
Signatures of Topological Defects in the Microwave Sky: AnIntroductionR. DurrerUniv�ersit�e de Gen�eve, D�epartement de Physique Th�eorique24, Quai E. AnsermetCH{1211 Gen�eve, SuisseAn introduction to topological defects in cosmology is given. We discuss their pos-sible relevance for structure formation. Especial emphasis is given on the signatureof topological defects in the spectrum of anisotropies in the cosmic microwave back-ground. We present simple analytic estimates for the CMB spectrum on large andintermediate scales and compare them with the corresponding approximations formodels where initial perturbations are generated during an inationary epoch.1 IntroductionThe formation of structure in the universe is one of the mayor open problemsin cosmology. Already in 1946 Lifshitz has noted 1 that expansion counter-acts gravitational attraction in such a way, that in an expanding universe thegravitational potential cannot grow by linear gravitational instability. Also thegrowth of density perturbations is reduced to a power law due to expansion.In a radiation dominated universe, radiation pressure inhibits any signi�cantgrowth of density uctuations. In all, density uctuations can have grown atmost by a factor � a0=aeq = zeq � 104 due to linear gravitational instabil-ity, where a0 denotes the value of the cosmological scale factor today and aeqdenotes its value at the time of equal matter and radiation.Therefore, initial uctuations on the order of 10�4 caused by some othermechanism than gravitational instability are needed. Such initial uctuationscan then be enhanced by gravity and lead to density uctuations of order unityand �nally to the observed structures in the universe. Currently two classes ofmodels which can generate initial perturbations are under investigation.In the �rst class, initial perturbations emerge from quantum uctuationsof a scalar �eld, which expand during a period of ination to scales larger thanthe Hubble scale and then \freeze in" as classical uctuations in the energydensity. Generically, inationary models lead to a so called Harrison-Zel'dovichspectrum of uctuations2. This spectrum is de�ned by the requirement ofhaving constant mass uctuations at horizon crossing:*��MM �2kH (t);t+ = constant, (1)1



where kH(t) = 2�=t denotes the wave number corresponding to the horizonscale at time t.In inationary models, initial uctuations typically are Gaussian, i.e., withrandom initial phases. After ination they evolve deterministically accordingto homogeneous linear cosmological perturbation equations. The evolutionof an arbitrary mode k of a perturbations variable � can thus be describedby means of a deterministic transfer function T and the initial value �(ti) isperfectly coherent with �(t) = T (t; ti)�(ti). In other wordshj�(ti)�(t)jiphj�(ti)j2ihj�(t)j2i = hj�(ti)T (t; ti)�(ti)jiphj�(ti)j2ihjT (t; ti)�(ti)j2i = 1 : (2)In the second class of models, perturbations are induced by topologicaldefects which may form during a symmetry breaking phase transition. Thismechanism is explained in the next section. The amplitude of initial uctua-tions due to topological defects which form at a symmetry breaking energy scale� is on the order of � = 4�G�2. To obtain the correct amplitude thus requiresdefects which form during a phase transition at GUT scale � � 1016GeV.In this situation, perturbations in the cosmic uid are constantly sourcedby topological defects and evolve according to inhomogeneous linear pertur-bation equations. Since the defects make up only a small perturbation ofthe cosmic energy density and since (soon after the phase transition) they donot interact with the cosmic uid other than gravitationally, they evolve ac-cording to the unperturbed geometry (in linear perturbation approximation).However, defect evolution is in general non-linear and the random initial con-ditions of the source term in the linear cosmological perturbation equationsof given scale k 'sweep' into other scales. Therefore, the perfect coherence ofinationary perturbations is no longer maintained and Eq. (2) is violated. Howstrong and how signi�cant this decoherence is, depends on the details of themodel considered.Due to this general behavior inationary models are sometimes called 'co-herent' and 'passive' (no source terms in the linear perturbation equation)while defect models are called 'decoherent' and 'active' (uid perturbationsare constantly sourced by the defect energy momentum tensor) 3. In this talk,we concentrate on the second class of models. The main similarities and dif-ferences of the two classes are summed up in table 1.
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Inationary models Topological defectsSimilarities� Cosmic structure formation is due to gravitational instability of small'initial' uctuations. ! Gravitational perturbation theorycan be applied.� GUT scale physics is involved in generating initial uctuations.� The only relevant 'large scale' is the horizon scale. ! Harrison-Zel'dovich spectrum. Di�erences�The amplitude of uctuations �The amplitude of uctuationsdepends on details of the inatio- is �xed by the symmetry breakingnary potential ! �ne tuning. scale �, � = 4�G�2.�The linear perturbation eqs. are �The linear perturbation eqs. are in-homogeneous (passive). homogeneous, have sources (active).�For given initial perturbations, �The source evolution is non-linearthe entire problem is linear. at all times.�Randomness enters only in the �Randomness enters at all times dueinitial conditions. to the mixing of scales in the non-linear source evolution (sweeping).�The phases of perturbations at �Phases may become incoherent.a given scale � are coherent.�There exist correlations on super �No correlations on super HubbleHubble scales. scales.Perturbations are 'acausal'. Perturbations are 'causal'.Table 1: Similarities and and di�erences of inationary perturbations versus perturbationsinduced by seeds.2 Topological DefectsTopological defects are as ubiquitous in physics as are symmetry breakingphase transitions. Usually they are described by means of a scalar �eld (orderparameter, Higgs �eld) evolving in a temperature dependent potential. Inthe Landau Ginzburg theory of super-conductivity, e.g., the order parameterrepresents the \Cooper pairs" which are described by means of a complex scalar�eld. In this example, the scalar �eld is electrically charged and interacts withthe electromagnetic gauge �eld. For sake of simplicity, we consider here a purescalar �eld �, with �4 interaction term but without gauge �eld. If � is in athermal bath at temperature T and we have 'integrated out' the excitations ofenergies E � T , we obtain an e�ective Lagrangian density with temperature3



dependent potential 4;5 L(�) = 12(@��)2 � VT (�) : (3)At very low temperature V approaches the zero temperature potential, V0 =14�(j�j2 � �2)2 with vacuum manifoldM0 = f� ��j�j2 = �2g : (4)(The vacuum manifold denotes the space of minima of the potential V .) Athigher temperatures, there are corrections to V which in general depend onthe interactions of the scalar �eld with other (fermionic and bosonic) �elds.In our simple case, the main correction is of the form T 2�2 which, at highenough temperature, namely for T > Tc = 2�, changes the 'Mexican hat'into a parabolic shape with M0 = f0g. At T > Tc therefore, not only the
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Figure 1: The temperature dependence of potential of a complex scalar �eld. The vacuummanifold is a circle for T < Tc and a point for T > Tc.Lagrangian density but also the only possible vacuum state < � >= 0 issymmetric under phase rotations, �! ei��. As soon as the temperature fallsbelow Tc, the vacuum manifold becomes a full circle, M0 = S1 and a givenvacuum state < � >= r(T )ei� is no longer invariant under phase rotations.The function r(T ) is a temperature dependent amplitude withr(Tc) = 0 and limT!0 r(T ) = � : (5)4



This process is the 'spontaneous' breakdown of a symmetry (here phase ro-tations or U(1)). Even though the Lagrangian density and M0 as a wholeare invariant under phase rotation, at T < Tc, this is no longer manifest inphenomena which can be described by expansion around the vacuum, sincethe choice of a vacuum state spontaneously breaks the symmetry.If such a phase transition takes place in the early universe, the coher-ence length is �nite (it is bounded by the causal horizon). As the universecools below the critical temperature, we expect the �eld � to assume di�er-ent vacuum expectation values at di�erent patches of space which are sepa-rated by distances larger than the coherence length. If we now prescribe aclosed curve in a plane through physical space,  : [0; 1] ! R2 : s ! x(s),x(0) = x(1), the �eld � can change its phase along the curve � = ([0; 1]).< � > (x(s)) = r(T )ei�(s). By continuity reasons the phase must change bya multiple of 2� during a full turn, �(1) = �(0) + n2�. If n 6= 0, the loop� cannot be contracted to a point with �(s) changing continuously. The ex-pectation value < � > thus must pass through 0 somewhere in the interior of�. In other words, � must leave the vacuum manifold and assume a state ofhigher energy in some small region in the interior of �. If we now leave the
ΓFigure 2: If the map indicated in this �gure, : � ! M : x(s) 7! �(x(s)) is non-trivial, acosmic string forms.plane and continue this argument in the third dimension, we obtain a long,thin string within which � assumes higher energy, a cosmic string. The crosssection of the string, i.e. of the region where � leaves the vacuum manifold,is typically of order 1=�. The length of a string is either in�nite or the stringmust be closed. The mechanism of defect formation described here is calledthe 'Kibble mechanism' 5.The main ingredient for the Kibble mechanism is the existence non-trivial5



(non-shrinkable) maps from a closed curve is space � S1 to the vacuum mani-fold. The classes of these maps form a group, the �rst homotopy group �1(M).Similarly, if maps from spheres in space into M cannot be shrunk to apoint, i.e. �2(M) is non-trivial, � might have to leave the vacuum manifold ina small patch in 3-space, leading to a tiny region of higher energy, a monopole.Again, the spatial extension of the monopole is on the order of 1=� and thusextremely small in comparison to cosmological scales.Furthermore, if we consider con�gurations which are asymptotically con-stant (�(x) !jxj!1 const.), we can compactify 3-space to R3 = (R3 [1) �S3, and assign to �(1) the value of the asymptotic constant. We then en-counter the question whether there exist non-shrinkable maps from S3 !M.(Non-trivial homotopy group �3(M).) One can show, that such a con�gura-tion is always unstable and will shrink and eventually leave the vacuum mani-fold and unwind. (In the case of �nite energy con�gurations this is Derrick'stheorem6.) A con�guration � which winds once around S3 is called 'texture' ofwinding number 1. (Textures of higher winding numbers are probably unstableand decay into simple textures.)There are some doubts about the applicability of this concept to cosmol-ogy; especially the notion of an asymptotically constant con�guration is not atall causal. However, in the case of �3 (and only in this case!) one can de�nea texture number density n�(x), such thatw�(R3) = ZR3 n�(x)d3x (6)determines the winding number (i.e. texture number) of the map � : R3 !M.Clearly, if this map is well de�ned, w�(R3) is always an integer. Nevertheless,we can also consider the winding number in a �nite volume V 2 R3 anddetermine w�(V ) = ZV n�(x)d3x (7)which need not be an integer. Numerical investigations7 have shown that acon�guration shrinks whenever w�(VH ) >� 1=2, where VH denotes the Hubblevolume, independent of the behavior of � at spatial in�nity. Therefore, itmakes sense to talk about textures also in a cosmological context.Depending on whether the symmetry is local (gauged) or global (rigid),defects are called 'local' or 'global'. In the case of local defects, gradients arecompensated by the gauge potential (@� ! D� = @� + ieA�), and there is noconsiderable gradient energy. This has two important consequences:� The energy of defects is strongly con�ned, i.e. the extension of defectenergy is given by the inverse symmetry breaking scale, 1=�.6



� Soon after their formation, local defects cease to interact. There are nolong range interactions between local defects.In the case of global defects, there are no gauge �elds to compensate gradi-ents and the energy is dominated by gradient energy which is spread out overtypically the horizon scale t. Interactions between defects are very strong. De-fects of opposite charge annihilate leading to a few (or less) defects per horizonvolume. Energy density always behaves like �defect � �2=t2 (up to possiblelogarithmic corrections) and we thus �nd �defect=�matter � 4�G�2 = �. Thedefect energy amounts to a constant small fraction of the total energy densityof the universe. This behaviour is called scaling.In the case of local defects, only strings scale. Local monopoles soon cometo dominate the energy density of the universe and local textures quickly dieout. Defects responsible for structure formation and CMB anisotropies arethus either local strings or global defects.In the case of global �elds, gradient energy is the main seed for perturba-tions in the geometry. Whether these gradients lead to topological defects ornot is actually less important. E.g. scalar �elds with a �4 potential and N > 4components do not lead to topological defects in 3-dimensional space, butstructure formation seeded by such �elds is very similar to the N = 4 (globaltexture) and N = 3 (global monopoles) models. The limit N ! 1 where the�eld equations can be solved exactly, provides a useful approximation to globaldefect scenarios 8;9.At temperatures signi�cantly below the symmetry breaking scale, the di-mensionless �eld � = �=� obeys to a very good approximation the scale freeequation of a non-linear �{model 10. Scaling arguments then yield O( _�) =O(@i�) = O(1=t).The typical amplitude of geometrical uctuations in scaling defect modelsis given by 4�G�defect=( _a=a)2 � 4�G�2 � � : (8)The COBE experiment provides the normalization � � 10�5 and thus � �1016GeV. In order to create large enough uctuation to seed the formation ofstructure in the universe, defects must thus form during a symmetry breakingphase transition at Tc � 1016GeV, i.e. at a typical scale of grand uni�cation.3 The CMB Anisotropy Spectrum from Topological DefectsAnisotropies in the cosmic microwave background (CMB) are small and canthus be calculated within linear cosmological perturbation theory.7



If we neglect the �nite thickness of the last scattering surface, t = tdec, thetemperature anisotropies in the cosmic microwave background can be foundby integrating photon geodesics from tdec until today, t0. This leads to�TT (n) = �14D(r) + Vjnj + (	��)� (tdec;xdec) + Z fi ( _	� _�)(x0; t0)dt : (9)Here D(r) denotes a gauge invariant variable describing intrinsic density uctu-ations in the radiation,V is the peculiar baryon velocity, i.e. the velocity of theemitter (the corresponding term for the observer, which just results in the well-known dipole contribution has been omitted), and � and 	 are the Bardeenpotentials11, two geometric variables which describe scalar perturbations of theFriedmann geometry. 	 is a close analog of the Newtonian potential. If thematter causing the geometric perturbation is either non-relativistic or an idealuid, � = �	. A derivation of Eq. (9) can be found in Ref. 12.The �rst two terms in Eq. (9) are mainly caused by acoustic oscillationsof the baryon photon uid prior to recombination. This causal process actsonly on sub horizon scales and thus comes to dominate on angular scales � <1o. The third term is the ordinary Sachs Wolfe contribution13. It is dueto the gravitational potential at the last scattering surface, which induces aredshift(blueshift) of the free photons climbing out of it (falling down from it).The integral in Eq. (9) is the integrated Sachs Wolfe term, which is inducedby a time varying gravitational potential along the path of the photon fromthe last scattering surface into the antenna of the observer. The Sachs Wolfecontributions are relevant on large angular scales, � � 1o.The �nite thickness of the last scattering surface leads to di�usion damp-ing at very small angular scales: During recombination, the mean free path ofphotons grows from e�ectively 0 to much larger than the Hubble scale. Pertur-bations with are small enough so that photons can di�use out of them duringthe recombination process, are thus damped away. This process is called Silkdamping14. To a reasonable approximation it can be taken into account bymultiplying the result of Eq. (9) with an exponential damping envelope15. Fora more accurate treatment, one has to solve Boltzmann's equation taking intoaccount non-relativistic Compton scattering of photons and electrons12.In addition to these uctuations which are determined entirely within lin-ear perturbation theory, some secondary e�ects due to the formation of the�rst non-linear structures might inuence the perturbations. There are no-tably gravitational lensing, the Rees Sciama e�ect and the Sunyaev Zel'doviche�ect which can inuence very small scales; as well as early reionization whichmay lead to damping of uctuations on intermediate scales. Here we just dis-cuss the Sachs Wolfe and acoustic contributions which dominate on large and8



intermediate angular scales.Since �TT is a function on the sphere, it make sense to expand it in termsof spherical harmonics: �TT (n) = X̀m a`mY`m(n) : (10)The anisotropy spectrum is then de�ned byC` = hPm ja`mj2i2`+ 1 : (11)In the case of Gaussian perturbations, the C`'s contain the full statisticalinformation of the CMB anisotropies since they are the 'harmonic transform'of the two point correlation functiona:C(cos#) � ��TT (n)�TT (n0)� ��� (n�n0=cos #) = 14� X̀(2`+ 1)C`P`(cos#) ; (12)where P` denotes the Legendre polynomial of order `.Since the relevant quantity for CMB anisotropies are the C`'s, angularregimes are often translated into intervals of `'s. Small `'s probe large angularscales whereas large `'s probe small angular scales. The angular scale corre-sponding to a given ` is about �` � 1=`. In terms of `, 'large angular scales'correspond to ` <� 50 and Silk damping becomes relevant at ` >� 800. Thescales in between are intermediate angular scales.3.1 Large scalesAngular scales, � � 1o, which correspond to spherical harmonics with index` � 200 subtend a distance which is larger than the size of the horizon atrecombination. Temperature uctuations on these angular scales are eitherdue to super horizon uctuations, if they result from uctuations at the lastscattering surface, the 'recombination shell', or they have been induced duringthe propagation of the photons from the last scattering surface into the antennaof the observer.The Sachs Wolfe (SW) contributions to the CMB anisotropies from ina-tionary models and defect models are as di�erent as they can be. NeverthelessaThe expansion into spherical harmonics on the sphere is the exact analog of Fouriertransform in Rn. Since the sphere is compact, the 'harmonic transform' of a function onthe sphere lives on a discrete set. 9



they �nally lead to the same Harrison Zel'dovich spectrum of C`'s. Let uselaborate on this 'accident' in some detail.For a pure CDM (cold dark matter) model, it is easy to show from thelinear perturbation equations that � = �	 and _	 = 0: Furthermore, assum-ing adiabatic perturbations, one �nds from the analog of Poisson's equation,(1=4)D(r) = �(5=3)	 + O((kt)2). On super horizon scales, kt � 1, Eq. (9)thus yields for pure CDM �TT (n) = 13	(tdec;xdec) : (13)This is the well known Sachs Wolfe result. For a typical inationary spectrum,the Bardeen potentials behave likehj	(k)j2i / 1=k3 for ination + CDM. (14)Using this and Eq. (13), one can calculate the anisotropy spectrum and �nds(see appendix) C` / 1`(`+ 1) : (15)For topological defect models, the situation is very di�erent. One can show,that (due to compensation) the Bardeen potentials have white noise spectra onsuper horizon sales3;16. By dimensional reasons therefore hj	(k)j2it�3 =constant.Furthermore, one �nds that D(r) behaves like (kt)2	 and is thus negligible onsuper horizon scales. Once a perturbation enters the horizon, t � 1=k the de-fect contribution decays and it is dominated by the contribution due to CDMwhich then becomes time independent. A reasonable approximation to theBardeen potentials from defect models is thushj	(k)j2i / � t3; on super horizon scales, kt � 1;1=k3; on sub horizon scales, kt � 1; for defects + CDM.(16)Using this approximation, it is easy to see that the ordinary Sachs Wolfe e�ectis very small (for scales which are super horizon at decoupling), whereas theintegrated SW term behaves like the inationary SW contribution leading tothe same spectrum of CMB anisotropies on large angular scales, Eq (15). Aderivation of this result is given in the appendix.Of course, our argumentation in the case of topological defects is verycrude. It is, however, useful to interpret the �ndings from numerical simula-tions. Large scale CMB anisotropies from simulations of Global defects17 arepresented in Fig. 3. Similar results have been obtained for cosmic strings18.10



Figure 3: The large scale CMB anisotropies from global texture simulations. The spectrafor 27 observers are plotted. The sharp drop after ` � 30 is due to �nite resolution. (Figuretaken from Durrer and Zhou, Ref. 17.)3.2 Intermediate scalesThe signal from CMB anisotropies on intermediate scales is most interestingsince it contains the most structure and thus the most detailed information.As already mentioned, uctuations on intermediate scales are due to acous-tic oscillations in the tightly coupled photon baryon plasma prior to recombi-nation. To understand the basic principle, we treat these oscillations here ina very simple way. We neglect the presence of baryons and thus set the soundvelocity of the plasma, c2s = 1=3. Energy and momentum conservation thenlead to the following equations of motion for the density perturbation D(r) andthe peculiar velocity potential V (r) (see Ref. 12):_D(r) = �43kV (r) ; _V (r) = 2k	+ 14kD(r) : (17)(In the second equation we have suppressed the di�erence between 	 and�� which is unimportant for our qualitative discussion.) Eqs. (17) can becombined to a second order equation for D:�D(r) + 13k2D(r) = �83k2	 : (18)11



Using the behavior 	 / t3=2 on super horizon scales, and 	 / k�3=2 on subhorizon scales, we obtain the solutionsD(r) = � � 32105 (kt)2	 on super horizon scales, kt� 18	(cos(kt=p3)� 1) on sub horizon scales, kt� 1: (19)This behavior of D(r) is very di�erent to the adiabatic inationary case.There D(r) � 	 on super horizon scales and D(r) � 	(sin(kt=p3)� 1) on subhorizon scales. For defects thus D(r) is very small at horizon crossing and �rsthas to grow to achieve its maximum whereas in the adiabatic inationary case,D(r) is already at its maximum on super horizon scales and starts decaying athorizon crossing. This is the reason why the �rst acoustic peak is displaced tolarger ` for defect models. In a at, 
 = 1 universe the position of the �rstacoustic peak is about `peak � 360 for global defects where it is at ` = 220 foradiabatic inationary models19;20.I carefully always said 'adiabatic inationary models' since the second or-der Eq. (18) of course allows for two modes and in inationary models oneis actually free to choose the adiabatic mode, which is de�ned by V (r) =V (CDM) on super horizon scales or the isocurvature mode which is de�ned byD(r) !kt!0 0. For defect models, however, we want to pick out the peculiarsolution induced by the defect uctuations without adding an arbitrary ho-mogeneous solution, a perturbation which then would have to be induced bysome other mechanism like, e.g. ination. For defect models we thus have nofreedom in the choice of the mode. The resulting CMB anisotropy spectrumfor a typical model with global defects is shown in Fig. 4.An additional phenomenon which can be important for the acoustic peaksin the CMB anisotropy spectrum is decoherence: For inationary perturbationsthe phase of an acoustic oscillation is entirely determined by its wave number,i.e. all uctuations with �xed wave number k are at �xed phase in theirtemporal oscillations. In models with topological defects, the uctuations areinduced by the defect energy which evolves in a complicated non-linear way.Decoherence can be described by the decay of the correlation functionC(k; t) = hj	(k; t)	(k; ti)jiphj	(k; t)j2ihj	(k; ti)j2i : (20)Since defects evolve causally, they are 'frozen in' on super horizon scales andno decoherence can thus occur on these scales, C(k; t) = 1, for kt� 1. As soonas defects enter the horizon, they start evolving in a complicated non-linearway and their gravitational potential looses coherence with a characteristictime scale tc. On the other hand, the defects themselves decay with a decay12



Figure 4: The CMB anisotropy spectrum from global topological defects. The vertical scaleis arbitrary. This result was obtained by a model calculation as explained in Ref. 16.
time td. Once the defects have decayed, dark matter and radiation uctua-tions evolve according to homogeneous perturbation equations not loosing anyremaining coherence. The question whether decoherence is e�ective or not, isthus determined by the ratio r = tc=td. For r � 1 decoherence is unimportantwhere as for r � 1 decoherence smears out secondary acoustic peaks leavingover just one broad 'hump' 3. This process is illustrated in Fig. 5.Local cosmic strings decay only via the very weak process of gravitationalradiation and are thus relatively long lived. A cosmic string loop, after enteringthe horizon, typically survives for about 104 horizon times. Global defects, onthe other hand, decay very e�ectively within a few horizon times via the radia-tion of massless Goldstone modes. Furthermore, there are hints from numericalsimulations, that coherence decays exponentially for cosmic strings3 but onlylike a power law for global defects9. These �ndings have led to the conjecturethat decoherence is e�ective in scenarios with local cosmic strings but not forglobal defects. However, to fully understand and quantify decoherence, moredetailed simulations and analytical work are needed.13
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Figure 5: CMB anisotropies from topological defects. The e�ect of decoherence is shown.The variables �c and xc correspond to td and tc respectively. The ratio r is thus largest forthe top right frame and smallest for the bottom left one. (From Magueijo et al., Ref. 3.)4 ConclusionWe have seen that the anisotropies in the CMB provide interesting possibil-ities to distinguish between models of structure formation from inationaryperturbations or from topological defects. The �rst tests for physical theoriesat very high energies � 1016GeV might thus come from cosmology and notfrom accelerator experiments!One of the reasons for its usefulness certainly lies in the simplicity of calcu-lations of CMB anisotropies. All the e�ects discussed here can be determinedwithin linear perturbation analysis. The complicated non-linear physics in-volved in the formation of celestial bodies plays only a minor role for CMBanisotropies, while it might signi�cantly obscure the relation between observa-tions and calculations of large scale structure. There, the quantities simple to14



observe are the clustering properties of light, while linear perturbation analysisjust determines the clustering of mass.We have justi�ed hopes that the next decade, when experimental resultsdetermine CMB anisotropy to an accuracy of a few percent, will revolutionizecosmology. On the one hand, the dependence of the details of the acousticpeaks on cosmological parameters22 might help us to determine these param-eters to an accuracy of a few percent. On the other hand, the acoustic peaksprobably contain information about the physics at GUT scales which is notavailable to us by any other means.I have not discussed here the distinction of inationary and defect modelsby statistical means: While generic inationary models lead to Gaussian per-turbations, topological defects are inherently non-Gaussian. It may howeverbe quite di�cult to detect this deviation from Gaussian statistics: On verylarge scales, a signi�cant obstacle is cosmic variance, while on intermediatescales, several defects might contribute to a given perturbation and thus re-duce non-Gaussian signatures (central limit theorem). The best prospects areprobably on small scales, where one might actually 'see' the discontinuity dueto one cosmic string21. An interesting discussion of the problem of statistics isgiven in the contribution by J. Magueijo in these proceedings.AcknowledgmentsIt is a pleasure to thank Monique Signoret and Francesco Melchiorri for orga-nizing this short but stimulating and active meeting. I also want to express mythanks to Mairi Sakellariadou who contributed to much of the original workreported here. I gratefully acknowledge support by the Fonds National Suisse.AppendixIn this appendix we show in some detail how Eqs. (14) and (16) lead bothto a Harrison Zel'dovich spectrum of microwave background anisotropies, i.e.C` / 1=`(`+ 1).Using xdec = x0�n(t0�tdec) � x0�nt0, the Fourier transform of Eq. (13)yields �TT (n;k) = 13 exp(in � kt0)	(tdec;k) : (21)Using the well-known identity23 exp(i��) =P`(2`+ 1)i`j`(�)P`(�), where j`denotes the spherical Bessel function and P` is the Legendre polynomial of15



index `, we �nd �TT (k; �) = X̀ i`�`(k)P`(�) ; (22)with � = n � k=k, and �`(k) = 2`+ 13 	(k; tdec)j`(kt0) : (23)Inserting this in the two point correlation function, Eq. (12), one obtainsC` = 2� Z dkk2 hj�(k)j2i(2`+ 1)2 : (24)To arrive at this result we replace the ensemble average of Eq. (12) by anintegration over observer positions x0, a kind of 'ergodic hypothesis'. Then weuse unitarity of the Fourier transform and elementary orthogonality propertiesof spherical harmonics. The average hj�(k)j2i represents an integral over k-directions. For Eq. (24) to hold, it is important that the Fourier transform isde�ned by f̂(k) = 1pV ZV d3xf(x) exp(ik � x) ; (25)otherwise, the pre-factor in front of the integral in Eq. (24) changes.Inserting now hj	j2(k)i = Ak�3, the integral in Eq (24) becomesC` = 2A9� Z dxx j`(x)2 :This integral can be performed exactly with the result24C(inflation)` = A�(`)36�(3=2)�(`+ 2) = A9�`(`+ 1) : (26)The dimensionless constant A is given by the speci�c inationary model andhas to be tuned to A � 10�9.For topological defects the situation is somewhat more complicated since	 is time dependent. The same reasoning which led to Eq. (23) yields12`+ 1�`(k) = 2	(tdec; k)j`(kt0) + 2 Z t0tdec _	(t; k)j`(k(t0 � t))dt : (27)If we now make use of the approximation for the geometry perturbations fromdefects given in Eq. (16) and simply set 	(k) � phj	(k)j2i , the integration16
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