Deriving the Einstein-Infeld-Hoffman (EIH) Lagrangian

Note prepared for PHY879: Gravitational Wave Physics \& Astrophysics, U. Maryland, Spring 2017 by Justin Vines, Max Planck Institute for Gravitational Physics, Potsdam-Golm, Germany.

The Lagrangian for a system of gravitating N point-masses, in the first post-Newtonian (1PN) approximation, known as the EIH Lagrangian, can be derived by summing the Lagrangians which would give geodesic motion for each point-mass in the appropriate external/regularized metric, but one must also add to these the contribution from the Einstein-Hilbert action for the gravitational field. The necessity of the latter contribution is evident even at Newtonian (0PN) order.

The 1PN metric in (conformally Cartesian) coordinates $x^{\alpha}=\left(t, x^{i}\right)$ [not $\left(c t, x^{i}\right)$ in this note] can be written as

$$
\begin{equation*}
d s^{2}=\left(-c^{2}+2 V-\frac{2 V^{2}}{c^{2}}\right) d t^{2}-\frac{8 V_{i}}{c^{2}} d t d x^{i}+\left(1+\frac{2 V}{c^{2}}\right) \delta_{i j} d x^{i} d x^{j}+O\left(c^{-4}\right) \tag{1}
\end{equation*}
$$

where $V(t, \boldsymbol{x})$ is a scalar potential [containing both $O\left(c^{0}\right)$ and $O\left(c^{-2}\right)$ parts] and $V_{i}(t, \boldsymbol{x})$ is a vector potential. In harmonic gauge,

$$
\begin{equation*}
\partial_{\alpha}\left(\sqrt{-g} g^{\alpha \beta}\right)=0 \quad \Rightarrow \quad \dot{V}+\partial_{i} V_{i}=O\left(c^{-2}\right) \tag{2}
\end{equation*}
$$

the components of the Ricci tensor and of the field equation $R_{\alpha \beta}=\left(8 \pi G / c^{4}\right)\left(T_{\alpha \beta}-g_{\alpha \beta} T_{\gamma}{ }^{\gamma} / 2\right)$ are

$$
\begin{align*}
-\left(1+\frac{4 V}{c^{2}}\right) R_{00}+O\left(c^{-4}\right) & =\nabla^{2} V-\frac{\ddot{V}}{c^{2}} \tag{3}
\end{align*}=-4 \pi G\left(T^{00}+\frac{T^{i i}}{c^{2}}\right)+O\left(c^{-4}\right),
$$

The metric determinant is given by

$$
\begin{equation*}
\sqrt{-g}=c\left[1+\frac{2 V}{c^{2}}+O\left(c^{-4}\right)\right] \tag{6}
\end{equation*}
$$

and its $O\left(c^{-4}\right)$ corrections involve the $O\left(c^{-4}\right)$ corrections to $g_{i j}$. The relative $O\left(c^{-4}\right)$ part of the Ricci scalar R also depends on $g_{i j}^{(4)}$, but the combination $\sqrt{-g} R$ can be written as [see e.g. V. Brumberg, Celestial Mech Dyn Astr (2007) 99:245-252]

$$
\begin{align*}
c \sqrt{-g} R= & -2 \nabla^{2} V+\text { other total derivatives }\left[\partial_{i}(\ldots), \partial_{t}(\ldots)\right] \\
& +\frac{2}{c^{2}} V \nabla^{2} V-\frac{2}{c^{4}} V \ddot{V}-\frac{8}{c^{4}} V_{i} \nabla^{2} V_{i}+O\left(c^{-6}\right) \tag{7}
\end{align*}
$$

Thus, up to boundary terms, the Hilbert action can be written as

$$
\begin{align*}
S_{\mathrm{g}}=\frac{c^{3}}{16 \pi G} \int d^{4} x \sqrt{-g} R & =\frac{1}{16 \pi G} \int d t d^{3} x\left[2 V \nabla^{2} V-\frac{2}{c^{2}} V \ddot{V}-\frac{8}{c^{2}} V_{i} \nabla^{2} V_{i}+O\left(c^{-4}\right)\right] \tag{8}\\
& =\int d t d^{3} x\left[-\frac{V}{2}\left(T^{00}+\frac{T^{i i}}{c^{2}}\right)+\frac{2}{c^{2}} V_{i} T^{0 i}+O\left(c^{-4}\right)\right] \tag{9}
\end{align*}
$$

where the second line has used the field equations.
Consider a point particle with rest mass m, worldline $z^{\alpha}(\tau)$, and velocity $u^{\alpha}=\gamma\left(1, v_{i}\right)$. The "matter action" and stress tensor are

$$
\begin{align*}
S_{\mathrm{m}} & =-m c^{2} \int d \tau=-m c^{2} \int d t \gamma^{-1}, \tag{10}\\
T^{\alpha \beta}(x) & =m \int d \tau u^{\alpha} u^{\beta} \frac{\delta^{4}(x-z)}{\sqrt{-g}}=m \gamma^{-1} u^{\alpha} u^{\beta} \frac{\delta^{3}(\boldsymbol{x}-\boldsymbol{z})}{\sqrt{-g}} . \tag{11}
\end{align*}
$$

It follows from $g_{\alpha \beta} u^{\alpha} u^{\beta}=-c^{2}$ that

$$
\begin{align*}
\gamma & =1+\frac{1}{c^{2}}\left(\frac{v^{2}}{2}+V\right)+\frac{1}{c^{4}}\left(\frac{V^{2}}{2}+\frac{5 V v^{2}}{2}+\frac{3 v^{4}}{8}-4 v_{i} V_{i}\right)+O\left(c^{-6}\right), \tag{12}\\
\Rightarrow \quad \gamma^{-1} & =1-\frac{1}{c^{2}}\left(\frac{v^{2}}{2}+V\right)+\frac{1}{c^{4}}\left(\frac{V^{2}}{2}-\frac{3 V v^{2}}{2}-\frac{v^{4}}{8}+4 v_{i} V_{i}\right)+O\left(c^{-6}\right), \tag{13}
\end{align*}
$$

and the components of $T^{\alpha \beta}$ are then given by

$$
\begin{align*}
T^{00} & =m\left(1+\frac{v^{2}}{2 c^{2}}-\frac{V}{c^{2}}\right) \delta^{3}(\boldsymbol{x}-\boldsymbol{z})+O\left(c^{-4}\right) \tag{14}\\
T^{0 i} & =m v_{i} \delta^{3}(\boldsymbol{x}-\boldsymbol{z})+O\left(c^{-2}\right) \tag{15}\\
T^{i j} & =m v_{i} v_{j} \delta^{3}(\boldsymbol{x}-\boldsymbol{z})+O\left(c^{-2}\right) \tag{16}
\end{align*}
$$

Now add the matter actions and stress tensors for particles $A=1, \ldots, N$. Using (10) and (13) for S_{m} [dropping the constant terms], and (9) and (14)-(16) for S_{g}, we find

$$
\begin{align*}
S_{\mathrm{m}} & =\int d t \sum_{A} m_{A}\left[\frac{v_{A}^{2}}{2}+V_{A}+\frac{1}{c^{2}}\left(-\frac{V_{A}^{2}}{2}+\frac{3 V_{A} v_{A}^{2}}{2}+\frac{v_{A}^{4}}{8}-4 v_{A}^{i} V_{A}^{i}\right)+O\left(c^{-4}\right)\right], \tag{17}\\
S_{\mathrm{g}} & =\int d t \sum_{A} m_{A}\left[-\frac{V_{A}}{2}+\frac{1}{c^{2}}\left(+\frac{V_{A}^{2}}{2}-\frac{3 V_{A} v_{A}^{2}}{4}+2 v_{A}^{i} V_{A}^{i}\right)+O\left(c^{-4}\right)\right] \tag{18}\\
\Rightarrow \quad S_{\mathrm{m}}+S_{\mathrm{g}} & =\int d t \sum_{A} m_{A}\left[\frac{v_{A}^{2}}{2}+\frac{V_{A}}{2}+\frac{1}{c^{2}}\left(\quad+\frac{3 V_{A} v_{A}^{2}}{4}+\frac{v_{A}^{4}}{8}-2 v_{A}^{i} V_{A}^{i}\right)+O\left(c^{-4}\right)\right], \tag{19}
\end{align*}
$$

where $V_{A}=V\left(z_{A}\right)$ and $V_{A}^{i}=V_{i}\left(z_{A}\right)$, but with the contributions to these potentials from body A itself (which blow up at $x=z_{A}$) dropped.

Note that the effect of adding S_{g} is to halve all of the terms linear in the potentials, and to completely cancel the term quadratic in V.

Also note that the field equations follow directly from varying S_{m} as in (17) plus S_{g} as in (8) [before inserting the field equations] with respect to V and V_{i}.

The field equation

$$
\nabla^{2} V-\frac{\ddot{V}}{c^{2}}=-4 \pi G\left(T^{00}+\frac{T^{i i}}{c^{2}}\right)=-4 \pi G \sum_{B} m_{B}\left(1+\frac{3 v_{B}^{2}}{2 c^{2}}-\frac{V_{B}}{c^{2}}\right) \delta^{3}\left(\boldsymbol{x}-\boldsymbol{z}_{B}\right)
$$

$+O\left(c^{-4}\right)$ has the solution

$$
\begin{aligned}
V(t, \boldsymbol{x}) & =\sum_{B} m_{B}\left[\frac{1}{r_{B}}\left(1+\frac{3 v_{B}^{2}}{2 c^{2}}-\frac{V_{B}}{c^{2}}\right)+\frac{\ddot{r}_{B}}{2 c^{2}}\right] \\
& =\sum_{B} \frac{m_{B}}{r_{B}}\left[1+\frac{1}{c^{2}}\left(2 v_{B}^{2}-V_{B}-\frac{1}{2}\left(v_{B} \cdot n_{B}\right)^{2}-\frac{r_{B}}{2} a_{B} \cdot n_{B}\right)\right]
\end{aligned}
$$

where $r_{B}=\left|\boldsymbol{x}-\boldsymbol{z}_{B}\right|$ and $\boldsymbol{n}_{B}=\left(\boldsymbol{x}-\boldsymbol{z}_{B}\right) / r_{B}$. Similarly, the solution for the vector potential is

$$
\begin{equation*}
V_{i}(t, \boldsymbol{x})=\sum_{B} \frac{m_{B} v_{B}^{i}}{r_{B}} \tag{20}
\end{equation*}
$$

Evaluating these at $\boldsymbol{x}=\boldsymbol{z}_{A}$, dropping $B=A$ terms, and plugging into $S_{\mathrm{g}}+S_{\mathrm{m}}$, integrating by parts to get rid of the acceleration term, using

$$
\begin{equation*}
\partial_{t}\left(v_{B} \cdot n_{A B}\right)=a_{B} \cdot n_{A B}+\frac{v_{B} \cdot v_{A B}-\left(v_{B} \cdot n_{A B}\right)\left(v_{A B} \cdot n_{A B}\right)}{r_{A B}} \tag{21}
\end{equation*}
$$

the action becomes

$$
\begin{aligned}
S_{\mathrm{g}}+S_{\mathrm{m}}= & \int d t \sum_{A} m_{A}\left\{\frac{v_{A}^{2}}{2}+\frac{1}{2} \sum_{B \neq A} \frac{G m_{B}}{r_{A B}}\right. \\
& \left.+\frac{v_{A}^{4}}{8 c^{2}}+\frac{1}{4 c^{2}} \sum_{B \neq A} \frac{G m_{B}}{r_{A B}}\left[3 v_{A}^{2}+3 v_{B}^{2}-7 v_{A} \cdot v_{B}-\left(v_{A} \cdot n_{A B}\right)\left(v_{B} \cdot n_{A B}\right)-2 \sum_{C \neq B} \frac{G m_{C}}{r_{B C}}\right]\right\}
\end{aligned}
$$

which is the EIH action.

