
CMB anisotropies from ve
tor perturbations in the bulkChristophe Ringeval,� Timon Boehm,y and Ruth DurrerzD�epartement de Physique Th�eorique, Universit�e de Gen�eve,24 quai Ernest Ansermet, 1211 Gen�eve 4, Switzerland.(Dated: O
tober 22, 2003)The ve
tor perturbations indu
ed on the brane by gravitational waves propagating in the bulkare studied in a 
osmologi
al framework. Cosmi
 expansion arises from the brane motion in a non-
ompa
t Z2 symmetri
 �ve-dimensional anti-de Sitter spa
e-time. By solving the ve
tor perturbationequations in the bulk, for generi
 initial 
onditions, we �nd that they give rise to growing modes onthe brane in the Friedmann-Lemâ�tre era. Among these modes, we exhibit a 
lass of normalizableperturbations, whi
h are exponentially growing with respe
t to 
onformal time on the brane. Thepresen
e of these modes is strongly 
onstrained by the 
urrent observations of the 
osmi
 mi
rowaveba
kground (CMB). We estimate the anisotropies they indu
e in the CMB, and derive quantitative
onstraints on the allowed amplitude of their primordial spe
trum.PACS numbers: 04.50.+h, 11.10.Kk, 98.80.CqI. INTRODUCTIONThe idea that our universe may have more than threespatial dimensions has been originally introdu
ed byNordstr�om [1℄, Kaluza [2℄ and Klein [3℄. The fa
t thatsuper string theory, the most promising 
andidate fora theory of quantum gravity, is 
onsistent only in tenspa
e-time dimensions (11 dimensions for M-theory) hasled to a revival of these ideas [4{6℄. It has also been foundthat string theories naturally predi
t lower dimensional\branes" to whi
h fermions and gauge parti
les are 
on-�ned, while gravitons (and the dilaton) propagate in thebulk [7{9℄. Su
h \braneworlds" have been studied in aphenomenologi
al way already before the dis
overy thatthey are a
tually realized in string theory [10, 11℄.Re
ently it has been emphasized that relatively largeextra-dimensions (with typi
al length L ' �m) 
an\solve" the hierar
hy problem: The e�e
tive four-dimensional Newton 
onstant given by G4 / G=LN
an be
ome very small even if the fundamental gravi-tational 
onstant G ' m�(2+N)P̀ is of the order of theele
tro-weak s
ale. Here N denotes the number of extra-dimensions [12{15℄. It has also been shown that extra-dimensions may even be in�nite if the geometry 
ontainsa so-
alled \warp fa
tor" [16℄.The size of the extra-dimensions is 
onstrained by therequirement of re
overing usual four-dimensional Ein-stein gravity on the brane, at least on s
ales testedby experiments [17{19℄. Models with either a smallPlan
k mass in the bulk [12{14℄, or with non-
ompa
twarped extra-dimensions [15, 16℄, have been shown tolead to an a

eptable 
osmologi
al phenomenology onthe brane [20{26℄, with or without Z2 symmetry in thebulk [27{29℄. Expli
it 
osmologi
al s
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nearly Friedmann-Lemâ�tre universe at late time 
an berealized on a 3{brane at rest in a dynami
al bulk [30, 31℄or, alternatively, on a brane moving in an anti-de Sitterbulk [32, 33℄. It has been shown that both approa
hesare a
tually equivalent [34℄.One 
an also des
ribe braneworlds as topologi
al de-fe
ts in the bulk [35{39℄. This is equivalent to the geo-metri
al approa
h in the gravity se
tor [40℄, while it ad-mits an expli
it me
hanism to 
on�ne matter and gauge�elds on the brane [40{51℄. Depending on the under-lying theory, the stability studies of these defe
ts haveshown that dynami
al instabilities may appear on thebrane when there are more than one non-
ompa
t extra-dimensions [52{54℄, whereas this is not the 
ase for a�ve-dimensional bulk [55℄, provided that a �ne-tuningbetween the model parameters is �xed [56℄.The next step is now to derive observational 
on-sequen
es of braneworld 
osmologi
al models, e.g. theanisotropies of the 
osmi
 mi
rowave ba
kground (CMB).To that end, a lot of work has re
ently been in-vested to derive gauge invariant perturbation theory inbraneworlds with one 
o-dimension [57{61℄. Again, theperturbation equations 
an be derived when the brane isat rest [62℄, or when it is moving in a perturbed anti-de Sitter spa
e-time [34, 63{67℄. Whatever the approa
h
hosen, the perturbation equations are quite 
umbersomeand it is diÆ
ult to extra
t interesting physi
al 
onse-quen
es analyti
ally. Also the numeri
al treatment ismu
h harder than in usual four-dimensional perturbationtheory, sin
e it involves partial di�erential equations.Nevertheless, it is useful to derive some simple physi-
al 
onsequen
es of perturbation theory for brane worldsbefore performing intensive numeri
al studies. This hasbeen done for tensor perturbations on the brane in a veryphenomenologi
al way in Ref. [68℄ or on a more funda-mental level in Ref. [69℄. Tensor modes in the bulk whi
hindu
e s
alar perturbations on the brane have been stud-ied in Ref. [70℄ and it was found that they lead to impor-tant 
onstraints for braneworlds.In this arti
le we 
onsider a braneworld in a �ve-



2dimensional bulk where 
osmology is indu
ed by the mo-tion of a \3-brane" in AdS5 . The bulk perturbationequations are 
onsidered without bulk sour
es and de-s
ribe gravity waves in the bulk. The present work 
on-
entrates on the part of these gravity waves whi
h resultsin ve
tor perturbations on the brane.For the sake of 
larity, we �rst re
all how 
osmologyon the brane 
an be obtained via the jun
tion 
ondi-tions, parti
ularly emphasizing how Z2 symmetry is im-plemented [20{26℄. After re-deriving the bulk pertur-bation equations for the ve
tor 
omponents in terms ofgauge invariant variables [34, 63{66℄, we analyti
ally �ndthe most general solutions for arbitrary initial 
onditions.The time evolution of the indu
ed ve
tor perturbationson the brane is then derived by means of the perturbedjun
tion 
onditions. The main result of the paper is thatve
tor perturbations in the bulk generi
ally give rise tove
tor perturbations on the brane whi
h grow either asa power law or even exponentially with respe
t to 
on-formal time. This behavior essentially di�ers from theusual de
ay of ve
tor modes in standard four-dimensional
osmology, and may lead to observable e�e
ts of extra-dimensions in the CMB.The outline of the paper is as follow: in the next se
-tion, the 
osmologi
al braneworld model obtained by themoving brane in an anti-de Sitter bulk is brie
y re
alled.In Se
t. III we set up the ve
tor perturbation equationsand solve them in the bulk. In Se
t. IV the indu
edperturbations on the brane are derived and 
omparedto those in four-dimensional 
osmology, while Se
t. Vdeals with the 
onsequen
es of these new results on CMBanisotropies. The resulting new 
onstraints for viablebraneworlds are dis
ussed in the 
on
lusion.II. BACKGROUNDAs mentioned in the introdu
tion, our universe is 
on-sidered to be a 3-brane embedded in �ve-dimensionalanti-de Sitter spa
e-timeds2 = gABdxAdxB = r2L2 ��dt2 + Æijdxidxj�+ L2r2 dr2:(1)The 
apital Latin indi
es A;B run from 0 to 4 and the
at spatial indexes i; j from 1 to 3. Anti-de Sitter spa
e-time is a solution of Einstein's equations with a negative
osmologi
al 
onstant �GAB +�gAB = 0; (2)provided that the 
urvature radius L satis�esL2 = � 6� : (3)Another 
oordinate system for anti-de Sitter spa
e 
anbe de�ned by the 
oordinates transformation r2=L2 =exp (�2%=L). Then, the metri
 takes the formds2 = gABdxAdxB = e�2%=L ��dt2 + Æijdxidxj�+ d%2;(4)

whi
h is often used in braneworld models.A. Embedding and motion of the braneThe position of the brane in the AdS5 bulk is given byxM = XM(y�); (5)where XM are embedding fun
tions depending on the in-ternal brane 
oordinates y� (� = 0; � � � ; 3). Using thereparametrization invarian
e on the brane, we 
hoosexi = X i = yi. The other embedding fun
tions are writ-ten X0 = tb(�); X4 = rb(�); (6)where � � y0 denotes 
osmi
 time on the brane. Sin
ewe want to des
ribe a homogeneous and isotropi
 brane,X0 as well as X4 are required to be independent of thespatial 
oordinates yi. The four tangent ve
tors to thebrane are given by eM� �M = �XM�y� �M ; (7)and the unit spa
e-like normal 1-form nM is de�ned (upto a sign) by the orthogonality and normalization 
ondi-tions nMeM� = 0; gABnAnB = 1: (8)Adopting the sign 
onvention that n points in the di-re
tion in whi
h the brane is moving (growing rb for anexpanding universe), one �nds usinge0� = _tb; e4� = _rb; eij = Æij ; (9)the 
omponents of the normaln0 = � _rb; n4 = _tb; ni = 0: (10)The other 
omponents are vanishing, and the dot denotesdi�erentiation with respe
t to the brane time � .This embedding ensures that the indu
ed metri
 onthe brane des
ribes a spatially 
at homogeneous andisotropi
 universe,ds2b = q��dy�dy� = �d�2 + a2(�)Æijdyidyj ; (11)where a(�) is the usual s
ale fa
tor, and q�� is the pull-ba
k of the bulk metri
 onto the braneq�� = gABeA�eB� ; (12)(see e.g. [71, 72℄). The �rst fundamental form qAB is nowde�ned by qAB = q��eA�eB� ; (13)



3i.e. the push-forward of the inverse of the indu
ed metri
tensor [71, 73℄. One 
an also de�ne an orthogonal pro-je
tor onto the brane whi
h 
an be expressed in terms ofthe normal 1-form?AB= nAnB = gAB � qAB; (14)in the 
ase of only one 
odimension.Upon inserting the equations (1), (10) and (13) intothe above equation, one �nds a parametri
 form for thebrane traje
tory [32, 33, 65, 66℄rb(�) = a(�)L;_tb(�) = 1ap1 + L2H2; (15)where H = _a=a denotes the Hubble parameter on thebrane. Alternatively, this result 
an be obtained by 
om-paring expression (12) with the Friedmann metri
 (11).Therefore, the unperturbed motion indu
es a 
osmo-logi
al expansion on the 3-brane if rb is growing withtb.B. Extrinsi
 
urvature and unperturbed jun
tion
onditionsThe 
osmologi
al evolution on the brane is found bythe Lan
zos{Sen{Darmois{Israel jun
tion 
onditions1.They relate the jump of the extrinsi
 
urvature a
ross thebrane to its surfa
e energy-momentum 
ontent [74{77℄.The extrinsi
 
urvature tensor proje
ted on the brane 
anbe expressed in terms of the tangent and normal ve
torsas K�� = �eA�eB�rAnB = �12eA�eB�LngAB: (16)Here r denotes the 
ovariant derivative with respe
tto the bulk metri
, and Ln is the �ve-dimensional Lie-derivative in the dire
tion of the unit normal on thebrane. With the sign 
hoi
e in Eq. (16), the jun
tion
onditions read [78℄K>�� �K<�� = �25 �S�� � 13Sq��� � �25 bS�� ; (17)where S�� is the energy momentum tensor on the branewith tra
e S, and �25 � 6�2G5 = 1M35 ; (18)whereM5 and G5 are the �ve-dimensional (fundamental)Plan
k mass and Newton 
onstant, respe
tively. The su-pers
ripts \>" and \<" stand for the bulk sides with1 In the following, they will be simply referred to as \jun
tion
onditions".

r > rb and r < rb. As already noti
ed, the brane nor-mal ve
tor nM points into the dire
tion of in
reasing r[see Eq. (10)℄. Eq. (17) is usually referred to as se
ondjun
tion 
ondition. The �rst jun
tion 
ondition simplystates that the �rst fundamental form (13) is 
ontinuousa
ross the brane.In general, there is a for
e a
ting on the brane whi
h isdue to its 
urvature in the higher dimensional geometry.It is given by the 
ontra
tion of the brane energy momen-tum tensor with the average of the extrinsi
 
urvature onboth sides of the brane [28℄S�� �K>�� +K<��� = 2f: (19)This for
e f , normal to the brane, is exerted by the asym-metry of the bulk with respe
t to the brane [28, 71℄. Inthis paper, we 
onsider only the 
ase in whi
h the bulk isZ2 symmetri
 a
ross the brane, hen
e f = 0. In this 
asethe motion of the brane is 
aused by the stress energytensor of the brane itself whi
h is exa
tly the 
osmologi-
al situation we have in mind.From Eqs. (10), (11), (15) and (16), noting that theextrinsi
 
urvature 
an be expressed purely in terms ofthe internal brane 
oordinates [65, 66℄, one hasK�� = �12 �gAB �eA���nB + eA� ��nB�+ eA�eB� nCgAB;C� :(20)A short 
omputation shows that the non-vanishing 
om-ponents of the extrinsi
 
urvature tensor areK�� = 1 + L2H2 + L2 _HLp1 + L2H2 ;Kij = �a2Lp1 + L2H2Æij : (21)It is 
lear, that the extrinsi
 
urvature evaluated at somebrane position rb does not jump if the presen
e of thebrane does not modify anti-de Sitter spa
e. Like in theRandall{Sundrum (RS) model [16℄, in order to a

ommo-date 
osmology, the bulk spa
e-time stru
ture is modi�edby gluing the mirror symmetri
 of anti-de Sitter spa
e onone side of the brane onto the other [34℄. There are twopossibilities: one 
an keep the \r > rb" side and repla
ethe \r < rb" side to getK>�� = K�� ; K<�� = �K�� ; (22)where K�� is given by Eq. (21). Conversely, keeping ther < rb side leads toK>�� = �K�� ; K<�� = K�� : (23)Note that both 
ases verify the for
e equation (19). Fromthe time and spa
e 
omponents of the jun
tion 
onditions(17) one obtains, respe
tively�1 + L2H2 + L2 _HLp1 + L2H2 = 12�25 (P + �)� 16�25 (�+ T ) ;(24)�p1 + L2H2L = �16�25 (�+ T ) : (25)



4Here the brane stress tensor is assumed to be that of a
osmologi
al 
uid plus a pure tension T , i.e.S�� = (P + �)u�u� + Pq�� � T q�� ; (26)� and P being the usual energy density and pressure onthe brane, and u� the 
omoving four-velo
ity. The \�"signs in Eqs. (24) and (25) are obtained by keeping, re-spe
tively, the r > rb, or r < rb, side of the bulk. In orderto allow for a positive total brane energy density, �+ T ,we have to keep the r < rb side and glue it symmetri
allyon the r > rb one2. In the trivial stati
 (H = 0) 
ase this
onstru
tion reprodu
es the Randall Sundrum II [16℄ so-lution with warp fa
tor exp(�j%j=L), for �1 < % <1 ifwe 
hoose rb = L = 
onstant. In our 
oordinates, we justhave 0 < r � rb on either side of the brane, and the bulkis now des
ribed by two 
opies of the \bulk behind thebrane". Even if r only takes values inside a �nite interval,and even though the volume of the extra dimension,V = 2 Z rb0 pjgj dr = rb2 �rbL �3 ; (27)is �nite, the bulk is semi-
ompa
t and its spe
trum ofperturbation modes has no gap (like in the RS model).From Eqs. (24) and (25), one 
an 
he
k that energy
onservation on the brane is veri�ed_�+ 3H (P + �) = 0: (28)Solving Eq. (25) for the Hubble parameter yieldsH2 = �45T18 ��1 + �2T �+ �4536T 2 � 1L2 : (29)At \low energies", j�=T j � 1, the usual Friedmann equa-tion is re
overed provided the �ne-tuning 
ondition�4536T 2 = 1L2 ; (30)is satis�ed. The four-dimensional Newton 
onstant isthen given by �24 � 8�G4 = �45 :T6 ; (31)Thus a positive tension is required to get a positive e�e
-tive four-dimensional Newton 
onstant. Note also thatlow energy means �2 � H�2 � L2. In the Friedmann-Lemâ�tre era, the solution of Eq. (29) readsH ' H0 � aa0��3(1+w)=2 ;_H ' �32(1 + w)H20 � aa0 ��3(1+w) ; (32)
2 Note that we obtain the same result as in Ref. [66℄: a positivebrane tension for an expanding universe is obtained by keepingthe anti-de Sitter side whi
h is \behind the expanding brane withrespe
t to its motion".

for a 
osmologi
al equation of state P = w� with 
on-stant w. The parameters H0 and a0 refer, respe
tively,to the Hubble parameter and the s
ale fa
tor today. Forthe matter era we have w = 0, and during the radiationera w = 1=3.III. GAUGE INVARIANT PERTURBATIONEQUATIONS IN THE BULKA general perturbation in the bulk 
an be de
omposedinto \3-s
alar", \3-ve
tor" and \3-tensor" parts whi
hare irredu
ible 
omponents under the group of isometries(of the unperturbed spa
e time) SO(3)�E3, the group ofthree dimensional rotations and translations. In this pa-per we restri
t ourselves to 3-ve
tor perturbations3 and
onsider an \empty bulk", i.e. the 
ase where there areno sour
es in the bulk ex
ept a negative 
osmologi
al
onstant. With respe
t to the bulk, and its four spatialdimensions, only bulk gravity waves are therefore 
onsid-ered sin
e they are the only modes present when the en-ergy momentum tensor is not perturbed. It is well known(see e.g. Ref. [62℄) that gravity waves in 4+1 dimensionshave �ve degrees of freedom whi
h 
an be de
omposedwith respe
t to their spin in 3+1 dimensions into a spin2 �eld, the ordinary graviton, a spin 1 �eld, often 
alledthe gravi-photon and into a spin 0 �eld, the gravi-s
alar.In this work we study the evolution of the gravi-photonin the ba
kground des
ribed in the previous se
tion.After setting up our notations, we �nd the gauge in-variant ve
tor perturbation variables in the bulk andwrite down the perturbed Einstein equations. We de-rived analyti
 solutions for all ve
tor modes in the bulk.A. Bulk perturbation variablesConsidering only ve
tor perturbations in the bulk, the�ve dimensional perturbed metri
 
an be parameterizedasd~s2 = � r2L2 dt2 + r2L2 (Æij +riEj +rjEi) dxidxj+ L2r2 dr2 + 2Bi r2L2 dtdxi + 2Cidxidr; (33)whereri denotes the 
onne
tion in the three dimensionalsubspa
e of 
onstant t and 
onstant r. Assuming thisspa
e to be 
at one has ri = �i. The quantities Ei,Bi, and Ci are divergen
eless ve
tors i.e. �iEi = �iBi =�iCi = 0.As long as we want to solve for the ve
tor perturbationsin the bulk only, the presen
e of the brane is not yet3 The pre�x \3-" will be dropped in what follows, and the term\ve
tor" will be always applied here for spin 1 with respe
t tothe surfa
es of 
onstant t and r.



5relevant. Later it will appear as a boundary 
onditionfor the bulk perturbations via the jun
tion 
onditions aswill be dis
ussed in Se
t. IVC.Under a linearized ve
tor type 
oordinate transforma-tion in the bulk, xM ! xM + "M , with "M = (0; "i; 0), theperturbation variables de�ned above transform asEi ! Ei + L2r2 "i;Bi ! Bi + L2r2 �t"i;Ci ! Ci + �r"i � 2r "i: (34)As expe
ted for three divergen
eless ve
tor variablesand one divergen
eless ve
tor type gauge transformation,there remain four degrees of freedom whi
h are des
ribedby the two gauge invariant ve
tors�i = Bi � �tEi; (35)�i = Ci � r2L2 �rEi: (36)Note that in the gauge Ei = 0 these gauge-invariant vari-ables simply be
ome Bi and Ci respe
tively.B. Bulk perturbation equations and solutionsA somewhat 
umbersome derivation of the Einsteintensor from the metri
 (33) to �rst order in the pertur-bations leads to the following ve
tor perturbation equa-tions, �t�� Lr �r� r3L3�� = 0; (37)r4L2 �2r�+ 5 r3L2�r�� L2�2t� + L2�� = 0; (38)r4L2 �2r� r3L3��� r3L2 �r� r3L3��� L2�2t� r3L3��+L2�� r3L3�� = 0; (39)where � denotes the spatial Lapla
ian, i.e.� = Æij�i�j ; (40)and the spatial index on � and � has been omitted. One
an 
he
k that these equations are 
onsistent, e.g. withthe master fun
tion approa
h of Ref. [64℄.A 
omplete set of solutions for these equations 
an eas-ily be found by Fourier transforming with respe
t to xi,and making the separation ansatz:�(t; r;k) = �T(t;k)�R(r;k); (41)�(t; r;k) = �T(t;k)�R(r;k): (42)

The most general solution is then a linear 
ombination ofsu
h elementary modes. Eq. (38) splits into two ordinarydi�erential equations for �T and �R,r4 �2r�R�R + 5r3 �r�R�R = �L4
2; (43)�2t�T�T + k2 = �
2; (44)where k is the spatial wave number, and �
2 the separa-tion 
onstant having the dimension of an inverse lengthsquared. The frequen
y 
 represents the rate of 
hangeof �R at r � L, while the rate of 
hange of �T ispj
2 � k2j. From the four-dimensional point of view,�
2 
an also be interpreted as the mass m2 of the modeso that �
2 = �m2. The signs in Eqs. (43) and (44)
ome from the 
hoi
e 
2 � 0. Eq. (43) is a Bessel di�er-ential equation of order two for the \�" sign and a mod-i�ed Bessel equation of order two for the \+" sign [79℄,while Eq. (44) exhibits os
illatory or exponential behav-ior in bulk time. From Eq. (39), similar equations arederived for �T(t;k) and �R(r;k). This time, the radialfun
tion is given by Bessel fun
tions of order one. The
onstraint equation (37) ensures that the separation 
on-stant �
2 is the same for both ve
tors and it also deter-mines their relative amplitude. The general solution ofEqs. (37) to (39) is a superposition of modes 
;k whi
hare given by
� / 8>>>>>>>>>>>><>>>>>>>>>>>>:

L2r2 K2�L2
r � e�tp
2 � k2L2r2 I2�L2
r � e�tp
2 � k2L2r2 J2�L2
r � e�itp
2 + k2L2r2 Y2�L2
r � e�itp
2 + k2 ; (45)
� / 8>>>>>>>>>>>><>>>>>>>>>>>>:

�p1� k2=
2L2r2 K1�L2
r � e�tp
2 � k2�p1� k2=
2L2r2 I1�L2
r � e�tp
2 � k2�p1 + k2=
2L2r2 J1�L2
r � ie�itp
2 + k2�p1 + k2=
2L2r2 Y1�L2
r � ie�itp
2 + k2 :(46)Here Kp and Ip are the modi�ed Bessel fun
tions of orderp while Jp and Yp are the ordinary ones. The � signsin Eqs. (45) and (46) 
orrespond to the two linearly in-dependent solutions of Eq. (44), whereas the sign of theseparation 
onstant determines the kind of Bessel fun
-tions: +
2 (or m2 < 0) for the modi�ed Bessel fun
tionK and I; �
2 (or m2 > 0) for the ordinary Bessel fun
-



6tions J and Y. In general, ea
h of these modes4 
an bemultiplied by a proportionality 
oeÆ
ient whi
h dependson the wave ve
tor k and 
. Eq. (37) ensures that this
oeÆ
ient is the same for � and �. Furthermore, noti
ethat if 
2 > k2 the K{ and I{modes 
an have an exponen-tially growing behaviour, whereas for 
2 < k2 one setsp
2 � k2 = ipj
2 � k2j su
h that the modes be
omeos
illatory. The J{ and Y{modes are always os
illating.For a given perturbation mode to be physi
ally a

ept-able one has to require that, at some initial time ti, theperturbations are small for all values 0 < r � rb(ti),
ompared to the ba
kground. To 
he
k that, we use thelimiting forms of the Bessel fun
tions [79℄. For large ar-guments, the ordinary Bessel fun
tions behave asJp(x) �x!1r 2�x 
os�x� �2 p� �4� ;Yp(x) �x!1r 2�x sin�x� �2 p� �4� ; (47)while the modi�ed Bessel fun
tions grow or de
rease ex-ponentially Kp(x) �x!1r �2xe�x;Ip(x) �x!1 1p2�xex: (48)Therefore, in Eqs. (45) and (46) all modes, ex
ept forthe K{mode, diverge as r ! 0. Hen
e the only regularmodes are� = A(k;
)L2r2 K2�L2r 
� e�tp
2 � k2 ; (49)� = �A(k;
)r1� k2
2 L2r2 K1�L2r 
� e�tp
2 � k2 ;(50)where the amplitude A(k;
) is determined by the ini-tial 
onditions and 
arries an impli
it spatial index. Forsmall wave numbers k2 < 
2 the growing solution rapidlydominates, whereas for large wave numbers k2 > 
2 bothsolutions are 
omparable and os
illating in time. It iseasy to see that the K{mode is also normalizable in thesense thatZ rb0 pjgjj�j2dr / Z rb0 1r �K2�L2r 
��2 dr <1;Z rb0 pjgjj�j2dr / Z rb0 1r �K1�L2r 
��2 dr <1: (51)Note that also the J{modes and Y{modes are normal-izable. One might view this integrability 
ondition as4 In the following, they will be labeled by the kind of Bessel fun
-tion they involve, e.g. \K{mode", \I{mode" et
.

a requirement to insure �niteness of the energy of thesemodes. This suggests that the J{ and Y{modes 
ouldalso be ex
ited by some physi
al pro
ess. Indeed, fromEq. (4), their divergen
e for r ! 0 
an be re
ast in termsof the % 
oordinate, with % ! 1. Expressed in termsof %, the integrability 
ondition (51) ensures that the J{and Y{modes are well de�ned in the Dira
 sense, andthus that a superposition of them may represent physi-
al perturbations5 [80℄.Let us brie
y dis
uss also the zero-mode 
 = 0. Thesolution of Eqs. (37), (38) and (39) are then� = Ae�ikt (52)� = �ikLe�ikt "A2 Lr +B�Lr �3# (53)These solutions (whi
h 
an also be obtained fromEqs. (45) and (46) in the limit 
! 0) diverge for r ! 0but the A{mode is normalizable in the sense that theintegrals de�ned in Eq. (51) 
onverge.Clearly the most intriguing solutions are the K{modes,espe
ially for values of the separation 
onstant verifying
2 > k2. Then, if present, these 
u
tuations soon domi-nate the others in the bulk. The fa
t that m2 = �
2 < 0in this 
ase implies that the K{modes are ta
hyoni
modes, and it is thus not surprising that they may gen-erate instabilities.Before we go on, let us just note, that all these solutionsare also valid solutions of the bulk ve
tor perturbationequations in the RS model. In their original work [16℄,Randall and Sundrum have obtained very similar equa-tions (we used somewhat di�erent variables). However,they 
onsidered only the solutions with m2 = +
2 > 0and therefore did not �nd the growing K{modes. As weshall see in the next se
tion, this 
hoi
e is justi�ed whenone 
onsiders boundary 
onditions whi
h do not allowfor any anisotropi
 stresses on the brane. This is indeedwell motivated as far as 
osmology is not 
on
erned. Amore detailed dis
ussion of the relevan
e of these modesfor the RS model is given in Appendix A.In our 
osmologi
al framework however, if there isno physi
al argument whi
h forbids these modes, theyhave to be taken seriously sin
e they represent solutionsof the perturbations equations whi
h are small at veryearly times and grow exponentially with respe
t to bulktime. Note that this instability is linked to the parti
-ular bulk stru
ture 
onsidered here where the brane liesat one boundary of the spa
e-time. In the full AdS5 ,0 < r < 1, the K{modes are 
learly not normalizablesin
e Kp(L2
=r) diverges for r !1.At last, one may hope that the K{modes are nevergenerated. However, during any bulk in
ationary phasewhi
h leads to the produ
tion of 4+ 1 dimensional grav-ity waves, as we shall see now, if the anisotropi
 stresses5 This is of 
ourse not the 
ase for the I{modes.



7on the brane do not vanish identi
ally the K{modes areperfe
tly admissible solutions. For a given in
ationarymodel, it should be also possible to 
al
ulate the spe
-trum of 
u
tuations, jA(k;
)j2.At this stage, the perturbation modes have been onlyderived in the bulk. In the next se
tion, we shall deter-mine the indu
ed perturbations on the brane using theperturbed jun
tion 
onditions.IV. THE INDUCED PERTURBATIONS ON THEBRANEA. Brane perturbation variablesSin
e we are interested in ve
tor perturbations on thebrane indu
ed by those in the bulk, we parameterize theperturbed indu
ed metri
 asd~s2b = ~q��dy�dy�= �d�2 + 2abid�dyi+ a2 (Æij +riei +rjei) dyidyj ; (54)where ei and bi are divergen
e free ve
tors. The jun
tion
onditions whi
h relate the bulk perturbation variables tothe perturbations of the brane 
an be written in terms ofgauge invariant variables. Under an in�nitesimal trans-formation y� ! y� + ��, where �� = (0; a2�i), we haveei ! ei + �i;bi ! bi + a _�i: (55)Here the dot is the derivative with respe
t to the branetime � and �i is a divergen
e free ve
tor �eld. Hen
e thegauge invariant ve
tor perturbation is [81℄�i = bi � a _ei: (56)This variable fully des
ribes the ve
tor metri
 perturba-tions on the brane.The brane energy momentum tensor S�� given inEq. (26) has also to be perturbed. As we shall see, thejun
tion 
onditions (together with Z2 symmetry) do ingeneral require a perturbed energy momentum tensor onthe brane. Sin
e we only 
onsider ve
tor perturbationsÆ� = ÆP = 0. However, the perturbed four-velo
ity ofthe perfe
t 
uid does 
ontain a ve
tor part ~u� = u�+Æu�,with Æu� = 0� 0via ;1A (57)and where vi is divergen
eless. Under y� ! y� + ��,vi ! vi � a _�i; (58)where vi � Æijvi. A gauge invariant perturbed velo
ity
an therefore be de�ned as#i = vi + a _ei: (59)

In addition, the anisotropi
 stresses 
ontain a ve
tor 
om-ponent denoted �i. Sin
e the 
orresponding ba
kgroundquantity vanishes, this variable is gauge invariant a

ord-ing to the Stewart{Walker lemma [82℄.In summary, there are three gauge invariant brane per-turbation variables. We shall use the 
ombinations�i = bi � a _ei;#i = vi + a _ei;�i: (60)To apply the jun
tion 
onditions we need to determinethe perturbations of the redu
ed energy momentum ten-sor de�ned in Eq. (17). In terms of our gauge invariantquantities they readÆ bS�� = 0; (61)Æ bS�i = �a�P + 23�� 13T ��i � a (P + �)#i; (62)Æ bSij = a2P (�i�j + �j�i) : (63)B. Perturbed indu
ed metri
 and extrinsi

urvatureWe now express the perturbed indu
ed metri
, and theperturbed extrinsi
 
urvature in terms of the bulk per-turbation variables [66℄. In prin
iple there are two 
on-tributions to the brane perturbations: perturbations ofthe bulk geometry as well as perturbations of the braneposition. A bulk perturbed quantity has then to be evalu-ated at the perturbed brane position [see Eq. (6)℄. Usingreparametrization invarian
e on the brane [66℄, the per-turbed embedding 
an be des
ribed in terms of a singlevariable �, ~XM = XM +�nM ; (64)where all quantities are fun
tions of the brane 
oordi-nates y�. Sin
e � is a s
alar perturbation it does notplay a role in our treatment, and we 
an 
onsider onlythe perturbations ÆgAB due to the perturbed bulk geom-etry evaluated at the unperturbed brane position. Theindu
ed metri
 perturbation is then given byÆq�� = ~q�� � q�� = eA�eB� ÆgAB: (65)From Eqs. (33), (35), (36) and (65) one �nds in the gaugeEi = 0 Æq�� = 0;Æq�i = ap1 + L2H2�i + aLH�i;Æqij = Ægij = 0: (66)The time 
omponent vanishes as it is a pure s
alar, andthe purely spatial 
omponents 
an be set to zero withoutloss of generality by gauge �xing ( Ei = ei = 0 ).



8In the same way, perturbing Eq. (20), and making useof Eqs. (7), (8) in order to derive the perturbed normalve
tor, leads to (again we use the gauge Ei = 0)ÆK�� = 0 (67)ÆK�i = 12�t�i � 12a2�r�i � aHp1 + L2H2�i� aL �1 + L2H2��i; (68)ÆKij = 12aLH (�i�j + �j�i)+ 12ap1 + L2H2 (�i�j + �j�i) ; (69)where ÆK�� = ~K�� �K�� , and all bulk quantities haveto be evaluated at the brane position. In the derivationwe have also used that on the brane �� = eA��A.C. Perturbed jun
tion 
onditions and solutionsThe �rst jun
tion 
ondition requires the �rst funda-mental form qAB to be 
ontinuous a
ross the brane.Therefore, the 
omponents of the indu
ed metri
 (54)are given by the expli
it expressions (66). This leads tothe following relationsei = Ei;bi =p1 + L2H2Bi + LHCi; (70)where the bulk quantities have to be evaluated at thebrane position (tb; rb). For �i = bi � a _ei we usea _ei = a � _tb�tEi + _rb�rEi�=p1 + L2H2�tEi + a2LH�rEi: (71)Together with Eqs. (35) and (36) this gives�i =p1 + L2H2�i + LH�i: (72)The equations 
orresponding to the se
ond jun
tion 
on-dition are obtained by perturbing Eq. (17) (using Z2symmetry, K>�� = �K<�� = �K��) and inserting the ex-pressions (68), (69) for the perturbed extrinsi
 
urvaturetensor, with Eqs. (62), (63) for the perturbed energy-momentum tensor on the brane. After some algebra oneobtains for the (0i) and the (ij) 
omponents, respe
tively2L _Hp1 + L2H2 a (�i + #i) = a2�r�i � �t�i; (73)�25aP�i = �LH�i �p1 + L2H2�i; (74)where we have used the unperturbed jun
tion 
onditions,Eqs. (24) and (25), and the fa
t that on the brane �� =eA��A.In the RS model one has H = _H = 0 and the re-quirement that the anisotropi
 stresses vanish identi
ally.

We show in Appendix A that the well-known results ofRefs. [16℄ and [80℄ are re
overed in this limit.Hen
e, if by some me
hanism, like e.g. bulk in
ation,gravity waves are produ
ed in the bulk, their ve
tor parts�i and �i will indu
e ve
tor metri
 perturbations �i onthe brane a

ording to Eq. (72). The vorti
ity �i+#i andanisotropi
 stresses �i on the brane de�ne boundary 
on-ditions for the bulk variables a

ording to Eqs. (73) and(74). In general, the time evolution of �i may be given bysome additional matter equation, like e.g. the Boltzmannequation or some dissipation equation whi
h usually de-pends also on the metri
 perturbations. It is interestingto note that for generi
 initial 
onditions in the bulk, theamplitude of the K{mode does not vanish, whi
h meansthat the anisotropi
 stresses on the brane may grow ex-ponentially. At late time (for LH � 1) Eq. (74) redu
esto �25aP�i = ��i. A generally 
ovariant equation of mo-tion for �i must be 
ompatible with this behavior sin
eit is a simple 
onsequen
e of the 5-dimensional Einsteinequations for a 
ertain 
hoi
e of initial 
onditions.In the following we do not want to spe
ify a parti
-ular me
hanism whi
h generates �i and �i, and justassume they have been produ
ed with some spe
trumgiven by A(k;
). In usual 4-dimensional 
osmology itis well-known that ve
tor perturbations de
ay. There-fore, in ordinary 4-dimensional in
ationary s
enariosthey are not 
onsidered. Only if they are 
ontinuouslyre-generated like, e.g. in models with topologi
al defe
ts(see e.g.Ref. [83℄), ve
tor modes a�e
t CMB anisotropies.Here the situation is di�erent sin
e the modes 
onsideredare either exponentially growing or os
illating with re-spe
t to bulk time. Therefore, we expe
t the behavior ofve
tor perturbations to be very di�erent from the usual4-dimensional results even in the absen
e of K{modes.In the following, we assume that the boundary andinitial 
onditions are su
h the �i(ti) 6� 0. They thereforeallow for K{mode 
ontributions. Clearly, if this happensit leads to exponential growth of �i and �i. However, be-fore 
on
luding about the viability of these modes, onehas to 
he
k if they have observable 
onsequen
es on thebrane. Indeed, anisotropi
 stresses are often very small(e.g. of se
ond order only) and one may therefore hopethat the initial amplitudes of the K{modes are also verysmall and do not lead to destru
tives e�e
ts, at least ontime s
ales equal to the age of the universe. By estimat-ing the indu
ed CMB anisotropies, we show in the nextse
tion that this is not the 
ase.V. CMB ANISOTROPIESTo 
al
ulate the CMB anisotropies from the ve
tor per-turbations indu
ed by bulk gravity waves, the relevantquantities are � and # + � given in terms of the bulkvariables by Eqs. (72) and (73). Inserting the solutions(49) and (50) for the K{mode into (72) and (73) yields



9�(tb;k) = A(k;
)"p1 + L2H2 1a2K2�L
a �� LHr1� k2
2 1a2K1�L
a �# e�tbp
2 � k2 ; (75)(� + #) (tb;k) = A(k;
) k2
2 p1 + L2H22L2 _H L
a 1a2K1�L
a � e�tbp
2 � k2 ; (76)where again we have omitted the spatial index i on �,# and A. Similar equations 
an be obtained for the J{and Y{modes by repla
ing, in Eqs. (75) and (76), themodi�ed Bessel fun
tions by the ordinary ones, plus thetransformations: �k2 ! k2 and � ! �i.These equations are still written in bulk time tb whi
his related to the 
onformal time � on the brane bydtb =p1 + L2H2 d�: (77)Therefore, at suÆ
iently late time L2H2 � 1 su
h thatdtb ' d�. Note that L is the size of the extra-dimensionwhi
h must be smaller than mi
rometers while H�1 isthe Hubble s
ale whi
h is larger than 105 light years attimes later than re
ombination whi
h are of interest forCMB anisotropies.As a result, the growing or os
illating behavior in bulktime 
arries over to 
onformal time. Moreover there areadditional time dependent terms in Eqs. (75) and (76)with respe
t to Eqs. (49) and (50) due to the motion ofthe brane. As 
an be seen from Eqs. (75) and (76), themodes evolve quite di�erently for di�erent values of theirphysi
al bulk wave number 
=a. In the limit 
=a� 1=Land for 
2 > k2, the growing K{modes behave like� � 2A(
L)2 e�p
2�k2 ;� + # � A(
L)2 k22a2 _H e�p
2�k2 ; (78)where use has been made of L2H2 � 1, and of the lim-iting forms of Bessel fun
tion for small arguments [79℄Kp(x) �x!0 12�(p)� 2x�p : (79)In the same way, from Eq. (48), the K{modes verifying
=a� 1=L redu
e to� � A(
L)2 e�p
2�k2r�2 �
La �3=2 e�
L=a;� + # � A(
L)2 k22a2 _H e�p
2�k2r�2 �
La �1=2 e�
L=a:(80)They are exponentially damped 
ompared to the former[see Eq. (78)℄. As a result, the main 
ontribution of theK{mode ve
tor perturbations 
omes from the modes witha physi
al wave number 
=a smaller than the energy

s
ale 1=L asso
iated with the extra-dimension. As theuniverse expands, a mode with �xed value 
 remains rel-atively small as long as the exponents in Eq. (80) satisfy
a L� �p
2 � k2 ' 1a �
L� �p
2 � k2� > 0: (81)When this inequality is violated, for k � 
 this is soonafter � � L, the mode starts growing exponentially. Thetime � � L also 
orresponds to the initial time at whi
hthe evolution of the universe starts to be
ome Friedman-nian.In the same way, one 
an derive the behavior ofthe J{ and Y{modes on the brane for physi
al bulkwave numbers greater or smaller than the size of theextra-dimension. This time, the exponentially growingterms are repla
ed by os
illatory ones, and the ordinaryBessel fun
tions are approximated by (see Eq. (47) andRef. [79℄) Jp(x) �x!0 1�(p+ 1) �x2�p ;Yp(x) �x!0 � 1��(p)� 2x�p : (82)From Eqs. (47) and (82), the equivalents of Eqs. (75)and (76) for J{ and Y{modes 
an be shown to os
illatealways. From Eq. (32), their amplitude is found to de-
ay like a�3=2 in the short wavelength limit 
=a� 1=L.In the long wavelength limit 
=a � 1=L, the amplitudeof the Y{mode stays 
onstant whereas the J{mode de-
reases as a�4.The vorti
ity is also found to os
illate in 
onformaltime. This time, the amplitude of the long wavelengthY{modes always grows as a3w+1 while for the J{modesit behaves like a3w�1. Finally, in the short wavelengthlimit, both Y and J vorti
ity modes grow like a3w+1=2.Whatever the kind of physi
al ve
tor perturbationmodes ex
ited in the bulk, we have shown that therealways exist bulk wave numbers 
 that give rise to grow-ing ve
tor perturbations on the brane. Although the J{and Y{modes generate vorti
ity growing like a power lawof the s
ale fa
tor, they 
an be, in a �rst approximation,negle
ted 
ompared to the K{modes whi
h grows like anexponential of the 
onformal time. We therefore now
on
entrate on the K{modes and derive 
onstraints ontheir initial amplitude A(k;
) by estimating the CMBanisotropies they indu
e.In order to determine the temperature 
u
tuationsin the CMB due to ve
tor perturbations on the brane,



10we have to 
al
ulate how a photon emitted on the lasts
attering surfa
e travels through the perturbed geome-try (54). A re
eiver today therefore measures di�erentmi
rowave ba
kground temperatures TR(ni) for in
identphotons 
oming from di�erent dire
tions ni. In terms of
onformal time the ve
tor-type temperature 
u
tuationsare given by [81℄ÆTR(ni)TR = ni (�i + #i)jRE + Z RE ��i�xj ninjd�;= �ni#i(�E) + Z RE �0inid� (83)where � denotes the aÆne parameter along the photontraje
tory and the prime is a derivative with respe
t to
onformal time �. The \R" and \E" index refer to thetime of photon re
eption (today) and emission (re
ombi-nation). For the se
ond equality we have usedd�id� = �0i � nj ��i�xj ; (84)where �ni is the dire
tion of the photon momentum.We have also negle
ted the 
ontribution from the upperboundary, \R", in the �rst term sin
e it simply gives riseto a dipole term. The �rst term in Eq. (83) is a Dopplershift, and the se
ond is known as integrated Sa
hs-Wolfee�e
t. To determine the angular CMB perturbation spe
-trum C`, we apply the total angular momentum formal-ism developed by Hu and White [84℄. A

ording to this,a ve
tor perturbation v is de
omposed asv = e+v+ + e�v�; (85)where e� = �ip2 �e(1) � ie(2)� ; (86)and e(1;2) are de�ned so that (e(1), e(2), k̂ = k=k) forma righthanded orthonormal system. Using this de
om-position for #i and �i, one obtains the angular CMBperturbation spe
trum C` viaC` = 2� `(`+ 1) Z 10 k2hj�`(k)j2idk (87)where �`(k) = �#+(�E ; k)j`(k�0 � k�E)k�0 � k�E+ Z �0�E �+0(�; k)j`(k�0 � k�)k�0 � k� d�: (88)In Eq. (88) we have assumed that the pro
ess whi
h gen-erates the 
u
tuations has no preferred handedness sothat hj�+j2i = hj��j2i as well as hj#+j2i = hj#�j2i. Omit-ting the \�" supers
ripts, we 
an take into a

ount thenegative heli
ity mode simply by a fa
tor 2.

As shown in the previous se
tion, the main 
ontribu-tion of the K{modes 
omes from those having long wave-lengths a=
� L, and k < 
. In the following, only thesemodes will be 
onsidered. Sin
e they are growing expo-nentially in �, the integrated Sa
hs-Wolfe 
ontributionwill dominate and we 
on
entrate on it in what follows.A more rigorous justi�
ation is given in Appendix B. In-serting the limiting form (78) for � in Eq. (88) gives�`(�k) ' 2A0
n�kne�0p1��k2r 1�k2 � 1� Z xE0 j`(x)x e�xp1=�k2�1dx; (89)where a simple power law ansatz has been 
hosen for theprimordial amplitudeqhjA(k;
)j2i = A0(
)
2L2kn: (90)A dimensionless wave number �k, and 
onformal time �,have also been introdu
ed as�k = k
 ; � = �
; (91)in order to measure their physi
al 
ounterparts in units ofthe bulk wavelengths. The 
ondition k < 
 now be
omes�k < 1. The integration over � in the integrated Sa
hs-Wolfe term is transformed into an integration over thedimensionless variable x de�ned byx = k (�0 � �) = �k ��0 � �� ; (92)the subs
ript \0" refers to the present time. Note thatxE = k (�0 � �E) ' k�0 .By observing the CMB, one may naturally expe
t thatthe perturbations with physi
al wavelength greater thanthe horizon size today have almost no e�e
t. In terms ofour parameters, this means that the main 
ontributionin the C` 
omes from the modes verifying 
=a0 > H0 ,hen
e �0 > 1.In Appendix B, we derive a 
rude approximation forthe angular power spe
trum indu
ed by the exponentiallygrowing K{modes, in a range a little more 
onstrainedthan the one previously motivated, namely`maxH0 < 
a0 < L�11 + zE ; (93)where zE is the redshift at photon emission whi
h is takento 
oin
ide with re
ombination, zE ' 103. In order tosimplify the 
al
ulation, we do not want the transitionbetween the damped K{modes (
=a > L�1) and the ex-ponentially growing ones (
=a < L�1) to o

ur betweenthe last s
attering surfa
e and today. This requirementleads to the upper limit of Eq. (93). Moreover, in orderto derive the C`, we perform an expansion with respe
tto a parameter `=�0 assumed small, and `max refers tothe multipole at whi
h this approximation breaks down.



11The lower limit in Eq. (93) 
omes from this approxima-tion. Using the values L ' 10�3mm, H�10 ' 1029mm,`max ' 103, and zE ' 103, one �nds10�26mm�1 < 
a0 < 1mm�1: (94)The 
orresponding allowed range for the parameter �0be
omes [see Eq. (B11)℄103 < �0 < 1029: (95)Clearly the detailed peak stru
ture on the CMBanisotropy spe
trum would have been di�erent if we hadtaken into a

ount the os
illatory parts (k > 
) of theK{modes, as well as the Y{ and J{modes, but here weare only interested in estimating an order of magnitudebound. As detailed in Appendix B, for a s
ale invariantinitial spe
trum, i.e. n = �3=2, we obtain`(`+ 1)2� C` & �A0e�0 �2 e�``7=2 � �̀0�`�1 : (96)From 
urrent observations of the CMB anisotropies, theleft hand side of this expression is about 10�10, and for` ' 10, one getsA0(
) . e�[�0�5 ln(�0 )℄105 : (97)From Eq. (B11) and (95), one �nd that the primordialamplitude of these modes must satisfyA0(
) < e�103 ; for 
=a0 ' 10�26mm�1 (98)and, more dramati
ally,A0(
) < e�1029 ; for 
=a0 ' 1mm�1 (99)for the short wavelength modes. As expe
ted, the per-turbations with wavelength 
loser to the horizon today(smaller values of 
) are less 
onstrained than smallerwavelengths [see Eq. (98)℄. Moreover, one may expe
tthat the bound (99) is no longer valid for 
=a0 >L�1=(1 + zE) sin
e the modes in Eq. (80) start to 
on-tribute. However, the present results 
on
ern more than20 orders of magnitude for the physi
al bulk wave num-bers 
=a0 , and show that the exhibited modes are a
-tually very dangerous for the braneworld model we areinterested in.It seems that the only way to avoid these 
onstraintsis to �nd a physi
al me
hanism forbidding any ex
itationof these modes. VI. CONCLUSIONIn this paper we have shown that ve
tor perturbationsin the bulk generi
ally lead to growing ve
tor perturba-tions on the brane in the Friedmann-Lemâ�tre era. This

behaviour radi
ally di�ers from the usual one in four-dimensional 
osmology, where ve
tor modes de
ay likea�2 whatever the initial 
onditions.Among the growing modes, we have identi�ed so 
alledK{modes whi
h are perfe
tly normalizable and lead toexponentially growing ve
tor perturbations on the branewith respe
t to 
onformal time. By means of a roughestimate of the CMB anisotropies indu
ed by these per-turbations, we have found that they are severely in
om-patible with a homogeneous and isotropi
 universe; theylight up a �re in the mi
rowave sky, unless their primor-dial amplitude is extremely small.No parti
ular me
hanism for the generation of thesemodes has been spe
i�ed. However, one expe
ts thatbulk in
ation leads to gravitational waves in the bulkwhi
h do generi
ally 
ontain them. Even if they are notgenerated dire
tly, they should be indu
ed in the bulkby se
ond order e�e
ts. Usually, these e�e
ts are toosmall to have any physi
al 
onsequen
es, but here theywould largely suÆ
e due to the exponential growth ofthe K{modes [see Eqs. (98) and (99)℄. This se
ond orderindu
tion seems very diÆ
ult to prevent in the modelsdis
ussed here.It is interesting to note that this result is also linkedto the presen
e of a non-
ompa
t extra-dimension whi
hallows a 
ontinuum of bulk frequen
ies 
. A 
loser ex-amination of Eq. (44) shows that the mode 
 = 0, ad-mits only J{ and Y{mode behaviours. In a 
ompa
tspa
e, provided the �rst quantized value of 
 is suÆ-
iently large, one 
ould expe
t the exponentially grow-ing K{modes to be never ex
ited by low energy physi
alpro
esses. Another more spe
ulative way to dispose ofthem 
ould be to 
onsider their 
ausal stru
ture: as wehave noti
ed before, the modes with separation 
onstant+
2 are ta
hyons of mass�
2 from the four-dimensionalpoint of view. From the �ve-dimensional point of view,these are not \propagating modes", but \brane-modes"whi
h de
ay into the �fth dimension with penetrationdepth d = L2
.In a more basi
 theory, whi
h goes beyond our 
lassi-
al relativisti
 approa
h, these modes may thus not beallowed at all.Finally, we want to retain that even if the K{modes
an be eliminated in some way, the growing behavior ofthe Y{ and J{modes remains. Although their power lawgrowth is not as 
riti
al as the exponential growth ofthe K{modes, they should have signi�
ant e�e
ts on theCMB anisotropies. Indeed, they lead to ampli�ed os
il-lating ve
tor perturbations whi
h are entirely absent infour-dimensional 
osmology. This will be the obje
t of afuture study [85℄.We therefore 
on
lude that, if no physi
al me
hanismforbids the generation of the dis
ussed ve
tor modeswith time dependen
e / exp(�p
2 � k2), anti-de Sit-ter in�nitly thin braneworlds, with non-
ompa
t extra-dimension, 
annot reasonably lead to a homogeneous andisotropi
 expanding universe.
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t.APPENDIX A: COMPARISON WITH THERANDALL-SUNDRUM MODELAs already mentioned in the text, if the brane is atrest (H = 0) at rb = L, our model redu
es to the RS IImodel. One may ask therefore, quite naturally, why hasour dangerous K{mode never been dis
ussed in the 
on-text of RS II? In this appendix we address this question.First of all, the bulk solutions � and � for ve
tor per-turbations of AdS5 with a brane, remain valid. The so-lutions with m2 = �
2 < 0 have, however not been dis-
ussed in the literature so far. Also, when 
onstru
tingthe Green's fun
tion [16, 80, 86℄, these solutions have notbeen 
onsidered. As we shall see now, for most problemsthat is most probably very reasonable.In the RS II model one 
onsiders perturbations whi
hdo not require anisotropi
 stresses on the brane, �i = 0.Eq. (74) then redu
es to�(r = L; t;
; k) = 0 ; (A1)su
h that � has to vanish on the brane. We insert thisinto a general solution of the form�(r; t;
; k) = �ip1 + k2=
2e�itp
2 + k2 L2r2� �AJ1�L2
r �+BY1�L2
r �� ; (A2)for m2 = 
2 > 0;�(r; t;
; k) = �p1� k2=
2e�tp
2 � k2 L2r2� �CK1�L2
r �+DI1�L2
r �� ; (A3)for m2 = �
2 < 0 : (A4)The boundary 
ondition (A1) then impliesB = �A J1(L
)Y1(L
) ; for m2 = 
2 > 0; (A5)D = �CK1(L
)I1(L
) ; for m2 = �
2 < 0: (A6)Eq. (A5) is exa
tly the relation whi
h has also been foundin Ref. [16℄, while Eq. (A6) is new. However, if the solu-tion is not allowed to grow exponentially when approa
h-ing the Cau
hy horizon r ! 0, one has to require D = 0,

whi
h implies C = 0 sin
e K1 has no zeros. With thisphysi
ally sensible 
ondition (see Ref. [80℄), we 
an dis-
ard these solutions. Nevertheless, in 
ases where the I{modes 
an be regularized (e.g. by 
ompa
ti�
ation, pres-en
e of a se
ond brane et
.), the most general Green'sfun
tion would in
lude them. It is interesting to note thatthe 
al
ulation of the stati
 potential of two masses M1and M2 at distan
e x generated by the ex
hange of thezero-mode and the two 
ontinua of Kaluza{Klein modeswith positive and with imaginary masses, simply leads toV (x) � G4M1M2x �1 + Z 10 mL2e�mxdm� Z 10 mL2e�imxdm�= G4M1M2x �1 + 2L2x2 � : (A7)The short distan
e modi�
ation hen
e deviates by a fa
-tor of 2 from the result of Ref. [16℄, if we in
lude theta
hyoni
 modes. One has to be aware of the fa
t that,like so often, the result is sensitive to the 
hoi
e of theGreen's fun
tions.Anyway, small initial perturbations of the RS solutionwhi
h allow for small anisotropi
 stresses, so that the 
on-dition (A6) does not need to be imposed, will in general
ontain a small K{mode whi
h grows exponentially andrenders the 
osmologi
al model unstable. It seems to usthat this possibility has been overlooked in the literatureso far.We end this appendix with a simple example whi
hsket
hes the presen
e of this instability. We 
onsider a 1+1 dimensional Minkowski spa
e-time, with orbifold-likespatial se
tions whi
h 
an be identi�ed with two 
opiesof y � 0. The \brane" is represented by the point y = 0and the \bulk" by the two 
opies of y > 0. For an initiallysmall perturbation f(y; t) in the bulk, whi
h satis�es ahyperboli
 wave equation, we want to analyze whetheran instability 
an build up. We are looking for solutionsof �2t f � �2yf = 0; (A8)with small initial data, say f(t = 0; y) � 1 and �tf(t =0; y)� 1 for all y � 0. By separation of variables one 
an�nd a 
omplete set of solutions, f = f�(k) exp[�ik(y �t)℄. For a suÆ
iently small value of f�(k) these solutionssatisfy the initial 
onditions. These solutions os
illatein time; they have 
onstant amplitude. However, thereare other solutions, f = g�(k) exp[�k(y � t)℄. Sin
e theinitial data has to be small, the solutions / exp(+ky)are not allowed. But the solutions f = g� exp[�k(y� t)℄have perfe
tly small initial data and they represent an ex-ponential instability. If we �x the boundary 
onditions,setting f(t; y = 0) = 0, or �tf(t; y = 0) = 0, this insta-bility disappears, but if f(t; y = 0) is free, even a verysmall initial value f(0; 0) � 1 
an indu
e an exponen-tial instability. Clearly, this leads also to an exponentialgrowth of the boundary value f(t; y = 0).



13If we give the initial 
onditions f(0; y) = A exp(�ky)and �tf(0; y) = kA exp(�ky), the fun
tion f(t; y) =A exp[k(t� y)℄ solves the equation and generates the ex-ponential growing. If we would require, as an additionalboundary 
ondition that, e.g. the solutions at y = 0 re-main at least bounded, this mode would not be allowedand we would have to expand the initial data in terms ofthe os
illatory modes. However, it seems to us a
ausal topose 
onditions of what is going to happen \on the brane"in the future. But mathemati
ally, without any su
h\a
ausal" boundary 
onditions, the initial value prob-
lem is not well posed. This example is a simple analogof our instability. As long as anisotropi
 stresses vanishidenti
ally, only the J{ and Y{modes are relevant. How-ever, if the brane has arbitrarily small but non-vanishinganisotropi
 stresses on whi
h we do not want to imposeany 
onstraints for their future behavior, an exponentialinstability 
an build up. This is a rather unnatural be-haviour whi
h may 
ast doubts on the RS realisation ofbraneworlds in the 
ontext of 
osmologi
al perturbationtheory.APPENDIX B: CMB ANGULAR POWER SPECTRUMIn this appendix we �rst present a 
rude and then a more sophisti
ated approximation for the C`{power spe
trumfrom the exponentially growing K{modes. As we shall see, at moderate values of ` � 10{ 50, both lead to roughlythe same bounds for the amplitudes whi
h are also presented in the text.1. Crude approximationHere we start from Eq. (89). In the integralZ xE0 j`(x)x e�xp1=�k2�1dx; (B1)we repla
e j` by its assymptoti
 expansion for small `,j`(x) ' �x2�` p�2�(`+ 3=2) : (B2)This is a good approximation if either xE ' k�0 < `=2 or (`=2)(1=�k2� 1)1=2 > 1. Sin
e k2 < 
2, the �rst 
ondition isalways satis�ed if the �rst of the two inequalities in (93) are full�lled. The integral of x then giveshj�`(�k)j2i ' �A20
2n�k2n22``3 � 1�k2 � 1�1�` e2�0p1��k2 : (B3)Integrating over k, we must take into a

ount that our approximation is only valid for k < kmax = (
2 � ��20 )1=2.Sin
e we integrate a poritive quantity we 
ertainly obtain a lower bound by integrating it only until kmax. To simplifythe integral we also make the variable transform y = p1� �k2. With this and inserting our result (B3) in Eq. (87),we obtain `2C` & 2`22`A20
2n+3 Z 11=�0 (1� y2)n+`�1=2y3�2`e2�0ydy: (B4)For ` � 2, y3�2` � 1 on the entire range of integration. Hen
e we have`2C` & 2`22`A20
2n+3 Z 10 (1� y2)n+`�1=2e2�0ydy: (B5)This integral 
an be expressed in terms of modi�ed Struve fun
tions [79℄. In the interesting range, �0 � 1 we haveZ 10 (1� y2)n+`�1=2e2�0ydy ' �(n+ `+ 1=2)4�n+`+1=20 e2�0 : (B6)Inserting this result in Eq (B5) we then �nally obtain`2C` & p2�p` e�`22`+1 � �̀0 �n+`+1=2A20
2n+3e2�0 � p2�p` e�`22`+1 � �̀0�`�1A20e2�0 ; (B7)



14where we have used Stirling's formula for �(`+ n+ 1=2) and set n = �3=2 after the � sign.In the next se
tion we use a somewhat more sophisti
ated method whi
h allows us to 
al
ulate also the Doppler
ontribution to the C`'s. For the ISW e�e
t this method gives`2C` 'r 2� e�`36`7=2 � �̀0�`�1A20e2�0 (B8)for n = �3=2. Until ` � 15 the two approximations are in reasonable agreement and lead to the same prohibitivebounds for A0(
). For ` > 15, Eq. (B8) be
omes more stringent.2. Sophisti
ated approximationIn Eq. (89) we have only 
onsidered the dominant 
ontribution 
oming from the integrated Sa
hs-Wolfe e�e
t. Thegeneral expression is obtained by inserting the solutions (78) for � and # in Eq. (88),�`(�k) = 2A0
n�kn�1� �k2�k2E � j`(�k�0 � �k�E)�k�0 � �k�E e�Ep1��k2 + 2A0
n�kne�0p1��k2r 1�k2 � 1 Z xE0 j`(x)x e�xp1=�k2�1dx:(B9)To derive the �rst term we have used Eq. (32) in the matter era. The parameter�k2E = 6(1 + zE)�H0a0
 �2 ; (B10)re
e
ts the 
hange in behavior of the modes, redshifted by zE to the emission time, whi
h are either outside or insidethe horizon today. It is important to note that the parameter H0a0=
 
ompletely determines the e�e
t of the bulkve
tor perturbations on the CMB, together with the primordial amplitude A0 . Indeed, solving Eq. (29) in terms of
onformal time, and using Eqs. (28) and (32), yields �0 ' 2=(a0H0) in the Friedmann-Lemâ�tre era. Thus�0 ' 2
=a0H0 ; �E ' 11 + zE 
=a0H0 : (B11)We now repla
e the spheri
al Bessel fun
tions j` in the integrated Sa
hs-Wolfe term (ISW) using the relation [79℄j`(x) =r �2xJ`+1=2(x): (B12)In the ISW term the upper integration limit 
an be taken to be in�nity as the 
ontribution from xE to in�nity 
anbe negle
ted provided xp1=�k2 � 1 > 1. This restri
tion is equivalent to �k2 < 1� 1=�0 whi
h is veri�ed for almost allvalues of �k up to one, given that �0 varies in the assumed range (95). We remind that for the exponentially growingK{mode k � 
, and hen
e 0 � �k � 1. This allows for the exa
t solution [87℄Z 10 x�3=2J`+1=2(x)e�xp1=�k2�1dx = �k`2`+1=2 �(`)�(`+ 3=2)F � 2̀ ; 2̀ + 1; `+ 32; �k2� ; (B13)where F is the Gauss hypergeometri
 fun
tion. In regard to the subsequent integration over k we approximate F asfollows. For small values of �k, F is nearly 
onstant with value 1, at �k = 0. As �k ! 1 the slope of F diverges and it
annot be Taylor expanded anymore. However, by means of the linear transformation formulas [79℄, F 
an be writtenas a 
ombination of hypergeometri
 fun
tions depending on 1� �k2F � 2̀ ; 2̀ + 1; `+ 32; �k2� = ��`+ 32���12��� 2̀ + 32��� 2̀ + 12�F � 2̀ ; 2̀ + 1; 12 ; 1� �k2�+p1� �k2��`+ 32����12��� 2̀��� 2̀ + 1� F � 2̀ + 32 ; 2̀ + 12; 32; 1� �k2� : (B14)



15These in turn 
an be expanded around 1� �k2 = 0, and givesF ��k!1 2`+1=2 �1� `p1� �k2� : (B15)These two approximations interse
t at �k =p1� 1=`2. In this way, we 
an evaluate the mean value of F by integratingthe two parts over the interval [0; 1℄. Thus, the hypergeometri
 fun
tion is repla
ed byF � 2̀ ; 2̀ + 1; `+ 32; �k2� ' 2`+1=26`2 : (B16)Furthermore, the Gamma fun
tions in (B13) 
an be approximated using Stirling's formula [79℄�(`)�(`+ 3=2) ' 1`3=2 : (B17)Putting everything together and squaring Eq. (B9) we obtainj�`(�k)j2 = 2�A20�k2n
2n(�1� �k2�k2E �2 e2�Ep1��k2�k3(�0 � �E)3 �J`+1=2 ��k(�0 � �E)��2+ 2�1� �k2�k2E� e(�0+�E )p1��k2�k3=2(�0 � �E)3=2 J`+1=2 ��k(�0 � �E)� �k`�1p1� �k26`7=2+ e2�0p1��k2 �k2(`�1)(1� �k2)36`7 ) (B18)
The C`'s are then found by integrating over all k-modesC` = 2� `(`+ 1)
3 Z 10 �k2j�`(�k)j2d�k� 4A20`(`+ 1)
2n+3 �C(1)` + C(2)` + C(3)` � ; (B19)where the C(i)` 
orrespond to the three terms in Eq. (B18). In the following we keep only the zero order terms in�0=�E . From Eqs. (B18), (B19) one �ndsC(1)` = 1�30 Z 10 �k2n�1�1� �k2�k2E �2 e2�Ep1��k2 �J`+1=2 ��k�0��2 d�k (B20)First, noti
e that if the argument is larger or smaller than the index, the Bessel fun
tions are well approximated bytheir asymptoti
 expansions (47) and (82), respe
tively. Therefore, we split the �k-integral into two integrals over theintervals [0; �k`℄ and [�k`; 1℄, in ea
h of whi
h the Bessel fun
tion is repla
ed by its limiting forms. The transition value�k` is given by �k` ' `=�0 . In the integral from �k` to 1, the sin2(�k�0) is then repla
ed by its mean value 1=2 whi
h isjusti�ed if the multiplying fun
tion varies mu
h slower in �k than the sine. To 
arry out the integration we make thesubstitution y2 = 1� �k2, and in order to simplify the notation we de�ne the integralI(a; b; �) = Z ba y(1� y2)�e2�Eydy (B21)In this way we 
an write Eq. (B20) in the formC(1)` = 1��40 �I(0; y`; n� 3=2)� 2�k2E I(0; y`; n� 1=2) + 1�k4E I(0; y`; n+ 1=2)�+ 1�2(`+ 3=2) ��02 �2`+1 �I(y`; 1; `+ n� 1=2)� 2�k2E I(y`; 1; `+ n+ 1=2) + 1�k4E I(y`; 1; `+ n+ 3=2)� (B22)



16Sin
e y` = q1� �k2̀ is very 
lose to one, and the integrand is 
ontinuous in the interval [0; 1℄, integrals of the formI(y`; 1; �) 
an be well approximated by the mean formulaI(y`; 1; �) ' y(1� y2)�e2�Ey���y=y` (1� y`) ' e2�E2 � �̀0 �2(�+1) (B23)For the integrals of the type I(0; y`; �) we distinguish between three 
ases:Case a: � > �1. This 
ase 
orresponds to a spe
tral index n > 1=2 in the �rst integral in Eq. (B20). We writeI(0; y`; �) = I(0; 1; �)� I(y`; 1; �). The solution of the latter is given by Eq. (B23), whereas the former 
an besolved in terms of modi�ed Bessel and Struve fun
tions [87℄I(0; 1; �) = 12(� + 1) + p�2 ��1=2��E �(� + 1) �I�+3=2(2�E) + L�+3=2(2�E)� : (B24)Sin
e our derivation assumes �E > `, the large argument limit applies and we haveI�+3=2(2�E) + L�+3=2(2�E) ' e2�Ep��E ; (B25)independently of the index �.Case b: � = �1. Sin
e the above expressions, Eq. (B24), diverge for � = �1, we approximate the integral byI(0; y`; �) ' e2�E Z y`0 y(1� y2)�1dy = �e2�E ln� �̀0 � (B26)We have 
he
ked that the numeri
al solution of I(0; y`; �) agrees well with the approximation, provided y` is
lose to 1.Case 
: � < �1. We use the same simpli�
ation as in Eq. (B26), and now the integral yieldsI(0; y`; �) ' e2�E Z y`0 y(1� y2)�dy = � e2�E2(� + 1) � �̀0�2(�+1) (B27)For the parti
ular value n = �3=2, Eq. (B22) 
ontains terms I(0; y`;�3) and I(0; y`;�2) whi
h 
an be evaluateda

ording to (B27), as well as a term I(0; y`;�1) for whi
h we use (B26). The remaining three integrals over theinterval [y`; 1℄ are evaluated by (B23). The result isC(1)` ' e�0=zE4�`4 "1� `26zE �� `212zE�2 ln� �̀0 �+ e2�`2 �1� `224zE�2# (B28)The parameter � is a 
onstant of order unity, within in our approximation it is � = 1� ln 2 � 0:3.The se
ond term C(2)` in Eq. (B18) readsC(2)` ' 13`7=2�3=2s0 Z 10 e(�0+�E )p1��k2�k2n+`�1=2p1� �k2�1� �k2�k2E � J`+1=2(�k�0)d�k; (B29)where only the zero order terms in �E=�0 has been kept. Using the limiting forms for the Bessel fun
tion for argumentssmaller and larger than the transition value �k`, yieldsC(2)` ' 13`7=2�3=20 �(`+ 3=2) Z �k`0 e(�0+�E )p1��k2�k2n+`�1=2p1� �k2�1� �k2�k2E ���k�02 �`+1=2 d�k+ 21=23�1=2`7=2�0 Z 1�k` e(�0+�E )p1��k2�k2n+`�1p1� �k2�1� �k2�k2E� sin��k�0 � �2 `�d�k: (B30)



17For 
onsisten
y with the derivation of C(1)` , we have assumed that the main 
ontribution 
omes from the �rst integral,while the se
ond one is small due to the os
illating integrand. Sin
e �k` � 1, we 
an use again the mean formula toevaluate the �rst integral, and by the Stirling formula for �(`+ 3=2), Eq. (B30) be
omesC(2)` ' e�012�1=2`11=2 � �̀0 �2n+`+2 e�`�1� `224zE� : (B31)Sin
e ` < �0 , the spe
trum is damped at large `, while the other terms 
an lead to the appearan
e of a bump,depending on the value of �0 and n.The last terms C(3)` reads C(3)` = 136`7 Z 10 e2�0p1��k2�k2n+2` �1� �k2� d�k: (B32)Splitting this expression in two terms over 1� �k2, and using the substitution y2 = 1� �k2 yieldsC(3)` = 136`7 �I �0; 1; n+ `� 12�� I �0; 1; n+ `+ 12�� ; (B33)where I is given by Eq. (B21) with �E ! �0 . As before, these two integrals 
an be expressed in terms of modi�edBessel and Struve fun
tions [87℄. From Eq. (B24), taking their limiting forms at large argument, and expanding the� fun
tion by means of the Stirling formula givesC(3)` ' 172`7 (n+ `+ 3=2) (n+ `+ 1=2) +r�2 e2�0`15=2 e�`36 � �̀0�n+`+1=2 : (B34)Clearly, C(3)` dominates over the others sin
e it involves exp(2�0) while C(2)` and C(1)` appear only with fra
tionalpower of this fa
tor, namely exp(�0) and exp(�0=zE). This is due to the fa
t that we are 
on
erned with in
essantlygrowing perturbations leading to the predominan
e of the integrated Sa
hs-Wolfe e�e
t.Inserting Eqs. (B28), (B31) and (B34) for the parti
ular value n = �3=2 into Eq. (B19) gives the �nal CMB angularpower spe
trum `(`+ 1)2� C` ' 2�A20(e�0=zE4� "1� `26zE �� `212zE�2 ln� �̀0 �+ e2�`2 �1� `224zE�2#+ e�012�1=2`3=2 � �̀0�`�1 e�`�1� `224zE�+r�2 e2�0`7=2 e�`36 � �̀0 �`�1): (B35)
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