
CMB anisotropies from vetor perturbations in the bulkChristophe Ringeval,� Timon Boehm,y and Ruth DurrerzD�epartement de Physique Th�eorique, Universit�e de Gen�eve,24 quai Ernest Ansermet, 1211 Gen�eve 4, Switzerland.(Dated: Otober 22, 2003)The vetor perturbations indued on the brane by gravitational waves propagating in the bulkare studied in a osmologial framework. Cosmi expansion arises from the brane motion in a non-ompat Z2 symmetri �ve-dimensional anti-de Sitter spae-time. By solving the vetor perturbationequations in the bulk, for generi initial onditions, we �nd that they give rise to growing modes onthe brane in the Friedmann-Lemâ�tre era. Among these modes, we exhibit a lass of normalizableperturbations, whih are exponentially growing with respet to onformal time on the brane. Thepresene of these modes is strongly onstrained by the urrent observations of the osmi mirowavebakground (CMB). We estimate the anisotropies they indue in the CMB, and derive quantitativeonstraints on the allowed amplitude of their primordial spetrum.PACS numbers: 04.50.+h, 11.10.Kk, 98.80.CqI. INTRODUCTIONThe idea that our universe may have more than threespatial dimensions has been originally introdued byNordstr�om [1℄, Kaluza [2℄ and Klein [3℄. The fat thatsuper string theory, the most promising andidate fora theory of quantum gravity, is onsistent only in tenspae-time dimensions (11 dimensions for M-theory) hasled to a revival of these ideas [4{6℄. It has also been foundthat string theories naturally predit lower dimensional\branes" to whih fermions and gauge partiles are on-�ned, while gravitons (and the dilaton) propagate in thebulk [7{9℄. Suh \braneworlds" have been studied in aphenomenologial way already before the disovery thatthey are atually realized in string theory [10, 11℄.Reently it has been emphasized that relatively largeextra-dimensions (with typial length L ' �m) an\solve" the hierarhy problem: The e�etive four-dimensional Newton onstant given by G4 / G=LNan beome very small even if the fundamental gravi-tational onstant G ' m�(2+N)P̀ is of the order of theeletro-weak sale. Here N denotes the number of extra-dimensions [12{15℄. It has also been shown that extra-dimensions may even be in�nite if the geometry ontainsa so-alled \warp fator" [16℄.The size of the extra-dimensions is onstrained by therequirement of reovering usual four-dimensional Ein-stein gravity on the brane, at least on sales testedby experiments [17{19℄. Models with either a smallPlank mass in the bulk [12{14℄, or with non-ompatwarped extra-dimensions [15, 16℄, have been shown tolead to an aeptable osmologial phenomenology onthe brane [20{26℄, with or without Z2 symmetry in thebulk [27{29℄. Expliit osmologial senarii leading to a�Eletroni address: hristophe.ringeval�physis.unige.hyEletroni address: timon.boehm�physis.unige.hzEletroni address: ruth.durrer�physis.unige.h

nearly Friedmann-Lemâ�tre universe at late time an berealized on a 3{brane at rest in a dynamial bulk [30, 31℄or, alternatively, on a brane moving in an anti-de Sitterbulk [32, 33℄. It has been shown that both approahesare atually equivalent [34℄.One an also desribe braneworlds as topologial de-fets in the bulk [35{39℄. This is equivalent to the geo-metrial approah in the gravity setor [40℄, while it ad-mits an expliit mehanism to on�ne matter and gauge�elds on the brane [40{51℄. Depending on the under-lying theory, the stability studies of these defets haveshown that dynamial instabilities may appear on thebrane when there are more than one non-ompat extra-dimensions [52{54℄, whereas this is not the ase for a�ve-dimensional bulk [55℄, provided that a �ne-tuningbetween the model parameters is �xed [56℄.The next step is now to derive observational on-sequenes of braneworld osmologial models, e.g. theanisotropies of the osmi mirowave bakground (CMB).To that end, a lot of work has reently been in-vested to derive gauge invariant perturbation theory inbraneworlds with one o-dimension [57{61℄. Again, theperturbation equations an be derived when the brane isat rest [62℄, or when it is moving in a perturbed anti-de Sitter spae-time [34, 63{67℄. Whatever the approahhosen, the perturbation equations are quite umbersomeand it is diÆult to extrat interesting physial onse-quenes analytially. Also the numerial treatment ismuh harder than in usual four-dimensional perturbationtheory, sine it involves partial di�erential equations.Nevertheless, it is useful to derive some simple physi-al onsequenes of perturbation theory for brane worldsbefore performing intensive numerial studies. This hasbeen done for tensor perturbations on the brane in a veryphenomenologial way in Ref. [68℄ or on a more funda-mental level in Ref. [69℄. Tensor modes in the bulk whihindue salar perturbations on the brane have been stud-ied in Ref. [70℄ and it was found that they lead to impor-tant onstraints for braneworlds.In this artile we onsider a braneworld in a �ve-



2dimensional bulk where osmology is indued by the mo-tion of a \3-brane" in AdS5 . The bulk perturbationequations are onsidered without bulk soures and de-sribe gravity waves in the bulk. The present work on-entrates on the part of these gravity waves whih resultsin vetor perturbations on the brane.For the sake of larity, we �rst reall how osmologyon the brane an be obtained via the juntion ondi-tions, partiularly emphasizing how Z2 symmetry is im-plemented [20{26℄. After re-deriving the bulk pertur-bation equations for the vetor omponents in terms ofgauge invariant variables [34, 63{66℄, we analytially �ndthe most general solutions for arbitrary initial onditions.The time evolution of the indued vetor perturbationson the brane is then derived by means of the perturbedjuntion onditions. The main result of the paper is thatvetor perturbations in the bulk generially give rise tovetor perturbations on the brane whih grow either asa power law or even exponentially with respet to on-formal time. This behavior essentially di�ers from theusual deay of vetor modes in standard four-dimensionalosmology, and may lead to observable e�ets of extra-dimensions in the CMB.The outline of the paper is as follow: in the next se-tion, the osmologial braneworld model obtained by themoving brane in an anti-de Sitter bulk is briey realled.In Set. III we set up the vetor perturbation equationsand solve them in the bulk. In Set. IV the induedperturbations on the brane are derived and omparedto those in four-dimensional osmology, while Set. Vdeals with the onsequenes of these new results on CMBanisotropies. The resulting new onstraints for viablebraneworlds are disussed in the onlusion.II. BACKGROUNDAs mentioned in the introdution, our universe is on-sidered to be a 3-brane embedded in �ve-dimensionalanti-de Sitter spae-timeds2 = gABdxAdxB = r2L2 ��dt2 + Æijdxidxj�+ L2r2 dr2:(1)The apital Latin indies A;B run from 0 to 4 and theat spatial indexes i; j from 1 to 3. Anti-de Sitter spae-time is a solution of Einstein's equations with a negativeosmologial onstant �GAB +�gAB = 0; (2)provided that the urvature radius L satis�esL2 = � 6� : (3)Another oordinate system for anti-de Sitter spae anbe de�ned by the oordinates transformation r2=L2 =exp (�2%=L). Then, the metri takes the formds2 = gABdxAdxB = e�2%=L ��dt2 + Æijdxidxj�+ d%2;(4)

whih is often used in braneworld models.A. Embedding and motion of the braneThe position of the brane in the AdS5 bulk is given byxM = XM(y�); (5)where XM are embedding funtions depending on the in-ternal brane oordinates y� (� = 0; � � � ; 3). Using thereparametrization invariane on the brane, we hoosexi = X i = yi. The other embedding funtions are writ-ten X0 = tb(�); X4 = rb(�); (6)where � � y0 denotes osmi time on the brane. Sinewe want to desribe a homogeneous and isotropi brane,X0 as well as X4 are required to be independent of thespatial oordinates yi. The four tangent vetors to thebrane are given by eM� �M = �XM�y� �M ; (7)and the unit spae-like normal 1-form nM is de�ned (upto a sign) by the orthogonality and normalization ondi-tions nMeM� = 0; gABnAnB = 1: (8)Adopting the sign onvention that n points in the di-retion in whih the brane is moving (growing rb for anexpanding universe), one �nds usinge0� = _tb; e4� = _rb; eij = Æij ; (9)the omponents of the normaln0 = � _rb; n4 = _tb; ni = 0: (10)The other omponents are vanishing, and the dot denotesdi�erentiation with respet to the brane time � .This embedding ensures that the indued metri onthe brane desribes a spatially at homogeneous andisotropi universe,ds2b = q��dy�dy� = �d�2 + a2(�)Æijdyidyj ; (11)where a(�) is the usual sale fator, and q�� is the pull-bak of the bulk metri onto the braneq�� = gABeA�eB� ; (12)(see e.g. [71, 72℄). The �rst fundamental form qAB is nowde�ned by qAB = q��eA�eB� ; (13)



3i.e. the push-forward of the inverse of the indued metritensor [71, 73℄. One an also de�ne an orthogonal pro-jetor onto the brane whih an be expressed in terms ofthe normal 1-form?AB= nAnB = gAB � qAB; (14)in the ase of only one odimension.Upon inserting the equations (1), (10) and (13) intothe above equation, one �nds a parametri form for thebrane trajetory [32, 33, 65, 66℄rb(�) = a(�)L;_tb(�) = 1ap1 + L2H2; (15)where H = _a=a denotes the Hubble parameter on thebrane. Alternatively, this result an be obtained by om-paring expression (12) with the Friedmann metri (11).Therefore, the unperturbed motion indues a osmo-logial expansion on the 3-brane if rb is growing withtb.B. Extrinsi urvature and unperturbed juntiononditionsThe osmologial evolution on the brane is found bythe Lanzos{Sen{Darmois{Israel juntion onditions1.They relate the jump of the extrinsi urvature aross thebrane to its surfae energy-momentum ontent [74{77℄.The extrinsi urvature tensor projeted on the brane anbe expressed in terms of the tangent and normal vetorsas K�� = �eA�eB�rAnB = �12eA�eB�LngAB: (16)Here r denotes the ovariant derivative with respetto the bulk metri, and Ln is the �ve-dimensional Lie-derivative in the diretion of the unit normal on thebrane. With the sign hoie in Eq. (16), the juntiononditions read [78℄K>�� �K<�� = �25 �S�� � 13Sq��� � �25 bS�� ; (17)where S�� is the energy momentum tensor on the branewith trae S, and �25 � 6�2G5 = 1M35 ; (18)whereM5 and G5 are the �ve-dimensional (fundamental)Plank mass and Newton onstant, respetively. The su-persripts \>" and \<" stand for the bulk sides with1 In the following, they will be simply referred to as \juntiononditions".

r > rb and r < rb. As already notied, the brane nor-mal vetor nM points into the diretion of inreasing r[see Eq. (10)℄. Eq. (17) is usually referred to as seondjuntion ondition. The �rst juntion ondition simplystates that the �rst fundamental form (13) is ontinuousaross the brane.In general, there is a fore ating on the brane whih isdue to its urvature in the higher dimensional geometry.It is given by the ontration of the brane energy momen-tum tensor with the average of the extrinsi urvature onboth sides of the brane [28℄S�� �K>�� +K<��� = 2f: (19)This fore f , normal to the brane, is exerted by the asym-metry of the bulk with respet to the brane [28, 71℄. Inthis paper, we onsider only the ase in whih the bulk isZ2 symmetri aross the brane, hene f = 0. In this asethe motion of the brane is aused by the stress energytensor of the brane itself whih is exatly the osmologi-al situation we have in mind.From Eqs. (10), (11), (15) and (16), noting that theextrinsi urvature an be expressed purely in terms ofthe internal brane oordinates [65, 66℄, one hasK�� = �12 �gAB �eA���nB + eA� ��nB�+ eA�eB� nCgAB;C� :(20)A short omputation shows that the non-vanishing om-ponents of the extrinsi urvature tensor areK�� = 1 + L2H2 + L2 _HLp1 + L2H2 ;Kij = �a2Lp1 + L2H2Æij : (21)It is lear, that the extrinsi urvature evaluated at somebrane position rb does not jump if the presene of thebrane does not modify anti-de Sitter spae. Like in theRandall{Sundrum (RS) model [16℄, in order to aommo-date osmology, the bulk spae-time struture is modi�edby gluing the mirror symmetri of anti-de Sitter spae onone side of the brane onto the other [34℄. There are twopossibilities: one an keep the \r > rb" side and replaethe \r < rb" side to getK>�� = K�� ; K<�� = �K�� ; (22)where K�� is given by Eq. (21). Conversely, keeping ther < rb side leads toK>�� = �K�� ; K<�� = K�� : (23)Note that both ases verify the fore equation (19). Fromthe time and spae omponents of the juntion onditions(17) one obtains, respetively�1 + L2H2 + L2 _HLp1 + L2H2 = 12�25 (P + �)� 16�25 (�+ T ) ;(24)�p1 + L2H2L = �16�25 (�+ T ) : (25)



4Here the brane stress tensor is assumed to be that of aosmologial uid plus a pure tension T , i.e.S�� = (P + �)u�u� + Pq�� � T q�� ; (26)� and P being the usual energy density and pressure onthe brane, and u� the omoving four-veloity. The \�"signs in Eqs. (24) and (25) are obtained by keeping, re-spetively, the r > rb, or r < rb, side of the bulk. In orderto allow for a positive total brane energy density, �+ T ,we have to keep the r < rb side and glue it symmetriallyon the r > rb one2. In the trivial stati (H = 0) ase thisonstrution reprodues the Randall Sundrum II [16℄ so-lution with warp fator exp(�j%j=L), for �1 < % <1 ifwe hoose rb = L = onstant. In our oordinates, we justhave 0 < r � rb on either side of the brane, and the bulkis now desribed by two opies of the \bulk behind thebrane". Even if r only takes values inside a �nite interval,and even though the volume of the extra dimension,V = 2 Z rb0 pjgj dr = rb2 �rbL �3 ; (27)is �nite, the bulk is semi-ompat and its spetrum ofperturbation modes has no gap (like in the RS model).From Eqs. (24) and (25), one an hek that energyonservation on the brane is veri�ed_�+ 3H (P + �) = 0: (28)Solving Eq. (25) for the Hubble parameter yieldsH2 = �45T18 ��1 + �2T �+ �4536T 2 � 1L2 : (29)At \low energies", j�=T j � 1, the usual Friedmann equa-tion is reovered provided the �ne-tuning ondition�4536T 2 = 1L2 ; (30)is satis�ed. The four-dimensional Newton onstant isthen given by �24 � 8�G4 = �45 :T6 ; (31)Thus a positive tension is required to get a positive e�e-tive four-dimensional Newton onstant. Note also thatlow energy means �2 � H�2 � L2. In the Friedmann-Lemâ�tre era, the solution of Eq. (29) readsH ' H0 � aa0��3(1+w)=2 ;_H ' �32(1 + w)H20 � aa0 ��3(1+w) ; (32)
2 Note that we obtain the same result as in Ref. [66℄: a positivebrane tension for an expanding universe is obtained by keepingthe anti-de Sitter side whih is \behind the expanding brane withrespet to its motion".

for a osmologial equation of state P = w� with on-stant w. The parameters H0 and a0 refer, respetively,to the Hubble parameter and the sale fator today. Forthe matter era we have w = 0, and during the radiationera w = 1=3.III. GAUGE INVARIANT PERTURBATIONEQUATIONS IN THE BULKA general perturbation in the bulk an be deomposedinto \3-salar", \3-vetor" and \3-tensor" parts whihare irreduible omponents under the group of isometries(of the unperturbed spae time) SO(3)�E3, the group ofthree dimensional rotations and translations. In this pa-per we restrit ourselves to 3-vetor perturbations3 andonsider an \empty bulk", i.e. the ase where there areno soures in the bulk exept a negative osmologialonstant. With respet to the bulk, and its four spatialdimensions, only bulk gravity waves are therefore onsid-ered sine they are the only modes present when the en-ergy momentum tensor is not perturbed. It is well known(see e.g. Ref. [62℄) that gravity waves in 4+1 dimensionshave �ve degrees of freedom whih an be deomposedwith respet to their spin in 3+1 dimensions into a spin2 �eld, the ordinary graviton, a spin 1 �eld, often alledthe gravi-photon and into a spin 0 �eld, the gravi-salar.In this work we study the evolution of the gravi-photonin the bakground desribed in the previous setion.After setting up our notations, we �nd the gauge in-variant vetor perturbation variables in the bulk andwrite down the perturbed Einstein equations. We de-rived analyti solutions for all vetor modes in the bulk.A. Bulk perturbation variablesConsidering only vetor perturbations in the bulk, the�ve dimensional perturbed metri an be parameterizedasd~s2 = � r2L2 dt2 + r2L2 (Æij +riEj +rjEi) dxidxj+ L2r2 dr2 + 2Bi r2L2 dtdxi + 2Cidxidr; (33)whereri denotes the onnetion in the three dimensionalsubspae of onstant t and onstant r. Assuming thisspae to be at one has ri = �i. The quantities Ei,Bi, and Ci are divergeneless vetors i.e. �iEi = �iBi =�iCi = 0.As long as we want to solve for the vetor perturbationsin the bulk only, the presene of the brane is not yet3 The pre�x \3-" will be dropped in what follows, and the term\vetor" will be always applied here for spin 1 with respet tothe surfaes of onstant t and r.



5relevant. Later it will appear as a boundary onditionfor the bulk perturbations via the juntion onditions aswill be disussed in Set. IVC.Under a linearized vetor type oordinate transforma-tion in the bulk, xM ! xM + "M , with "M = (0; "i; 0), theperturbation variables de�ned above transform asEi ! Ei + L2r2 "i;Bi ! Bi + L2r2 �t"i;Ci ! Ci + �r"i � 2r "i: (34)As expeted for three divergeneless vetor variablesand one divergeneless vetor type gauge transformation,there remain four degrees of freedom whih are desribedby the two gauge invariant vetors�i = Bi � �tEi; (35)�i = Ci � r2L2 �rEi: (36)Note that in the gauge Ei = 0 these gauge-invariant vari-ables simply beome Bi and Ci respetively.B. Bulk perturbation equations and solutionsA somewhat umbersome derivation of the Einsteintensor from the metri (33) to �rst order in the pertur-bations leads to the following vetor perturbation equa-tions, �t�� Lr �r� r3L3�� = 0; (37)r4L2 �2r�+ 5 r3L2�r�� L2�2t� + L2�� = 0; (38)r4L2 �2r� r3L3��� r3L2 �r� r3L3��� L2�2t� r3L3��+L2�� r3L3�� = 0; (39)where � denotes the spatial Laplaian, i.e.� = Æij�i�j ; (40)and the spatial index on � and � has been omitted. Onean hek that these equations are onsistent, e.g. withthe master funtion approah of Ref. [64℄.A omplete set of solutions for these equations an eas-ily be found by Fourier transforming with respet to xi,and making the separation ansatz:�(t; r;k) = �T(t;k)�R(r;k); (41)�(t; r;k) = �T(t;k)�R(r;k): (42)

The most general solution is then a linear ombination ofsuh elementary modes. Eq. (38) splits into two ordinarydi�erential equations for �T and �R,r4 �2r�R�R + 5r3 �r�R�R = �L4
2; (43)�2t�T�T + k2 = �
2; (44)where k is the spatial wave number, and �
2 the separa-tion onstant having the dimension of an inverse lengthsquared. The frequeny 
 represents the rate of hangeof �R at r � L, while the rate of hange of �T ispj
2 � k2j. From the four-dimensional point of view,�
2 an also be interpreted as the mass m2 of the modeso that �
2 = �m2. The signs in Eqs. (43) and (44)ome from the hoie 
2 � 0. Eq. (43) is a Bessel di�er-ential equation of order two for the \�" sign and a mod-i�ed Bessel equation of order two for the \+" sign [79℄,while Eq. (44) exhibits osillatory or exponential behav-ior in bulk time. From Eq. (39), similar equations arederived for �T(t;k) and �R(r;k). This time, the radialfuntion is given by Bessel funtions of order one. Theonstraint equation (37) ensures that the separation on-stant �
2 is the same for both vetors and it also deter-mines their relative amplitude. The general solution ofEqs. (37) to (39) is a superposition of modes 
;k whihare given by
� / 8>>>>>>>>>>>><>>>>>>>>>>>>:

L2r2 K2�L2
r � e�tp
2 � k2L2r2 I2�L2
r � e�tp
2 � k2L2r2 J2�L2
r � e�itp
2 + k2L2r2 Y2�L2
r � e�itp
2 + k2 ; (45)
� / 8>>>>>>>>>>>><>>>>>>>>>>>>:

�p1� k2=
2L2r2 K1�L2
r � e�tp
2 � k2�p1� k2=
2L2r2 I1�L2
r � e�tp
2 � k2�p1 + k2=
2L2r2 J1�L2
r � ie�itp
2 + k2�p1 + k2=
2L2r2 Y1�L2
r � ie�itp
2 + k2 :(46)Here Kp and Ip are the modi�ed Bessel funtions of orderp while Jp and Yp are the ordinary ones. The � signsin Eqs. (45) and (46) orrespond to the two linearly in-dependent solutions of Eq. (44), whereas the sign of theseparation onstant determines the kind of Bessel fun-tions: +
2 (or m2 < 0) for the modi�ed Bessel funtionK and I; �
2 (or m2 > 0) for the ordinary Bessel fun-



6tions J and Y. In general, eah of these modes4 an bemultiplied by a proportionality oeÆient whih dependson the wave vetor k and 
. Eq. (37) ensures that thisoeÆient is the same for � and �. Furthermore, notiethat if 
2 > k2 the K{ and I{modes an have an exponen-tially growing behaviour, whereas for 
2 < k2 one setsp
2 � k2 = ipj
2 � k2j suh that the modes beomeosillatory. The J{ and Y{modes are always osillating.For a given perturbation mode to be physially aept-able one has to require that, at some initial time ti, theperturbations are small for all values 0 < r � rb(ti),ompared to the bakground. To hek that, we use thelimiting forms of the Bessel funtions [79℄. For large ar-guments, the ordinary Bessel funtions behave asJp(x) �x!1r 2�x os�x� �2 p� �4� ;Yp(x) �x!1r 2�x sin�x� �2 p� �4� ; (47)while the modi�ed Bessel funtions grow or derease ex-ponentially Kp(x) �x!1r �2xe�x;Ip(x) �x!1 1p2�xex: (48)Therefore, in Eqs. (45) and (46) all modes, exept forthe K{mode, diverge as r ! 0. Hene the only regularmodes are� = A(k;
)L2r2 K2�L2r 
� e�tp
2 � k2 ; (49)� = �A(k;
)r1� k2
2 L2r2 K1�L2r 
� e�tp
2 � k2 ;(50)where the amplitude A(k;
) is determined by the ini-tial onditions and arries an impliit spatial index. Forsmall wave numbers k2 < 
2 the growing solution rapidlydominates, whereas for large wave numbers k2 > 
2 bothsolutions are omparable and osillating in time. It iseasy to see that the K{mode is also normalizable in thesense thatZ rb0 pjgjj�j2dr / Z rb0 1r �K2�L2r 
��2 dr <1;Z rb0 pjgjj�j2dr / Z rb0 1r �K1�L2r 
��2 dr <1: (51)Note that also the J{modes and Y{modes are normal-izable. One might view this integrability ondition as4 In the following, they will be labeled by the kind of Bessel fun-tion they involve, e.g. \K{mode", \I{mode" et.

a requirement to insure �niteness of the energy of thesemodes. This suggests that the J{ and Y{modes ouldalso be exited by some physial proess. Indeed, fromEq. (4), their divergene for r ! 0 an be reast in termsof the % oordinate, with % ! 1. Expressed in termsof %, the integrability ondition (51) ensures that the J{and Y{modes are well de�ned in the Dira sense, andthus that a superposition of them may represent physi-al perturbations5 [80℄.Let us briey disuss also the zero-mode 
 = 0. Thesolution of Eqs. (37), (38) and (39) are then� = Ae�ikt (52)� = �ikLe�ikt "A2 Lr +B�Lr �3# (53)These solutions (whih an also be obtained fromEqs. (45) and (46) in the limit 
! 0) diverge for r ! 0but the A{mode is normalizable in the sense that theintegrals de�ned in Eq. (51) onverge.Clearly the most intriguing solutions are the K{modes,espeially for values of the separation onstant verifying
2 > k2. Then, if present, these utuations soon domi-nate the others in the bulk. The fat that m2 = �
2 < 0in this ase implies that the K{modes are tahyonimodes, and it is thus not surprising that they may gen-erate instabilities.Before we go on, let us just note, that all these solutionsare also valid solutions of the bulk vetor perturbationequations in the RS model. In their original work [16℄,Randall and Sundrum have obtained very similar equa-tions (we used somewhat di�erent variables). However,they onsidered only the solutions with m2 = +
2 > 0and therefore did not �nd the growing K{modes. As weshall see in the next setion, this hoie is justi�ed whenone onsiders boundary onditions whih do not allowfor any anisotropi stresses on the brane. This is indeedwell motivated as far as osmology is not onerned. Amore detailed disussion of the relevane of these modesfor the RS model is given in Appendix A.In our osmologial framework however, if there isno physial argument whih forbids these modes, theyhave to be taken seriously sine they represent solutionsof the perturbations equations whih are small at veryearly times and grow exponentially with respet to bulktime. Note that this instability is linked to the parti-ular bulk struture onsidered here where the brane liesat one boundary of the spae-time. In the full AdS5 ,0 < r < 1, the K{modes are learly not normalizablesine Kp(L2
=r) diverges for r !1.At last, one may hope that the K{modes are nevergenerated. However, during any bulk inationary phasewhih leads to the prodution of 4+ 1 dimensional grav-ity waves, as we shall see now, if the anisotropi stresses5 This is of ourse not the ase for the I{modes.



7on the brane do not vanish identially the K{modes areperfetly admissible solutions. For a given inationarymodel, it should be also possible to alulate the spe-trum of utuations, jA(k;
)j2.At this stage, the perturbation modes have been onlyderived in the bulk. In the next setion, we shall deter-mine the indued perturbations on the brane using theperturbed juntion onditions.IV. THE INDUCED PERTURBATIONS ON THEBRANEA. Brane perturbation variablesSine we are interested in vetor perturbations on thebrane indued by those in the bulk, we parameterize theperturbed indued metri asd~s2b = ~q��dy�dy�= �d�2 + 2abid�dyi+ a2 (Æij +riei +rjei) dyidyj ; (54)where ei and bi are divergene free vetors. The juntiononditions whih relate the bulk perturbation variables tothe perturbations of the brane an be written in terms ofgauge invariant variables. Under an in�nitesimal trans-formation y� ! y� + ��, where �� = (0; a2�i), we haveei ! ei + �i;bi ! bi + a _�i: (55)Here the dot is the derivative with respet to the branetime � and �i is a divergene free vetor �eld. Hene thegauge invariant vetor perturbation is [81℄�i = bi � a _ei: (56)This variable fully desribes the vetor metri perturba-tions on the brane.The brane energy momentum tensor S�� given inEq. (26) has also to be perturbed. As we shall see, thejuntion onditions (together with Z2 symmetry) do ingeneral require a perturbed energy momentum tensor onthe brane. Sine we only onsider vetor perturbationsÆ� = ÆP = 0. However, the perturbed four-veloity ofthe perfet uid does ontain a vetor part ~u� = u�+Æu�,with Æu� = 0� 0via ;1A (57)and where vi is divergeneless. Under y� ! y� + ��,vi ! vi � a _�i; (58)where vi � Æijvi. A gauge invariant perturbed veloityan therefore be de�ned as#i = vi + a _ei: (59)

In addition, the anisotropi stresses ontain a vetor om-ponent denoted �i. Sine the orresponding bakgroundquantity vanishes, this variable is gauge invariant aord-ing to the Stewart{Walker lemma [82℄.In summary, there are three gauge invariant brane per-turbation variables. We shall use the ombinations�i = bi � a _ei;#i = vi + a _ei;�i: (60)To apply the juntion onditions we need to determinethe perturbations of the redued energy momentum ten-sor de�ned in Eq. (17). In terms of our gauge invariantquantities they readÆ bS�� = 0; (61)Æ bS�i = �a�P + 23�� 13T ��i � a (P + �)#i; (62)Æ bSij = a2P (�i�j + �j�i) : (63)B. Perturbed indued metri and extrinsiurvatureWe now express the perturbed indued metri, and theperturbed extrinsi urvature in terms of the bulk per-turbation variables [66℄. In priniple there are two on-tributions to the brane perturbations: perturbations ofthe bulk geometry as well as perturbations of the braneposition. A bulk perturbed quantity has then to be evalu-ated at the perturbed brane position [see Eq. (6)℄. Usingreparametrization invariane on the brane [66℄, the per-turbed embedding an be desribed in terms of a singlevariable �, ~XM = XM +�nM ; (64)where all quantities are funtions of the brane oordi-nates y�. Sine � is a salar perturbation it does notplay a role in our treatment, and we an onsider onlythe perturbations ÆgAB due to the perturbed bulk geom-etry evaluated at the unperturbed brane position. Theindued metri perturbation is then given byÆq�� = ~q�� � q�� = eA�eB� ÆgAB: (65)From Eqs. (33), (35), (36) and (65) one �nds in the gaugeEi = 0 Æq�� = 0;Æq�i = ap1 + L2H2�i + aLH�i;Æqij = Ægij = 0: (66)The time omponent vanishes as it is a pure salar, andthe purely spatial omponents an be set to zero withoutloss of generality by gauge �xing ( Ei = ei = 0 ).



8In the same way, perturbing Eq. (20), and making useof Eqs. (7), (8) in order to derive the perturbed normalvetor, leads to (again we use the gauge Ei = 0)ÆK�� = 0 (67)ÆK�i = 12�t�i � 12a2�r�i � aHp1 + L2H2�i� aL �1 + L2H2��i; (68)ÆKij = 12aLH (�i�j + �j�i)+ 12ap1 + L2H2 (�i�j + �j�i) ; (69)where ÆK�� = ~K�� �K�� , and all bulk quantities haveto be evaluated at the brane position. In the derivationwe have also used that on the brane �� = eA��A.C. Perturbed juntion onditions and solutionsThe �rst juntion ondition requires the �rst funda-mental form qAB to be ontinuous aross the brane.Therefore, the omponents of the indued metri (54)are given by the expliit expressions (66). This leads tothe following relationsei = Ei;bi =p1 + L2H2Bi + LHCi; (70)where the bulk quantities have to be evaluated at thebrane position (tb; rb). For �i = bi � a _ei we usea _ei = a � _tb�tEi + _rb�rEi�=p1 + L2H2�tEi + a2LH�rEi: (71)Together with Eqs. (35) and (36) this gives�i =p1 + L2H2�i + LH�i: (72)The equations orresponding to the seond juntion on-dition are obtained by perturbing Eq. (17) (using Z2symmetry, K>�� = �K<�� = �K��) and inserting the ex-pressions (68), (69) for the perturbed extrinsi urvaturetensor, with Eqs. (62), (63) for the perturbed energy-momentum tensor on the brane. After some algebra oneobtains for the (0i) and the (ij) omponents, respetively2L _Hp1 + L2H2 a (�i + #i) = a2�r�i � �t�i; (73)�25aP�i = �LH�i �p1 + L2H2�i; (74)where we have used the unperturbed juntion onditions,Eqs. (24) and (25), and the fat that on the brane �� =eA��A.In the RS model one has H = _H = 0 and the re-quirement that the anisotropi stresses vanish identially.

We show in Appendix A that the well-known results ofRefs. [16℄ and [80℄ are reovered in this limit.Hene, if by some mehanism, like e.g. bulk ination,gravity waves are produed in the bulk, their vetor parts�i and �i will indue vetor metri perturbations �i onthe brane aording to Eq. (72). The vortiity �i+#i andanisotropi stresses �i on the brane de�ne boundary on-ditions for the bulk variables aording to Eqs. (73) and(74). In general, the time evolution of �i may be given bysome additional matter equation, like e.g. the Boltzmannequation or some dissipation equation whih usually de-pends also on the metri perturbations. It is interestingto note that for generi initial onditions in the bulk, theamplitude of the K{mode does not vanish, whih meansthat the anisotropi stresses on the brane may grow ex-ponentially. At late time (for LH � 1) Eq. (74) reduesto �25aP�i = ��i. A generally ovariant equation of mo-tion for �i must be ompatible with this behavior sineit is a simple onsequene of the 5-dimensional Einsteinequations for a ertain hoie of initial onditions.In the following we do not want to speify a parti-ular mehanism whih generates �i and �i, and justassume they have been produed with some spetrumgiven by A(k;
). In usual 4-dimensional osmology itis well-known that vetor perturbations deay. There-fore, in ordinary 4-dimensional inationary senariosthey are not onsidered. Only if they are ontinuouslyre-generated like, e.g. in models with topologial defets(see e.g.Ref. [83℄), vetor modes a�et CMB anisotropies.Here the situation is di�erent sine the modes onsideredare either exponentially growing or osillating with re-spet to bulk time. Therefore, we expet the behavior ofvetor perturbations to be very di�erent from the usual4-dimensional results even in the absene of K{modes.In the following, we assume that the boundary andinitial onditions are suh the �i(ti) 6� 0. They thereforeallow for K{mode ontributions. Clearly, if this happensit leads to exponential growth of �i and �i. However, be-fore onluding about the viability of these modes, onehas to hek if they have observable onsequenes on thebrane. Indeed, anisotropi stresses are often very small(e.g. of seond order only) and one may therefore hopethat the initial amplitudes of the K{modes are also verysmall and do not lead to destrutives e�ets, at least ontime sales equal to the age of the universe. By estimat-ing the indued CMB anisotropies, we show in the nextsetion that this is not the ase.V. CMB ANISOTROPIESTo alulate the CMB anisotropies from the vetor per-turbations indued by bulk gravity waves, the relevantquantities are � and # + � given in terms of the bulkvariables by Eqs. (72) and (73). Inserting the solutions(49) and (50) for the K{mode into (72) and (73) yields



9�(tb;k) = A(k;
)"p1 + L2H2 1a2K2�L
a �� LHr1� k2
2 1a2K1�L
a �# e�tbp
2 � k2 ; (75)(� + #) (tb;k) = A(k;
) k2
2 p1 + L2H22L2 _H L
a 1a2K1�L
a � e�tbp
2 � k2 ; (76)where again we have omitted the spatial index i on �,# and A. Similar equations an be obtained for the J{and Y{modes by replaing, in Eqs. (75) and (76), themodi�ed Bessel funtions by the ordinary ones, plus thetransformations: �k2 ! k2 and � ! �i.These equations are still written in bulk time tb whihis related to the onformal time � on the brane bydtb =p1 + L2H2 d�: (77)Therefore, at suÆiently late time L2H2 � 1 suh thatdtb ' d�. Note that L is the size of the extra-dimensionwhih must be smaller than mirometers while H�1 isthe Hubble sale whih is larger than 105 light years attimes later than reombination whih are of interest forCMB anisotropies.As a result, the growing or osillating behavior in bulktime arries over to onformal time. Moreover there areadditional time dependent terms in Eqs. (75) and (76)with respet to Eqs. (49) and (50) due to the motion ofthe brane. As an be seen from Eqs. (75) and (76), themodes evolve quite di�erently for di�erent values of theirphysial bulk wave number 
=a. In the limit 
=a� 1=Land for 
2 > k2, the growing K{modes behave like� � 2A(
L)2 e�p
2�k2 ;� + # � A(
L)2 k22a2 _H e�p
2�k2 ; (78)where use has been made of L2H2 � 1, and of the lim-iting forms of Bessel funtion for small arguments [79℄Kp(x) �x!0 12�(p)� 2x�p : (79)In the same way, from Eq. (48), the K{modes verifying
=a� 1=L redue to� � A(
L)2 e�p
2�k2r�2 �
La �3=2 e�
L=a;� + # � A(
L)2 k22a2 _H e�p
2�k2r�2 �
La �1=2 e�
L=a:(80)They are exponentially damped ompared to the former[see Eq. (78)℄. As a result, the main ontribution of theK{mode vetor perturbations omes from the modes witha physial wave number 
=a smaller than the energy

sale 1=L assoiated with the extra-dimension. As theuniverse expands, a mode with �xed value 
 remains rel-atively small as long as the exponents in Eq. (80) satisfy
a L� �p
2 � k2 ' 1a �
L� �p
2 � k2� > 0: (81)When this inequality is violated, for k � 
 this is soonafter � � L, the mode starts growing exponentially. Thetime � � L also orresponds to the initial time at whihthe evolution of the universe starts to beome Friedman-nian.In the same way, one an derive the behavior ofthe J{ and Y{modes on the brane for physial bulkwave numbers greater or smaller than the size of theextra-dimension. This time, the exponentially growingterms are replaed by osillatory ones, and the ordinaryBessel funtions are approximated by (see Eq. (47) andRef. [79℄) Jp(x) �x!0 1�(p+ 1) �x2�p ;Yp(x) �x!0 � 1��(p)� 2x�p : (82)From Eqs. (47) and (82), the equivalents of Eqs. (75)and (76) for J{ and Y{modes an be shown to osillatealways. From Eq. (32), their amplitude is found to de-ay like a�3=2 in the short wavelength limit 
=a� 1=L.In the long wavelength limit 
=a � 1=L, the amplitudeof the Y{mode stays onstant whereas the J{mode de-reases as a�4.The vortiity is also found to osillate in onformaltime. This time, the amplitude of the long wavelengthY{modes always grows as a3w+1 while for the J{modesit behaves like a3w�1. Finally, in the short wavelengthlimit, both Y and J vortiity modes grow like a3w+1=2.Whatever the kind of physial vetor perturbationmodes exited in the bulk, we have shown that therealways exist bulk wave numbers 
 that give rise to grow-ing vetor perturbations on the brane. Although the J{and Y{modes generate vortiity growing like a power lawof the sale fator, they an be, in a �rst approximation,negleted ompared to the K{modes whih grows like anexponential of the onformal time. We therefore nowonentrate on the K{modes and derive onstraints ontheir initial amplitude A(k;
) by estimating the CMBanisotropies they indue.In order to determine the temperature utuationsin the CMB due to vetor perturbations on the brane,



10we have to alulate how a photon emitted on the lastsattering surfae travels through the perturbed geome-try (54). A reeiver today therefore measures di�erentmirowave bakground temperatures TR(ni) for inidentphotons oming from di�erent diretions ni. In terms ofonformal time the vetor-type temperature utuationsare given by [81℄ÆTR(ni)TR = ni (�i + #i)jRE + Z RE ��i�xj ninjd�;= �ni#i(�E) + Z RE �0inid� (83)where � denotes the aÆne parameter along the photontrajetory and the prime is a derivative with respet toonformal time �. The \R" and \E" index refer to thetime of photon reeption (today) and emission (reombi-nation). For the seond equality we have usedd�id� = �0i � nj ��i�xj ; (84)where �ni is the diretion of the photon momentum.We have also negleted the ontribution from the upperboundary, \R", in the �rst term sine it simply gives riseto a dipole term. The �rst term in Eq. (83) is a Dopplershift, and the seond is known as integrated Sahs-Wolfee�et. To determine the angular CMB perturbation spe-trum C`, we apply the total angular momentum formal-ism developed by Hu and White [84℄. Aording to this,a vetor perturbation v is deomposed asv = e+v+ + e�v�; (85)where e� = �ip2 �e(1) � ie(2)� ; (86)and e(1;2) are de�ned so that (e(1), e(2), k̂ = k=k) forma righthanded orthonormal system. Using this deom-position for #i and �i, one obtains the angular CMBperturbation spetrum C` viaC` = 2� `(`+ 1) Z 10 k2hj�`(k)j2idk (87)where �`(k) = �#+(�E ; k)j`(k�0 � k�E)k�0 � k�E+ Z �0�E �+0(�; k)j`(k�0 � k�)k�0 � k� d�: (88)In Eq. (88) we have assumed that the proess whih gen-erates the utuations has no preferred handedness sothat hj�+j2i = hj��j2i as well as hj#+j2i = hj#�j2i. Omit-ting the \�" supersripts, we an take into aount thenegative heliity mode simply by a fator 2.

As shown in the previous setion, the main ontribu-tion of the K{modes omes from those having long wave-lengths a=
� L, and k < 
. In the following, only thesemodes will be onsidered. Sine they are growing expo-nentially in �, the integrated Sahs-Wolfe ontributionwill dominate and we onentrate on it in what follows.A more rigorous justi�ation is given in Appendix B. In-serting the limiting form (78) for � in Eq. (88) gives�`(�k) ' 2A0
n�kne�0p1��k2r 1�k2 � 1� Z xE0 j`(x)x e�xp1=�k2�1dx; (89)where a simple power law ansatz has been hosen for theprimordial amplitudeqhjA(k;
)j2i = A0(
)
2L2kn: (90)A dimensionless wave number �k, and onformal time �,have also been introdued as�k = k
 ; � = �
; (91)in order to measure their physial ounterparts in units ofthe bulk wavelengths. The ondition k < 
 now beomes�k < 1. The integration over � in the integrated Sahs-Wolfe term is transformed into an integration over thedimensionless variable x de�ned byx = k (�0 � �) = �k ��0 � �� ; (92)the subsript \0" refers to the present time. Note thatxE = k (�0 � �E) ' k�0 .By observing the CMB, one may naturally expet thatthe perturbations with physial wavelength greater thanthe horizon size today have almost no e�et. In terms ofour parameters, this means that the main ontributionin the C` omes from the modes verifying 
=a0 > H0 ,hene �0 > 1.In Appendix B, we derive a rude approximation forthe angular power spetrum indued by the exponentiallygrowing K{modes, in a range a little more onstrainedthan the one previously motivated, namely`maxH0 < 
a0 < L�11 + zE ; (93)where zE is the redshift at photon emission whih is takento oinide with reombination, zE ' 103. In order tosimplify the alulation, we do not want the transitionbetween the damped K{modes (
=a > L�1) and the ex-ponentially growing ones (
=a < L�1) to our betweenthe last sattering surfae and today. This requirementleads to the upper limit of Eq. (93). Moreover, in orderto derive the C`, we perform an expansion with respetto a parameter `=�0 assumed small, and `max refers tothe multipole at whih this approximation breaks down.



11The lower limit in Eq. (93) omes from this approxima-tion. Using the values L ' 10�3mm, H�10 ' 1029mm,`max ' 103, and zE ' 103, one �nds10�26mm�1 < 
a0 < 1mm�1: (94)The orresponding allowed range for the parameter �0beomes [see Eq. (B11)℄103 < �0 < 1029: (95)Clearly the detailed peak struture on the CMBanisotropy spetrum would have been di�erent if we hadtaken into aount the osillatory parts (k > 
) of theK{modes, as well as the Y{ and J{modes, but here weare only interested in estimating an order of magnitudebound. As detailed in Appendix B, for a sale invariantinitial spetrum, i.e. n = �3=2, we obtain`(`+ 1)2� C` & �A0e�0 �2 e�``7=2 � �̀0�`�1 : (96)From urrent observations of the CMB anisotropies, theleft hand side of this expression is about 10�10, and for` ' 10, one getsA0(
) . e�[�0�5 ln(�0 )℄105 : (97)From Eq. (B11) and (95), one �nd that the primordialamplitude of these modes must satisfyA0(
) < e�103 ; for 
=a0 ' 10�26mm�1 (98)and, more dramatially,A0(
) < e�1029 ; for 
=a0 ' 1mm�1 (99)for the short wavelength modes. As expeted, the per-turbations with wavelength loser to the horizon today(smaller values of 
) are less onstrained than smallerwavelengths [see Eq. (98)℄. Moreover, one may expetthat the bound (99) is no longer valid for 
=a0 >L�1=(1 + zE) sine the modes in Eq. (80) start to on-tribute. However, the present results onern more than20 orders of magnitude for the physial bulk wave num-bers 
=a0 , and show that the exhibited modes are a-tually very dangerous for the braneworld model we areinterested in.It seems that the only way to avoid these onstraintsis to �nd a physial mehanism forbidding any exitationof these modes. VI. CONCLUSIONIn this paper we have shown that vetor perturbationsin the bulk generially lead to growing vetor perturba-tions on the brane in the Friedmann-Lemâ�tre era. This

behaviour radially di�ers from the usual one in four-dimensional osmology, where vetor modes deay likea�2 whatever the initial onditions.Among the growing modes, we have identi�ed so alledK{modes whih are perfetly normalizable and lead toexponentially growing vetor perturbations on the branewith respet to onformal time. By means of a roughestimate of the CMB anisotropies indued by these per-turbations, we have found that they are severely inom-patible with a homogeneous and isotropi universe; theylight up a �re in the mirowave sky, unless their primor-dial amplitude is extremely small.No partiular mehanism for the generation of thesemodes has been spei�ed. However, one expets thatbulk ination leads to gravitational waves in the bulkwhih do generially ontain them. Even if they are notgenerated diretly, they should be indued in the bulkby seond order e�ets. Usually, these e�ets are toosmall to have any physial onsequenes, but here theywould largely suÆe due to the exponential growth ofthe K{modes [see Eqs. (98) and (99)℄. This seond orderindution seems very diÆult to prevent in the modelsdisussed here.It is interesting to note that this result is also linkedto the presene of a non-ompat extra-dimension whihallows a ontinuum of bulk frequenies 
. A loser ex-amination of Eq. (44) shows that the mode 
 = 0, ad-mits only J{ and Y{mode behaviours. In a ompatspae, provided the �rst quantized value of 
 is suÆ-iently large, one ould expet the exponentially grow-ing K{modes to be never exited by low energy physialproesses. Another more speulative way to dispose ofthem ould be to onsider their ausal struture: as wehave notied before, the modes with separation onstant+
2 are tahyons of mass�
2 from the four-dimensionalpoint of view. From the �ve-dimensional point of view,these are not \propagating modes", but \brane-modes"whih deay into the �fth dimension with penetrationdepth d = L2
.In a more basi theory, whih goes beyond our lassi-al relativisti approah, these modes may thus not beallowed at all.Finally, we want to retain that even if the K{modesan be eliminated in some way, the growing behavior ofthe Y{ and J{modes remains. Although their power lawgrowth is not as ritial as the exponential growth ofthe K{modes, they should have signi�ant e�ets on theCMB anisotropies. Indeed, they lead to ampli�ed osil-lating vetor perturbations whih are entirely absent infour-dimensional osmology. This will be the objet of afuture study [85℄.We therefore onlude that, if no physial mehanismforbids the generation of the disussed vetor modeswith time dependene / exp(�p
2 � k2), anti-de Sit-ter in�nitly thin braneworlds, with non-ompat extra-dimension, annot reasonably lead to a homogeneous andisotropi expanding universe.



12AknowledgmentsIt is a pleasure to thank Robert Brandenberger, CedriDe�ayet, Roy Maartens, Filippo Vernizzi, David Wandsand Peter Wittwer for helpful disussions. This work issupported by the Swiss National Siene Foundation. Wealso aknowledge tehnial and moral support by MartinZimmermann in the last phase of the projet.APPENDIX A: COMPARISON WITH THERANDALL-SUNDRUM MODELAs already mentioned in the text, if the brane is atrest (H = 0) at rb = L, our model redues to the RS IImodel. One may ask therefore, quite naturally, why hasour dangerous K{mode never been disussed in the on-text of RS II? In this appendix we address this question.First of all, the bulk solutions � and � for vetor per-turbations of AdS5 with a brane, remain valid. The so-lutions with m2 = �
2 < 0 have, however not been dis-ussed in the literature so far. Also, when onstrutingthe Green's funtion [16, 80, 86℄, these solutions have notbeen onsidered. As we shall see now, for most problemsthat is most probably very reasonable.In the RS II model one onsiders perturbations whihdo not require anisotropi stresses on the brane, �i = 0.Eq. (74) then redues to�(r = L; t;
; k) = 0 ; (A1)suh that � has to vanish on the brane. We insert thisinto a general solution of the form�(r; t;
; k) = �ip1 + k2=
2e�itp
2 + k2 L2r2� �AJ1�L2
r �+BY1�L2
r �� ; (A2)for m2 = 
2 > 0;�(r; t;
; k) = �p1� k2=
2e�tp
2 � k2 L2r2� �CK1�L2
r �+DI1�L2
r �� ; (A3)for m2 = �
2 < 0 : (A4)The boundary ondition (A1) then impliesB = �A J1(L
)Y1(L
) ; for m2 = 
2 > 0; (A5)D = �CK1(L
)I1(L
) ; for m2 = �
2 < 0: (A6)Eq. (A5) is exatly the relation whih has also been foundin Ref. [16℄, while Eq. (A6) is new. However, if the solu-tion is not allowed to grow exponentially when approah-ing the Cauhy horizon r ! 0, one has to require D = 0,

whih implies C = 0 sine K1 has no zeros. With thisphysially sensible ondition (see Ref. [80℄), we an dis-ard these solutions. Nevertheless, in ases where the I{modes an be regularized (e.g. by ompati�ation, pres-ene of a seond brane et.), the most general Green'sfuntion would inlude them. It is interesting to note thatthe alulation of the stati potential of two masses M1and M2 at distane x generated by the exhange of thezero-mode and the two ontinua of Kaluza{Klein modeswith positive and with imaginary masses, simply leads toV (x) � G4M1M2x �1 + Z 10 mL2e�mxdm� Z 10 mL2e�imxdm�= G4M1M2x �1 + 2L2x2 � : (A7)The short distane modi�ation hene deviates by a fa-tor of 2 from the result of Ref. [16℄, if we inlude thetahyoni modes. One has to be aware of the fat that,like so often, the result is sensitive to the hoie of theGreen's funtions.Anyway, small initial perturbations of the RS solutionwhih allow for small anisotropi stresses, so that the on-dition (A6) does not need to be imposed, will in generalontain a small K{mode whih grows exponentially andrenders the osmologial model unstable. It seems to usthat this possibility has been overlooked in the literatureso far.We end this appendix with a simple example whihskethes the presene of this instability. We onsider a 1+1 dimensional Minkowski spae-time, with orbifold-likespatial setions whih an be identi�ed with two opiesof y � 0. The \brane" is represented by the point y = 0and the \bulk" by the two opies of y > 0. For an initiallysmall perturbation f(y; t) in the bulk, whih satis�es ahyperboli wave equation, we want to analyze whetheran instability an build up. We are looking for solutionsof �2t f � �2yf = 0; (A8)with small initial data, say f(t = 0; y) � 1 and �tf(t =0; y)� 1 for all y � 0. By separation of variables one an�nd a omplete set of solutions, f = f�(k) exp[�ik(y �t)℄. For a suÆiently small value of f�(k) these solutionssatisfy the initial onditions. These solutions osillatein time; they have onstant amplitude. However, thereare other solutions, f = g�(k) exp[�k(y � t)℄. Sine theinitial data has to be small, the solutions / exp(+ky)are not allowed. But the solutions f = g� exp[�k(y� t)℄have perfetly small initial data and they represent an ex-ponential instability. If we �x the boundary onditions,setting f(t; y = 0) = 0, or �tf(t; y = 0) = 0, this insta-bility disappears, but if f(t; y = 0) is free, even a verysmall initial value f(0; 0) � 1 an indue an exponen-tial instability. Clearly, this leads also to an exponentialgrowth of the boundary value f(t; y = 0).



13If we give the initial onditions f(0; y) = A exp(�ky)and �tf(0; y) = kA exp(�ky), the funtion f(t; y) =A exp[k(t� y)℄ solves the equation and generates the ex-ponential growing. If we would require, as an additionalboundary ondition that, e.g. the solutions at y = 0 re-main at least bounded, this mode would not be allowedand we would have to expand the initial data in terms ofthe osillatory modes. However, it seems to us aausal topose onditions of what is going to happen \on the brane"in the future. But mathematially, without any suh\aausal" boundary onditions, the initial value prob-
lem is not well posed. This example is a simple analogof our instability. As long as anisotropi stresses vanishidentially, only the J{ and Y{modes are relevant. How-ever, if the brane has arbitrarily small but non-vanishinganisotropi stresses on whih we do not want to imposeany onstraints for their future behavior, an exponentialinstability an build up. This is a rather unnatural be-haviour whih may ast doubts on the RS realisation ofbraneworlds in the ontext of osmologial perturbationtheory.APPENDIX B: CMB ANGULAR POWER SPECTRUMIn this appendix we �rst present a rude and then a more sophistiated approximation for the C`{power spetrumfrom the exponentially growing K{modes. As we shall see, at moderate values of ` � 10{ 50, both lead to roughlythe same bounds for the amplitudes whih are also presented in the text.1. Crude approximationHere we start from Eq. (89). In the integralZ xE0 j`(x)x e�xp1=�k2�1dx; (B1)we replae j` by its assymptoti expansion for small `,j`(x) ' �x2�` p�2�(`+ 3=2) : (B2)This is a good approximation if either xE ' k�0 < `=2 or (`=2)(1=�k2� 1)1=2 > 1. Sine k2 < 
2, the �rst ondition isalways satis�ed if the �rst of the two inequalities in (93) are full�lled. The integral of x then giveshj�`(�k)j2i ' �A20
2n�k2n22``3 � 1�k2 � 1�1�` e2�0p1��k2 : (B3)Integrating over k, we must take into aount that our approximation is only valid for k < kmax = (
2 � ��20 )1=2.Sine we integrate a poritive quantity we ertainly obtain a lower bound by integrating it only until kmax. To simplifythe integral we also make the variable transform y = p1� �k2. With this and inserting our result (B3) in Eq. (87),we obtain `2C` & 2`22`A20
2n+3 Z 11=�0 (1� y2)n+`�1=2y3�2`e2�0ydy: (B4)For ` � 2, y3�2` � 1 on the entire range of integration. Hene we have`2C` & 2`22`A20
2n+3 Z 10 (1� y2)n+`�1=2e2�0ydy: (B5)This integral an be expressed in terms of modi�ed Struve funtions [79℄. In the interesting range, �0 � 1 we haveZ 10 (1� y2)n+`�1=2e2�0ydy ' �(n+ `+ 1=2)4�n+`+1=20 e2�0 : (B6)Inserting this result in Eq (B5) we then �nally obtain`2C` & p2�p` e�`22`+1 � �̀0 �n+`+1=2A20
2n+3e2�0 � p2�p` e�`22`+1 � �̀0�`�1A20e2�0 ; (B7)



14where we have used Stirling's formula for �(`+ n+ 1=2) and set n = �3=2 after the � sign.In the next setion we use a somewhat more sophistiated method whih allows us to alulate also the Dopplerontribution to the C`'s. For the ISW e�et this method gives`2C` 'r 2� e�`36`7=2 � �̀0�`�1A20e2�0 (B8)for n = �3=2. Until ` � 15 the two approximations are in reasonable agreement and lead to the same prohibitivebounds for A0(
). For ` > 15, Eq. (B8) beomes more stringent.2. Sophistiated approximationIn Eq. (89) we have only onsidered the dominant ontribution oming from the integrated Sahs-Wolfe e�et. Thegeneral expression is obtained by inserting the solutions (78) for � and # in Eq. (88),�`(�k) = 2A0
n�kn�1� �k2�k2E � j`(�k�0 � �k�E)�k�0 � �k�E e�Ep1��k2 + 2A0
n�kne�0p1��k2r 1�k2 � 1 Z xE0 j`(x)x e�xp1=�k2�1dx:(B9)To derive the �rst term we have used Eq. (32) in the matter era. The parameter�k2E = 6(1 + zE)�H0a0
 �2 ; (B10)reets the hange in behavior of the modes, redshifted by zE to the emission time, whih are either outside or insidethe horizon today. It is important to note that the parameter H0a0=
 ompletely determines the e�et of the bulkvetor perturbations on the CMB, together with the primordial amplitude A0 . Indeed, solving Eq. (29) in terms ofonformal time, and using Eqs. (28) and (32), yields �0 ' 2=(a0H0) in the Friedmann-Lemâ�tre era. Thus�0 ' 2
=a0H0 ; �E ' 11 + zE 
=a0H0 : (B11)We now replae the spherial Bessel funtions j` in the integrated Sahs-Wolfe term (ISW) using the relation [79℄j`(x) =r �2xJ`+1=2(x): (B12)In the ISW term the upper integration limit an be taken to be in�nity as the ontribution from xE to in�nity anbe negleted provided xp1=�k2 � 1 > 1. This restrition is equivalent to �k2 < 1� 1=�0 whih is veri�ed for almost allvalues of �k up to one, given that �0 varies in the assumed range (95). We remind that for the exponentially growingK{mode k � 
, and hene 0 � �k � 1. This allows for the exat solution [87℄Z 10 x�3=2J`+1=2(x)e�xp1=�k2�1dx = �k`2`+1=2 �(`)�(`+ 3=2)F � 2̀ ; 2̀ + 1; `+ 32; �k2� ; (B13)where F is the Gauss hypergeometri funtion. In regard to the subsequent integration over k we approximate F asfollows. For small values of �k, F is nearly onstant with value 1, at �k = 0. As �k ! 1 the slope of F diverges and itannot be Taylor expanded anymore. However, by means of the linear transformation formulas [79℄, F an be writtenas a ombination of hypergeometri funtions depending on 1� �k2F � 2̀ ; 2̀ + 1; `+ 32; �k2� = ��`+ 32���12��� 2̀ + 32��� 2̀ + 12�F � 2̀ ; 2̀ + 1; 12 ; 1� �k2�+p1� �k2��`+ 32����12��� 2̀��� 2̀ + 1� F � 2̀ + 32 ; 2̀ + 12; 32; 1� �k2� : (B14)



15These in turn an be expanded around 1� �k2 = 0, and givesF ��k!1 2`+1=2 �1� `p1� �k2� : (B15)These two approximations interset at �k =p1� 1=`2. In this way, we an evaluate the mean value of F by integratingthe two parts over the interval [0; 1℄. Thus, the hypergeometri funtion is replaed byF � 2̀ ; 2̀ + 1; `+ 32; �k2� ' 2`+1=26`2 : (B16)Furthermore, the Gamma funtions in (B13) an be approximated using Stirling's formula [79℄�(`)�(`+ 3=2) ' 1`3=2 : (B17)Putting everything together and squaring Eq. (B9) we obtainj�`(�k)j2 = 2�A20�k2n
2n(�1� �k2�k2E �2 e2�Ep1��k2�k3(�0 � �E)3 �J`+1=2 ��k(�0 � �E)��2+ 2�1� �k2�k2E� e(�0+�E )p1��k2�k3=2(�0 � �E)3=2 J`+1=2 ��k(�0 � �E)� �k`�1p1� �k26`7=2+ e2�0p1��k2 �k2(`�1)(1� �k2)36`7 ) (B18)
The C`'s are then found by integrating over all k-modesC` = 2� `(`+ 1)
3 Z 10 �k2j�`(�k)j2d�k� 4A20`(`+ 1)
2n+3 �C(1)` + C(2)` + C(3)` � ; (B19)where the C(i)` orrespond to the three terms in Eq. (B18). In the following we keep only the zero order terms in�0=�E . From Eqs. (B18), (B19) one �ndsC(1)` = 1�30 Z 10 �k2n�1�1� �k2�k2E �2 e2�Ep1��k2 �J`+1=2 ��k�0��2 d�k (B20)First, notie that if the argument is larger or smaller than the index, the Bessel funtions are well approximated bytheir asymptoti expansions (47) and (82), respetively. Therefore, we split the �k-integral into two integrals over theintervals [0; �k`℄ and [�k`; 1℄, in eah of whih the Bessel funtion is replaed by its limiting forms. The transition value�k` is given by �k` ' `=�0 . In the integral from �k` to 1, the sin2(�k�0) is then replaed by its mean value 1=2 whih isjusti�ed if the multiplying funtion varies muh slower in �k than the sine. To arry out the integration we make thesubstitution y2 = 1� �k2, and in order to simplify the notation we de�ne the integralI(a; b; �) = Z ba y(1� y2)�e2�Eydy (B21)In this way we an write Eq. (B20) in the formC(1)` = 1��40 �I(0; y`; n� 3=2)� 2�k2E I(0; y`; n� 1=2) + 1�k4E I(0; y`; n+ 1=2)�+ 1�2(`+ 3=2) ��02 �2`+1 �I(y`; 1; `+ n� 1=2)� 2�k2E I(y`; 1; `+ n+ 1=2) + 1�k4E I(y`; 1; `+ n+ 3=2)� (B22)



16Sine y` = q1� �k2̀ is very lose to one, and the integrand is ontinuous in the interval [0; 1℄, integrals of the formI(y`; 1; �) an be well approximated by the mean formulaI(y`; 1; �) ' y(1� y2)�e2�Ey���y=y` (1� y`) ' e2�E2 � �̀0 �2(�+1) (B23)For the integrals of the type I(0; y`; �) we distinguish between three ases:Case a: � > �1. This ase orresponds to a spetral index n > 1=2 in the �rst integral in Eq. (B20). We writeI(0; y`; �) = I(0; 1; �)� I(y`; 1; �). The solution of the latter is given by Eq. (B23), whereas the former an besolved in terms of modi�ed Bessel and Struve funtions [87℄I(0; 1; �) = 12(� + 1) + p�2 ��1=2��E �(� + 1) �I�+3=2(2�E) + L�+3=2(2�E)� : (B24)Sine our derivation assumes �E > `, the large argument limit applies and we haveI�+3=2(2�E) + L�+3=2(2�E) ' e2�Ep��E ; (B25)independently of the index �.Case b: � = �1. Sine the above expressions, Eq. (B24), diverge for � = �1, we approximate the integral byI(0; y`; �) ' e2�E Z y`0 y(1� y2)�1dy = �e2�E ln� �̀0 � (B26)We have heked that the numerial solution of I(0; y`; �) agrees well with the approximation, provided y` islose to 1.Case : � < �1. We use the same simpli�ation as in Eq. (B26), and now the integral yieldsI(0; y`; �) ' e2�E Z y`0 y(1� y2)�dy = � e2�E2(� + 1) � �̀0�2(�+1) (B27)For the partiular value n = �3=2, Eq. (B22) ontains terms I(0; y`;�3) and I(0; y`;�2) whih an be evaluatedaording to (B27), as well as a term I(0; y`;�1) for whih we use (B26). The remaining three integrals over theinterval [y`; 1℄ are evaluated by (B23). The result isC(1)` ' e�0=zE4�`4 "1� `26zE �� `212zE�2 ln� �̀0 �+ e2�`2 �1� `224zE�2# (B28)The parameter � is a onstant of order unity, within in our approximation it is � = 1� ln 2 � 0:3.The seond term C(2)` in Eq. (B18) readsC(2)` ' 13`7=2�3=2s0 Z 10 e(�0+�E )p1��k2�k2n+`�1=2p1� �k2�1� �k2�k2E � J`+1=2(�k�0)d�k; (B29)where only the zero order terms in �E=�0 has been kept. Using the limiting forms for the Bessel funtion for argumentssmaller and larger than the transition value �k`, yieldsC(2)` ' 13`7=2�3=20 �(`+ 3=2) Z �k`0 e(�0+�E )p1��k2�k2n+`�1=2p1� �k2�1� �k2�k2E ���k�02 �`+1=2 d�k+ 21=23�1=2`7=2�0 Z 1�k` e(�0+�E )p1��k2�k2n+`�1p1� �k2�1� �k2�k2E� sin��k�0 � �2 `�d�k: (B30)



17For onsisteny with the derivation of C(1)` , we have assumed that the main ontribution omes from the �rst integral,while the seond one is small due to the osillating integrand. Sine �k` � 1, we an use again the mean formula toevaluate the �rst integral, and by the Stirling formula for �(`+ 3=2), Eq. (B30) beomesC(2)` ' e�012�1=2`11=2 � �̀0 �2n+`+2 e�`�1� `224zE� : (B31)Sine ` < �0 , the spetrum is damped at large `, while the other terms an lead to the appearane of a bump,depending on the value of �0 and n.The last terms C(3)` reads C(3)` = 136`7 Z 10 e2�0p1��k2�k2n+2` �1� �k2� d�k: (B32)Splitting this expression in two terms over 1� �k2, and using the substitution y2 = 1� �k2 yieldsC(3)` = 136`7 �I �0; 1; n+ `� 12�� I �0; 1; n+ `+ 12�� ; (B33)where I is given by Eq. (B21) with �E ! �0 . As before, these two integrals an be expressed in terms of modi�edBessel and Struve funtions [87℄. From Eq. (B24), taking their limiting forms at large argument, and expanding the� funtion by means of the Stirling formula givesC(3)` ' 172`7 (n+ `+ 3=2) (n+ `+ 1=2) +r�2 e2�0`15=2 e�`36 � �̀0�n+`+1=2 : (B34)Clearly, C(3)` dominates over the others sine it involves exp(2�0) while C(2)` and C(1)` appear only with frationalpower of this fator, namely exp(�0) and exp(�0=zE). This is due to the fat that we are onerned with inessantlygrowing perturbations leading to the predominane of the integrated Sahs-Wolfe e�et.Inserting Eqs. (B28), (B31) and (B34) for the partiular value n = �3=2 into Eq. (B19) gives the �nal CMB angularpower spetrum `(`+ 1)2� C` ' 2�A20(e�0=zE4� "1� `26zE �� `212zE�2 ln� �̀0 �+ e2�`2 �1� `224zE�2#+ e�012�1=2`3=2 � �̀0�`�1 e�`�1� `224zE�+r�2 e2�0`7=2 e�`36 � �̀0 �`�1): (B35)
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