 6= 0 we have two possibilities, j = l+ 1/2
and j = l − 1/2. For j = l + 1/2, eq. (7.41) can be rewritten as

|j = l +
1

2
, jzl〉 =

1

(2j)1/2

[
(j + jz)

1/2|l, lz = jz −
1

2
; s =

1

2
, sz =

1

2
〉

+(j − jz)1/2|l, lz = jz +
1

2
; s =

1

2
, sz = −1

2
〉
]
.(13.58)

Therefore

〈j = l +
1

2
, jzl|Sz|j = l +

1

2
, jzl〉 =

~
2

1

2j
[(j + jz)− (j − jz)]

=
~jz
2j

. (13.59)

Similarly, when j = l − 1/2,

|j = l − 1

2
, jzl〉 =

1

(2j + 2)1/2

[
−(j + 1− jz)1/2|l, lz = jz −

1

2
; s =

1

2
, sz =

1

2
〉

+(j + 1 + jz)
1/2|l, lz = jz +

1

2
; s =

1

2
, sz = −1

2
〉
]
, (13.60)

and

〈j = l − 1

2
, jzl|Sz|j = l − 1

2
, jzl〉 = −~

2

jz
j + 1

. (13.61)

Equations (13.59) and (13.61) can be rewritten as a single equation valid for
both cases,

〈jjzl|Sz|jjzl〉 =
~
2

j(j + 1)− l(l + 1) + (3/4)

j(j + 1)
jz , (13.62)

as one can check immediately substituting j = l − 1/2 or j = l + 1/2,
respectively.

This result can be understood physically as follows. We observe that,
since J is constant, while S is not, in a classical picture S precesses rapidly
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around J, so classically, the time average of S is equal to the projection of
S in the direction of J,

Save =
(S·J)

J2
J . (13.63)

It is natural to expect that only Save contributes to the matrix element.32

Then we expect that

〈jjzl|Sz|jjzl〉 = 〈jjzl|
S·J
J2

Jz|jjzl〉 . (13.64)

Using L = J− S we have L2 = J2 + S2 − 2S·J, so

S·J =
1

2
(J2 + S2 − L2) , (13.65)

and

〈jjzl|Sz|jjzl〉 =
j(j + 1)− l(l + 1) + 3/4

2j(j + 1)
~jz , (13.66)

which indeed agrees with eq. (13.62). So we have found that

〈jjzl|Lz + 2Sz|jjzl〉 =

[
1 +

j(j + 1)− l(l + 1) + 3/4

2j(j + 1)

]
~jz

≡ gJ ~jz , (13.67)

The factor gJ is called the Landé g-factor. In conclusion,

∆Enjjzl = µB BextgJjz , (13.68)

where

µB =
e~

2mec
' 5.788× 10−5 eV/T (13.69)

is called the Bohr magneton.

13.3.2 Strong-field Zeeman effect

We now consider the opposite limit, Bext � Bint. In this regime, setting
Bext along the z axis, the “good” quantum numbers are n, l, lz, sz, since L2,
Lz and Sz commute with the Zeeman Hamiltonian (13.54),

HZ =
e

2mec
(Lz + 2Sz)Bext . (13.70)

32This argument is somewhat heuristic since it uses the classical intuition for a quan-
tity, such as spin, that does not have a classical counterpart. However, it will correctly
reproduce the result (13.62) that we have obtained from first principles.
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We consider first H = H0 + HZ , where as usual H0 is the unperturbed
Hamiltonian of the hydrogen atom. Clearly, the states |nllzsz〉 diagonalize
it,

(H0 +HZ)|nllzsz〉 = −Ry

n2
+

e~
2mec

(lz + 2sz)Bext . (13.71)

The fine structure Hamiltonian Hpert given in eq. (13.10) is then treated as
a perturbation of H0 +HZ , so to first order it induces a shift

∆E = 〈nllzsz|Hpert|nllzsz〉 . (13.72)

The contribution to ∆E of the terms ∼ p4 and ∼ δ(3)(x) in Hpert is com-
puted exactly as before, since it only involves orbital degrees of freedom and
therefore depends only on n, l. So, it is the same whether we use the basis
|nllzsz〉, as we are doing here, or the basis |njl〉 that we used in Section 13.1.
In contrast, for the spin-orbit term we use

〈nllzsz|S·L|nllzsz〉 = ~2lzsz , (13.73)

since the expectation values of Sx ,Sy, Lx and Ly are zero on eigenstates of
Lz and Sz.

If neither Hpert nor HZ dominate, it is not obvious a priori what are the
“good” state, in terms of which we can use the formulas of non-degenerate
perturbation theory. Therefore, we must now resort to the full formalism
of degenerate perturbation theory. Using for instance the basis |nljjz〉, for
each n we have a degenerate subspace. For instance, for n = 2 we have l = 0
or l = 1. If l = 0, necessarily j = 1/2, and jz = ±1/2. So we have the two
states

|n = 2, l = 0, j = 1/2, jz = ±1/2〉 . (13.74)

For l = 1 we can have j = 1/2 or j = 3/2, so we have the six states

|n = 2, l = 1, j = 1/2, jz = ±1/2〉 ,
|n = 2, l = 1, j = 3/2, jz = ±1/2〉 , (13.75)

|n = 2, l = 1, j = 3/2, jz = ±3/2〉 .

So, in total we have eight states. In this space the perturbation Hamiltonian
Hpert + HZ is an 8 × 8 matrix, which must be diagonalized to find the
eigenkets and eigenvalues.
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14 Variational principle

14.1 The method

(References: Shankar, Section 16.1, Griffiths, Chapter 7). Basic idea: if E0

is the ground-state energy of an Hamiltonian H, and |ψ〉 is an arbitrary
state, normalized so that 〈ψ|ψ〉 = 1, we have

〈ψ|H|ψ〉 ≥ E0 . (14.1)

Proof. We denote by |n〉 be the normalized eigenkets of H, with eigenvalues
En. Since they form a complete set, we can write

|ψ〉 =
∑
n

cn|n〉 . (14.2)

The condition 〈ψ|ψ〉 = 1 means that∑
n

|cn|2 = 1 . (14.3)

Then
H|ψ〉 =

∑
n

cnEn|n〉 , (14.4)

and

〈ψ|H|ψ〉 =
∑
m

c∗m〈m|H
∑
n

cn|n〉

=
∑
n

|cn|2En

≥ E0

∑
n

|cn|2 = E0 . (14.5)

To compute E0, the idea is therefore to try a class of trial wavefunctions,
and minimize 〈ψ|H|ψ〉.

A nice feature of the method is that even a poor approximation to the
wavefunction can yield a good approximation to the ground state energy.
Suppose for instance that we try as eigenket a state |ψ〉 which is the super-
position of the true ground state |E0〉, with a small admixture of another
energy eigenstate |E1〉,

|ψ〉 = (1 + ε2)−1/2 (|E0〉+ ε|E1〉) . (14.6)
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where the factor (1 + ε2)−1/2 ensures 〈ψ|ψ〉 = 1. Recall that eigenkets with
different eigenvalues are orthogonal, so 〈E0|E1〉 = 0. Then

〈ψ|H|ψ〉 = (1 + ε2)−1 (〈E0|+ ε〈E1|)H(|E0〉+ ε|E1〉)
= (1 + ε2)−1 (〈E0|+ ε〈E1|)(E0|E0〉+ εE1|E1〉)
= (1 + ε2)−1 (E0 + ε2E1) (14.7)

=
(
1− ε2

)
E0 + ε2E1 +O(ε4)

= E0 + ε2 (E1 − E0) +O(ε4) . (14.8)

Therefore, even if the error on |ψ〉 is O(ε), the error on the energy is only
O(ε2).
We next discuss some examples of the method.

Harmonic oscillator. Here of course we know the exact answer. However,
let us pretend that we don’t, and try a gaussian wavefunction, as would be
suggested by the facts that: (1) the wavefunction must vanish at infinity.
(2) it must be peaked around x = 0. (3) For the ground state, there must
be no node (more nodes→ more wiggles→ more kinetic energy). So we try

ψ(x) = Ae−bx
2
. (14.9)

The normalization fixes A = (2b/π)1/4, while b is treated as a free parameter,
with respect to which we minimize 〈ψ|H|ψ〉. Using this wavefunction we can
compute explicitly

〈ψ|H|ψ〉 =

∫ ∞
−∞

dxψ∗(x)

[
− ~2

2m

d2

dx2
+

1

2
mω2x2

]
ψ(x)

=
~2b

2m
+
mω2

8b
. (14.10)

Now we choose b so to minimize 〈ψ|H|ψ〉. Observe that the kinetic term
favors b small (i.e. a very smooth wavefunction) and the potential term
favors b large (i.e. a wavefunction peaked as much as possible around x = 0).
The competition between these two effects gives

b0 =
mω

2~
, (14.11)

E(b0) = 〈ψ|H|ψ〉 =
1

2
~ω . (14.12)

In this case we even got the exact answer! However, this is a rather excep-
tional case, and in general with the variational principle we can only get
close to the exact result.
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Anharmonic oscillator. Consider the Hamiltonian

H = − ~2

2m

d2

dx2
+ λx4 . (14.13)

Using again the trial wavefunction (14.9) we get

〈ψ|H|ψ〉 =
~2b

2m
+

3λ

16b2
. (14.14)

Minimizing,

b0 =

(
3mλ

4~2

)1/3

, (14.15)

and

E(b0) ≡ 〈ψ|H|ψ〉|b=b0 =
3

8

(
6~4λ

m2

)1/3

. (14.16)

Since H is positive definite, we conclude that the true ground state energy
E0 is in the range

0 < E0 ≤ E(b0) . (14.17)

14.2 The ground state of Helium

In Section 10.1 we studied the He atom. The Hamiltonian is

H =

[
− ~2

2me
∇2

1 −
2e2

r1

]
+

[
− ~2

2me
∇2

2 −
2e2

r2

]
+

e2

|r1 − r2|
, (14.18)

and we found that, neglecting the repulsion among the electrons,

ψ(r1, r2) = ψnlm(r1)ψn′l′m′(r2) . (14.19)

For the ground state, nlm = n′l′m′ = 100 (and the spin state is the singlet).
For an hydrogenoid atom with charge Ze,

ψ100(x) =

(
Z3

πa3
0

)1/2

e−Zr/a0 , (14.20)

so for the ground state, in this approximation,

ψ(r1, r2) =
Z3

πa3
0

e−Z(r1+r2)/a0 (14.21)

where, for He, Z = 2. The ground-state energy in this approximation is (see
eq. (10.5))

E00 = −8 Ry ' −109 eV . (14.22)

125



This is quite far from the observed value −78.6 eV, not surprisingly, since
we neglected the repulsion among the two electron. The basic step in the
variational principle is always to find a clever class of wavefunctions, not too
complicated, but which still catches much of the physics, and here physical
intuition plays an important role. In this problem, we can think that each
electron actually does not see a charge Z = +2, but rather a screened charge,
because of the effect of the other electron. This suggests to use the family
of wavefunctions (14.21), treating Z as a variational parameter, rather than
fixing it at Z = 2. This gives

E(Z) = 〈ψ|H|ψ〉 = −2

(
4Z − Z2 − 5

8
Z

)
Ry , (14.23)

which is minimized by

Z = Z0 = 2− 5

16
, (14.24)

and
E(Z0) = −2Z2

0 Ry ' −77.5 eV , (14.25)

quite close to the exact result, and above it, as demanded by the inequality
(14.1).

The method can be extended to compute the energies and wavefunction of
higher excited states. Once we have determined our best approximation to
the ground state |E0〉, we can find the next excited state |E1〉 searching for
the minimum of 〈ψ|H|ψ〉 in the subspace orthogonal to |E0〉. If we knew
|E0〉 exactly, we would get in this way a rigorous upper bound on the energy
E1. However, the variational principle only gives us an approximation to the
real ground state |E0〉, so the corresponding upper bounds are not rigorous.
However, if our approximation to |E0〉 was good enough, the energy E1

estimated for the first excited state will be close to the actual value.
In some cases we know exactly in which space to search for the next

excited state. For instance, consider again the one-dimensional anharmonic
oscillator V (x) = λx4. Since H is invariant under parity, the states have
definite parity, i.e. the wavefunctions are classified as even or odd under
x → −x. Since more zeros requires more oscillations and therefore more
kinetic energy, the energy of the eigenfunctions increases with the number
of zeros: the ground state is a function with no zero, and in fact as a trial
wavefunction we used a gaussian. The wavefunction of the next excited state
will have a single zero at x = 0, and so on (compare with the wavefunctions
of the harmonic oscillator shown in Figs. 1–4 on pages 20–22). Therefore,
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we search the wavefunction for the first excited state in the space of odd
wavefunctions. This space is exactly orthogonal to the space of state with
even parity. In fact, if ψeven(x) is an even function, ψeven(−x) = ψeven(x),
and ψodd(x) is an odd function, ψodd(−x) = −ψodd(x), we obviously have∫ ∞

−∞
dxψ∗even(x)ψodd(x) = 0 . (14.26)

In this case the resulting upper bound on E1 is rigorous.
The same happens in three dimensions in a radial potential, where the

wavefunction separates as ψnlm(x) = Rnl(r)Ylm(θ, φ). Since spherical har-
monics with different values of l are orthogonal, we can apply the variational
principle independently for each l.
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14.3 The molecule H+
2 . Covalent bond

(See Griffiths, Section 7.3, pages 304–308.) We consider now the hydrogen
molecule ion H+

2 , i.e. a single electron in the field of two separate pro-
tons. We want to show first of all that this molecule exists, i.e. that it is
possible to put the two protons and the electron in a state that has lower
energy, compared to a hydrogen atom plus a proton at infinity. Then, we
will estimate the binding energy and the equilibrium distance between the
protons.

The Hamiltonian of the system is

H = − ~2

2me
∇2
x −

e2

|x− x1|
− e2

|x− x2|
, (14.27)

where x is the coordinate of the electron and ∇2
x is the Laplacian with

respect to x. The coordinates of the two protons are denoted by x1 and
x2, respectively. We put the first proton at the origin of the coordinates
system, and the second in the position x2 = (0, 0, R), and we treat R as our
variational parameter. As trial wavefunction we take

ψ(x,x1,x2) = A [ψ0(|x− x1|) + ψ0(|x− x2|)] , (14.28)

where

ψ0(r) =
1

(πa3
0)1/2

e−r/a0 (14.29)

is the usual wavefunction of the ground state of the hydrogen atom, and
a0 is the Bohr radius. This ansatz for the wavefunction is known as the
LCAO techniques (Linear Combination of Atomic Orbitals). The constant
A is determined by the normalization,

1 =

∫
d3x|ψ(x)|2

= |A|2
∫
d3x

[
|ψ0(|x− x1|)|2 + |ψ0(|x− x2|)|2

+ 2ψ0(|x− x1|)ψ0(|x− x2|)
]
. (14.30)

Since d3x is obviously invariant under translations x→ x− x1, we have∫
d3x |ψ0(|x− x1|)|2 =

∫
d3x |ψ0(|x|)|2 = 1 , (14.31)
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and similarly for the second integral. To compute the third integral we
introduce the notation

r1 = |x− x1| , r2 = |x− x2| . (14.32)

and we observe that, since x1 = 0 and x2 = (0, 0, R), we have r1 = r, while,
denoting by θ the angle between the direction of x and the z axis,

r2
2 = (r sin θ)2 + (r cos θ −R)2 , (14.33)

i.e.
r2 =

√
r2 +R2 − 2rR cos θ . (14.34)

Thus

I ≡
∫
d3xψ0(|x− x1|)ψ0(|x− x2|) (14.35)

=
2π

πa3
0

∫
r2drd cos θ exp

{
−1

a

[
r +

√
r2 +R2 − 2rR cos θ

]}
.

We first perform the integral over d cos θ at fixed r, introducing

y =
√
r2 +R2 − 2rR cos θ , (14.36)

so that
d(y2) = −2rRd cos θ , (14.37)

i.e.

d cos θ = −ydy
rR

. (14.38)

The remaining integral over r is elementary, and gives

I = e−x
(

1 + x+
1

3
x2

)
, (14.39)

where

x =
R

a0
. (14.40)

In terms of I, the normalization constant is

|A|2 =
1

2(1 + I)
. (14.41)

The next step is to compute the expectation value of H on the trial wave-
function. We use the fact that the Laplacian with respect to x is the same
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as the Laplacian with respect to x−x1, or x−x2, so (setting for simplicity
~ = c = 1, and therefore e2 = α)[

− 1

2me
∇2
x −

α

|x− x1|

]
ψ0(|x− x1|) = E0ψ0(|x− x1|) , (14.42)

where

E0 = −1

2
meα

2 ' −13.6 eV (14.43)

is the ground state energy of the hydrogen atom. Similarly,[
− 1

2me
∇2
x −

α

|x− x2|

]
ψ0(|x− x2|) = E0ψ0(|x− x2|) . (14.44)

Therefore

Hψ(x,x1,x2) = A

[
− 1

2me
∇2
x −

α

|x− x1|
− α

|x− x2|

]
ψ0(|x− x1|)

+A

[
− 1

2me
∇2
x −

α

|x− x1|
− α

|x− x2|

]
ψ0(|x− x2|)]

= A

[
E0ψ0(|x− x1|)−

α

|x− x2|
ψ0(|x− x1|)

]
+A

[
E0ψ0(|x− x2|)−

α

|x− x1|
ψ0(|x− x2|)

]
= E0ψ(x,x1,x2) (14.45)

−Aα
[

1

|x− x2|
ψ0(|x− x1|) +

1

|x− x1|
ψ0(|x− x2|)

]
,

and

〈ψ|H|ψ〉 = E0 − |A|2α
∫
d3x [ψ0(|x− x1|) + ψ0(|x− x2|)] (14.46)

×
[

1

|x− x2|
ψ0(|x− x1|) +

1

|x− x1|
ψ0(|x− x2|)

]
= E0 − |A|2α

∫
d3x

[
ψ2

0(|x− x1|)
|x− x2|

+
ψ2

0(|x− x2|)
|x− x1|

]
−|A|2α

∫
d3x

[
ψ0(|x− x1|)ψ0(|x− x2|)

|x− x1|
+
ψ0(|x− x2|)ψ0(|x− x1|)

|x− x2|

]
.

Observe that d3x is invariant under the shift of integration variable x →
−x + x1 + x2. Under this transformation

|x− x2| → | − x + x1| = |x− x1| , (14.47)
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so the two terms in the first integral give the same result, and similarly for
the two terms in the second integral. Then

〈ψ|H|ψ〉 = E0 − 2|A|2α
∫
d3x

ψ2
0(|x− x1|)
|x− x2|

−2|A|2α
∫
d3x

ψ0(|x− x1|)ψ0(|x− x2|)
|x− x1|

≡ E0 − 2|A|2α 1

a0
[D +X]

= E0 −
α

a0

D +X

1 + I
. (14.48)

D is called the direct integral, and X the exchange integral. Computing
them explicitly one finds

D =
1

x
−
(

1 +
1

x

)
e−2x , (14.49)

and
X = (1 + x) e−x , (14.50)

where again x = R/a0. Recall that we are using units ~ = c = 1, so
a0 = 1/(meα), and

α

a0
= meα

2 = −2E0 . (14.51)

Thus

〈ψ|H|ψ〉 = E0

[
1 + 2

D +X

1 + I

]
. (14.52)

To this term we must subtract the repulsion energy between the two protons,

Vpp = +
α

R
=
a0

R

α

a0
= −2

a0

R
E0 . (14.53)

In conclusion, the total energy of the system is

E(R) = E0

[
1 + 2

D +X

1 + I

]
− 2

a0

R
E0

≡ (−E0)F (x) , (14.54)

where

F (x) = −1 +
2

x

[1− (2/3)x2]e−x + (1 + x)e−2x

1 + [1 + x+ (1/3)x2]e−x
. (14.55)

131



1 2 3 4 5 6

-1.05

-1.00

-0.95

-0.90

Figure 6: The function F (x) (solid line), compared to the value −1 (dashed
line).

The function F (x) is plotted in Fig. 6. We see the following features.
First of all, for R→∞, F (x)→ −1, as it should. The energy of the system
becomes the same as the energy of the hydrogen atom when the second
proton is at infinity. However, decreasing R, F (x) goes below −1. Recall
that each value of R represent a trial wavefunction. Since the true energy of
the system is lower or equal than the value that we find with the variational
technique, this means that bonding does occur, since for some values of R
the energy of this system is lower than the energy of a hydrogen atom.

Our best approximation to the true wavefunction and to the true value
of the binding energy is obtained from the value of R that gives the lowest
possible value of F (x). The minimum of F (x) is located at x ' 2.493,
corresponding to

R ' 2.49a0 ' 1.32 Å , (14.56)

and, since at the minimum F (x) ' −1.13, we get a a binding energy

Ebinding ' 0.13× 13.6 eV ' 1.77 eV . (14.57)

This fits quite well with the experimental data: the true equilibrium radius
is at R ' 1.06 Å, and the binding energy is 2.8 eV, higher than the binding
energy obtained with the variational principle, as it should.

Physically what happens is that the the single electron of theH+
2 molecule

attracts both the first proton and the second with a strength that, except for
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R below a critical value, overcomes the repulsion between the two protons.
This is an example of covalent bond, in which the electron is shared among
the two protons.

It is intuitively clear that, in order to do the job, the electron must be
preferentially located between the two protons, i.e. in the middle of the H+

2

molecule rather than on one side of it, otherwise the repulsion between the
protons would be dominant. Indeed, with the test wavefunction (14.28) that
we used, the wavefunction is large when x = (x1 + x2)/2, since in this case
the two terms in eq. (14.28) are equal, and sum up.

Consider in contrast the trial wavefunction

ψ(x,x1,x2) = A [ψ0(|x− x1|)− ψ0(|x− x2|)] , (14.58)

This wavefunction vanishes when x = (x1 + x2)/2, and more generally it
is suppressed when the electron is in the central region between the two
protons. Thus, we expect that it does not lead to bonding. We can check
it without performing any new calculation, simply by tracking the effect of
this change of sign in the previous computation. We now find

|A|2 =
1

2(1− I)
, (14.59)

and the contribution of the exchange integral gets a minus sign, so eq. (14.48)
is replaced by

〈ψ|H|ψ〉 = E0 −
α

a0

D −X
1− I

≡ (−E0)G(x) , (14.60)

where

G(x) = −1 +
2

x

−[1− (2/3)x2]e−x + (1 + x)e−2x

1− [1 + x+ (1/3)x2]e−x
. (14.61)

This function is plotted in Fig. 7, and we see that it is always above −1.
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Figure 7: The function G(x) (solid line), compared to the value −1 (dashed
line).
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15 WKB approximation

15.1 The method

In this section we discuss the WKB (Wentzel-Kramers-Brillouin) method,
which, as we will see, corresponds to a semiclassical approximation. We
start from the one-dimensional Schrödinger equation,

− ~2

2m

d2ψ

dx2
+ V (x)ψ = Eψ . (15.1)

Introducing
p(x) ≡

√
2m[E − V (x)] , (15.2)

the Schrödinger equation can be written as

d2ψ

dx2
= −p

2(x)

~2
ψ . (15.3)

We now define

λ(x) ≡ 2π~
p(x)

. (15.4)

Let l be the typical length-scale over which V (x) changes appreciably. We
wish to study the situation λ(x) � l, that it, over a distance several wave-
lengths λ(x) the potential does not changes much. If V (x) were exactly
constant, the solution would be a plane wave

ψ(x) = Ae±ikx , (15.5)

where
k =

√
2m[E − V ]/~ . (15.6)

If the typical length l over which V (x) changes appreciably is much larger
than λ(x), over a region containing many wavelengths the potential V (x) is
approximately constant. So, if E > V (x), we expect that the solution will
remain practically sinusoidal, except for the fact that the wavelength and
the amplitude change slowly with x.

In contrast, for E < V , if V is exactly constant we have the solutions

ψ(x) = Ae±κx (15.7)

where
κ =

√
2m[V − E]/~ , (15.8)
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and again we expect that this will still be the approximate form of the
solution when V (x) depends slowly on x.

To formalize this intuition, we first of all write the complex function
ψ(x) in terms of two real functions A(x) and φ(x),

ψ(x) = A(x)eiφ(x) , (15.9)

Substituting this form of ψ into the Schrödinger equation and setting to
zero the real and the imaginary parts of the equation, we get the two real
equations

A′′ = A

[
(φ′)2 − p2(x)

~2

]
, (15.10)

and
2A′φ′ +Aφ′′ = 0 , (15.11)

where the prime denotes the derivative with respect to x. The second equa-
tion can be rewritten as

∂x
(
A2∂xφ

)
= 0 , (15.12)

which gives

A(x) =
const.√
φ′

. (15.13)

Until now everything was exact, since eq. (15.9) is a completely general way
of writing a complex function ψ in terms of two real functions A and φ. The
approximation comes now, assuming that∣∣∣∣A′′A

∣∣∣∣� (φ′)2 , (15.14)

and ∣∣∣∣A′′A
∣∣∣∣� p2(x)

~2
. (15.15)

This is motivated by the fact that, for an exactly constant potential, in the
solution (15.18) the amplitude A is exactly constant, so A′′/A = 0, while
φ(x) = kx, so φ′ = k; thus, in the more general case of V (x) slowly varying,
we expect that the amplitude will change over the scale of the potential,
A′′/A = O(1/l2), and we are assuming that 1/l � 1/λ. Then eq. (15.10)
gives

φ′ ' ±p(x)

~
, (15.16)

and therefore

φ(x) ' ±1

~

∫ x

x0

dx′p(x′) . (15.17)
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Thus,

ψ(x) ' C√
p(x)

exp

{
± i
~

∫ x

p(x′)dx′
}
. (15.18)

Notice that

|ψ(x)|2 =
C2

p(x)
, (15.19)

so it is inversely proportional to the speed v(x) of the particle. This is
exactly the behavior expected in the semiclassical limit, recall our discussion
on eqs. (4.13)–(4.15). The reason is that, if we formally let ~ → 0, λ(x) in
eq. (15.4) goes to zero, and therefore it is necessarily much smaller than the
scale on which the potential changes appreciably. 33 So, the approximation
expressed by eqs. (15.14) and (15.15) is in fact a semiclassical approximation.

Before exploring in more detail the physical consequences of this result,
it is useful to give an alternative derivation. We write

ψ(x) = eif(x)/~ , (15.20)

where now f(x) is a generic complex function. The Schrödinger equation
becomes

i~f ′′ − (f ′)2 + p2(x) = 0 . (15.21)

We now expand

f(x) = f0(x) + ~f1(x) + ~2f2(x) + . . . (15.22)

and equate terms of the same order in ~ (keeping only the first two orders).
To zeroth order in ~ we get

(f ′0)2 = p2(x) . (15.23)

so

f0(x) = ±
∫ x

x0

dx′p(x′) . (15.24)

To order ~ we get
if ′′0 = 2f ′0f

′
1 , (15.25)

so

− 2if ′1 =
f ′′0
f ′0

= ∂x ln |f ′0| . (15.26)

33This statement will need some qualification when x is close to the classical turning
points of the potential. We will come back to this point below.
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Therefore
f1 = i ln |∂xf0|1/2 + c , (15.27)

and

ψ(x) ' ei[f0(x)+~f1(x)]/~

= e− ln |∂xf0|1/2 exp

{
± i
~

∫ x

x0

dx′p(x′) + ic

}
=

A√
|p(x)|

exp

{
± i
~

∫ x

x0

dx′p(x′)

}
, (15.28)

where the (complex) integration constant c has been reabsorbed in the over-
all constant A.

This derivation makes it even more clear that we are performing a sys-
tematic expansion for ~ small (more precisely, small with respect to quan-
tities with the same dimensions appearing in the wavefunction), so this is a
semiclassical expansion.

Observe that the assumption that λ(x) is small with respect to the scale
on which V (x) changes, becomes necessarily wrong near the turning points,
because there p(x) goes to zero, so λ(x) diverges.

15.2 Potential with two infinite walls. Bohr-Sommerfeld con-
ditions

As a first application consider a potential V (x) that consists of two infinite
walls at x = 0 and x = a, and changes gently for 0 < x < a. The most
general WKB solution for 0 < x < a is the superposition of the two solutions
with the ± signs at the exponential,

ψ(x) ' 1√
p(x)

[
C+e

iφ(x) + C−e
−iφ(x)

]
(15.29)

where

φ(x) =
1

~

∫ x

0
dx′p(x′) . (15.30)

We have chosen x = 0 as the lower limit of the integral. Observe that the
choice of the lower integration limit x0 in eq. (15.28) is arbitrary, since we
can always reabsorb it in a redefinition of the constant A, so we have chosen
x0 = 0 without loss of generality. It is convenient to rewrite the solution as

ψ(x) ' 1√
p(x)

[C1 sinφ(x) + C2 cosφ(x)] (15.31)
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The condition that ψ(x) = 0 at x = 0 gives C2 = 0 and the condition
ψ(a) = 0 gives ∫ a

0
p(x)dx ' nπ~ , (n = 1, 2, 3, . . .) . (15.32)

This is the Bohr-Sommerfeld quantization condition. For high values of n,
this gives higher and higher values of p(x), and therefore smaller λ(x), there-
fore the semiclassical approximation becomes better and better: the semi-
classical approximation works well for large values of the quantum number
n. This is the modern form of the Bohr correspondence principle, which
was a guiding principle in the early days of quantum mechanics. The corre-
sponding energy quantization is obtained using eq. (15.2),∫ a

0

√
2m[En − V (x)]dx = nπ~ . (15.33)

If the potential for 0 < x < a is exactly flat, we expect to recover the exact
result. In fact, in this case eq. (15.32) gives

pn =
nπ~
a

, (15.34)

and En = p2
n/(2m) = n2π2~2/(2ma2), which are indeed the exact results for

a free particle confined between two infinite walls.
For a general, non-flat potential, the Bohr-Sommerfeld quantization con-

dition determines approximately the allowed energy levels. The WKB ap-
proximation is better and better in the semiclassical limit n→∞.

15.3 Tunneling

(We follow Griffiths, Section 8.2). In the classically forbidden region E <
V (x) we have p(x) imaginary, and

ψ(x) ' C√
|p(x)|

exp

{
±1

~

∫ x

dx′ |p(x′)|
}
. (15.35)

If the classically forbidden region extends from, say, x = 0, up to x = ∞,
the coefficient of the exponentially growing term must be zero, and

ψ(x) ' C√
|p(x)|

exp

{
−1

~

∫ x

dx′ |p(x′)|
}
. (15.36)
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If the forbidden region extend over a finite range 0 < x < a in principle we
have both term, but the coefficient of the growing exponential is typically
very small and can be neglected (see Griffiths, Problem 8.10).

Consider for instance the scattering from a rectangular barrier with a
bumpy top. If the barrier is at 0 < x < a, and the boundary condition is
that there is an incident flux coming from the left, for x < 0 we have

ψ(x) = Aeikx +Be−ikx , (15.37)

where A is the incident amplitude, B is the amplitude for reflection, and
k =

√
2mE/~. To the right of the barrier, for x > a, we only have the

transmitted part,
ψ(x) = Feikx . (15.38)

The transmission probability is

T =
|F |2

|A|2
. (15.39)

Supopose that the energy E is smaller than the height of the barrier. Then,
in the intermediate region, the solution is

ψ(x) ' C√
|p(x)|

exp

{
−1

~

∫ x

0
dx′ |p(x′)|

}
. (15.40)

Actually, there will be also a small admixture of the exponentially growing
solution, so we should write

ψ(x) ' C√
|p(x)|

exp

{
−1

~

∫ x

0
dx′ |p(x′)|

}
+

D√
|p(x)|

exp

{
+

1

~

∫ x

0
dx′ |p(x′)|

}
. (15.41)

However you can check, performing explicitly the matchings in x = 0 and
x = a, that for a very high or very wide barrier D is very small and the
contribution of the second term can be neglected. Then, the total decrease
in amplitude for x = 0 to x = a is

|F |
|A|
∼ exp

{
−1

~

∫ a

0
dx |p(x)|

}
. (15.42)

Therefore, apart from prefactors, the transmission probability is

T ∼ e−2γ , (15.43)

with

γ =
1

~

∫ a

0
dx |p(x)| . (15.44)
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15.3.1 Application: Gamow’s theory of α-decay

(See Griffiths, pages 322-324.)
Radioactive nuclei can decay by spontaneous emission of an alpha par-

ticle (two protons and two neutrons bound together, i.e. the nucleus of
4He). In general, the formalism of quantum mechanics that we have devel-
oped cannot account for processes in which the number and type of particle
changes, such as the process in which an initial nucleus decays into a final
nucleus plus an alpha particle. This will rather be the subject of the course
of Quantum Field Theory. However, for this process we can develop an in-
structive, although heuristic, picture, modeling it in terms of an interaction
potential between a (hypothetical) pre-existing alpha particle and the final
nucleus.

The α particle has charge +2, so there is a Coulomb repulsion with the
remaining nucleus, but at short distances this is dominated by the attraction
due to strong interactions. The overall potential felt by the α-particle can
then be approximated by

V (x) = −V0 , r < r1 , (15.45)

where r1 ' 1 fm is the typical radius of the nuclear potential, and

V (x) =
2Ze2

r
, r > r1 (15.46)

is the Coulomb potential between the α-particle (charge +2e) and the rest of
the nucleus, with charge Ze. [We use units for the electric charge such that
the Coulomb potential is q1q2/r. In these units the fine structure constant
is α = e2/(~c)]. The potential is shown in Fig. 8.

Denote by E the energy of the α particle. In order for the initial nucleus
to exist at all, it is necessary that

E <
2Ze2

r1
, (15.47)

so classically the α-particle is bound in the potential. In a potential well
we can have bound states with energy E either positive or negative. In
radioactive nuclei E > 0, so the α particle can escape via tunneling.

Let r2 the classical turning point of a particle with energy E, given by

(Ze)(2e)

r2
= E . (15.48)
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Figure 8: The potential V (x)

Then the tunneling probability is given by eq. (15.43) with

γ =
1

~
(2m)1/2

∫ r2

r1

dr

√
2Ze2

r
− E , (15.49)

where m here is the mass of the α-particle. This integral can be performed
exactly. However, one typically has r1 � r2, and in this limit one finds

γ ' K1Z

E1/2
−K2(Zr1)1/2 , (15.50)

with

K1 =
e2π
√

2m

~
=
e2

~c
π
√

2mc2 ' 1.980 MeV1/2 , (15.51)

and

K2 =
4e
√
m

~
' 1.485 fm−1/2 . (15.52)

If the α-particle inside the nucleus has an average velocity v, 2r1/v is the
average time between collisions with the walls, so v/(2r1) is the number of
collisions per unit time, and the probability of escape at each collision is
e−2γ . If we denote by P the probability that the α-particle is inside the
nucleus, we have

dP

dt
= −1

τ
P , (15.53)
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where
1

τ
=

v

2r1
e−2γ (15.54)

so the lifetime of the radioactive nucleus is

τ =
2r1

v
e2γ . (15.55)

For a nucleus with nucleon number (number of protons plus number of
neutrons) equal to A, one uses the relation

r1 ' 1.07 fmA1/3 , (15.56)

which is well verified experimentally (the dependence on A expresses the fact
that the volume of the nucleus is proportional to A). Since the α-particle is
non-relativistic, its total energy Etot =

√
mαc2 + p2 can be written approx-

imately as mαc
2 +E where E = p2/(2mα) is its kinetic energy. The kinetic

energy E is then computed from

E ' mP c
2 −mDc

2 −mαc
2 , (15.57)

where P and D refer to the “parent” and “daughter” nuclei, i.e. the nuclei
before and after the radioactive decay. Using these values, one can reproduce
remarkably well the lifetime of nuclei that disintegrate via α-decay, over a
huge range of scales for the lifetime, from approximately 1011 yr for U238

and Th232 down to approximately 10−5 yr for U226 and Th228, see Fig. 8.6
of Griffiths. This huge range of possible lifetimes is due to the fact that the
energy of the emitted α particle can change significantly, and it appears at
the exponent.

15.3.2 Application: thermonuclear reactions in stars

The interaction between two nuclei is described, in a first approximation,
by the potential given in eqs. (15.45) and (15.46) and shown in Fig. 8. More
precisely, we can analyze the encounter of two nuclei with charges Z1 and
Z2 and masses m1 and m2, in terms of a single particle with reduced mass
m = m1m2/(m1 +m2), moving in the potential

V (x) = −V0 , r < r1 , (15.58)

where r1 ' 1 fm is the typical radius of the nuclear potential, and

V (x) =
Z1Z2e

2

r
, r > r1 . (15.59)
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Let v be the relative velocity, so

E =
1

2
mv2 , (15.60)

it the kinetic energy in the center of mass. At large distances, the nuclei
experience their mutually repulsive Coulomb interaction. If they approached
with a sufficiently large speed, they could overcome the potential barrier
classically, and fuse together. However, even in the must favorable case of
two hydrogen nuclei, Z1 = Z2 = 1, with r1 = 1 fm the height of the barrier
is (using units ~ = c = 1 and recalling eq. (8.31),

V (r1) =
α

1 fm
' 200 MeV

137
' 1.5 MeV . (15.61)

Using the value of the Boltzmann constant kB ' 8.6 × 10−5 eV K−1, this
corresponds to a temperature

T ' 1.5 MeV

kB
' 1.7× 1010 K . (15.62)

The temperature at the center of the Sun is about 1.5×107 K, so it is much
lower than that required for the nuclei to overcome the barrier classically.
They can however overcome it quantum-mechanically, tunneling under the
barrier from the classical turning point (r2 in Fig. 8) down to r1. Thus
nuclear fusion in stars, which is their source of energy, can only take place
because of quantum tunneling.

We want to compute the rate of nuclear reactions in the core of stars, as
a function of their temperature. The penetration probability for a particle
of kinetic energy E, from r = r2 to r = r1, is of course the same as the
escape probability from r = r1 to r = r2 that we computed in the Gamow
theory of α-decay, since it is given by the same WKB integral. Thus, we can
simply use eqs. (15.43) and (15.50), replacing 2Z with Z1Z2. Furthermore,
we have seen that the energy E is very small with respect to the height of
the barrier, so we can keep just the first term in eq. (15.50), and we get

γ ' e2π
√

2m

2~
Z1Z2

E1/2
. (15.63)

Writing q1 = Z1e, q2 = Z2e and E = (1/2)mv2, we can rewrite this as

γ =
πq1q2

~v
, (15.64)
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and the penetration probability is

T ∼ 1

v
e−2γ ' 1

v
exp

{
−2πq1q2

~v

}
, (15.65)

where we also included the prefactor 1/v that comes from the 1/
√
|p(x)|

dependence of the WKB wavefunction. The result is very sensitive to the
relative speed v. In the star core, the nuclei are thermally distributed ac-
cording to the Boltzmann distibution, so the probability of finding a nucleus
with velocity between v and v + dv is proportional to

d3v e−E/kBT = 4πv2dv e−mv
2/(2kBT ) . (15.66)

The rate of the nuclear reactions is therefore proportional to∫ ∞
0

dv v exp

{
−2πq1q2

~v
− mv2

kBT

}
. (15.67)

This integral can be computed with the saddle point method, simply finding
the value v = v∗ that maximizes the exponential (observe that prefactors
play no role to leading order, so we could have neglected them from the
beginning). This gives

v∗ =

(
2πq1q2kBT

~m

)1/3

. (15.68)

Recall that eq. (15.50) was found assuming that r2 � r1. We can check the
consistency of our approach verifying that the turning point r2 = r∗, which
corresponds to the velocity v∗, is indeed much larger than r1 ' 1 fm. The
turning point is determined by E = V (r2), so

1

2
mv2
∗ =

q1q2

r∗
, (15.69)

or

r∗ =
2q1q2

mv2
∗
. (15.70)

For the proton-proton reaction (recalling that the reduced mass is m =
mp/2) and T = 1.5× 107 K, this gives

r∗ = ~c
(

4α

π2

)1/3 1

[mpc2 (kBT )2]1/3
' 250 fm , (15.71)

so r∗ � R1 ' 1 fm, and our approximations are indeed valid.
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Coming back to reactions with Z1 and Z2 generic, the rate of the nuclear
reaction is therefore proportional to the factor

P ≡ exp

{
−2πq1q2

~v∗
− mv2

∗
kBT

}
= exp{−(T0/T )1/3} , (15.72)

where

T0 =

(
3

2

)3 (2πq1q2

~

)2 m

kB
. (15.73)

For the proton-proton reaction, we get

T0 ' 3.9× 108 K , (15.74)

so at the center of the Sun, where T = 1.5×107 K, P ' 0.05. When moving
outside the inner core of the star the temperature drops. For instance,
when T = 105 K, P drops to O(10−7). We see that nuclear reactions in star
depends very sensitively on the temperature, and for this reason they are
called thermonuclear reactions.

15.4 Potential with smooth classical turning points

(Reference: Griffiths, Section 8.3).
We have seen above how the Bohr-Sommerfeld quantization emerges

when we have infinite walls. If however the potential is smooth near the
turning point, the matching of WKB solutions is more complicated. Close
to the turning point λ(x) diverges, and the WKB approximation is not valid.
The strategy that we will adopt is then the following.

Near a turning point x = x0 we approximate

V (x) ' V (x0) + V ′(x0)(x− x0) = E + V ′(x0)(x− x0) . (15.75)

In a region sufficiently close to the turning point, so that eq. (15.75) is
applicable, the Schrödinger equation can be solved exactly, as we will see in
a moment. This exact solution can then be matched, both to its left and
to its right, to the WKB solution. In this way we match the two WKB
solutions, to the left and to the right of the turning point, not directly, since
they cannot be extrapolated up to x0, but rather bridging them using the
exact solution that holds close to the turning point.

We first compute the exact solution near the turning point. We assume
for definiteness that V ′(x0) > 0. Inserting eq. (15.75) the Schrödinger equa-
tion becomes a Airy equation,

d2ψ

dz2
= zψ , (15.76)

146



where z = α(x− x0) and

α =

[
2m

~2
V ′(x0)

]1/3

. (15.77)

The general solution is eq. (15.76),

ψ(x) = aAi(αx) + bBi(αx) , (15.78)

where Ai(z) and Bi(z) are special functions known as Airy functions. They
can be defined in terms of their integral representation

Ai(z) =
1

π

∫ ∞
0

ds cos

(
s3

3
+ sz

)
, (15.79)

Bi(z) =
1

π

∫ ∞
0

ds

[
exp

(
−s

3

3
+ sz

)
+ sin

(
s3

3
+ sz

)]
. (15.80)

Any symbolic manipulation program, such as Mathematica or Maple, knows
the Airy functions and treats them as easily as, say, the trigonometric func-
tions, so you can easily compute their numerical value, plot them, differ-
entiate them, etc. We will need below their asymptotic expansion. For
z � 1,

Ai(z) ' 1

2π1/2 z1/4
exp

{
−2

3
z3/2

}
, (15.81)

Bi(z) ' 1

π1/2 z1/4
exp

{
+

2

3
z3/2

}
. (15.82)

For z negative and large, instead,

Ai(z) ' 1

π1/2 (−z)1/4
sin

[
2

3
(−z)3/2 +

π

4

]
, (15.83)

Bi(z) ' 1

π1/2 (−z)1/4
cos

[
2

3
(−z)3/2 +

π

4

]
. (15.84)

We next compute the WKB solution, to the left and to the right of the
turning point x0. We set for simplicity x0 = 0 (recall also that we assumed
V ′(x0) > 0). To the left of the turning point, and sufficiently far from it so
that the WKB approximation holds, the solution is

ψ(x) =
1√
p(x)

[
B exp

{
i

~

∫ 0

x
dx′ p(x′)

}
+ C exp

{
− i
~

∫ 0

x
dx′ p(x′)

}]
(15.85)
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where

p(x) =
√

2m(E − V (x))

'
√

2m[E − (E + V ′(0)x)]

=
√

2mV ′(0)
√
−x

= ~α3/2
√
−x . (15.86)

Observe that p(x) is real, since x < 0. Then

1

~

∫ 0

x
dx′ p(x′) = α3/2

∫ 0

x
dx′ (−x)1/2

=
2

3
(−αx)3/2 . (15.87)

So, to the left of the turning point and sufficiently far from it, so that the
WKB approximation is valid, but still sufficiently close to it so that the
expansion (15.75) holds, the WKB solution is

ψ(x) =
1

~1/2 α3/4 (−x)1/4

[
B exp

{
i
2

3
(−αx)3/2

}
+ C exp

{
−i2

3
(−αx)3/2

}]
.

(15.88)
To the right of the turning point, when the WKB approximation is again
valid, we get

ψ(x) =
D√
|p(x)|

exp

{
−1

~

∫ x

0
dx′ |p(x′)|

}
' D

~1/2 α3/4 x1/4
exp

{
−2

3
(αx)3/2

}
. (15.89)

We now perform the matching of these solutions. We first compare the
asymptotic form of (15.78) to the WKB solution vaild to its right, given by
eq. (15.89). Using the asymptotic expansion (15.81) we see that

a =

(
4π

α~

)1/2

D , b = 0 . (15.90)

We next perform the matching of eq. (15.78) with the WKB solution to
its left. Using the expansion of Ai(z) for z � −1, eq. (15.78) (and setting
b = 0) becomes

ψ(x) ' a

π1/2 (−αx)1/4
sin

[
2

3
(−αx)3/2 +

π

4

]
. (15.91)
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Comparing this with the WKB solution (15.88) we get B and C in terms of
a and therefore, using eq. (15.90), in terms of D,

B = −i e+iπ/4D , C = +i e−iπ/4D . (15.92)

Therefore, the solution (15.85) for x < 0 becomes

ψ(x) =
2D√
p(x)

sin

[
1

~

∫ 0

x
dx′ p(x′) +

π

4

]
. (15.93)

Consider now the situation in which there are two smooth turning points,
one at x1 (with V ′(x1) < 0) and one at x2 > x1 (with V ′(x2) > 0).

Performing the matching in x2, we find that the wavefunction in the
region x1 < x < x2 is given by eq. (15.93), with x0 = 0 replaced by x0 = x2,

ψ(x) =
2D√
p(x)

sin

[
1

~

∫ x2

x
dx′ p(x′) +

π

4

]
. (15.94)

We can repeat a similar calculations at the leftmost turning point x1. The
computation is basically the same, except that now V ′(x1) > 0. This second
computation gives, for the wavefunction at x1 < x < x2

ψ(x) ' − 2D′√
p(x)

sin

[
−1

~

∫ x

x1

dx′ p(x′)− π

4

]
. (15.95)

Equations (15.94) and (15.95) are two expression for the same wavefunction
in the region x1 < x < x2, so they must be equal. Therefore the arguments
of the sines must be the same modulo π (an overall minus sign can be
reabsorbed into the normalization constants D and D′), so we must have[

1

~

∫ x2

x
dx′ p(x′) +

π

4

]
=

[
−1

~

∫ x

x1

dx′ p(x′)− π

4

]
+ nπ , (15.96)

and therefore ∫ x2

x1

dx′ p(x′) =

(
n− 1

2

)
π~ , n = 1, 2, . . . . (15.97)

Observe that, since p(x) ≥ 0, the integral is positive and therefore the
allowed values for the integer n are n ≥ 1.

Equation (15.97) is the Bohr-Sommerfeld quantization condition, when
both turning points are smooths, rather than given by infinite walls. Recall
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that it holds when the WKB approximation is justified, i.e. in the semi-
classical limit. Its power reside in the fact that we can use it to compute
(approximately) the allowed energy level, without ever solving a Schrödinger
equation, simply by computing an integral.

We can repeat the same computation when at x = x1 there is an infinite
wall while at x2 > x1 we have a smooth turning point. The result is∫ x2

x1

dx′ p(x′) =

(
n− 1

4

)
π~ , n = 1, 2, . . . . (15.98)
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16 Time-dependent perturbation theory

(Reference: Shankar, Chapter 18). We consider the Hamiltonian

H = H0 +H1(t) , (16.1)

where H0 is a time-independent Hamiltonian whose eigenvalue problem has
already been solved, and H1(t) is a time-dependent perturbation. The eigen-
kets of H0 are no longer stationary states because of the perturbation, i.e.
it is no longer true that under time evolution they simply acquire a phase.
Rather, in general they will mix among them (except in the case of adiabatic
perturbations, that we will study below). The typical question in which we
are interested in this case is the following: suppose that at an initial time
(say, t = 0, or t = −∞) the system is in an eigenstate |i〉 of H0.34 What
is the amplitude for it to be in an eigenstate |f〉 at a later time (e.g. at
t = +∞)?

To answer this question, we expand a generic time-dependent ket |ψ(t)〉
in the eigenstates |n〉 of H0, defined by

H0|n〉 = En|n〉 . (16.2)

These form a complete set, so we can write

|ψ(t)〉 =
∑
n

cn(t)|n〉 . (16.3)

If H1 = 0, we know that

cn(t) = cn(0)e−iEnt/~ . (16.4)

It is then useful to write cn(t) = dn(t) exp{−iEnt/~}, so any time-dependence
in dn(t) is due to the fact that there is a non-vanishing time-dependent per-
turbation H1. So, we write

|ψ(t)〉 =
∑
n

dn(t)e−iEnt/~|n〉 . (16.5)

The Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = [H0 +H1(t)]|ψ(t)〉 (16.6)

34Shankar denotes the eigenstates of H0 as |i0〉, |f0〉, etc. to stress that they are eigen-
states of the unperturbed Hamiltonian. Since we will never consider the eigenstates of the
full Hamiltonian H, we denote the eigenstates of H0 simply as |i〉, |f〉, etc.
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becomes∑
n

e−iEnt/~[i~ḋn(t) + dn(t)En]|n〉 =
∑
n

dn(t)e−iEnt/~[En +H1(t)]|n〉 ,

(16.7)
or ∑

n

i~ḋn(t)e−iEnt/~|n〉 =
∑
n

dn(t)e−iEnt/~H1(t)|n〉 . (16.8)

Taking the scalar product with 〈f |,

i~ḋf (t)e−iEf t/~ =
∑
n

dn(t)e−iEnt/~〈f |H1(t)|n〉 . (16.9)

Writing

ωfn =
Ef − En

~
, (16.10)

we get

ḋf (t) = − i
~
∑
n

〈f |H1(t)|n〉 eiωfnt dn(t) . (16.11)

This is the fundamental result. Until now we have made no approximation.
Let us now assume that H1(t) is small, and solve perturbatively in H1. To
zeroth order, i.e. if we neglect H1 altogether, we have of course

dn(t) = δni , (16.12)

i.e. dn(t) is one if |n〉 is equal to the initial state |i〉, and zero otherwise. To
first order, we plug this result into the right-hand side of eq. (16.11) and we
get

ḋf (t) = − i
~
〈f |H1(t)|i〉eiωfit (16.13)

whose solution, with the initial condition dn(t0) = δni, is

df (t) = δfi −
i

~

∫ t

t0

dt′ 〈f |H1(t′)|i〉eiωfit′ . (16.14)

This gives the transition amplitude to first order. One can compute the
result to second order plugging this expression into the right-hand side of
eq. (16.11), and so on. In principle, we can iterate the procedure to arbitrar-
ily high orders. We will however limit ourselves to first-order perturbation
theory.
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For i 6= f , eq. (16.14) gives the probability amplitude

df (t) = − i
~

∫ t

t0

dt′ 〈f |H1(t′)|i〉eiωfit′ . (16.15)

The probability of the transition i→ f is

Pi→f = |df (t)|2 . (16.16)

We next analyze some examples of perturbations.

16.1 Sudden perturbations

Suppose that, at some time t = 0, the Hamiltonian changes suddenly from
H to H ′, so

H(t) = H (t < 0) ,

H(t) = H ′ (t > 0) . (16.17)

This is an idealization of the situation in which the Hamiltonian changes on
a time scale much shorter than the characteristic timescale of the system.
Integrating the Schrödinger equation from t = −ε to t = +ε we get

|ψ(t = ε)〉 − |ψ(t = −ε)〉 = − i
~

∫ ε

−ε
dtH(t)|ψ(t)〉 . (16.18)

If H(t) is finite (i.e. it is not proportional to a Dirac delta), the right-hand
side goes to zero for ε→ 0, and therefore

lim
t→0+

|ψ(t)〉 − lim
t→0−

|ψ(t)〉 = 0 . (16.19)

In other words, the state of the system is unchanged under a sudden pertur-
bation. Physically, the system had no time to adjust to the change of the
Hamiltonian. However, if |ψ〉 was an eigenstate of H0, in general it will no
longer be an eigenstate of H0 + H1. We can expand it in the basis |n′〉 of
the new eigenstate, and compute the probability amplitude 〈n′|ψ〉.

Example 1. (Shankar, Exercise 18.2.3). Consider a particle in a box of
length L, with 0 < x < L. The wavefunctions of the stationary states are

ψn(x) =

(
2

L

)1/2

sin
(nπx
L

)
, (16.20)
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for 0 < x < L and ψn(x) = 0 otherwise. Suppose that the width of the box
changes suddenly to 2L, and that the particle was in the ground state of the
initial box. The amplitude that the particle is in the ground state of the
new box is given by

M =

∫ 2L

0
dxψ∗before(x)ψafter(x) (16.21)

where

ψbefore(x) =

(
2

L

)1/2

sin
(πx
L

)
(16.22)

if 0 < x < L and vanishes for L < x < 2L, while

ψafter(x) =

(
1

L

)1/2

sin
(πx

2L

)
. (16.23)

for 0 < x < 2L, and zero otherwise. This gives

M =

√
2

L

∫ L

0
dx sin

πx

L
sin

πx

2L
=

4
√

2

3π
, (16.24)

so the probability of remaining in the ground state is 32/(3π)2 ' 0.36.

Example 2. (Shankar, page 477). A more realistic example is an electron
in the 1s state of a nucleus of charge Z. Suppose that the nucleus undergoes
inverse β decay, n → pe−ν̄e, i.e. it emits a relativistic electron (and an
antineutrino), and becomes a nucleus of charge Z + 1. The time for a
relativistic electron to get out of the 1s shell is

τ ∼ a0

Zc
, (16.25)

since a0/Z is the radius of the 1s shell. The characteristic timescale T of the
electron in the 1s state can be estimated using again the fact that the size
of the orbit is a0/Z. On the other hand, the kinetic energy of the electron
in the 1s state of a nucleus of charge Z can be estimated from eq. (8.38)
with α → Zα, so (reinstating c) Ekin = (1/2)mec

2(Zα)2, which shows that
the average velocity of the 1s electron is v ∼ Zαc. Thus

T ∼ a0/Z

Zαc
=

a0

Z2αc
. (16.26)

Therefore τ/T = Zα. If Z � 137 this is much smaller than one, and the
sudden approximation holds. Thus, after the decay of the nucleus, the 1s
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electron remains in the same state as before, i.e. in the 1s state of a nucleus
with charge Z. The wavefunction is given by eq. (8.17) with a0 → a0/Z,

ψ
(Z)
1s =

(
Z3

πa3
0

)1/2

e−Zr/a0 . (16.27)

However, this is not the same as the wavefunction of the 1s state of the final
nucleus, which has charge Z + 1, and therefore has

ψ
(Z+1)
1s =

(
(Z + 1)3

πa3
0

)1/2

e−(Z+1)r/a0 . (16.28)

The amplitude for the electron to remain in the 1s state of the new nucleus
is therefore

A =

∫
d3x

(
ψ

(Z+1)
1s

)∗
ψ

(Z)
1s

= 4π

(
Z3

πa3
0

)1/2(
(Z + 1)3

πa3
0

)1/2 ∫ ∞
0

dr r2e−(2Z+1)r/a0

=
[Z(Z + 1)]3/2

(Z + 1/2)3
. (16.29)

16.2 Adiabatic perturbations

The opposite limit is the one in which the Hamiltonian changes very slowly,
compared to the typical timescale of the system. Suppose that at t < 0
H = H0 and, at t = 0, we switch slowly a perturbation H1(t), so the total
Hamiltonian becomes H(t) = H0 +H1(t).

In this case one can prove a theorem (valid to all orders in perturbation
theory) known as the adiabatic theorem, which states that, if at t = 0 the
system is an eigenket |n0〉 of the initial Hamiltonian H0, the state of the
system will evolve smootly into the corresponding eigenket |n(t)〉 of the
Hamiltonian H(t). (For the proof of the theorem, see Griffiths, sect. 10.1.2).

Taking again the case of a particle in a box that expands from length
L to 2L, if the particle is initially in the ground state of the box of size L,
and we slowly expand the box to size 2L, the particle will finally be in the
ground state of the new box. Observe that here the overall change in the
Hamiltonian is not small at all! However, the adiabatic theorem just require
that the rate of change is slow.

The subtle issue here is when the perturbation can be considered slow
enough. The result is that the typical frequency of the perturbation must
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be much smaller than the typical frequency differences ωn−ωm between the
unperturbed energy levels (see again Griffiths, sect. 10.1.2). Therefore, in
the presence of degeneracy, we are never in the condition where the adiabatic
theorem can be applied.

16.3 Periodic perturbations. Fermi’s golden rule

This is the most important case, since it represents for instance the interac-
tion with an external electromagnetic wave. Consider

H1(t) = 2V (x) cosωt = V (x)(eiωt + e−iωt) . (16.30)

We suppose that at an initial time t0 = 0 the system is in an initial state
|i〉, and we compute the transition amplitude to a state |f〉 6= |i〉. To first
order in perturbation theory eq. (16.15) gives

df (t) = −2i

~
〈f |V (x)|i〉

∫ t

0
dt′ eiωfit

′
cosωt′

= −
Vfi
~

[
ei(ωfi+ω)t − 1

ωfi + ω
+
ei(ωfi−ω)t − 1

ωfi − ω

]
. (16.31)

where Vfi = 〈f |V (x)|i〉. If the driving frequency ω is close to ωfi the second
term dominates, and

df (t) ' −
Vfi
~

ei(ωfi−ω)t − 1

ωfi − ω

= −2i

~
Vfi e

i(ωfi−ω)t/2 sin[(ωfi − ω)t/2]

ωfi − ω
. (16.32)

The transition probability is therefore

Pi→f (t) = |df (t)|2 =
4|Vfi|2

~2

sin2[(ωfi − ω)t/2]

(ωfi − ω)2
. (16.33)

The function sin2 x/x2 is peaked at x = 0 with a width ∆x ' π. Therefore
are favored transitions toward states such that

|(ωfi − ω)t/2| ≤ π , (16.34)

i.e.

Ef − Ei = ~ω ± 2π~
t

= ~ω
(

1± 2π

ωt

)
. (16.35)
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For small t there is no particular preference for the levels Ef such that Ef −
Ei ' ~ω. This preference shows up only when ωt� 2π. The reason is that
only after a number of cycles the system can realize that the perturbation
is periodic, with frequency ω.

Consider now a perturbation that lasts for an infinite time. We set the
system in the state |i〉 at time t = −T/2, and we look for the transition
amplitude for being in a state |f〉 6= |i〉 at time t = +T/2. We will finally
send T →∞. Now df is given by

df = −2i

~
Vfi

∫ T/2

−T/2
dt eiωfit cosωt

= − i
~
Vfi 2πδT (ω − ωfi) , (16.36)

where

δT (ω) ≡ 1

2π

∫ T/2

−T/2
dt eiωt . (16.37)

In the limit T →∞, δT (ω)→ δ(ω). 35 When computing the modulus square
we are confronted with the square of δT (ω). For large T

δ2
T (ω) = δT (ω)

1

2π

∫ T/2

−T/2
dt eiωt

→ δ(ω)
1

2π

∫ T/2

−T/2
dt eiωt

= δ(ω)
1

2π

∫ T/2

−T/2
dt

= δ(ω)
T

2π
, (16.38)

where, going from the second to the third line, we use the fact that the
first Dirac delta forces ω = 0 into the remaining integral. Therefore the
transition probability is

Pi→f =
2π|Vfi|2

~2
δ(ω − ωfi)T . (16.39)

Since the external force is present for a very long time T , and the transition
can happen at any time, the total transition probability is proportional to

35On the right-hand side of eq. (16.36) we have neglected a term proportional to δT (ω+
ωfi). Since we are taking both ω and ωfi > 0, this vanishes in the limit T →∞.
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T . The transition rate, i.e. the transition probability per unit time is then

Ri→f ≡
Pi→f
T

=
2π

~2
|Vfi|2δ(ωfi − ω)

=
2π

~
|Vfi|2δ(Ef − Ei − ~ω) . (16.40)

This is called Fermi’s golden rule. The Dirac delta reflect the conservation
of energy, but since it is infinite when Ef −Ei − ~ω = 0, its presence might
look puzzling. No transition rate can be infinite, of course. Physically, there
is always some mechanism that smooths the Dirac delta and produces a
finite result. For instance, if we consider the absorption of light from an
incoming laser beam, we must take into account that no electromagnetic
wave is exactly monochromatic. In general, it will have a spectrum of fre-
quencies, described by a function ρ(ω), such that the intensity in the range
ω to ω + dω is given by ρ(ω)dω. Then, the actual transition rate induced
by a laser beam with energy profile ρ(ω) is

Ri→f =

∫
dωρ(ω)

2π

~2
|Vfi|2δ(ωfi − ω)

= ρ(ωfi)
2π

~2
|Vfi|2 . (16.41)

In other words, in the limit T →∞, the only contribution to the transition
comes from the Fourier mode of the laser beam which is exactly resonant
with the transition.

If we rather consider the decay of an excited state into a lower energy
state, we must also take into account that excited states have a finite life-
time τ , and therefore we cannot really take the limit T → ∞ in the above
computations. The maximum time for which the excited state can interact
with the perturbation is T ∼ τ , and therefore the Dirac delta must really be
replaced with a function such as δT with T ∼ τ . This gives a finite width to
the transition lines, of the order ∆ω ∼ 1/τ . This linewidth can be under-
stood more generally as a reflection of a time-energy uncertainty principle,
as we now discuss.

16.4 The time-energy uncertainty principle

In quantum mechanics there is an uncertainty principle involving energy and
time,

∆E∆t ≥ ~
2
, (16.42)
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whose meaning is quite different from the position-momentum uncertainty
principle

∆p∆x ≥ ~
2
. (16.43)

Recall, from the course of Mécanique Quantique I, (or see e.g. Shankhar,
chapter 9) that, for any two Hermitean operators A and B, and an arbitrary
state |ψ〉, we have the mathematical identity

(∆A)2(∆B)2 ≥ 1

4
|〈ψ|[A,B]|ψ〉|2 , (16.44)

where
(∆A)2 ≡ 〈ψ|(A− 〈A〉)2|ψ〉 , (16.45)

with
〈A〉 = 〈ψ|A|ψ〉 , (16.46)

and similarly for (∆B)2. If we set A = X and B = P , we recover eq. (16.43).
However, eq. (16.42) cannot be obtained in this way, since time is not rep-

resented by an operator in quantum mechanics. The meaning of eq. (16.42)
is rather the following. As we have seen several times, an eigenstate of
energy, with eigenvalue E, has a wavefunction with a time-dependence

e−iEt/~ , (16.47)

so it has a well defined frequency ω = E/~. However, such a state has a
probability that is constant in time, since the modulus squared of e−iEt/~

is one. Thus, it cannot represent a system that has been in existence only
for a finite time, e.g. an atom that was prepared in a given state in the
laboratory on a given day, and that will eventually decay to another state.

A basic theorem of Fourier analysis tells us that, in order to have a
function localized in time within a range ∆t, its Fourier transform cannot
be monocromatic, but rather it must be a superposition of frequencies with
a spread ∆ω, such that

∆ω∆t ≥ 1

2
. (16.48)

Equation (16.42) is therefore simply the translation of eq. (16.48) into the
language of quantum mechanics, with the identification E = ~ω.

To illustrate the meaning of the time-energy uncertainty, consider an
atom, say hydrogen, in an excited state. When we first studied the hy-
drogen atom we found a set of stationary states with energies En, whose
wavefunction are therefore proportional to exp{−iEnt/~}. However, at this
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level of description we have neglected the perturbations that make the atom
decay, when it is not in the ground state. These could be external actions
such as collisions with other atoms, or an incoming electromagnetic waves.
Even in the absence of such perturbations, however, there is spontaneous
decay. This is a phenomenon whose deeper origin resides in quantum field
theory, and is due to the interaction of the atom with the quantum fluctu-
ations of a quantized electromagnetic field, which are present even in the
vacuum. Independently of the mechanism that induces the decay, the fact
itself that an excited atomic state has a finite lifetime τ means that its true
wavefunction is not exactly proportional to exp{−iωnt}, where ωn = En/~.
Rather, it must be a superposition of frequencies, with a spread ∆ω such
that

∆ω ≥ 1

2τ
. (16.49)

Therefore, the linewidth corresponding to the transition from this excited
state to, say, the ground state, must have a minimum width ∆E given by

∆E ≥ ~
2τ

. (16.50)

The same happens if we rather switch on a perturbation with frequency ω0

for a finite time T . As long as ω0T � 2π, we have seen in eq. (16.35) that
there is no preference for transitions with Ef −Ei = ~ω0, even if ω0 was the
nominal frequency of the perturbation. A more formal way to see it is that
something that is switched on at t = 0 and off at t = T , and is proportional
to e−iω0t in between, can be written as

θ(t)θ(T − t)e−iω0t , (16.51)

and its Fourier transform is not at all proportional to a Dirac delta δ(ω−ω0),
because of the theta functions. This is exactly the meaning of the result that
we have found for the rate of periodic perturbations. The function δT (ω) in
eq. (16.37) provide the linewidth due to the fact that the perturbation only
lasts for a finite time T .
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17 Interaction of atoms with the electromagnetic
field

Recall from classical electromagnetism that the electromagnetic field is de-
scribed by a scalar potential φ and a vector potential A. The electric and
magnetic field are derived from the potentials using

E = −1

c
∂tA−∇φ , (17.1)

B = ∇×A . (17.2)

Classical electrodynamics is invariant under gauge transformations,

A → A−∇Λ , (17.3)

φ → φ+
1

c
∂tΛ , (17.4)

where Λ is an arbitrary function of x and t. The electric and magnetic fields
are invariant under gauge transformation.

In the case of a free electromagnetic field (ρ = j = 0) gauge invariance
can be used to choose A and φ so that

∇·A = 0 , φ = 0 . (17.5)

This is called the radiation gauge (or Coulomb gauge). In this gauge the
Maxwell equations in vacuum become a simple wave equation for A,

∇2A− 1

c2
∂2
t A = 0 , (17.6)

whose solutions are plane waves

A = A0 cos(k·x− ωt) , (17.7)

with ω = |k|c. The condition ∇·A = 0 on the plane wave solution becomes

k·A0 = 0 . (17.8)

This states that A0 is orthogonal to the propagation direction k (and there-
fore also E and B are orthogonal to k).

Classically, the Hamiltonian of a non-relativistic particle of mass m and
charge q in an electromagnetic field is

H =
1

2m

(
p− q

c
A
)2
− eφ . (17.9)
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We would like to promote this to a quantum Hamiltonian, and study pro-
cesses in which an atom emits or absorbs a photon. The formalism that we
have developed until now strictly speaking does not allow us to study such
processes. First of all, the notion itself of photon really belongs to relativistic
quantum field theory, and emerges after one quantizes the electromagnetic
field. Second, our formalism only allow us to study the quantum mechanics
of a particle in a given external potential. We cannot study processes in
which the number or the type of particle changes. Again, this is the subject
of quantum field theory, and you can study it next year.

Within the scope of this course, we can however take a “mixed” approach
in which the atom is treated quantum-mechanically, and the electromagnetic
field is treated classically. This is called the “semiclassical theory of radia-
tion”. While its deeper conceptual justification lies in quantum field theory,
still it allows us to perform a number of important and instructive compu-
tations.36

In this approximation the quantum Hamiltonian describing the interac-
tion of a particle with an electromagnetic wave is given by eq. (17.9), with p
replaced by the quantum operator −i~∇, while A and φ are classical fields.
It is convenient to use the radiation gauge, so φ = 0 and

H =
p2

2m
− q

2mc
(p·A + A·p) +

q2

2mc2
A2 . (17.10)

We will neglect the term A2, since we will only work to first order in per-
turbation theory in the external field, and the term A2 is second order. In
the radiation gauge we have, for a generic function f(x),

p·Af = −i~∇·(Af)

= −i~A·∇f

= A·pf , (17.11)

where in the second line we used ∇·A = 0. Therefore, in the radiation
gauge,

[p,A] = 0 , (17.12)

and eq. (17.10) can be rewritten (neglecting the term A2) as

H =
p2

2m
− q

mc
A·p . (17.13)

36One should however keep in mind that this mixed approach has intrinsic limitations
that can only be overcome by developing a full quantum field theory formalism. For
example, we can study the absorption of electromagnetic waves by atoms and the emission
of a photon by an excited atom induced by an incoming electromagnetic wave (“stimulated
emission”), but not the spontaneous emission of a photon by an excited atom.
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Using eq. (17.7), we see that the interaction with the electromagnetic wave
produces a time-dependent periodic perturbation, with

H1(t) = − q

2mc
[ei(k·x−ωt) + e−i(k·x−ωt)]A0·p . (17.14)

We consider an electron bound in an atom, under the influence of this per-
turbation. This electron will perform transitions from its initial state |i〉 to
some other final state |f〉. If ωfi = ωf − ωi > 0 then, repeating the same
steps as in eqs. (16.31) and (16.32), we see that only the term proportional
to e−iωt in H1(t) contributes (recall that we defined ω as +|k|c, so ω > 0.
Viceversa, if we study a transition with ωfi < 0, only the term proportional
to e+iωt in H1(t) contributes. Consider for definiteness ωfi > 0. Then the
transition rate is given by Fermi golden rule, eq. (16.40), with

V (x) =
e

2mc
eik·xA0·p (17.15)

(recall that for the electron q = −e), so

Vfi =
e

2mc
A0·

∫
d3x eik·xψ∗f (x)pψi(x) . (17.16)

17.1 Dipole transitions

Given the initial and final wavefunctions, the matrix element can in principle
be computed using p = −i~∇. The computation can however be simplified
by observing that, if the photon has ω close to ωfi, the factor k·x is small.
To show this, consider for definiteness the hydrogen atom. Then

~ω ' Ef − Ei

=
1

2
mα2c2

(
1

n2
i

− 1

n2
f

)
≤ 1

2
mα2c2 . (17.17)

Therefore

k =
ω

c
≤ 1

2~
mα2c =

α

2a0
, (17.18)

where a0 = ~/(mαc) is the Bohr radius. This means that ka0 ≤ O(α/2).
In eq. (17.16) x is an integration variable, and the integrand is localized at
|x| of order of at most a few Bohr radii, because the wavefunctions ψi and
ψf vanish exponentially at |x|/a0 � O(1). Therefore, when ψ∗f (x)pψi(x)
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is non-negligible, the factor exp{ik·x} is at most of order exp{ika0} and
ka0 � 1. We can therefore expand the exponential,

eik·x = 1 + ik·x + . . . . (17.19)

To lowest order exp{ik·x} is replaced simply by one and we get

Vfi '
e

2mc
A0·

∫
d3xψ∗f (x)pψi(x) . (17.20)

The physical meaning of this expression can be better understood as follows.
If the unperturbed Hamiltonian has the general form

H0 =
p2

2m
+ V (x) , (17.21)

it follows that

[x, H0] =
i~
m

p . (17.22)

Therefore ∫
d3xψ∗f (x)pψi(x) = 〈f |p|i〉

=
m

i~
〈f |xH0 −H0x|i〉

=
m

i~
(Ei − Ef )〈f |x|i〉

= imωfi〈f |x|i〉 . (17.23)

Therefore

Vfi ' i
ω

2c
A0·

∫
d3xψ∗f (x)exψi(x) . (17.24)

Observe that, since in the transition rate, |Vfi|2 is multiplied by δ(ω−ωfi),
in eq. (17.24) we have replaced ωfi with ω. We see that Vfi is determined
by the matrix element of the electric dipole operator d = qx = −ex.

In fact, this result could have been obtained more simply postulating that
H1(t) is given by the interaction between the electric field of the incoming
wave and the dipole moment of the atom,

H1(t) = −d·E . (17.25)

Using eqs. (17.1) and (17.7), in the radiation gauge

E = −ω
c

A0 sin(k·x− ωt) . (17.26)
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Setting again k·x = 0

E = A0
ω

c
sinωt = −A0

iω

2c
(eiωt − e−iωt) . (17.27)

As usual, for an absorption process only the term e−iωt contributes, so we
can write

E = A0
iω

2c
e−iωt (17.28)

and

H1(t) = − iω
2c

d·A0e
−iωt . (17.29)

This periodic perturbation produces the same matrix element that we have
computed in eq. (17.24). Therefore, the approximation in which exp{ik·x}
is replaced by one is called the dipole approximation. To next order, the
exponential produces a term kjxj which combined with the xi present in
eq. (17.24) to give a matrix element of the form∫

d3xψ∗f (x)xixjψi(x) . (17.30)

This can be rewritten using

xixj =

(
xixj −

1

3
δijr

2

)
+

1

3
δijr

2 . (17.31)

The term in parentheses is a rank-2 traceless symmetric tensor (i.e. an
irreducible representation of the rotation group, recall the discussion in Sec-
tion 6.2 ), and is called the quadrupole moment.

The expansion of the exponential in powers of k·x defines the multipole
expansion. So, to lowest order we have dipole transitions (that obey the
dipole selection rule discussed in Section 12.2). To next order we have
quadrupole transitions. Using the same arguments as in Section 12.2, one
can verify that they obey the selection rule ∆l = ±0, 2, since the quadrupole
moment has l = 2 (and ∆l = 1 is forbidden by parity). Similarly r2 carries
no angular momentum and mediates transitions with ∆l = 0.

With respect to dipole transitions, the amplitude for a quadrupole tran-
sition has one more factor k·x, i.e. a factor O(ka) = O(ωa/c) = O(α), and
the transition rate is smaller by a factor O(α2).
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17.2 Transitions in the continuum: ionization of an atom by
an electromagnetic wave

As an application, we compute the ionization rate of the hydrogen atom
in its ground state, due to an incoming photon, which, in this semiclassical
theory of radiation, is just represented by a classic electromagnetic wave. We
consider an electromagnetic wave propagating along the x axis, polarized so
that the electric field points in the ẑ direction, impinging on a hydrogen
atom at the origin. According to eq. (17.26), A0 then points along the −ẑ
direction, and its modulus is equal to cE/ω, where E ≡ |E|, i.e. A0 =
−(cE/ω)ẑ. Equation (17.24) then gives

Vfi ' −i
eE
2

∫
d3xψ∗f (x)zψi(x) . (17.32)

As initial wave function we take the ground state of the hydrogen atom,

ψi(r) =
1

(πa3
0)1/2

e−r/a0 , (17.33)

[see eq. (8.17)]. For the final state, we take a plane wave.37 We idealize the
incoming electromagnetic wave as exactly monochromatic. In the rate Ri→f
given by eq. (16.40), the energy of the final state is then fixed by the Dirac
delta. However, the final states of the electron, in a infinite volume, form a
continuum. To understand precisely the interplay between the Dirac delta
and this continuum of states, it is convenient to to work in a finite volume
V , with periodic boundary conditions. For the final state we then take

ψf (x) =
1√
V
eip·x/~ , (17.34)

where p is the final momentum of the electron. This normalization corre-
sponds to one particle in a volume V = L3. In a finite volume with periodic
boundary conditions the momenta are quantized,

pn =
2π~
L

n , (17.35)

where n = (nx, ny, nz) and nx, ny and nz take the values 0, 1, 2, . . .. Since
the allowed final states are anyhow selected by the Dirac delta, in eq. (16.40)

37Actually, this assumes that the energy of the final electron is much larger than the
typical binding energy of the hydrogen atom, so that the final state can be taken to be a
free particle. A more accurate wavefunction would be given by a particle moving in the
Coulomb field of the proton.
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we can sum over all possible final states, writing

R =
∑
n

2π

~
|Vn,i|2δ(En − Ei − ~ω) . (17.36)

In the limit V → ∞ we can pass from the discrete sum to an integration
over momenta observing that, from eq. (17.35),∫

d3p↔
(

2π~
L

)3∑
n

, (17.37)

so in the continuum limit ∑
n

→ V

(2π~)3

∫
d3p . (17.38)

Observe now that, when computing the rate, the factor V in this expression
cancels against the factor |1/

√
V |2 coming from the normalization of the final

wave function. Then, the rate in the infinite volume limit is well defined,
and is given by

R =
1

(2π~)3

2π

~
e2E2

4

∫
d3p |U(p)|2δ

(
p2

2me
−

p2
f

2me

)
, (17.39)

where we have defined

U(p) ≡
∫
d3x e−ip·x/~zψi(x) , (17.40)

and
pf ≡ [2me(Ei + ~ω)]1/2 (17.41)

is the modulus of the momentum of the final electron, fixed by the conser-
vation of energy. We now use the property of the Dirac delta

δ[f(x)] =
1

|f ′(x0)|
δ(x− x0) , (17.42)

valid if f(x) has just one zero in x = x0, with f ′(x0) 6= 0 (for functions with
more zero, we must sum over all zeros) to write

δ

(
p2

2me
−

p2
f

2me

)
=
me

pf
δ(p− pf ) . (17.43)
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Then eq. (17.39) becomes

R =
1

(2π)2

e2E2

4~4

∫
p2dpdΩ

me

pf
δ(p− pf )|U(p)|2

=
1

(2π)2

e2E2

4~4
mepf

∫
dΩ|U(pf )|2 . (17.44)

The differential rate per unit solid angle is therefore

dR

dΩ
=

1

(2π)2

e2E2

4~4
mep|U(p)|2 , (17.45)

where we have now denote the final electron momentum pf simply by p.
We can compute explicitly the integral in U(p) introducing k ≡ p/~ and
writing

U(p) =
i

(πa3
0)1/2

∂

∂kz

∫
d3x e−ik·xe−r/a0 . (17.46)

Next observe that, for any function f(r),∫
d3x e−ik·xf(r) = 2π

∫ 1

−1
d cos θ

∫ ∞
0

r2dr e−ikr cos θf(r)

= 2π

∫ ∞
0

dr r2f(r)
2 sin(kr)

kr
, (17.47)

where we have used polar coordinates, choosing the polar axis in the direc-
tion of k. Then (defining u0 = a0k = a0p/~),

U(p) =
4πi

(πa3
0)1/2

∂

∂kz

1

k3

∫ ∞
0

duu e−u/u0 sinu

=
4πi

(πa3
0)1/2

∂

∂kz

1

k3

2u3
0

(1 + u2
0)2

(17.48)

=
8πia3

0

(πa3
0)1/2

∂

∂kz

1

(1 + u2
0)2

(17.49)

Finally, using ∂k/∂kz = kz/k, we have

∂

∂kz
=

∂k

∂kz

∂

∂k
=
a0kz
k

∂

∂u0
, (17.50)

and therefore, writing kz = k cos θ, we finally get

U(p) = −32iπ1/2a
5/2
0

a0k cos θ

(1 + a2
0k

2)3
, (17.51)
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which can be plug into eq. (17.45) to get the differential rate,

dR

dΩ
=

64

π~3
e2E2mea

4
0

(a0k)3 cos2 θ

(1 + a2
0k

2)6
. (17.52)

Observe that dR/dΩ ∝ cos2 θ. This angular dependence is typical of the
dipole interaction.
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18 Scattering in three dimensions

At the beginning of this course we have studied scattering in one dimension.
We considered a right-moving plane wave coming from x = −∞ impinging
on a potential barrier. As a result, part of the wave is reflected and part
is transmitted. So at x = −∞ we have a superposition of the initial wave
eikx and of the reflected wave, proportional to e−ikx, while at x = +∞ we
only have the transmitted wave, proportional to eikx. Observe that all these
waves have the time-dependence e−iωt. For a wave eikx−iωt the surfaces of
constant phase are given by kx − ωt = const, or x = +(ω/k)t + const.,
so this wave is right-moving. Similarly, a wave proportional to e−ikx−iωt is
left-moving.

We now want to study the same problem in three dimensions. We con-
sider a wave coming along the z axis from z = −∞, therefore proportional
to eikz. This wave impinges on a potential V (x) and will therefore be scat-
tered in all directions. Our first task is to understand what is the form of
the scattered wave at r →∞. In the one-dimensional case, the fact that the
scattered wave was proportional to eikx at x = +∞ and to e−ikx at x = −∞
was a trivial consequence of the fact that we considered a potential V (x)
which goes to zero sufficiently fast at x = ±∞ (actually, we even consid-
ered potentials V (x) with compact support), so the Schrödinger equations
at x = ±∞ reduces to a free wave equation, whose solutions are e±ikx. The
fact that at x = +∞ we only have e+ikx was a consequence of our boundary
conditions, i.e. we from the fact that we imposed that the incoming wave
comes from x = −∞.

We can now repeat the same reasoning in three dimensions. Assume first
that the potential depends only on r. Recall from eqs. (5.130)–(5.133) that,
when V = V (r), the Schrödinger equation can be separated searching for
solutions of the form Rl(r)Ylm(θ, φ) (we suppress for notational simplicity
the label E), so the most general solution is

ψ(r, θ, φ) =
∑
lm

clmRl(r)Ylm(θ, φ) , (18.1)

for some coefficients clm. Introducing the function Ul(r) from

Rl(r) =
1

r
Ul(r) , (18.2)

the Schrödinger equation becomes{
d2

dr2
+

2m

~2

[
E − V (r)− ~2l(l + 1)

2mr2

]}
Ul(r) = 0 . (18.3)
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At r → ∞, if the potential goes to zero sufficiently fast38 the equation
becomes

d2

dr2
Ul ' −k2Ul (18.4)

with k2 = 2mE/~2. The solutions are therefore of the form Ul(r) ' e±ikr.
Recalling that the time dependence is e−iωt, we see that a wave proportional
to exp{ikr − iωt} is an outgoing radial wave, i.e. is a wave moving radially
outward, while exp{−ikr − iωt} is an incoming radial wave. We impose
the boundary conditions that there is no incoming radial wave. The only
incoming wave is the one arriving from the z axis, proportional to exp{ikz},
and therefore for the scattered wave we only retain the solution proportional
to exp{+ikr} (just as, in the one-dimensional case, at x = +∞ we only
retained the term exp{+ikx}).

In terms of the original radial factor Rl(r), the asymptotic solution of
the Schrödinger equation, representing an outgoing radial wave, is therefore

Rl(r) '
eikr

r
, (18.5)

apart from a constant that can be reabsorbed in the factors clm in eq. (18.1).
For r →∞ the scattered wave is then

ψscat =
∑
lm

clmRl(r)Ylm(θ, φ)

' eikr

r

∑
lm

clmYlm(θ, φ) , (r →∞)

≡ eikr

r
f(θ, φ) . (18.6)

The total wave function at large distances is the superposition of the incom-
ing wave and of the scattered wave, so

ψ ' A
[
eikz + f(θ, φ)

eikr

r

]
, (r →∞) , (18.7)

38We will not enter into a precise mathematical discussion of what it means “sufficiently
fast”. It turns out that our reasoning below is correct for potentials going to zero at least
as 1/r2. The Coulomb potential decreases only as 1/r and it is sort of a “borderline”
case, and gives rise to logarithmic corrections in the phase of the wavefunction. In all
physically interesting cases, however, a Coulomb potential is always screened at large
distances. A similar problem also appears classically, in the computation of the cross-
section for Rutherford scattering, i.e. scattering from a 1/r potential, and is again solved
by this screening effect.
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where A is an overall normalization constant that we will set to one. In the
case of a potential V (r) that we have considered here, the problem is invari-
ant under rotations around the z axis, because the incoming wavefunction
eikz is left invariant by a rotation in the (x, y) plane, and the potential has
spherical symmetry. This means that the function f(θ, φ) must actually be
independent of φ. By definition

f(θ, φ) =
∑
lm

clmYlm(θ, φ) , (18.8)

see eq. (18.6). Since only the spherical harmonics with m = 0 are inde-
pendent of φ, this means that in the scattering from a central potential the
coefficients clm can be non-vanishing only if m = 0. Using the relation

Yl,m=0 =

(
2l + 1

4π

)1/2

Pl(cos θ) , (18.9)

where Pl(cos θ) are the Legendre polynomial, we see that for the scattering
by a central potential, at r →∞, we have

ψ = eikz + f(θ)
eikr

r
, (r →∞) , (18.10)

where f(θ) can be written as a superposition of Legendre polynomials,

f(θ) =
∞∑
l=0

(2l + 1)al Pl(cos θ) . (18.11)

The factor (2l + 1) is a useful normalization of the coefficients al.
The above reasonings can be repeated for non-central potentials. As-

suming that the non-central part goes to zero sufficiently rapidly, at large r
we can still separate the Schrödinger equation as in eq. (18.3) and we get
again eq. (18.7). However, now there is no longer symmetry under rotations
around the z axis. When the incoming wave arrives in the region close to
the origin, it feels a potential which depends on both θ and φ, and it is
therefore scattered in different directions with different amplitudes. As a
consequence, the function f(θ, φ), which gives the scattered wave at large r,
now depends both on θ and φ, and we must keep the general form (18.8),
rather than the simpler form (18.11).

The basic problem of scattering theory is the computation of the cross-
section σ(θ, φ), or more precisely of the differential cross section dσ/dΩ. This
is defined, just as in classical mechanics, as follows. We consider a beam
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of particles arriving on a target, and we measure the number of particles
scattered into a cone centered on the direction (θ, φ), with an (infinitesimal)
aperture dΩ. Then

dσ(θ, φ)

dΩ
dΩ = (18.12)

particles scattered into dΩ per unit time

incident particles per unit time, and unit area in the transverse plane

In quantum mechanics, we can consider a single incident particle and com-
pute the probability flowing into dΩ per unit time. Recall from Mécanique
Quantique I that the Schrödinger equation implies a continuity equation for
the probability density,

∂

∂t
|ψ|2 = −∇·j , (18.13)

where the probability current density j is

j =
~

2im
(ψ∗∇ψ − ψ∇ψ∗) . (18.14)

(See Shankar, Section 5.3). The probability current density associated to the
incoming wave ψin = eikz can be obtained by looking at the wavefunction
at x = y = 0 and z → −∞. In this case r = −z and the term (1/r)eikr does
not contribute, since it is suppressed by O(1/r) with respect to eikz. So

jin =
~

2im
(e−ikz∇eikz − eikz∇e−ikz)

=
~k
m

ẑ , (18.15)

and its modulus is

jin =
~k
m
. (18.16)

Consider now the scattered wave. To distinguish the scattered wave (1/r)eikr

from the portion of the wavefront eikz that simply travels undisturbed to
z = +∞, it is convenient to take the limit r → ∞ along a direction θ 6= 0.
For any θ 6= 0, if r is sufficiently large the transverse distance r sin θ is
arbitrarily large. Observe that, physically, the plane wave eikz is an ideal-
ization, since it has infinite transverse extent. Any realistic incoming wave
will rather be of the form f(ρ)eikz where ρ = (x2 + y2)1/2. The function
f(ρ) gives the transverse profile of the incomig wave, and in any physically
realistic situation it must be a function that goes to zero quite fast (e.g.
exponentially, or even with compact support) for ρ larger than some critical
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value ρc. Therefore, taking r sufficiently large, we have r sin θ > ρc (in more
physical terms, we look at the wavefunction outside the incoming beam),
and eikr/r dominates over f(ρ)eikz. The probability current associated to
the scattered wave is therefore

jscat =
~

2im
(ψ∗scat∇ψscat − ψscat∇ψ∗scat) , (18.17)

where

ψscat = f(θ, φ)
eikr

r
. (18.18)

In polar coordinates,

∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
+ eφ

1

r sin θ

∂

∂φ
. (18.19)

The last two terms are subleading as r →∞, so

∇ψscat = er
∂

∂r

[
f(θ, φ)

eikr

r

]
+O

(
1

r2

)
= erf(θ, φ)ik

eikr

r
+O

(
1

r2

)
, (18.20)

and

jscat = er|f(θ, φ)|2 ~k
mr2

. (18.21)

Thus, probability flows into dΩ at a rate

R(dΩ) = jscat·er r2dΩ

= |f(θ, φ)|2~k
m
dΩ . (18.22)

Then
dσ

dΩ
dΩ =

R(dΩ)

jin
= |f(θ, φ)|2dΩ . (18.23)

and we finally get
dσ

dΩ
= |f(θ, φ)|2 . (18.24)

In conclusion, the computation of the differential scattering cross-section
dσ/dΩ amounts to the computation of the function f(θ, φ). In the next
section we will discuss how f(θ, φ) can be computed, given the potential
V (x).
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18.1 Born approximation

(Reference: Griffiths, Section 11.4). The time-independent Schrödinger
equation can be rewritten as

(∇2 + k2)ψ = Q , (18.25)

where

k = +

√
2mE

~
, Q =

2mV

~2
ψ , (18.26)

and we are considering the case E > 0, as appropriate for a scattering prob-
lem. Observe that Q depends on ψ. Equation (18.25) is an inhomogeneous
Helmholtz equation, and can be solved by the method of Green’s functions.
Let G(x) be a Green’s function of the operator ∇2 +k2, i.e. a function that
satisfies the differential equation

(∇2 + k2)G(x) = δ3(x) . (18.27)

Then a particular solution of eq. (18.25) is

ψ(x) =

∫
d3x′G(x− x′)Q(x′) , (18.28)

as can be verified directly applying ∇2 + k2. The most general solution is
then

ψ(x) = ψhom(x) +

∫
d3x′G(x− x′)Q(x′) , (18.29)

where ψhom is the most general solution of the homogeneous equation. To
find the Greens function we first observed that, since eq. (18.27) is invariant
under rotations around the origin, we can look for a solution G(r) which
depends only on r = |x|. Writing

G(r) = − 1

4πr
f(r) (18.30)

and using

∇2

(
− 1

4πr

)
= δ3(x) (18.31)

and the fact that, on a function of r only, for r 6= 0,

∇2 → 1

r2
∂r(r

2∂r) , (18.32)

175



[see eq. (5.125)], we get

(∇2 + k2)G(x) = δ(3)(x)f(0)− 1

4πr
(f ′′ + k2f) , (18.33)

and therefore f(0) = 1 and f ′′ + k2f = 0. The most general solution of the
latter equation is

f(r) = aeikr + be−ikr , (18.34)

and f(0) = 1 fixes a + b = 1. Imposing the boundary condition that there
is no incoming spherical waves, we get b = 0, so f(r) = eikr and

G(x) = −e
ikr

4πr
. (18.35)

The most general solution of eq. (18.25) can therefore be written as

ψ(x) = ψhom(x)− m

2π~2

∫
d3x′

eik|x−x
′|

|x− x′|
V (x′)ψ(x′) , (18.36)

where ψhom satisfies
(∇2 + k2)ψhom = 0 . (18.37)

This is completely equivalent to the Schrödinger equation, and is called the
integral form of the Schrödinger equation. Observe that this is not yet a
solution of the Schrödinger equation: the wavefunction ψ in fact appears
also on the right-hand side, under the integral sign. So, we have simply
transformed a differential equation into an integral equation. However, we
will see that the form (18.36) is a useful starting point if we wish to compute
perturbatively in the potential V .

Consider in particular the scattering problem. If V is equal to zero,
the incoming wave eikz simply travels undisturbed, so the solution of the
homogeneous equation appropriate to our problem is just

ψhom = Aeikz . (18.38)

As in the previous section, we choose the normalization A = 1. We are
interested in the solution ψ(x) at large r, and in particular we are only in-
terested in the term O(1/r), since this is what we need to determine f(θ, φ).
Consider a potential localized inside a region of radius a. Then, the integral
in eq. (18.36) runs only over values of x′ such that |x′| < a. In the limit of
large r, where r = |x|, we have

|x− x′| ' r − x′·r̂ +O

(
a2

r

)
. (18.39)
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If we are only interested in the term O(1/r), inside the integral sign in
eq. (18.36) we can write

1

|x− x′|
=

1

r[1 +O(a/r)]
=

1

r
+O

(
1

r2

)
. (18.40)

In the exponential, we must rather keep the first two terms. In fact

exp{ik|x− x′|} = exp{ikr − i(kr̂)·x′ +O(ika2/r)} . (18.41)

In the limit r →∞ the first two terms survive, while the remainder vanishes.
Thus, in the wave zone we get

ψ(x) = eikz − m

2π~2

eikr

r

∫
d3x′ e−ik·x

′
V (x′)ψ(x′) +O

(
1

r2

)
, (18.42)

where
k ≡ kr̂ . (18.43)

So far, everything is exact, as long as we are interested only in the term
O(1/r). Now comes the Born approximation. We assume that the potential
is, in some sense, small, and we work perturbatively in V . We use the
same iterative strategy that we already employed when we studied time-
dependent perturbation theory: to zeroth order in V , there is no potential
and the solution is therefore

ψ0(x) = eikz . (18.44)

It is convenient to introduce
k′ ≡ kẑ , (18.45)

and rewrite it as
ψ0(x) = eik

′·x . (18.46)

Next we plug this zeroth order solution into the right-hand side of eq. (18.42),
obtaining the first-order solution

ψ1(x) = eikz − m

2π~2

eikr

r

∫
d3x′ ei(k

′−k)·x′V (x′) +O

(
1

r2

)
. (18.47)

This is called the Born approximation. We could continue, plugging this
expression for ψ1 in the right-hand side of eq. (18.42), and so on.

Comparing with eq. (18.7) we see that, in the Born approximation,

f(θ, φ) = − m

2π~2

∫
d3x′ eiq·x

′
V (x′) , (18.48)
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where
q = k′ − k (18.49)

is the transferred momentum. In other words, in the Born approximation
the scattering amplitude f(θ, φ) is obtained simply performing the Fourier
transform of the potential.

If the potential is spherically symmetric, eq. (18.48) can be further sim-
plified. We choose polar coordinates, with the direction of q as polar axis.
Then

q·x′ = qr′ cos θ′ , (18.50)

and (dropping the primes for notational simplicity)∫
d3x′ eiq·x

′
V (x′) = 2π

∫ 1

−1
d cos θ

∫ ∞
0

r2dr V (r)eiqr cos θ . (18.51)

Using ∫ 1

−1
dαeiqrα =

2 sin(qr)

qr
, (18.52)

we finally get

f(θ) = −2m

~2q

∫ ∞
0

dr rV (r) sin(qr) . (18.53)

Observe that, for a potential with spherical symmetry, f(θ, φ) actually de-
pends only on θ, as we already knew.

Example: the Rutherford cross section. The Fourier transform of the
1/r Coulomb potential is not very well defined, since the convergence at
r →∞ of the integral in eq. (18.53) is not evident. It is convenient to start
first with a Yukava potential,

V (r) = β
e−µr

r
. (18.54)

The Coulomb potential is recovered in the limit µ→ 0 (setting β = q1q2, in
the case of two particles with charges q1 and q2, respectively). The Fourier
transform is now well defined. The integral is elementary and we get

f(θ) = −2mβ

~2

1

q2 + µ2
. (18.55)

Recall that q = k′ − k. Since energy is conserved in the scattering by a
(time-indepenent) potential, we have |k| = |k′| ≡ k. If θ is the scattering
angle, i.e. the angle between k and k′, we have

q2 = |k− k′|2 = k2 + k2 − 2k2 cos θ , (18.56)
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i.e.

q2 = 2k2(1− cos θ) = 4k2 sin2 θ

2
. (18.57)

Then, in the limit µ→ 0,

f(θ) = −2mβ

~2

1

4k2 sin2(θ/2)
. (18.58)

Writing p = ~k and E = p2/(2m),

f(θ) = −β 1

4E sin2(θ/2)
, (18.59)

and (writing β = q1q2)

dσ

dΩ
=

(q1q2)2

16E2 sin4(θ/2)
. (18.60)

This is the Rutherford cross section. The quantum-mechanical computation,
in the Born approximation, gives the same result as the classical computa-
tion. (See however the footnote on page 180.)

18.2 Validity of the Born approximation

(Reference: Shankar, pages 543-544). In the Born approximation, in the
right-hand side of the integral form of the Schrödinger equation, we replaced
the total wavefunction ψ = eikz + ψscat simply by eikz. The approximation
is therefore valid if, for all values of x, ψscat(x) is a small perturbation of
eikz. Since ψscat(x) is larger close to the origin (and then decays as 1/r for
large r), we require that ψscat(0) be a small perturbation of eikz, i.e.

|ψscat(0)| � |eikz| = 1 . (18.61)

Recall that, in the Born approximation,

ψscat(x) = − m

2π~2

∫
d3x′

eik|x−x
′|

|x− x′|
V (x′)eikz

′
, (18.62)

so

ψscat(0) = − m

2π~2

∫
d3x′

eikr
′

r′
V (x′)eikz

′
, (18.63)
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For a central potential,

ψscat(0) = − m

2π~2
2π

∫ ∞
0

dr′r′
2 e
ikr′

r′
V (r′)

∫ 1

−1
d cos θ eikr

′ cos θ

= − 2m

~2k

∫ ∞
0

dr sin(kr)eikrV (r) . (18.64)

Then the condition for the validity of the Born approximation is

2m

~2k

∣∣∣∣∫ ∞
0

dr sin(kr)eikrV (r)

∣∣∣∣� 1 . (18.65)

For a potential with a finite range r0 this relation is satisfied if k is sufficiently
large, both because of the factor 1/k in front of the integral, and because
for large k the exponential and the sinus of kr oscillate fast and damps the
integral. For example, if we take the Yukawa potential

V (r) = β
e−µr

r
, (18.66)

computing the integral in the limit k � µ one finds

2m|β|
~2k

ln

(
k

µ

)
� 1 , (18.67)

which is satisfied for sufficiently large k.39

So, generally speaking, the Born approximation is a high-energy approx-
imation. Depending on the potential, it can however hold also at low k.
Taking the limit k → 0 the condition (18.65) becomes

2m

~2

∣∣∣∣∫ ∞
0

dr′ r′V (r′)

∣∣∣∣� 1 . (18.68)

For a potential with typical value V0 and size r0, In order of magnitude this
means that

2m

~2
r2

0|V0| � 1 . (18.69)

39Observe that this is only true for µ 6= 0. For µ = 0 eq. (18.65) is never satisfied, so the
derivation given above of the Rutherford cross section is not really correct! On the other
hand, we mentioned that the treatment of scattering that we have discussed only holds
for potentials that goes to zero at least as 1/r2 for r → ∞, which is not the case for the
Coulomb potential, otherwise the solutions at infinity are not simple spherical waves. It is
possible to treat correctly the Coulomb potential using “distorted spherical waves” rather
than simple spherical waves. One finds that eq. (18.58) is modified just by a phase factor
(proportional to ln sin2(θ/2), and therefore the cross-section is unaffected. See Shankar,
page 532.
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Observe that, if we take a potential well with V = V0 < 0 if r < r0, and
V = 0 otherwise, one can prove that the first bound state appears if

2m

~2
r2

0|V0|>∼2.7 . (18.70)

In other words, for a negative potential, at low energies the Born approxi-
mation works if the potential is so shallow that it does not allows for bound
states.
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