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We study the implications of translation invariance on the tangent dynamics of
extended dynamical systems, within a random matrix approximation. In a
model system, we show the existence of hydrodynamic modes in the slowly
growing part of the Lyapunov spectrum, which are analogous to the hydro-
dynamic modes discovered numerically by Dellago, Posch, and Hoover. The
hydrodynamic Lyapunov vectors lose the typical random structure and exhibit
instead the structure of weakly perturbed coherent long-wavelength waves. We
show further that the amplitude of the perturbations vanishes in the thermo-
dynamic limit, and that the associated Lyapunov exponents are universal.
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1. INTRODUCTION

The Lyapunov spectrum is recognized as an important diagnostic of
chaotic dynamical systems. As such, it has been studied intensely in the
context of extended systems.(1, 2) It has been observed that in the thermo-
dynamic limit the spectrum seems to approach a continuous density, and
some theoretical studies have focused on this phenomenon.(3) However,
despite the large amount of available data, there is an unsatisfactory degree
of understanding of the relation between the Lyapunov spectrum of
extended systems, and their global or collective properties.

In connection with these problems, the recent study of ref. 4 presents
an interesting development (see also ref. 5 for further results and references).
In the context of molecular dynamics simulations, they find hydrodynamic,
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i.e., slow, long-wavelength behavior in the tangent space dynamics. Namely,
they observe that the Lyapunov vectors associated with the Lyapunov
exponents of small absolute value have ordered, wave-like structure, and
that the exponents themselves follow an ordered pattern. Hydrodynamic
behavior in phase space is of course present in every extended system with
a continuous symmetry. In the models considered in ref. 4 the symmetries
in question are translation and Galilei invariance, precisely those which
enable the hydrodynamic description of a fluid in terms of the Navier�
Stokes equations.(6) However, it is for the first time that a similar
phenomenon is observed in tangent space.

In this paper, we study theoretically the slow Lyapunov modes (vectors
and exponents) of extended systems with translation invariance. We focus
attention on a simplified model which shares the essential features with the
more elaborate model of ref. 4. This simplified model is constructed only in
tangent space without an accompanying real space dynamics, and is based
on a random matrix approximation. As has been often found before, in
systems with strong chaos, qualitative features of the Lyapunov spectrum
are well reproduced by approximating the tangent matrices by independent
random matrices with appropriately chosen distributions.(2, 3) We prove
several statements on the slow Lyapunov modes of this model in the
thermodynamic limit, which show that in this limit the Lyapunov vectors
and exponents are indeed well described as being hydrodynamic.

The basic reason for the existence of these hydrodynamic modes is
evidently the translation invariance. Its presence dictates that the dynamics
are indifferent to a uniform shift of all the particles (or their momenta), so
that the associated Lyapunov vectors are decoupled from the rest of the
dynamics, and the associated Lyapunov exponents vanish. We show that
slowly growing large wavelength disturbances are nearly decoupled for the
same reason, and use this property to show how the clean wave structure
is obtained as a result of the orthogonalization procedure which involves
all the faster growing Lyapunov vectors. It should be emphasized that the
wave-like structure characterizes the Lyapunov vector at any given instant
and is not an average property. Our arguments depend essentially on the
local and hyperbolic character of the interactions, in addition to translation
invariance. The absence of translation invariance has been recognized to
ruin the hydrodynamic modes.(7) In translation invariant anharmonic
chains, the absence of short time hyperbolicity seems to ruin the hydro-
dynamic modes.(8) We present theoretical arguments for the existence of
hydrodynamic modes in the simplified model, which are complemented by
numerical verifications. The outline of the paper is as follows. In Section 2
the hydrodynamic phenomenology is described in some more detail, the
definition of the random matrix model is presented and motivated, and the
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results are stated. They are derived in Sections 3�5. Section 6 is devoted to
numerical studies of the hydrodynamic properties of Lyapunov vectors.

2. HYDRODYNAMIC BEHAVIOR IN TANGENT SPACE

The systems studied in ref. 4 consist (among others) of a large set of
disks moving in a two dimensional box 0 with periodic boundary condi-
tions (torus geometry), with elastic scattering. In this case, the phase space
is 4N-dimensional where N is the number of disks. The Lyapunov vectors
have 4N components which we label as

($xn , $yn , $px, n , $py, n) 1�n�N

with evident notation. To give them a geometrical meaning the components
of the Lyapunov vectors are drawn in ref. 4 at the instantaneous position
of the particles which carry a given specific index. That is, one constructs
a vector field v� (t, x� ) with values in R4, which are defined only at the instan-
taneous positions x� n(t) of the particles, for example

vx(t, x� n(t))=$xn(t)

and similarly for the other components.
The vector fields of the slow Lyapunov vectors, defined as the

Lyapunov vectors with small corresponding Lyapunov exponents, are very
well approximated by the long wavelength eigenmodes of a ``reverse wave
equation'' in the domain 0:

�2
t v� (t, x� )=&

1
N 2 {2v� (t, x� ) (1)

(note the unusual sign in front of {2). That is, the vectors look like long
wavelength waves with, say, n nodes in the x direction and m nodes in the
y direction, and the corresponding Lyapunov exponent is proportional to

\
1
N�\ m

Lx+
2

+\ n
Ly+

2

Note that the translation modes��constant Lyapunov vectors with zero
exponents, which are trivially present in any system with translation
invariance, correspond to the special case m=n=0. This phenomenology
was observed in simulations with widely varying parameters, such as aspect
ratio, density, and the shape of the particles.(4, 5)
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Before we go on, it is necessary to make precise what we mean by
Lyapunov vectors. As is well-known, the standard numerical method for
calculating the tangent space dynamics of the the Lyapunov vectors vn is
defined as follows: One starts with an orthogonal matrix Q, multiplies it
from the left with the tangent matrix (in the present case S) and decom-
poses the result as SQ=Q$R, where Q$ is orthogonal and R is upper tri-
angular. This procedure is iterated to yield a sequence of Qt . The columns
of the orthogonal matrices Qt are what we will call the Lyapunov vectors.
One can attach an intuitive meaning to the Lyapunov vectors by noticing
that the subspace spanned by a set of any initial p tangent vectors will be
mapped after sufficiently long time to a subspace exponentially close to
that spanned by the first p Lyapunov vectors, with probability one. The
reader should note that the Lyapunov vectors as defined here are not the
ones whose existence is proved in the multiplicative ergodic theorem.

The tangent flow of the molecular dynamics system can be written as

�t \$x�
$p� +=G(t) \$x�

$p� + (2)

where the components $x� , $p� are column vectors with N entries each of
which is a vector in R2. The quantity G(t) is the action on the tangent
space induced by the flow 8(t) of the dynamical system: If �0 is the instan-
taneous state of the system then G(t) is given by G(t) f =D8(t)�0

f, where
8(t)(�0+=f )=8(t) �0+=D8(t)�0

f+O(=2). The evolution operator of
Eq. (2) may be written formally as

U=� exp | G(t) dt (3)

The purpose of this section is, starting from the picture just described,
to arrive at a simplified model of the tangent dynamics, which contains
both the essential ingredients of the original molecular dynamics model of
ref. 4, and displays the hydrodynamic properties which are the subject
of our study. This procedure is then by nature heuristic, and it yields a
precisely defined model, whose properties are studied in a precise manner
in the following sections.

As a first step toward the construction of our model, we replace the
hard-core interaction with a short range ``soft'' potential. In that case G will
have a block structure of the from

G(t)=\ 0
A(t)

1
0+ (4)
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where the symmetric N_N matrix A depends on the instantaneous positions
of the particles and couples only nearest neighbors. Since the interactions
of the original hard-core model are purely repulsive, the corresponding
flow is hyperbolic in the sense that each collision increases the distance
between any two given close trajectories. In order that the flow generated
by the matrices of the form (4) share this property, the matrices A(t) are
chosen to be positive.

At this stage one may note that if the matrix A(t) in Eq. (4) were
replaced by the negative of the discrete Laplacian, the Lyapunov spectrum
of G would be precisely that described in Eq. (1). However, the matrices
A(t) are in fact generated by chaotic dynamics, and therefore fluctuate
rapidly. Furthermore, the particles in the gas rearrange in time, so that the
positions of the non-zero elements in the matrix also evolve. In our study
we concentrate on the first feature. That is, we show how tangent dynamics
of the type (4) result in slow hydrodynamic modes in spite of the fluctua-
tions in A(t); the effects of particle rearrangement may in principle dealt
with similarly, but need to be studied further.

The above discussion allows us to conclude that the matrices A(t)
should have non-zero elements only at those positions which are nonzero
in the discrete Laplacian. Furthermore, momentum conservation implies
that the sum of elements in any row and column of A must vanish. This
specifies completely the matrix structure of A, and it remains to model the
time dependence of the off-diagonal non-zero elements of A. For this we
invoke the hypothesis of strong chaos:(1, 3) The elements of A may be
treated as independent random processes, with a correlation time { which
is short with respect to other time scales of the system. It is commonly
found that this approximation yields results which are in good qualitative
agreement with those of the actual tangent flow.

With this in mind we model the evolution operator U by a product of
independent random matrices Sn

U=`
n

Sn (5)

where

Snt� exp |
n{

(n&1) {
G(t) dt (6)

During the time interval of length {, A, and therefore G, may be considered
constant, so the simplest model for S would be S=( 1

{A
{
1). However it is

more convenient to correct this form by a second order term in { in order
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to preserve the symplectic property which holds for U. We thus arrive at
our model:(2, 3)

S=\ 1
{A

{
1+{2A+ (7)

The matrices A are independent, and their off-diagonal elements are inde-
pendent and identically distributed. The actual probability distribution of
the off-diagonal elements can be chosen arbitrarily, subject to the con-
straint of uniform hyperbolicity, namely that the support of the distribution
is strictly negative, and bounded away from zero.

The model as defined above makes sense in any space dimension, but
for the sake of simplicity we study it in one dimension. There it bears
similarity to the tangent dynamics of an anharmonic chain. However, in
the latter case the matrices S would be elliptic rather than hyperbolic. As
we show below this is an essential ingredient in the mechanism for hydro-
dynamic modes, which are not present in the Lyapunov spectra of anhar-
monic chains.(8) Unfortunately, we have not been able to find a model
dynamics in real space whose tangent space dynamics would resemble that
generated by the matrices of type (7). On the other hand our results do not
use explicitly the dimensionality of the system and seem to be generalizable
to higher dimensions.

Since the individual matrices are symplectic, the Lyapunov exponents
of (5) come in pairs of equal absolute value and opposite signs. Translation
and Galilei invariance imply the existence of two vanishing exponents. We
concentrate our attention on the Lyapunov exponents *N&1 and *N&2 of
smallest positive value, and the corresponding Lyapunov vectors vN&1 and
vN&2 .

We can now state the main result of this paper.

Existence of Hydrodynamic Lyapunov Modes. As the size N
of the matrices tends to infinity the exponents *N&1 and *N&2 as well as
the vectors vN&1 and vN&2 are asymptotic to the exponents and vectors
that would be obtained if the matrices A where replaced everywhere by the
negative of the discrete Laplacian (properly rescaled). The statement holds
for the Lyapunov vectors, which are random objects, in probability.

The statement is spelled out only for two Lyapunov modes, which
have nearly equal exponents, and where the deviation from hydrodynamic
behavior is the smallest. However, as will become apparent from the
arguments below, the result can be extended to a number of Lyapunov
modes near the middle of the spectrum which is proportional to - N. Our
numerical studies also indicate that this is in fact true.
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As already explained, the basic reason for the existence of the
hydrodynamic modes is translation invariance. However, this general
observation is not sufficient, and the actual proof is not trivial. It depends
on the random nature of successive matrices, i.e., on strong chaos. Our
strategy will be to show the existence of hydrodynamic modes first in the
spectrum of a single matrix of type A, i.e., a negative random Laplacian
(Section 3); then this will be used to show that such modes exist in the
Lyapunov spectrum of non-symplectic products of type 6(1+An) in
Section 4, which in turn will be used to show the same property for sym-
plectic products in Section 5.

3. SPECTRAL PROPERTIES OF A SINGLE MATRIX

The matrix A defined in Section 2 takes in one dimension the explicit
form

A=\
a1+a2 &a2 0 0 } } } 0 &a1

+ (8)
&a2 a2+a3 &a3 0 } } } 0 0

b b
&a1 0 0 0 } } } &aN aN+a1

where the an are positive identically distributed independent random num-
bers. The distribution of the an is arbitrary, subject to the condition
0<amin<a<amax with amin<amax , and normalized such that (a&1)=1,
for later convenience. The ( } ) always denote expectation with respect to
the probability distribution of the a. We are not going to assume that the
width of the distribution is small.

The matrix A may be written as a product

A=&�
�
A �� (9)

where �
�

and �� are the discrete derivatives whose action on a vector v # RN

is

( �
�
v)n=vn&vn&1 , (�� v)n=vn+1&vn (10)

and A is a diagonal matrix with diagonal elements an . (The indices are
extended periodically so that aN+1#a1). If all the an were equal to one,
&A would reduce to the discrete Laplacian matrix �2#�

�
�� .

We define the Fourier transform matrix F with elements

Fkn=
1

- N
ei(2?�N ) kn (11)
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which is a unitary transformation taking RN to C� N , the subset of CN (with
standard basis vectors en) consisting of vectors v~ for which v&k=vk* , which
is an N dimensional vector space over R. The components of A in the new
basis are

A� kl#(FAF - )kl=+k*((a) $k, l+a~ k&l) + l (12)

where +k=1&exp(&(2?i�N )k), and a~ is related to the Fourier transform
of a considered as a vector in RN by

a~ =N &1�2F(a� &(a� ) ) (13)

The random variables a~ k are centered, and as sums of independent random
numbers their ``single-point'' distribution is nearly Gaussian with variance

( |a~ |2)=
(a2)&(a)2

N
(14)

so that they are typically small, of order O(N &1�2). The joint distribution
is not Gaussian.

Note that +0=0, so that row 0 and column 0 of A� are zero, with the
translation vector e0 being trivially a zero eigenvector. We define the slow
subspace

Vs=Span([e0 , e1 , e&1]) & C� N (15)

and its orthogonal complement, the fast subspace Vf . We will consider
often below the block decomposition of A� and other matrices into the fast
and slow subspaces, e.g.,

A� =\A ff

Asf

Afs

Ass+ (16)

Note that Vf contains slow as well as fast modes.
The block Ass has small norm of order O(N &2), and the off-diagonal

blocks have norm of order O(N &1). However, there are more specific
properties of A which are needed to establish the existence of hydro-
dynamic eigenmodes. Consider the eigenvalue problem Av=*v. Letting
v=�

�
u, and using the representation (9) gives an equation for u

&�2u=*A&1u (17)
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It is convenient to proceed by writing Eq. (17) in Fourier component
form

(|+k |2&*) u~ k=* :
q

b� k&q u~ q (18)

with the b� k bearing a relation to a&1
n analogous to that between a~ k and an ,

namely

b� k=N &1�2Fkn \ 1
an

&1+ (19)

Since (1�a2)<1�a2
min is O(1) we find that the b� k are O(N &1�2) for the same

reason that the a~ k are.
We claim that given a fixed m, and for N � � the system (18) has two

linearly independent solutions u(\m), *\m such that

1
|u(\m)

m |
:

|k|{m

|u (\m)
k |=O(N &1�2) (20)

and

} *\m

|+m |2&1 }=O(N &1�2) (21)

We justify the claim by showing that Eqs. (20) and (21) are consistent with
the eigenvalue Equation (18). For this we rewrite (18) as

u~ (m)
k =

*m

|+k |2&*m
:
q

b� k&qu~ (m)
q (22)

We assume that (20�21) hold; this implies that the sum over q in (22) is
dominated by the two terms with q=\m, that is,

u~ (m)
k =

|+m |2

|+k |2&|+m |2 (bk&mu~ (m)
m +bk+mu~ (m)

&m) , for |k|{m (23)

On substituting this expression in the left-hand-side of (20) the sum over
k is observed to be local, in the sense that it is dominated by terms with
|k|tm, where |+k | 2

t(2?k�N )2. Since b� k is O(N &1�2), assumption (20) is
verified. On the other hand, using (20) in (22) for k=m gives

u~ (m)
m =

*m

|+m |2&*m
(b0u~ (m)

m +b2mu~ (m)
&m) (24)
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Since b0 and b� 2m are O(N &1�2) it follows that *m �( |+m | 2&*m)=O(N 1�2)
verifying (21), which shows that (20)�(21) are indeed consistent with (18).

In terms of the original variables v, Eq. (23) reads

v~ (m)
k =

+k*+m

|+k |2&|+m | 2 (bk&m v~ (m)
m +bk+mv~ (m)

&m), for |k|{m (25)

so that the norm of v (m)
= , the component of v(m) orthogonal to e\m is small,

&v (m)
= &2

t
1
N

:
|k|{m

k2m2

(k2&m2)2=O \ 1
N+

In words, these eigenvectors are almost pure Fourier modes, i.e., eigen-
vectors of the discrete Laplacian.

For further developments we also need to show these modes are the
only ones with eigenvalues of order O(N &2).

This is established easily by noting that the sharp cutoff on the prob-
ability distribution of the a implies that every realization A satisfies the
bounds

&amin �2<A<&amax �2 (26)

and then by the minimax principle it follows that the pth eigenvalue of A
is larger than amin times the pth eigenvalue of &�2 (sorting the eigenvalues
of both matrices in increasing order).

The results of this section can be summarized using the decomposition
of C� N into slow and fast subspaces defined above. We have shown there
exist small numbers = and *, and a number 0<:<1, such that the matrix
A� can be block diagonalized,

A� =RDRT, RRT=1, D=\Df

0
0

Ds+ (27)

with the off-diagonal blocks bounded by &Rsf &, &Rfs&<=, and the diagonal
blocks obeying

Df>*>:*>Ds�0 (28)

and furthermore

&Ass&<:* (29)
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The orders of magnitude for * and = are ==O(N&1�2) and *=O(N&2),
whereas :t1�4. However, to keep the discussion reasonably general we are
not going to use these specific values in our arguments below. Rather, we
will make statements regarding arbitrary matrices which satisfy the condi-
tions (27)�(29).

Although this will not be used below, it is relevant to note that if we
let m vary, a slight generalization of the arguments given above shows that
(20) and (21) remain valid provided that m�N1�2<<1 and that the right-
hand-side is replaced by O(m�N1�2). This means that we can expect a num-
ber of hydrodynamic eigenmodes which is proportional to - N. Another
way to see this is related to the study of the vibrations of one-dimensional
disordered lattices which are modeled precisely by the eigenmodes of
matrices of type (8). There it is known that the localization length ! is
proportional to *&1

m . Since *m t(2?�N)2 the localization length will reach
N when m=O(N1�2). Thus, again, we only expect wave-like modes when
m<O(N 1�2).

4. PRODUCTS OF MATRICES OF THE FORM 1+{A

In this section we use the properties derived in Section 3 to derive the
existence of hydrodynamic modes in the Lyapunov spectrum of the product
>n (1+{An), where the matrices An are independent realizations of the
random matrix defined in Eq. (8). Beside providing a step towards proving
the existence of hydrodynamic modes in symplectic products, such a
product may be regarded as the discrete approximation to a continuous
tangent flow given by

U=� exp | A(t) dt (30)

[Compare Eqs. (3) and (4).] Although this does not correspond to the
tangent flow of a mechanical system, it is nonetheless the simplest example
where hydrodynamic Lyapunov modes can be expected. For convenience
of further analysis we absorb { into the definition of A and change to
Fourier basis once and for all, so the problem becomes that of a product

`
n

(1+A� n) (31)

Since the Lyapunov exponents of the slow part are expected to be
smaller than the rest we aim at showing that the first N&3 Lyapunov vec-
tors span a subspace Lf (of C� N) which is almost orthogonal to Vs in the
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sense that for any two unit vectors uf # Lf and vs # Vs one has |uf } vs |<<1.
Although the subspace Lf changes after each step, we show below that the
``almost orthogonality'' is propagated from step to step.

To show this, we propose the following scheme. Take an arbitrary
vector u # Lf , whose components in Vf and Vs are uf and us respectively,
normalized so that &uf&=1, and assume that us is small. The action of
1+A generates a new normalized vector u$ by

u$=
(1+A) u

&[(1+A) u] f&
(32)

where [ } ] f is the projection onto the f-component. We would like to show
that us remains small after repeated iteration of this process.

The block diagonalization (27) shows that the subspaces Vf and Vs are
indeed almost invariant under the transformation A� . However, in trying to
apply this fact to the Lyapunov vectors of the product (31) we immediately
encounter the danger that the small perturbations may accumulate. The
basic problem is that a vector in Vs is contracted with respect to the
``slowest'' direction in Vf by a factor of only 1&O(*) (as can be seen from
the bounds on Df and Ds), whereas the perturbations which tilt a vector in
Lf with respect to Vf are of order =, which is the typical size of the off-
diagonal blocks [cf. Eqs. (27)�(29)], and since we are interested in the case
*<<= this contraction is not strong enough to overcome the perturbation.

This order of magnitude argument can be made explicit by construct-
ing a series of matrices with the properties given by Eqs. (27)�(29), which
take a vector in Vf and rotate it such that the outcome is a vector which
has an angle with Vf of order 1. This counter-example is given in
Appendix A.

An essential ingredient in the construction of this counter-example is
that the matrix A� has to be chosen specifically given u which in turn
depends on former realizations, in violation of the independence assump-
tion. In other words, although such a ``bad'' sequence is possible one
naturally expects that this is an event with very low probability. Typically
the perturbations to us generated by the off-diagonal part of the matrices
R do not have the same direction, and should serve to cancel one another.
Therefore the statement one can hope to show is that in the sequence
generated by iteration of Eq. (32), the probability that &us &>C= for some
fixed C is very small, as was shown for a similar example in ref. 9. Here we
will only prove the weaker statement that the variance (&us&2) is O(=2),
and take that as an indication that the probabilistic statement is correct,
since the behavior of higher moments may be treated in an analogous
manner.
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To prove this statement we look at the s-component of Eq. (32),

u$s=
Asf u f+(1+Ass) us

&(1+Aff) u f+A fsus&
(33)

The quantity (&u$s&2) is a sum of three terms E1+E2+E3 :

E1=�&Asf uf&2

l2 �
E2=2 �Asf uf } (1+Ass) us

l2 � (34)

E3=�&(1+Ass) us &2

l2 �
where l=&(1+Aff) uf+Afs us&.

To bound these terms we first need a lower bound on the denomina-
tor l. Let vf=RT

ff u f+RT
fs us , and define d by

&Df vf&#d &vf& (35)

Note that d can vary widely between O(1) values and O(*). But, using the
lower bound on Df of (28), we see that

&(1+Df) vf&2=&vf&2+2vf } Df vf+&Dfvf &2�(1+2*+d 2) &vf&2 (36)

Expanding l as

l=&Rff (1+Df) vf+RfsDs vs& (37)

and using the estimates &RfsDs&=O(=*) and &1&Rff&=O(=2) (cf. Eq. (28)),
we get from (36) the desired lower bound on l:

l2>(1+2*+d 2) &vf &2 (1&O(=)) (38)

We can now bound E1 , E2 and E3 . First, we have

&Asf uf&=&Rsf Df vf &+O(*=)<=d &vf&+O(*=) (39)

Thus, neglecting higher order corrections in =, we get

E1<
=2d 2

1+2*+d 2 (40)
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The bound on the term E2 makes essential use of the translation
invariance.

For this, we note that

Afsus

&(1+Aff) uf &2 (41)

transforms as a vector, that is, its kth component is multiplied by
exp(i(2?�N) kx) under a relabeling of the coordinates n � n+x. Therefore,
because of translation invariance, the expectation value of (41) must
remain invariant under such transformation, which means it must vanish.
Since the denominator in E2 is l2 (which also depends on us) and not
&(1+Aff) uf&2, we need some gymnastics to exhibit the vanishing term. In
order to see this we write

E2=2 � Asf uf } us

&(1+Aff) u f&2+
Asf uf } Ass us

&(1+Aff) uf&2

&
Asf uf } (1+Ass) us[2(1+Aff) u f } Afs us+&Afsus&2]

&(1+Aff) uf&2l2 � (42)

The first term in (42) vanishes because of translation invariance, as
explained before. The second term is bounded by

2:*=(&us&) (43)

and the dominant part of the third is

4
(Asf uf } us)((1+A ff) uf } Afsus)

&(1+Aff) uf &2l2 <
4 d=2(&us&2)
1+2*+d 2 (44)

The last term is bounded by

E3<
1+2:*

1+2*+d 2 (&us&2)

Collecting the bounds yields

(&u$s&2)<
d 2=2+(1+2:*+4 d=2)(&us&2)

1+2*+d 2 +2:*= (45)

It appears from (45) that although large perturbations are possible when
d is O(1), the contraction rate increases precisely enough to compensate
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this contribution. Thus if (&us&2) is O(=2) to start with, it will stay so
indefinitely.

In summary, assuming that the variance is indeed a measure of typical
fluctuations, we have shown that, for N>>1, the subspace Lf spanned by
the first N&3 Lyapunov vectors of the product (31) is, with very high
probability, almost orthogonal to Vs . This implies that the last three
Lyapunov vectors (including the translation) remain approximately in Vs .
This means by definition that they are hydrodynamic, in the sense that they
are well approximated by eigenvectors of the discrete Laplacian, as has
been defined precisely in Section 2. Since the action of A� on Vs has two
eigenvalues close to (2?�N)2 as shown in the previous section, it follows as
a corollary that the two smallest non-trivial Lyapunov exponents have
approximately this value, so that they are also hydrodynamic. This com-
pletes the demonstration.

5. PRODUCTS OF SYMPLECTIC MATRICES

We now turn to products of matrices of the form

S=\ 1
{A

{
1+{2A+ (46)

We disregard the two translation modes in S for convenience and view the
matrices S as (2N&2)_(2N&2) matrices. Let us recall that since the
matrices S are symplectic and hyperbolic, the Lyapunov exponents are
non-zero and come in pairs of opposite signs. We concentrate on modes
number N&2 and N&1 which are the smallest positive ones.

We reduce the problem to an equivalent one to which the results of
Section 4 can be applied directly. We denote by L+ the subspace spanned
by the first N&1 Lyapunov vectors. It is spanned by a set of N&1 inde-
pendent vectors, which we display in the form of a (N&1)_(2N&2)
matrix V. The N&1 vectors can always be chosen it such a way that V

is of the normal form

V=\ 1
V + (47)

where both blocks are (N&1)_(N&1). Acting on V with S gives a
spanning set of the image subspace L$+,

SV=\ 1+{V
{A+(1+{2A) V + (48)
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and changing basis to normal form gives V$=( 1
V$) where

V$={A+
V

1+{V
(49)

A convenient property of this matrix dynamical system is that if V is
symmetric to begin with, it stays so as a consequence of the symplectic
property of S.(10)

By definition, any vector v # L+ has a block representation v=(u, Vu).
From Eq. (48) it follows that its image is (u$, V$u$), where

u$=(1+{V )u (50)

Hence, the first N&1 Lyapunov modes of the products of the S are the
same as those of the product >n (1+{Vn) where the matrices Vn are
evolving according to Eq. (49): Vn+1={An+Vn �(1+{Vn).

In view of this equivalence, it suffices to show that the matrix V has
the properties formulated in Eqs. (27)�(29) and to apply the results of
Section 4. First note if An=&�2 (minus the discrete Laplacian) for all n,
then the Vn converge to f (&�2), where

f (x)=
{x
2

+�x+\{x
2 +

2

is the larger root of the quadratic equation f (x)={x+ f (x)�(1+{f (x)).
For small x>0 this is close to x1�2, and therefore we assume that V has a
representation of the type given by Eqs. (27)�(29), with ==O(N &1�2) as
before and * is now f (4?�N 2)=O(N &1). The aim is to show that this
property is carried on to V$.

In order to avoid the necessity of presenting even more technical
details, we present the argument for the case where the slow subspace
contains a single mode, rather than a pair of nearly degenerate modes.
Since V$ is symmetric its smallest eigenvalue is given by

*V$= min
&u&=1

u } \{A+
V

1+{V + u (51)

It follows from our assumptions that there exist (normalized) eigenvectors
of V and A:

AeA=*1 (1+cA=) eA , VeV= f (*1)(1+cV =) eV (52)
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where *1 is the smallest positive eigenvalue of &�2 and eA and eV are close
to e1 , the corresponding eigenvector. The variational principle then gives
immediately a lower bound on *V$ ,

*V$> f (*1)(1+=cV$) (53)

for some cV$ , between cA and cV . To get an upper bound on *V$ recall that
it was shown in Section 3 Eq. (25) that the k component of eA is of order
=k&1, and note that the bound (26) implies

f (&amin �2)<V< f (&amax �2) (54)

We now use u=eA in Eq. (51) and get

*V$<*1 (1+cA =)+eA } f (&amax �2) eA< f (*1)(1+c� =) (55)

for some constant c� . Equations (53) and (55) establish the desired property
of the eigenvalues.

The corresponding eigenvector eV$ is the one which minimizes
Eq. (51). Because of the minimax principle applied to A and V, letting
u=e1+w with w } e1=0 and w small, the quadratic form u } Au may be
approximated by

u } Aut(w&wA) } A(w&wA)+*A

and similarly

u } Vut(w&wV ) } V(w&wV )+*V

Therefore, in order to find wV$ we need to minimize the quadratic form

{(w&wA) } A(w&wA)+(w&wV ) }
V

1+{V
(w&wV )

The minimum occurs at

wV$=(1+B)&1 (BwA+wV ) (56)

where

B={
1+{V

V
A
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We can use again the bounds (26) and (54) to show that

bmin g(&�2)<B<bmax g(&�2),

for some positive numbers bmin , bmax and a positive function g, and thus
bound the components of wV$ ,

|(wV$)k |<
(wV )k+bmax g( |+k |2)(wA)k

1+bmin g( |+k | 2)

where |+k | 2 is the kth eigenvalue of &�2 (see Section 3). This shows that
(wV$)kt=k&1. This completes the demonstration of the desired properties
of V$, and, on applying the results of Section 4, the existence of hydro-
dynamic Lyapunov modes in the symplectic case.

6. NUMERICAL TESTS

The purpose of this Section is to verify numerically some of the state-
ments given above, and on to further study numerically the dependence of
hydrodynamic behavior of several Lyapunov modes as a function of noise
level as well as system size.

The simplest system we discuss is a product >nAn of independent
matrices of the form (8). Since the relative gap between the first two non-
zero eigenvalues is O(1) [see Eqs. (27)�(29)], the contraction in this case
is strong, and the potential problems of the accumulation of errors as dis-
cussed in Section 4 and Appendix A are absent. Nevertheless, even in this
case, there are some qualitative differences between the behavior of the
Lyapunov modes, and the corresponding eigenmodes of a single matrix.

We quantify the degree of hydrodynamic behavior in the Lyapunov
modes as follows. For the Lyapunov vectors vi we computed the residuals
ri , that is, the norm of the orthogonal complement

ri=&vi&(vi } ek) ek&(vi } e&k) e&k &

where k=k(i) is the wave vector associated with vector i. (For example,
k=1 for the vectors vN&1 and vN&2 discussed above.) In fact, to get more
precise results we subtracted from vi all the components with lower-lying k:

ri=&vi& :
k�k(i)

((vi } ek) ek&(vi } e&k )e&k )&

(The results are not very different for the two definitions of ri .)
Figure 1 presents these residuals for systems with different sizes of the

matrices and different values of the noise variance _. The vertical axis
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File: 822J 246919 . By:XX . Date:10:02:00 . Time:14:35 LOP8M. V8.B. Page 01:01
Codes: 1390 Signs: 837 . Length: 44 pic 2 pts, 186 mm

Fig. 1. Data collapse of the residuals of the Lyapunov vectors of a product of random
Laplacians. The curves show (rk�_)2 as a function of the wave number k�N for several values
of N and _. The data points are averages of 10 realizations, averaged also within each pair
which corresponds to the same |k|. As expected, the range of collapse increases with the
system size. The random variables are chosen as a=0.5\_ with probability 1�2.

measures (rk �_)2, and the horizontal axis gives k�N. The approximate
collapse of the graphs for small k implies that the dependence of the
residuals on system size N and noise strength (variance) _) is given by the
scaling form

rk=_f1 \ k
N+

The behavior of f1 for small x is approximately f1 (x)=O(- x), which
implies that for a fixed k

rkt
_

- N
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File: 822J 246920 . By:XX . Date:07:01:00 . Time:08:32 LOP8M. V8.B. Page 01:01
Codes: 1396 Signs: 804 . Length: 44 pic 2 pts, 186 mm

Fig. 2. Data collapse of the relative deviations of the Lyapunov exponents of a product of
random Laplacians. The curves show $k�_2 as a function of the wave number k for several
values of N and _. In fact the date collapse is perfect for fixed _.

the same dependence as in the residuals of the eigenvectors of a single
matrix. However, the dependence of the residuals as a function of k is
rkt- k, slower the linear dependence on k in the case of a single matrix.

For the Lyapunov exponents *i we measure the relative deviation
$k from the respective eigenvalues |+k | 2 of the discrete Laplacians (see
Section 3),

$k=
exp(*k)

|+k | 2 &1

The results for the deviations $i of the Lyapunov exponents are displayed
in Fig. 2, where $k �_2 is plotted against k�N. The data collapse implies that

$k=_2f2 \k
N+
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File: 822J 246921 . By:XX . Date:07:01:00 . Time:08:32 LOP8M. V8.B. Page 01:01
Codes: 1241 Signs: 670 . Length: 44 pic 2 pts, 186 mm

Fig. 3. Same as Fig. 1 for the product >n (1+An), except that the vertical axis measures
rk�_.

The function f2 (x) is approximately linear for small x which implies for
k<<N:

$ktr2
k

This is not unreasonable, since the Lyapunov exponents, unlike the eigen-
values of a single matrix, are given as a result of an averaging process.

We next present a similar analysis for the product >n (1+An) which
was considered in Section 4. The results for the residuals of the Lyapunov
vectors and the deviations of the exponents are presented in Figs. 3 and 4
respectively. The scaling form for the residuals is in this case

rk=_f3 \ k
N+
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File: 822J 246922 . By:XX . Date:07:01:00 . Time:08:32 LOP8M. V8.B. Page 01:01
Codes: 1186 Signs: 559 . Length: 44 pic 2 pts, 186 mm

Fig. 4. Same as Fig. 2 for the product >n (1+An), except that the vertical axis measures

- $k�_.

where f3 (x)tx for small x. Thus, in this case the residual for a fixed k
decreases as

rkt
_
N

that is, faster than the N &1�2 decrease in the residuals of the eigenvectors
of a single matrix. The analysis presented in Section 4 is too general to
capture this behavior.

The relative deviations of the exponents scale in this case as

$k=_2f4 \k
N+

and f4 (x)tx2 for small x, so that as in the product of random Laplacians,
the relative size of rk and $k is $ktr2

k .
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APPENDIX A. COUNTER-EXAMPLE

We want to show here that an ``unfortunate'' choice of rotations can
move the system out of the region where the Lyapunov vectors remain
essentially aligned with the eigendirections of the Laplacian. The issue here
is that, on one hand, the cones in which these vectors lie are slightly con-
tracted and on the other hand slightly turned. The ``counter-example''
shows that the turning wins over the contraction.

Let Vf=Span[e1 , e2] and Vs=Span[e3]. Suppose that Lf contains a
vector with block representation u=(uf , us), with us>0, normalized such
that &uf &=1, and let vf span the orthogonal complement to uf in Vf . We
construct the matrix A� by giving the components in the representation
(27),

Rt\ 1
=vT

f

&=vf

1 + (57)

Ds=:*, and D f is such that

Df uf=(*+=2) u f+=vf

Df vf==uf+vf (58)

The image of u is

(1+A� ) \u f

us+=\(1+*+=2 (1&us)) uf+=v f

(1+:*&=2) us+=2 + (59)

After normalizing the f component to 1, the s component becomes

u$st[1+(:&1) *+=2 (3�2&us)] us+=2 (60)

Evidently, even if us=0 initially, by choosing A� as above, us can be
increased to an O(1) value (as =, * � 0) if *=O(=2).
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