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corresponding observer should then conclude that the mass µ does not
radiate, contrary to the findings of the observer at infinity.
This apparent paradox can be understood recalling that the equiv-

alence principle holds only locally, i.e. in a region around the mass µ
much smaller than the typical scales of spatial variation of the gravita-
tional field. One such scale is the length ��, over which retardation e↵ects
become important (and which determines the wavelength of the GWs
detected by the observer at infinity.) Then, conclusions based on the
equivalence principle can be valid only up to a distance r from the mass
µ, much smaller than ��.23 This means that the equivalence principle at 23In fact, r must also be much smaller

than the scale of spatial variation of the
quasi-static tidal gravitational fields
near the mass µ, which in turn is much
smaller than ��.

most gives us informations on what happens in the near zone r ⌧ ��;
GWs rather appear in the far zone r � ��, so there is no paradox in the
fact that, using arguments valid only for r ⌧ ��, one does not see them.
The presence of gravitational radiation at infinity is reflected, in the
near zone, in the existence of the force given by eqs. (3.114) and (3.115).
However, in the near region retardation e↵ects are negligible, so this
term just gives a correction to the static gravitational force, which fur-
thermore is hidden behind other, much larger, corrections. We will see
in fact in Chapter 5 that, in an expansion in v/c, the radiation-reaction
force is of order (v/c)5 (as it is already clear from the factor 1/c5 in
eq. (3.114)), while the Newtonian gravitational field receives general-
relativistic corrections, corresponding to conservative forces, already at
orders (v/c)2 and (v/c)4. All these tidal-like terms, however, in the far
region decrease much faster than 1/r, leaving us with the radiation field
only.

3.3.5 Radiation from a closed system of point
masses

For a free point-like particle moving on a trajectory x0(t) in flat space-
time, the energy–momentum tensor is24 24See, e.g. Landau and Lifshitz, Vol. II

(1979), eq. (33.5), or Weinberg (1972),
Section 2.8. The generalization to
curved space is more easily obtained
writing pµ = mdxµ

0 /d⌧ where ⌧ is
the proper time of the particle. In
flat space c2d⌧2 = �⌘

µ⌫

dxµ

0 dx
⌫

0 , so
d/d⌧ = �d/dt and we get pµ =
�m(dxµ

0 /dt). In curved space, instead,
c2d⌧2 = �g

µ⌫

dxµ
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0 . Furthermore,
in flat space (1/�)�(3)(x � x0(t)) =
(d⌧/dt)�(3)(x � x0(t)), which can be
rewritten as

R
d⌧�(4)(x � x0(⌧)). In

curved space �(4)(x � x0(⌧)) becomes
(1/

p
�g)�(4)(x � x0(⌧)), so in the end

in curved space (1/�)�(3)(x�x0(t)) be-
comes (d⌧/dt)(1/

p
�g)�(3)(x � x0(t)).

In this way we obtain the curved-space
expression given in eq. (5.47).

Tµ⌫(t,x) =
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�m
�(3)(x� x0(t)) , (3.120)

where � = (1�v2/c2)�1/2, and pµ = �m(dxµ

0/dt) = (E/c,p) is the four-
momentum. If we have a set of free point particles labeled by an index
A, moving on trajectories xµ
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(t), the total energy–momentum tensor of
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and in particular
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Observe that this energy-momentum tensor is conserved only if the par-
ticles follow the geodesics of flat space-time, ṗµ

A

= 0 for all A. Thus, a
priori it is not legitimate to use it to compute the radiation emitted by a
system of interacting particles moving on generic trajectories x

A

(t). In a
consistent treatment we should include in the energy-momentum tensor
all the interaction terms among the particles, and possibly with external
sources, that cause them to deflect from a straight-line trajectory. How-
ever, for a non-relativistic self-gravitating system it is still possible to
use the energy-momentum tensor (3.121) to compute both the leading
term in eq. (3.34) (i.e. the mass quadrupole radiation) as well as the
next-to-leading term, i.e. the term proportional to Ṡkl,m (which, as we
will discuss in more detail in Sect. 3.4, is the sum of mass octupole and
current quadrupole radiation). In this way, using only linearized theory,
we can obtain the correct lowest-order results that will be derived, with
much more e↵ort, with the full non-linear formalism described in Chap-
ter 5. To this purpose we need to observe that the full energy-momentum
tensor also has interaction terms responsible for binding the particles in
a orbit. For a self-gravitating system these terms are O(v2/c2), as it is
clear from the fact the gravitational potential energy �Gm1m2/r is of
order v2/c2.25 Therefore, for a gravitationally-bound two-particle system25The explicit form of these terms

will be given in Section 5.3.2, when
we study systematically the relativistic
corrections. We will see in eqs. (5.111)–
(5.113) that, including the first post-
Newtonian correction, T 00 must be re-
placed by
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where V is given in eq. (5.39) and, to
lowest order, reduces to the Newtonian
potential.

in the non-relativistic limit,
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Since T 00 = O(v0), T 0i = O(v/c) and T ij = O(v2/c2), T 00 and T 0i

can be computed consistently, to lowest order, ignoring the interaction
term, while T ij cannot. Observe also that the use of the lowest-order
expressions
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is consistent with the conservation equation @0T 00 + @
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T 0i, independently of the trajectory used. In contrast, the conserva-
tion equation @0⌧0j+@

i

⌧ ij = 0 (with ⌧ ij given in Note 25 and ⌧0j = T 0j

to lowest order) is only satisfied if x
A

(t) satisfies the equation of motion
in the potential V , as can be checked with the explicit computation.
Thus, if we want to compute directly Skl or Ṡkl,m in eq. (3.34), we need

T ij , and therefore we need to include also the interaction terms, which
are O(v2/c2), just as the leading term in the T ij components of the free-
particle energy-momentum tensor. However, using energy-momentum
conservation, we can transform Skl into M̈kl, see eq. (3.52). Similarly,

using eq. (3.54), we can trade Ṡij,k for
...

M
ijk

and P̈ i,jk. The derivation
of eq. (3.54) uses the conservation of energy-momentum tensor so, when
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we write the GW amplitude in terms of
...

M
ijk

and P̈ i,jk, we are already
implicitly using the correct Tµ⌫ , with all the necessary interaction terms.

The important point is that, to trade Ṡij,k for
...

M
ijk

and P̈ i,jk, we do not
need to know the explicit form of Tµ⌫ , including the interaction terms,
but only that it satisfies energy-momentum conservation. The advantage
of this procedure is that M ij and M ijk only depend on T 00, and P i,jk

only depends on T 0i. Therefore, to lowest order they can be consistently
computed neglecting the potential terms in Tµ⌫ . In conclusion, both
the leading term (i.e. the quadrupole radiation) and the next-to-leading
term (i.e. the mass octupole plus current quadrupole radiation) can be
consistently computed using eq. (3.124) to evaluate M ij and M ijk, and
eq. (3.125) to evaluate P i,jk, and then using eqs. (3.52) and (3.54) to
evaluate Sij and Ṡij,k. In contrast, if one wants to compute Sij and
Ṡij,k directly from T ij , which is O(v2), even to lowest order one needs
to include the interaction terms, and one cannot use the free-particle
energy-momentum tensor.
As will be shown in Section 5.1, the relativistic corrections to the

Newtonian orbit start from order v2/c2. Therefore, the computation
of the GW amplitude to leading and next-to-leading order in v/c can
be performed evaluating the components T 00 and T 0i of free-particle
energy momentum tensor on the Newtonian orbit, and using them to
compute M ij , M ijk and P i,jk. We will perform these computations ex-
plicitly in Problems 3.2 and 3.3, in the Solved Problems section. Observe
however that, in the radiated power, the corrections to the quadrupole
amplitude give corrections to the leading term in the power of order
|1 + O(v2/c2)|2 = 1 + O(v2/c2), while the mass octupole and current
quadrupole give a correction |O(v/c)|2, which is again O(v2/c2), see the
discussion below eq. (3.156).
For a non-relativistic two-body system it is convenient to define as

usual the relative coordinate x0 = x1 � x2 and the center-of-mass coor-
dinate

xCM =
m1x1 +m2x2

m1 +m2
. (3.126)

(Starting from O(v2/c2) this must actually be replaced by a center-of-
energy, which also receives contributions from the interaction potential).
We also denote by m = m1+m2 the total mass and by µ = m1m2/m the
reduced mass. For a non-relativistic system, the second mass moment
can be written as

M ij = m1x
i

1x
j

1 +m2x
i

2x
j

2 = mxi

CMxj

CM + µxi

0x
j

0 . (3.127)

If the system is isolated, xi

CM is not accelerating and does not contribute
to the GW production. It is then convenient to choose the frame such
that xi

CM = 0, and we are left with a single e↵ective particle of mass µ
and coordinate xi

0(t). In the CM frame, the mass density is then

⇢(t,x) = µ �(3) (x� x0(t)) , (3.128)

the second mass moment is

M ij(t) = µxi

0(t)x
j

0(t) , (3.129)
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and the mass quadrupole is
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We can now study the radiation emitted by a two-body system whose
relative coordinate performs a given periodic motion, say simple har-
monic oscillations. Suppose that the relative coordinate x0(t) performs
a simple periodic motion with frequency !

s

, say along the z direction,2626In a one-dimensional motion this ex-
ample would be quite unrealistic, since
the two bodies would go through each
other whenever cos!

s

t = 0. How-
ever, this is just an example to illus-
trate what happens to a typical oscil-
latory mode of a system. For instance,
one can consider an elliptic motion on a
plane, which is the combination of two
simple oscillations along the two axes.

z0(t) = a1 cos!s

t . (3.131)

Then

M ij(t) = �i3�j3 µz20(t)

= �i3�j3
µa21
2

(1 + cos 2!
s

t) . (3.132)

Since the GW amplitude depends on the second derivative of M ij , the
constant term does not contribute and the only contribution to hTT

ij

comes from the term proportional to cos 2!
s

t. From eq. (3.55), we see
that the corresponding waveform hTT

ij

oscillates as cos 2!
s

t. This shows
that a non-relativistic source performing simple harmonic oscillations
with a frequency !

s

emits monochromatic quadrupole radiation at ! =
2!

s

.
However, the fact that the quadrupole radiation is at twice the source

frequency is only true if the source performs a simple harmonic motion.
For instance, if the motion of the source is a superposition of a periodic
motion and of its higher harmonics, e.g. if

z0(t) = a1 cos!s

t+ a2 cos 2!s

t+ . . . , (3.133)

then z20(t) contains the term

a21 cos
2 !

s

t = a21
1 + cos 2!

s

t

2
, (3.134)

considered above, plus a term

a22 cos
2 2!

s

t = a22
1 + cos 4!

s

t

2
, (3.135)

which gives radiation at !gw = 4!
s

, etc., but also mixed terms such as

2a1a2 cos(!s

t) cos(2!
s

t) = a1a2 (cos!s

t+ cos 3!
s

t) . (3.136)

Therefore in this case quadrupole radiation is emitted at all frequencies
n!

s

for all integers n, both even and odd, including n = 1. We will see
an example of this type in Section 4.1.2, when we study the radiation
emitted from a mass in a Keplerian elliptic orbit.
An even simpler example is given by a system of two masses connected

by a spring with rest length L (see Problem 3.1). In this case the relative
coordinate satisfies

z0(t) = L+ a cos!
s

t , (3.137)

and in z20(t), besides a constant and a term (a2/2) cos 2!
s

t, we also have
a term 2La cos!

s

t, so the spectrum of gravitational radiation has two
lines, one at ! = !

s

, and one at ! = 2!
s

.


