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We consider different renormalizable models of Lorentz invariance violation. Based on birefringent
photon propagation of cosmic microwave background photons generically induced in such models, we
constrain Lorentz invariance violation using the five year data of the Wilkinson microwave anisotropy
probe (WMAP). We derive limits on a birefringent effective photon mass and on a polarization
dependence of the speed of light which are significantly stronger than other published limits.
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The principle spacetime symmetry of particle interac-
tions in the standard model is Lorentz invariance. Exper-
iments confirm Lorentz symmetry at currently accessible
energy scales of up to 2 TeV. This scale will be extended
shortly to 14 TeV with Large Hadron Collider at CERN.
Although present experiments confirm Lorenz invariance
to a good precision, it can be broken in the very early Uni-
verse when energies approach the Planck scale. There are
a number of extensions of the standard model of parti-
cle physics and cosmology that violate Lorentz invariance
(for reviews see Refs. [1–5]).

As it can be expected, Lorentz invariance violation
(LV) affects photon propagation (the dispersion relation),
and generically results in a rotation of linear polarization
(birefringence). Other effects include new particle inter-
actions such as a photon decay and vacuum Cherenkov
radiation [4]. All these effects can be used to probe
Lorentz invariance. The dispersion measure (DM) test is
based on a phenomenological energy dependence of the
photon velocity ([6], see also Refs. [7] for reviews and
Refs. [8–10] for recent studies of this effect; early discus-
sions include Refs. [11]; Refs. [6, 9, 10] consider LV mod-
els which preserve rotational and translational invariance
but break boost invariance).

Several models of LV predict frequency dependent ef-
fects. For discussions of such high energy LV see Refs.
[12–14]. Refs. [15] study generalisations of electromag-
netism, motivated by this kind of Lorentz invariance vio-
lation. On the other hand, LV associated with a Chern-
Simons interaction [16, 17] affects the complete spectrum
of electromagnetic (EM) radiation, not just the high fre-
quency part, and induces a frequency independent rota-
tion of polarization (see Sec. 4 of Ref. [2]).

To determine the effects induced by LV, it is useful to
apply an analogy with the propagation of electromagnetic
waves in a magnetized plasma as outlined in Refs. [8, 12,
16, 18, 19]. In this formalism it is easy to see that for LV
models which depend not only on frequency but also on
polarization, the rotation measure (RM) constrains the
symmetry breaking scale more tightly than pure DM (see

Refs. [14, 15, 19]).

The propagation of ultra-high energy photons repre-
sents a promising possibility to probe Lorentz symme-
try [20]. Gamma Ray Bursts (GRB) are astrophysical
objects located at cosmological distances which emit very
energetic photons [6] (for reviews of cosmological tests in-
volving GRBs, see Refs. [3, 21]). Testing LV through RM
by analysis of GRB polarization is proposed in [22, 23],
after the observation of highly linearly-polarized γ-rays
from GRB021206 has been reported [24]. Although this
measurement has been strongly contested [25], there
is evidence that the γ-ray flux from GRB930131 and
GRB960924 is consistent with more than 35% and 50%
polarization, respectively [26]. However, the issue of po-
larization of GRB γ-rays is still under debate and ad-
ditional X-ray studies are needed to either confirm or
disprove polarization of GRB γ-rays [27].

In this letter we mainly consider renormalizable models
of LV described in Ref. [2]. We use the very well under-
stood and measured temperature anisotropy and polar-
ization of the cosmic microwave background (CMB) to
constrain LV. These data have been proposed as a probe
of Lorentz invariance in the Universe in Refs. [28, 29].
In our study we use the WMAP 5 year results [31] and
obtain limits which are significantly more stringent than
those obtained from radio galaxy polarimetry [16]. As
we shall see, generic LV is birefringent, i.e. depends on
the photon polarization. This leads to a rotation of the
CMB polarization which induces parity-odd cross corre-
lations, such as Temperature-B-polarization and E-B-
polarization. These correlators vanish in models which
preserve parity. Generally speaking, the effect is similar
to that induced by a homogeneous magnetic field [30].

Let us consider an electromagnetic wave with fre-
quency ω and spatial wave vector k, k ≡ |k|. A lin-
early polarized wave can be expressed as superposition
of left (L) and right (R) circularly polarized waves. In
a magnetized plasma, a homogeneous magnetic field in-
duces a difference in the phase velocity of L and R waves.
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Therefore it causes a rotation of the polarization (called
Faraday rotation [33]). The group velocity of the wave
also differs from c. These two effects can be expressed in
terms of the refractive indices defined by kL,R = nL,Rω
where kL,R denotes the wave number for L(−) and R(+)
waves. The indices nL,R are [33]

nL,R =
√

ε1 ∓ ε2 (1)

Here the upper (lower) sign corresponds to the L (R)
polarization and ε1 and ε2 are components of the elec-
tric permittivity or dielectric tensor εij , ε1 = εxx =
εyy = 1 + ω2

p/(ω2
c − ω2) and ε2 = εyx = −εxy =

(ωc/ω)ω2
p/(ω2

c − ω2), where ωp and ωc are the plasma
and electron cyclotron angular frequencies (see Sec. 4.9
of Ref. [33]).

The magnitude of both DM, due to the different group
velocity1 and RM, the rotation of polarization, are pro-
portional to the photon travel distance ∆l,

∆tL,R = ∆l

(

1 − ∂kL,R

∂ω

)

, (2)

∆α =
1

2
(kL − kR)∆l. (3)

Here, ∆tL,R is the difference between the L (R) travel
time and that of a “photon” traveling at the speed of
light, and ∆α is the polarization rotation angle.

Faraday rotation is widely used in astrophysics to limit
magnetic fields in galaxies and clusters (see Ref. [34] for
a review and references therein). In cosmology, Fara-
day rotation of CMB photons [30, 35] has been used to
constrain the amplitude of a homogeneous as well as a
stochastic cosmological magnetic field [36, 37]. In the
following, we show that LV leads to a modification of the
Maxwell equations [14, 15] analogous to the modifications
described above.

Following Ref. [2], the most general renormalizable
form of LV can be expressed by two additional terms
in the action (we set ~ = 1)

ΓLV =

∫

d4x

[

KµνλρF
µνFλρ − 1

4
LµǫµνλρA

νFλρ

]

, (4)

where Greek indices (µ, ν, λ, ρ) denote time-space coor-
dinates, ǫµνλρ is the totally antisymmetric tensor, Fµν

is the electromagnetic field tensor, Aν is the vector po-
tential, Lµ = (L0,L) has the dimension of mass and de-
scribes a super-renormalizable (dimension 3) coupling,
Kµνλρ is a renormalizable, dimensionless coupling giving
raise to a dimension 4 operator. Kµνλρ has the same sym-
metries as the Riemann tensor and we only consider its

1 This modification may be viewed as an effective photon “mass”
that makes the photon speed smaller (larger) than the speed of
light c = 1 for R (L) waves and ω < ωc.

trace-free part which is analog to the Weyl tensor2. Both
terms in Eq. (4) lead to birefringence but the frequency
dependence is different.

The first term in the action ΓLV can be computed
within Newman-Penrose formalism [2]. The dispersion
relation is given by [2]

ω2 = k2 ± 8ω2|Ψ0| . (5)

Here Ψ0 is the analog of the Newman-
Penrose scalar (for more details see [2]), Ψ0 =
−

[

K0i0j − K0iljn
l − Kkiljn

knl
]

mimj, where m and
m̄ represent the left and right circular polarization
basis vectors and n = k/k is the photon propagation
direction. Latin indices indicate spatial components of a
vector or tensor.

The second term in the action ΓLV leads to the disper-
sion relation [2, 16]

(kµkµ)2 + (kµkµ)(LνLν) − (Lµkµ)2 = 0, (6)

where kµ is time-space wave vector, (kµ) = (ω,k). To
first order in the small parameters L0 and |L| one has

ω2 = k2 ± k(L0 − L cosφ), (7)

where L = |L|, φ is an angle between the photon prop-
agation direction and the vector L, cosφ = (L · n)/L.
Comparing Eq. (7) with the dispersion relation ω2 =
k2/(ε1 ∓ ε2), we find L0 − L cosφ ≃ ω2

p/(ωc − ω).
To be general as possible, we rewrite the dispersion

relation for the both types of LV in the form (see [19]),

ω2 = k2

[

1 ±
(

M

MPL

) (

k

MPL

)N−4
]

, (8)

where MPL is the Planck mass, MPL ≃ 1.2 × 1019 GeV,
N is the dimension of the Lorentz symmetry violating
operator and M is a mass scale of the model. For
N = 4 we then have 8Ψ0 = M/MPL, and for N = 3
M = L0 − L cosφ. Generally speaking our aim is to

limit the function γ(k) ≡
(

M
MPL

) (

k
MPL

)N−4

from CMB

birefringence. This ansatz can also be applied to non-
renormalizable models with higher dimension operators,
N > 4.

To compute the CMB polarization rotation angle in-
duced by LV, we follow the analogy with photon prop-
agation in a magnetized medium which yields nL,R =
1 ∓ γ(k)/2. Using Eq. (3), we obtain

∆α(LV ) =
1

2
ωγ(k)∆l. (9)

2 The trace part also leads to DM but not to birefringence, we
therefore do not consider it here.
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In the case N = 4, ∆α(LV ) grows linearly with frequency.
In such a model, and for all models with higher dimension
operators, the best limits can in principle be obtained
from high frequency photons (for example GRB γ-rays
[22, 23]), while CMB photons are less affected. However,
the fact that the theory of CMB anisotropies and polar-
ization yields that both TB and EB polarization have
to vanish in standard cosmology, while the polarization
of GRB’s is still under debate, at present, a test using
CMB data is to be preferred. Another advantage is that
for the CMB the distance ∆l ≃ H−1

0 is maximal.

In the dimension 3 model, ∆α(LV ) = − 1
2 (L0 −

L cosφ)∆l, is frequency-independent. In Ref. [16] the
above result is applied to polarization data from distant
radio galaxies, ∆α < 6o at 95% C.L. at redshift z ∼ 0.4.
The constraint obtained if Ref. [16] is |L0 − L cosφ| ≤
1.7×10−42h0 GeV, where h0 ≃ 0.7 is the present Hubble
parameter in units of 100 km s−1 Mpc−1.

Using recent WMAP results [31] and assuming Gaus-
sian errors, we obtain the following limits on the absolute
value of rotation angle

|∆α|obs ≤ 4.90o at 95% C.L. (10)

|∆α|obs ≤ 2.52o at 68% C.L. (11)

We adopt ∆l ≃ 9.8 × 109h−1
0 years. We express our

results in terms of ν100 = ν/1011Hz to keep them as
independent of the CMB observation band frequency as
possible. We also introduce an effective photon mass by
the modified dispersion relation ω2 = k2 ± m2

γ , i.e.

m2
γ = ω2γ(k) = Mω

(

ω

MPL

)N−3

= 2
∆α

∆l
ω .

For 4D- and 3D-models we have m
(4D)
γ = 2ω|2Ψ0|1/2 and

m
(3D)
γ = [ω(|L0 − L cosφ|)]1/2 respectively. We compare

our estimates with those of Ref. [22]; The cases consid-
ered here corresponds to the LV spectral indices as: for
3D model m = −1 and m = 0 for 4D model. Neither of
such an index has been studied in Ref. [22].

Using Eq. (9), we find the following limit on the func-
tion γ:

γ(ωcmb) ≤ 8.6 × 10−31ν−1
100h0 at 95% C.L., (12)

and an almost twice better limit at 68% C.L. From
this we derive the constraint on the effective birefringent
mass,

mγ ≤ 3.8 × 10−19 (h0ν100)
1/2

eV at 95% C.L. (13)

Note that left and right handed photons have effective
masses of opposite sign. This result is model indepen-
dent because mγ only depends on the directly measured
rotation angle ∆α and on the frequency.

We can also express the limit on γ in terms of a limit for
the mass scale M or the dimensionless parameter M/MPl

M

MPl

<∼ 10−31+33(N−4)ν3−N
100 h0 . (14)

For N > 4, the limits are not very interesting, while
for N = 4 or N = 3 ’naturally expected’ values of the
parameters are ruled out. More precisely, for the models
considered we constrain the dimensionless scalar Ψ0 for
the 4D model, |Ψ0| ≤ 1.1 × 10−31h0ν

−1
100 at 95% C.L.,

while we find for the 3D model |L0 − L cosφ| ≤ 3.6 ×
10−43h0GeV at 95% C.L. This is almost one magnitude
better than the limit obtained in Ref. [16].

If L ≪ L0, we can safely neglect the angular depen-

dence, and assume that m
(3D)
γ =

√
ωL0. However, if

L ≫ L0, the modification of the photon dispersion be-
comes direction dependent, and must be averaged over
all sky for the CMB photons. Then, the rotation angle
can be estimated by the two-point correlation function,
i.e., ∆αeff = 〈|∆α|2〉1/2. A very rough estimate leads
to a pre-factor ∼ 1

√
2. In a more detailed analysis the

presence of L breaks rotational symmetry and leads to
off-diagonal correlations in the temperature anisotropy
and polarization spectra analog to the CMB polarization
Faraday rotation by a constant magnetic field [35]. To
take this fully into account requires to estimate the CMB
Temperature-B polarization, E- and B-polarization cross
correlations, as well as B-polarization spectra due to the
LV vector field L, and to compare theoretical estimates
with the CMB corresponding anisotropy data. Also the
scalar |Ψ0| of the 4D model breaks rotational symmetry
and taking the direction dependence of ∆α into account
is relatively complicated. We shall address this issue in
future work, but it is expected that the resulting limits
will not change significantly.

The obtained bound on a birefringent effective photon
mass is nearly three orders of magnitude better than the
limit given by the particle data group [38], mγ ≤ 2 ×
10−16 eV, but less stringent than those obtained from
the limits on magnetic field generation [39] which are,
however model dependent. Another useful bound is the
departure of the refraction index in vacuum from unity,
i.e., |∆n| = |1 − k/ω| = |γ(k)|/2. In the 4D model,
|∆n(4D)| ≃ 4|Ψ0|, In the 3D model, |∆n(3D)| ≃ L0/2ω
(when L ≪ L0). Generically Eq. (12) implies |∆n| ≤
4.3 × 10−31h0ν

−1
100. The difference of the refractive index

from 1 can be viewed as a difference of the photon speed
from 1, ∆c at the level of 10−30 − 10−31, which is much
more stringent than the (more general) limit obtained
in Ref. [40], which is ∆c < 10−23. The formalism given
here is applicable for higher dimension operators too, but
due to the frequency dependence |α(LV )| ∝ ωN−3 the
CMB data based limits become much weaker that those
given from high energy photons propagation (γ or X-
rays). Even the bounds obtained from the Crab Nebulae
radiation polarimetry looks to be more promising [41]
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