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The Lagrangian for a system of gravitating N point-masses, in the first post-Newtonian (1PN) approx-
imation, known as the EIH Lagrangian, can be derived by summing the Lagrangians which would give
geodesic motion for each point-mass in the appropriate external /regularized metric, but one must also add
to these the contribution from the FEinstein-Hilbert action for the gravitational field. The necessity of the
latter contribution is evident even at Newtonian (OPN) order.

The 1PN metric in (conformally Cartesian) coordinates * = (¢, z*) [not (ct,x?) in this note] can be
written as
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where V(t,z) is a scalar potential [containing both O(c?) and O(c™2) parts] and V;(¢,x) is a vector
potential. In harmonic gauge,

Oa(vV=99*")=0 =  V+9Vi=0(c?), (2)

the components of the Ricci tensor and of the field equation R = (87G/c*)(Tag — gapTy?/2) are

= (1 + 4;;) Roo +O(c™) = V2V — C—‘g = —4nG (TOO + g) +0(c™), (3)
gROi +0(c?) = V2V, = —4xGT% +0(c7?), (4)
—Rij +0(c™?) = V&, = —4nGT"5; +0(c?). (5)
The metric determinant is given by
Veg=e|l+ 2100, ()

and its O(c™?) corrections involve the O(c™*) corrections to g;;. The relative O(c™*) part of the Ricci

scalar R also depends on gg;»l), but the combination /—gR can be written as [see e.g. V. Brumberg,
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cv/—gR = —2V?V + other total derivatives [9;(...), (. ..)]
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Thus, up to boundary terms, the Hilbert action can be written as
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where the second line has used the field equations.
Consider a point particle with rest mass m, worldline z%(7), and velocity u®* = v(1,v;). The “matter
action” and stress tensor are

S = —mc? /d’l’ = fmcz/dtfyfl, (10)

af} ) =m Tuauﬁ54(ziz) = m 71uauﬁ53(m7z)
T (x) = /d 7\/_79 =mry e (11)



It follows from g,su®u? = —c? that
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and the components of 7%? are then given by
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T = (1+22—C)5(w—z)+0( ), (14)
7% = muv;8*(x —2) +0(c™?), (15)
TV = mow;8*(x—z)+0(c?). (16)

Now add the matter actions and stress tensors for particles A = 1,...

[dropping the constant terms], and (9) and (1

4)-(16

) for Sy, we find

,N. Using (10) and (13) for Sy,
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where V4 = V(z4) and V} = Vi(za
(which blow up at © = z4) dropped.

Note that the effect of adding S, is to halve all of the terms linear in the potentials, and to completely
cancel the term quadratic in V.

Also note that the field equations follow directly from varying Sy, as in (17) plus S, as in (8) [before
inserting the field equations] with respect to V and V;.

The field equation
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) has the solution

), but with the contributions to these potentials from body A itself
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where rg = | — zg| and ng = (x — zp)/rp. Similarly, the solution for the vector potential is

Viita) = 3 8

20
o (20)
Evaluating these at @ = z4, dropping B = A terms, and plugging into Sy + Sy, integrating by parts to
get rid of the acceleration term, using

Ot(vp -nap) =ap -nap + VB " UAB (UBT'Z:B)(UAB ‘nAB)7

(21)



the action becomes
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which is the EIH action.



