
CMB anisotropies from pre-big bang cosmologyF. Vernizzi1, A. Melchiorri2;1 and R. Durrer11D�epartement de Physique Th�eorique, Universit�e de Gen�eve, 24 quai Ernest Ansermet, CH-1211 Gen�eve 4,Switzerland2 Universit�a Tor Vergata, Roma, ItalyWe present an alternative scenario for cosmic structure formation where initial uctua-tions are due to Kalb-Ramond axions produced during a pre-big bang phase of ination. Weinvestigate whether this scenario, where the uctuations are induced by seeds and thereforeare of isocurvature nature, can be brought in agreement with present observations by asuitable choice of cosmological parameters. We also discuss several observational signatureswhich can distinguish axion seeds from standard inationary models. We �nally discussthe gravitational wave background induced in this model and we show that it may be wellwithin the range of future observations.PACS Numbers : 98.80.Cq 98.80.EI. INTRODUCTIONIt is commonly assumed that an inationary phase is necessary in order to construct a consistent cosmolog-ical model. The familiar adiabatic inationary scenario deserves its popularity to the fact that it solves thehorizon and atness problem and at the same time provides a consistent model for the origin of cosmologicalperturbations. In particular, it naturally leads to a at (Harrison-Zel'dovich) spectrum of perturbations onlarge scale and to coherent acoustic oscillations on intermediate scales which manifest themselves as \peaks"in the Cosmic Microwave Background (CMB) anisotropies.After the recent measurements of the intermediate scale CMB anisotropy power spectrum [1{4], atadiabatic models seem to be favored [6{8]. Nevertheless none of the many inationary scenarios whichhave been developed during the last 19 years has been constructed consistently on the bases of a serioustheory of high energy physics; ination has always been seen as an e�ective model pointing to a greatermore fundamental theory which has not been clari�ed so far. We believe that superstrings are presently themost promising candidate for such a theory but on the other hand it is well known that it is not possible toderive an inationary model from a string theory e�ective action on a generic background, the reason beingthat the non-minimal coupling between the dilaton and the metric slows down the expansion of the universespoiling the solution of the problems for which the ination has been invoked.The pre-big bang idea [9] represents in this context one of the �rst and most interesting attempts to developa new cosmological scenario which solves the horizon and atness problems, based on string theory. In thisradically new picture, the underlying duality symmetry [10] present in the low energy sector of string theorynaturally selects perturbative initial conditions and automatically leads to an inationary phase prior to thebig bang during which curvature and the dilaton are growing [9,11]. Unless its many appealing features, thisscenario is known to face several problems such as the lack of a complete and consistent description of thehigh coupling and high curvature regime where the transition between the pre-big bang and the post-bigbang phase and the stabilization of the dilaton should take place [12]. Furthermore, opinions vary as towhether the initial conditions in the pre-big bang need a large amount of �ne tuning [11,13]. On a morephenomenological side, it is nevertheless important to study whether this scenario can provide the featuresthat we observe in the universe today.A realistic cosmological model has to generate large-scale matter perturbations and to reproduce the slopeand the amplitude of CMB anisotropy spectrum. On this side the pre-big bang scenario was thought forsome time to be unable to provide a scale-invariant spectrum of perturbations. First-order tensor and scalarperturbations in the metric, as well as perturbations of the moduli �elds, were found to be characterized byextremely \blue" spectra [14]. This large tilt, together with a natural normalization imposed by the stringcuto� at the shortest ampli�ed scales, would have made their contribution to large-scale structure completelynegligible. 1



However, it was later realized that the spectral tilt of the axion, a universal �eld in string theory, canassume a whole range of values depending on the behavior of the internal and external dimensions and inparticular it can naturally provide a scale-invariant spectrum of perturbations [15{17]. This result reopenedthe possibility that pre-big bang cosmology may contain a natural mechanism for generating large-scaleCMB anisotropies via the \seed" mechanism [18].This possibility was analyzed in Refs. [19,20] for massless axions and in Ref. [21] for very light axionsbut these analytical treatments are restricted to large angular scales. We then have extended the studyto smaller scales with the help of numerical calculations. First results of this work have been reported ina letter [22], where a strong correlation between the axion spectrum, n�, and the height of the peak wasnoticed. A range of values around n� = 1:4 (slightly blue spectra) appeared to be favored by a simultaneous�t to the normalization on large angular scales observed by COBE [23] and the data on the �rst acousticpeak available at that time.In this companion paper we present a full explanation of the details of these calculations for the CMBangular power spectrum and for the dark matter power spectrum and we study the problem of the \de-coherence" of axion perturbations which has been ignored in the previous work. Furthermore, we expandon the results on the observational signatures presented in the Letter [22] and we discuss them in the lightof the new CMB anisotropy data presently available by investigating the cosmological parameter-space ofthe model. We also discuss CMB polarization for our model and the contribution of the gravitational wavebackground induced by axion perturbations.The paper is organized as follows: in the next section we study axion production in the pre-big bangand explain the details of the computation of the axion energy-momentum tensor which plays the role ofthe \seed" in our model. In Section III we determine the CMB anisotropy and dark matter spectra. Westudy the problem of decoherence and show that the coherent approximation is very good in this model.In Section IV we compare our result with CMB and Supernova data and present a cosmological parameterestimation for this scenario. We also examine and discuss the normalization and the kink in the axionspectrum which is required to �t observations. Section V is devoted to a novel prediction of axion seeds:the tensor component of their energy-momentum tensor induces a gravity wave background which might beobservable. In Section VI we summarize our conclusions.
II. AXION SEEDS FROM STRING COSMOLOGYA. Extra dimensions in string cosmologyThe minimal low energy e�ective action of the NS-NS sector of string theory in the string frame is givenby [24] S10 = Z d10xpjg10je��10 �R10 + (r�10)2 � 112H210� ; (2.1)where we have included the 10-dimensional antisymmetric tensor H��� = @[�B��], but no gauge or fermion�elds.We assume that the 10-dimensional metric can be factorized into a \large" 4-dimensional part and a\small" 6-dimensional metric, ds2 = g��dx�dx� + e2��IJdXIdXJ (2.2)(�; � = 0; : : : ; 3 and I; J = 1; : : : ; 6), where � depends only on time � = �(t). If the six dimensional pieceis compacti�ed to a very small radius, the lowest energy Kaluza-Klein modes yield the 4-dimensional action[15], S = Z d4xpjgje�� �R+ (r�)2 � 3(r�)2 � 12e2�(r�)2� : (2.3)2



Here we have introduced the 4-dimensional axion �eld � de�ned byH��� = e�������r��: (2.4)The action (2.3) and the de�nition (2.4) include the 4-dimensional dilaton �eld, �, the pseudo-scalar axion�eld, �, which represents the degrees of freedom of the antisymmetric three tensor �eld H , and a modulus�eld, �, which parameterizes the radius, or the \breathing mode", of the 6-dimensional internal space. Theaxion �eld (not to be confused with the Peccei-Quinn axion) is universal in string theory.Let us assume a homogeneous dilaton background, � = �(t), and an external 4-dimensional space-timeadequately described by a standard, spatially at FLRW metric with scale factor a(t),g�� = diag[�1; a2(t); a2(t); a2(t)]: (2.5)In the following we shall also make use of the metricg�� = a2(�)diag[�1; 1; 1; 1]; (2.6)where we have introduced the conformal time � given by d� = dt=a (we shall use a point to indicatea derivative with respect to conformal time, _ � @=@�). With this choice of the external metric, the 4-dimensional dilaton is related to the 10-dimensional one by� = �10 � 6�: (2.7)When the axion �eld is trivial, _� = 0, or its contribution to the global dynamic of the universe is negligible,the equations derived from the action (2.3) are invariant under duality transformations,a(t)! 1=a(�t); �(t)! �(�t)� 6 ln(a(�t)): (2.8)This invariance (scale factor duality) represents one of the motivations behind the pre-big bang scenario [9].The �eld equations for a; � and � are solved [9] by the following power laws, known as dilaton-vacuumsolutions in the pre-big bang for � < ��1:a(�) = ����1 � �1�� ; e�(�) = ����1 � �1�� ; e�(�) = ����1 � 3��11�� ; (2.9)where � and � satisfy the Kasner constraint,3�2 + 6�2 = 1: (2.10)Here ��1 is the (conformal) time at which curvature and dilaton become so large that loop corrections fromstring theory have to be taken into account. It is hoped that these corrections then lead to a radiationdominated Friedman universe with \frozen" dilaton at � > �1.From these solutions one can see that, during the pre-big bang phase, i.e. for negative conformal time �,a negative � and a positive � are required to make the external 3-dimensional space expand and the internal6-dimensional space contract. Therefore � has to lie in the interval �1=p3 � � < 0, which leads always to agrowing dilaton and growing 4-curvature, R � ( _a=a2)2 / 1=(a�)2 / (��) �21�� .B. Ampli�cation of axion quantum uctuationsIn this subsection we briey review the mechanism for the generation of a primordial quasi-scale-invariantspectrum from the pre-big bang phase and we discuss the dependence of the spectral index on the evolutionof the internal and external dimensions of the pre-big bang universe. Secondly, using as initial conditions theaxion �eld obtained during the pre-big bang phase, we analyze its evolution after the big bang in a criticalFLRW universe with and without cosmological constant, paying particular attention to the frequency modesthat enter into the calculation of the CMB anisotropy power spectrum.3



As in previous works [19,21,22] we suppose that the contribution of the axion �eld to the equations ofmotion for �, a and � is negligible and that the evolution of the dilaton, the moduli, and the scale factor aregoverned by the dilaton-vacuum solutions (2.9). Nevertheless, quantum uctuations of all the �elds are ofcourse present and we will show that quantum uctuations of the axion �eld can seed density perturbationsand CMB anisotropies in the post-big bang era. To this goal we have to study the axion evolution equationand the spectrum of axions produced during the pre-big bang phase due to their coupling to the backgroundgravitational �eld and the dilaton.Varying the action (2.3) with respect to the �eld � in the string frame yields the equation of motionr�(e�2�r��) = 0: (2.11)The study of this equation is conveniently performed by use of the canonical variable given by � aA� � ae�=2�; (2.12)which \diagonalizes" the perturbed action expanded up to second order. The factor aA is the so called pump�eld of the axion. The Fourier modes  k(�) satisfy a canonical linear second-order equation, completelydecoupled from the other �elds, � k +�k2 � �aAaA� k = 0: (2.13)This is the evolution equation for the axion �eld.Eq. (2.13) is equivalent to the equation for a classical harmonic oscillator with parametric evolution drivenby the time dependent e�ective potential �aA=aA. When the time evolution of the velocity of the pump �eld,_aA, is su�ciently slow such that, for a given mode k, �aA=aA � k2, we are in the adiabatic regime withthe result that no particles are created. When the acceleration in the pump �eld is high enough to violatethe adiabatic regime, quantum particle production starts. The evolution of the axion �eld and the resultingspectrum of particles are fully determined by the time behavior of the pump �eld in the di�erent phases ofthe universe. In particular, a strong di�erence in this behavior exists between the pre-big bang phase andthe standard radiation and matter dominated eras in the post-big bang universe.The pre-big bang phase is characterized by an accelerated evolution of the pump �eld,aA / (��) ;  = 5� � 12(1� �) ; (2.14)where � < 0 is the power which characterizes the evolution of the external dimensions, Eq. (2.9). UsingEq. (2.13), the evolution equation of the axion can be written as� k + k2�1� ( � 1)x2 � k = 0; (2.15)where x � k�. This equation is solved analytically in terms of the Hankel functions �1=2H(1)� and �1=2H(2)�with � = j � 1=2j.At very early time, a perturbation of given wave number k is well inside the horizon, jxj = jk�j � 1, andthe solutions of Eq. (2.15) are harmonic oscillations which can be consistently normalized to the vacuumuctuation spectrum for � ! �1. This initial condition implies that the H(1)� mode is absent and k(�) = (��)1=2H(2)� (k�); � = 12 �  = 1� 3�1� � ; for � < ��1: (2.16)Here ��1 ! �1 is the transition time scale between the pre-big bang phase and the standard radiationdominated era.After the singularity, during the standard radiation and matter dominated eras, the dilaton is frozen,� = const, and the pump �eld is proportional to the standard scale factor, aA / a. The scale factor, a,and its second derivative, �a, are given by Friedman's equations. For a critical universe, which we considerthroughout our calculations and which is certainly a good approximation until redshifts z � 5, we have4



�aa = 4�G3 a2(�� 3p) + 2a2�3 ; (2.17)_a2a2 = 8�G3 a2�+ a2�3 : (2.18)Energy conservation for radiation (r) and matter (m) yields �r / 1=a4 and �m / 1=a3, with � = �r + �mand p = �r=3; �r is the radiation energy-density, �m is the matter energy-density, and p the pressure of theradiation uid. At early times, when � is negligible, these equations have a simple analytical solution,a = aeq ��=�� + 14(�=��)2� ; �� � � 34�G�eq�1=2 = �eq2(p2� 1) ' 1:2�eq; (2.19)where �eq is the transition time between the radiation and the matter dominated era, �r(�eq) = �m(�eq) =�eq=2. The e�ective potential during the post-big bang becomes�aAaA = �aa = 12��� + 12�2 : (2.20)When � is non vanishing, the solution for the e�ective potential can be found numerically but since thecontribution of a small cosmological constant to the scale factor becomes important only at late time,the solutions to (2.15) are almost una�ected; this has been checked by numerical tests. In the radiationdominated era, � < �eq , the e�ective potential can be approximated by �aA=aA ' 1=(2���).We now study the axion evolution in the post-big bang era. Let us write the term in parenthesis on theleft hand side of the axion equation of motion, Eq. (2.13), as�k2 � �aa� = k2�1� (�a=a)�2x2 � = k2�1� �=(2�� + �=2)x2 � : (2.21)In order to study the solution of Eq. (2.13) we have to study the ratio of the dimensionless e�ective potential(�a=a)�2 and x2 to be compared with unity. As long as we are well in the radiation dominated era, � � ��,the dimensionless e�ective potential is small and particle creation induced by the pump �eld is negligible atearly times. Eq. (2.13) then is a harmonic equation solved by free plane waves, k(�) = 1pk [c+(k)e�ik� + c�(k)eik� ]: (2.22)By matching the two solutions (2.16) and (2.22) at the transition time �1 we obtain, for jk�1j � 1 and�eq � � > �1, c�(k) = �c(k); with hjc(k)j2i ' ( � kk1��2��1 k < k10 k > k1 ; (2.23)so that  k = c(k)pk sin(k(� � �1)); for �1 < � � �eq : (2.24)Here k1 = 1=�1 represents the maximal ampli�ed frequency of the pre-big bang phase. We suppose thatmodes with frequencies much lower than k1 are una�ected by the unknown details of the transition from thepre- to the post-big bang phase.The energy-density distribution of the produced axions is thend��(k)d log k ' 1�2 �ka�4 hjc(k)j2i ' �k1a �4 � kk1�3�2� / kn��1: (2.25)The axion spectral index n� is related to the power which characterizes the evolution of the external dimen-sions by 5



n� = 4� 2� = 3 + 2 = 2�1 + �1� �� ; (2.26)which follows from Eq. (2.16). In order not to over-produce infrared axions we have to require � � 3=2,or n� � 1, which implies � � �1=3. As already pointed out in [19], the limiting value � = 3=2 correspondsprecisely to a Harrison-Zel'dovich spectrum of CMB anisotropies on large scale. In terms of the evolution ofthe scale factor, this corresponds to an isotropic expansion and contraction respectively of the external andinternal dimensions, a / 1e� / (��)�1=3: (2.27)Notice that only for a 10-dimensional space-time, symmetrical expansion and contraction corresponds to aat axion spectrum which induces a Harrison-Zel'dovich spectrum of CMB uctuations [20,19]!Nevertheless, as will be discussed in Section III, at very large scales and very early (negative) times, wewill need a slightly blue axion spectrum to �t CMB data. This requires a somewhat larger value of �, i.e. aslower expansion of the external dimensions and, correspondingly, a somewhat faster contraction of internaldimensions at early time.Let us therefore investigate what happens if the universe expands with some expansion law described by�� at early times, � < �b < ��1 and then switches to an expansion law given by �+ after �b. Su�cientlyshort wavelength modes which are inside the horizon during the entire epoch � < �b, which satisfy jk�bj < 1,are not inuenced by this change in the expansion law. The term �aA=aA is indeed sub-dominant in theequation of motion for  k during this epoch and hence the Bogoliubov coe�cient jc(k)j2 of Eq. (2.23) is notinuenced by the transition; we just obtain the result (2.23) with � = �+.The situation is di�erent if a mode exits the horizon before �b. Then the \incoming" solution  (� <�b) = (��)1=2H(2)�� (k�) di�ers from the vacuum solution and matching it to the general \outgoing" solu-tion,  (� > �b) = b1(��)1=2H(1)�+ (k�) + b2(��)1=2H(2)�+ (k�), yields b2 � b1 = (�(��)=�(�+)) jk�b=2j�+��� .Correspondingly, the coe�cient jc(k)j2 is changed by a factor jb2 � b1j2. In a model where the expansionlaw changes at a well de�ned time �b � �1=kb, we therefore get the following Bogoliubov coe�cients in thepost-big bang radiation era (see Fig. 1):hjc(k)j2i ' � kk1��1�2�+ � (k=kb)2�+�2�� for k � kb1 for k � kb: (2.28)
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We do not want to specify the event which may have triggered such a transition from n�(k < kb) =4 � 2�� = 1 + � to n�(k > kb) = 1, but there are certainly di�erent possibilities. For example, it isinteresting to note that isotropic expansion and contraction, a / 1=b, in a 26-dimensional space-time gives�� = 1=5, or n� = 1:33, which corresponds to � = 1=3, just about the \tilt" needed to �t the observedCMB anisotropies (see Section III). Therefore, if we start out the pre-big bang phase with a 26-dimensionalbosonic string vacuum (which we know to be unstable due to the presence of tachyons) which then \decays"to a supersymmetric and 10-dimensional string vacuum at some time �b, which corresponds to a comovingenergy scale kb, this could induce the required tilt.We now study the modi�cation in the axion spectrum during the post-big bang era, where aA = a. As wehave seen above, during the radiation era, � < ��, the dimensionless e�ective potential is small. Furthermore,once a mode enters the horizon, k� > 1, the k2-term always dominates over the e�ective potential and thereis no more particle creation. Therefore modes which enter the horizon before equality, k�� �> 1, are notampli�ed any further in the post-big bang phase. The spectrum of axion perturbations for these modesremains una�ected. However, the low frequency tail of the spectrum is further modi�ed as soon as we enterin the matter dominated era, where the dimensionless e�ective potential becomes of order unity. The modeswhich enter the horizon after the equality, k�� �< 1, are ampli�ed. This ampli�cation of low frequencymodes has important consequences on the angular spectrum of the CMB as will shall discuss in detail inSubsection III B.
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FIG. 2. The dimensionless potential (�a=a)�2 (thick line) and two modes that enter the horizon before and afterequality. The mode that enters the horizon before equality, '(k = 10keq ; �), is una�ected by the pump �eld andbegins to oscillate without being ampli�ed. The mode that enters the horizon after equality, '(k = 0:1keq ; �), isampli�ed and begins to oscillate later.The behavior of the dimensionless e�ective potential (�a=a)�2 together with two modes that enter thehorizon before and after equality have been plotted in Fig. 2. As one can see, only modes that enter thehorizon after equality are ampli�ed. Deep in the matter era � � �eq , the dimensionless e�ective potential isconstant and Eq. (2.13) becomes � k +�k2 � 2�2� k = 0: (2.29)This equation can again be solved in terms of Hankel functions, k(�) = �1=2[AH(2)3=2(k�) +BH(1)3=2(k�)]; for � � �eq ; (2.30)where A and B are constants to be determined by matching conditions (see [20]). The post-big bang solutions(2.24) and (2.30) are only correct far from matter-radiation equality �eq and in order to compute CMB7



anisotropies we need to require better precision on these solutions also for � � �eq . We therefore solve theaxion equation of motion Eq. (2.13) numerically, from the early radiation era through the radiation-mattertransition.The axion �eld is then given by�(k; �) = 1a(�) k(�) = c(k)apk'(k; �); (2.31)where the variable ' is the solution of equation�'+�k2 � �aa�' = 0 (2.32)with initial condition (obtained from the pre-big bang solution Eq. (2.24))'(k; �) = sin(k�); � � ��: (2.33)We have solved Eq. (2.32) numerically in this work using the e�ective potential (2.20). The pre-factor c(k)is a stochastic Gaussian �eld with power spectrumhjc(k)j2i = (k=k1)n��5; (2.34)where n� is again the primordial spectral index (2.26), our free parameter which depends on the higher-dimensional pre-big bang phase.C. Axion quantum uctuations as seedsWe are now ready to consider the axion �eld as a source of the linear cosmological perturbation equations.As in previous works [19,20,22] we suppose that the contribution of the axions to the cosmic uid canbe neglected and that they interact with it only gravitationally. They then play the role of seeds which,by their gravitational �eld, induce uctuations in the cosmic uid [18]. The back-reaction of the metricperturbations on the evolution of seeds is second order and can be neglected in �rst order perturbationtheory. The evolution of axions can be computed by using the solutions of the axion �eld equation in theunperturbed background geometry, Eq. (2.13).The axion �eld � is a Gaussian stochastic variable. Its contribution to the perturbation equations is givenin terms of its energy-momentum tensor,T (�)�� = @��@�� � 12���(@��)2; (2.35)which is quadratic in � and therefore not Gaussian. Moreover, although the axion �eld evolves according toa linear equation, it will enter into the perturbation equations through T (�)�� which evolves non-linearly.The perturbations in the dark matter and radiation components are set to zero in the initial conditionsand are subsequently induced by the gravitational �eld of the axion. Hence, axion seed perturbations belongto the class of isocurvature perturbations. However, they di�er from topological defects by being \acausal",i.e. they have non-vanishing correlations on super-Hubble scales, since they are due to �eld excitationsinduced during an inationary era.As we have seen above, the axion power spectrum obeys a simple power law with cuto� and is in generalnot analytic at k = 0. Furthermore, axion perturbations do not, in general, display the scaling behaviorexpected from topological defects. In the pre-big bang we have an additional scale, the string scale k1, whichbreaks scale-invariance. The axion spectrum on large scales is therefore not determined by dimensionalarguments since there are dimensionless factors of the form (k=k1)� which may alter the spectrum1. Thesigni�cance of these points will become clearer later in the paper.1Actually the radiation { matter transition scale �� represents a scale which is also present in models with topologicaldefects, but deep in the radiation or matter era this scale has no signi�cance, whereas as we shall see the above factorsmultiply the entire power spectrum of uctuations. 8



As in [22], we �rst consider a critical universe (total density parameter 
 = 1) consisting of colddark matter, baryons, photons, and three types of massless neutrino, with or without a cosmologicalconstant. We choose the baryonic density parameter 
b = 0:05 and the value of the Hubble parameterH0 = 100hkms�1Mpc�1 with h = 0:65.The linear perturbation equations for this universe in Fourier space are of the formDX = S ; (2.36)where X is a long vector containing all the uid perturbation variables which depends on the wave numberk and conformal time �, S is a source vector which consists of certain combinations of the seed energymomentum tensor and D is a linear ordinary di�erential operator. More details on the linear system ofdi�erential equations (2.36) can be found in [25] and references therein.For a given initial condition, this equation can in general be solved by means of a Green's function, G(�; �0),in the form X(k; �0) = Z �0�in G(k; �0; �)S(k; �)d�: (2.37)We want to determine power spectra or, more generally, quadratic expectation values of the formhXi(k; �0)Xj(k; �0)�i; (2.38)which, according to Eq. (2.37), are given byhXi(k; �0)Xj(k; �0)�i = Z �0�in Z �0�in Gil(�0; �)G�jm(�0; �0)hS l(�)S�m(�0)id�d�0: (2.39)(Sums over double indices are understood.)We therefore have to compute the unequal time correlators, hS l(�)S�m(�0)i, of the seed energy-momentumtensor. This problem can, in general, be solved by an eigenvector expansion method [25,26], as it will bedone in Subsection III B. However, if the source evolution is linear, the problem becomes especially simple.In this \coherent" case, we have Sj(�) = Fji(�; �in)S i(�in); (2.40)with a deterministic transfer function Fji. In this situation we can, by a simple change of variables, diago-nalize the hermitian, positive initial equal time correlation matrix,hSl(�in)Sm(�in)i = �l�lm:Inserting this in Eq. (2.39) yieldshXi(�)X�j (�0)i = �Z �0�in Gil(�0; �)til(�; �in)p�ld���Z �0�in Gjm(�0; �0)tjm(�0; �in)p�md�0�� �lm: (2.41)We therefore obtain exactly the same result as the one obtained by replacing the stochastic variable S bythe deterministic source term S(det)j given byS(det)j (�)S (det)i (�) = Fjl(�; �in)Fil(�; �in)�l = exp(i�ji)qhjSj(�)j2ihjS i(�)j2i; (2.42)where �ji is a, in principle unknown, phase which has to be determined case by case. Clearly �jj = 0. Whenthe stochastic variable S is real (as in our case) exp(i�ji) = �1. This linear or coherent approximation willbe fully used in this paper. We shall test its validity in Subsection III B.It is useful to split the energy-momentum tensor of the axion seeds (2.35) into a scalar, vector, and tensorpart since the perturbations generated by each of these components are evolved independently. Due tostatistical isotropy these three modes are uncorrelated. This also corresponds to a decomposition of the source9



term S into a scalar, vector, and tensor contributions, S(S), S(V ), and S(T ). A suitable parameterization ofthe decomposition of the Fourier components of T (�)�� is [18]T (�)00 = f�;T (�)j0 = �ikjfv + vj ; (2.43)T (�)ij = �ijfp ��kikj � k23 �ij� f� + 12(wikj + wjki) + �ij ;where f�, fv, fp, and f� are random function of k; w and v are transverse vectors, w �k = v �k = 0, and �ijis a symmetric, traceless, transverse tensor, � ii = �ijkj = 0. The variables (f�), (v,w) and (�ij) represent thescalar, vector, and tensor degrees of freedom of T (�)�� respectively. They are the source of the perturbationequations.The goal of the next three subsections is to express the correlators of the source components S(S), S(V ),and S(T ) in terms of these variables. These expressions, inserted in the perturbation equation (2.36), thenallow us to compute the CMB anisotropy and dark matter power spectra numerically.D. Axion seeds { Scalar componentWe �rst consider the scalar contribution given by the four variables f� of Eq. (2.44). Only two of thesefunctions are independent, the other two are related by energy and momentum conservation. We shall usetwo linear combinations of the three scalar seed-functions f�, fv, and f�,f�(k; �) = a2�(�) = T (�)00 (k; �); (2.44)fv(k; �) = ikjT (�)0j (k; �)k2 ; (2.45)f�(k; �) = 32k4 ��T (�)ij (k; �)kikj + 13k2klT (�)kl (k; �)� : (2.46)In the presence of seeds and in the linear perturbation approximation, the scalar component of the totalgeometric perturbations can be separated into a part induced by the seeds, 	s and �s, given byk2�s = 4�G [f� + 3( _a=a)fv)] ; �s +	s = �8�Gf�; (2.47)and a part induced by the perturbations of the cosmic uid, 	m and �m. The total geometric perturbationare given by the sums, 	 = 	s +	m; � = �s +�m: (2.48)The variables � and 	 are the (Fourier components of the) Bardeen potentials. They are gauge invariantand fully describe scalar perturbations of the Friedman geometry (for details look in [27,28]).Scalar perturbations are seeded by �s and 	s. These are the standard independent variables to use asscalar sources in the perturbation equations. In order to simplify somewhat the computation, we use �s andf� as our scalar seed degrees of freedom and the scalar source vector becomesS(S)(k; �) = [�s(k; �); 4�Gf�(k; �)]: (2.49)The energy-momentum tensor of the axion is given by Eq. (2.35), which leads to the following expressionsfor the seed-functions in terms of the axion �eld �,f�(k; �) = 12 Z d3p(2�)3 h _�(p; �) _�(jk� pj; �)� p � (k� p)�(p; �)�(jk � pj; �)i; (2.50)fv(k; �) = � 1k2 Z d3p(2�)3k � (k� p) _�(p; �)�(jk � pj; �); (2.51)f�(k; �) = � 32k4 Z d3p(2�)3 h(k � p)[k � (k� p)]� 13k2p � (k� p)i�(p; �)�(jk � pj; �): (2.52)10



The �rst two seed-functions, f� and fv , together with Eq. (2.47), yield �s,�s(k; �) = 4�Gk2 Z d3p(2�)3 �12 _�(p; �) _�(jk� pj; �)� 12p � (k� p)�(p; �)�(jk � pj; �)� 3 _aa k � (k� p)k2 _�(p; �)�(jk � pj; �)� :(2.53)The only information about the source random variables which we really need are the unequal timecorrelators between the Fourier components of the independent variables �s and f�. These correlators canbe written in terms of four real (since the correlators h�(k; �)��(k0; �0)i are real) scalar source correlationfunctions, F11, F22, F12, and F21, which completely characterize the scalar component of the source,h�s(k; �)��s(k0; �0)i = �(k� k0)F11(k; �; �0);4�Gh�s(k; �)f��(k0; �0)i = �(k� k0)F12(k; �; �0);4�Ghf�(k; �)��s(k0; �0)i = �(k� k0)F21(k; �; �0);(4�G)2hf�(k; �)f��(k0; �0)i = �(k� k0)F22(k; �; �0):Note that F11(k; �; �) and F22(k; �; �) are positive by de�nition and, since the functions F� are real,Fij(k; �; �0) = Fji(k; �0; �). In order to compute these functions we make use of Eqs. (2.52) and (2.53)and we exploit the stochastic average conditions of the Gaussian variables � and _� (Wick's theorem). We�rst introduce three real auxiliary variables �1, �2, and �3, which depend on the power spectrum of theaxion �eld, hjc(k)j2i, and on the solution ' of the evolution equation, Eq. (2.32),h�(k; �)�(k0 ; �0)i = (2�)3�(k� k0)�1(k; �; �0);h _�(k; �) _�(k0; �0)i = (2�)3�(k� k0)�2(k; �; �0);h�(k; �) _�(k0; �0)i = (2�)3�(k� k0)�3(k; �; �0);h _�(k; �)�(k0 ; �0)i = (2�)3�(k� k0)�3(k; �0; �): (2.54)The variables �i are given by�1(k; �; �0) = hjc(k)j2ika(�)a(�0)'(k; �)'(k; �0); (2.55)�2(k; �; �0) = hjc(k)j2ika(�)a(�0) [ _'(k; �)�H(�)'(k; �)][ _'(k; �0)�H(�)'(k; �0)]; (2.56)�3(k; �; �0) = hjc(k)j2ika(�)a(�0) [ _'(k; �)�H(�)]'(k; �0); (2.57)where H � _a=a. Notice that �1(�; �) and �2(�; �) are positive by de�nition.Inserting these results in Eqs. (2.52) and (2.53), and making use of Wick's theorem for the \randomvariable" c(k), we can work out a somewhat lengthy but straight forward expression for the scalar sourcefunctions, F11, F22, F12, and F21, in terms of the variables �1, �2, and �3:F11(k; �; �0) = (4�G)2k4 Z d3p(2�)3n12�2(p; �; �0)�2(jk � pj; �; �0)� 12p � (k � p)h�3(p; �; �0)�3(jk � pj; �; �0) + �3(p; �0; �)�3(jk� pj; �0; �)i� 3k � (k� p)k2 hH(�)�2(p; �; �0)�3(jk � pj; �; �0) +H(�0)�2(p; �; �0)�3(jk� pj; �0; �)i+ 12(p � (k� p))2�1(p; �; �0)�1(jk� pj; �; �0) + 3(p � k� p2)(k2 � p � k)k2 hH(�)�3(p; �0; �)�1(jk� pj; �; �0) +H(�0)�3(p; �; �0)�1(jk� pj; �0; �)i+ 9H(�)H(�0)k4 h(k � (k � p))2�2(p; �; �0)�1(jk� pj; �; �0) + (k � (k� p))(k � p)�3(p; �0; �)�3(jk� pj; �; �0)io;F22(k; �; �0) = 9(4�G)22k8 Z d3p(2�)3 h(k � p)(k � (k� p))� 13k2p � (k � p)i2�1(p; �; �0)�1(jk� pj; �; �0);F12(k; �; �0) = �3(4�G)22k6 Z d3p(2�)3 h(k � p)(k � (k� p)) � 13k2p � (k� p)ih�3(p; �0; �)�3(jk� pj; �0; �)� p � (k� p)�1(p; �; �1)�1(jk� pj; �; �0)� 6H(�)k � (k� p)k2 �3(p; �0; �)�1(jk � pj; �; �0)i;F21(k; �; �0) = F12(k; �0; �):The scalar source correlators of the perturbation equation (2.36) can be written as a two by two positiveand hermitian matrix, hS(S)i (k; �)S (S)�j (k; �0)i = � F11(k; �; �0) F12(k; �; �0)F21(k; �0; �) F22(k; �; �0) � : (2.58)11



E. Axion seeds { Vector componentThe vector contribution to the perturbation equations is seeded by the vector seed-functions vi, Eq. (2.44),vi(k; �) = P ji T (�)0j (k; �); (2.59)where P ji is the projector operator onto the space orthogonal to k de�ned byPij = �ij � k̂ik̂j ; k̂i = ki=k: (2.60)Again, the second vector seed function, w, is given by v via momentum conservations. De�ning the projectionof the vector p onto the space orthogonal to k by p? = Pp, we obtain an expression for the vector seed-functions in terms of the axion �eld,vj(k; �) = i Z d3p(2�)3 p?j _�(p; �)�(k � p; �): (2.61)We again need the unequal time correlators between the Fourier components of the vector seed-functionsvi. These correlators can be written in terms of a vector source correlation function G, which completelycharacterize the vector component of the source [25],(4�G)2hvi(k; �)vj(k; �0)i = (�ij � k̂ik̂j)G(k; �; �0): (2.62)Using Eq. (2.61) and Eq. (2.54) this function takes the formG(k; �; �0) = (4�G)22k2 Z d3p(2�)3 �k2p2 � (k � p)2� h�2(p; �; �0)�1(jk� pj; �; �0) + �3(p; �; �0)�3(jk� pj; �0; �)i:(2.63)The vector source correlators of the perturbation equation (2.36) then arehS(V )i (k; �)S(V )j (k; �0)i = PijG(k; �; �0): (2.64)F. Axion seeds { Tensor componentThe tensor contribution to the perturbation equations is seeded by the tensor seed-functions �ij , Eq. (2.44),�ij(k; �) = �P ki Pnj � 12PijP kn�T (�)kn (k; �): (2.65)This leads to an expression for the tensor seed-function in terms of the axion �eld,�ij(k; �) = � Z d3p(2�)3 hp?i p?j � (1=2)(�ij � k̂ik̂j)(p?)2i �(p; �)�(k � p; �); (2.66)which can be used to compute the unequal time correlators. These correlators can be written in terms ofa tensor source correlation function, H , which completely characterizes the tensor component of the source[25],(4�G)2h�ij(k; �)�lm(k; �0)i = [�il�jm + �im�jl � �ij�lm + k�2(�ijklkm + �lmkikj � �ilkjkm � �imklkj � �jlkikm � �jmklki) + k�4kikjklkm]H(k; �; �0) = (PilPjm + PjlPim � PijPlm)H(k; �; �0):(2.67)Using Eq. (2.66) and Eq. (2.54) this function takes the form12



H(k; �; �0) = (4�G)24k4 Z d3p(2�)3 �k2p2 � (k � p)2�2�1(p; �; �0)�1(jk � pj; �; �0): (2.68)The tensor source correlators of the perturbation equation, Eq. (2.36), hence arehS(T )ij (k; �)S (T )lm (k; �0)i = (PilPjm + PjlPim � PijPlm)H(k; �; �0): (2.69)
III. CMB ANISOTROPIES INDUCED BY AXION SEEDSIn this section we present the CMB power spectrum obtained in our scenario. We �rst describe the CMBangular power spectrum obtained in the coherent approximation and in Subsection B we then show in detailthat the coherent approximation is very good for axionic seeds, leading to errors of 5% or less.A. CMB power spectrum { Coherent approximationA source is called coherent [29,30] if the unequal time correlation functions can be factorized or replacedby the product of deterministic sources, as in Eq. (2.42),hSj(�)S i(�0)i ' �qhjSj(�)j2ihjS i(�)j2i: (3.1)As pointed out in Subsection II C, this approximation is exact only if the source evolution is linear. Thenthe di�erent k modes do not mix and the value of the source term at a �xed k at a later time is given byits value at initial time multiplied by some transfer function, as in Eq. (2.40). In this situation Eq. (3.1)becomes an equality and the model is perfectly coherent. This is not the case for our model since we knowthat, although the axion �eld evolves according to a linear equation, its energy-momentum tensor, whichenters into the perturbation equations as source, does not; it is quadratic in the �eld �. Thus, nonlinearityleads to mixing of scales and to deviation from a Gaussian distribution.Nevertheless our situation is very similar to the large N limit of global O(N) models in which the onlynonlinearities also are the quadratic expressions of the energy-momentum tensor. In this case the e�ectsof decoherence are very small and one �nds that the full incoherent result is not very di�erent from theperfectly coherent approximation [25].This result motivated us to compute the CMB anisotropy in the perfectly coherent approximation. Herewe repeat and expand on results already presented in [22] while in the next subsection we justify them bydiscussing the full incoherent case.In order to compute the CMB anisotropy power spectrum in the coherent approximation, we replace theunequal time correlation functions in Eq. (2.39) by the productshS(S)i (k; �)S (S)j (k; �0)i = F (n�)ij (k; �; �0) ' �[F (n�)ij (k; �; �)F (n�)ij (k; �0; �0)]1=2;hS(V )(k; �)S(V )(k; �0)i = G(n�)(k; �; �0) ' [G(n�)(k; �; �)G(n�)(k; �0; �0)]1=2; (3.2)hS(T )(k; �)S (T )(k; �0)i = H(n�)(k; �; �0) ' [H(n�)(k; �; �)H(n�)(k; �0; �0)]1=2;where we have indicated the dependence of the correlators on the spectral index n� by a super-script. InFig. 3 we show the time behavior of one of the equal time correlators. On super-horizon scales, k� � 1,they all display the same typical behavior, / k���1�2n� , which depends on the spectral index n� and on�, a positive power determined by dimensional arguments. On sub-horizon scales the correlators decay fastdue to incoherent oscillations of the convolved axion �eld.We have solved Eq. (2.36) for the scalar, vector, and tensor components. The CMB anisotropy powerspectrum is given by the sum of the three contributions and depends on the spectral index n� ,13
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FIG. 3. Time evolution of the source function F11(k; �; �)k3, with tilt n� = 1:1, for di�erent modes, k = 0:001keq ,k = 0:01keq , k = 0:1keq , k = keq , and k = 10keq . For super-horizon modes, the correlator F11 decays like �1�2n�=k4.As soon as a mode enters the horizon the corresponding correlator decays faster due to the oscillating behavior of theaxion �eld. Before crossing the horizon, the other scalar equal time correlators show the same power law behaviorwhile the vector correlator G(k; �; �) / �3�2n�=k2 and the tensor correlator H(k; �; �) / �5�2n� (independent of k).C(n�)` = C(Sn�)` + C(V n�)` + C(Tn�)` : (3.3)In Fig. 4 we show the scalar, vector, and tensor contributions to the resulting CMB anisotropies for anaxion spectrum with tilt n� = 1:1. The \hump" at ` � 60 in the scalar component is due to the isocurvaturenature of the perturbations. This is also one of the reasons why the acoustic peaks are very low, the otherbeing that the vector (and tensor) component is of the same order of magnitude as the scalar one. Thisenhances, in seeds models, the CMB spectrum at large scales thereby lowering the acoustic peaks at smallscales. The result obtained is remarkably similar to the large N case studied in [25]. The main di�erencehere is that, like for usual inationary models, we dispose of a spectral index which is basically free. Bychoosing slightly bluer spectra, we can enhance the power on smaller scales.In Fig. 5 we show the sum of the scalar, vector, and tensor contributions comparing the results fromdi�erent tilts with and without a cosmological constant. The CMB power spectra obtained can have consid-erable acoustic peaks at ` � 250 to 300, which can be raised further by adding a non-vanishing cosmologicalconstant. Increasing the tilt n� raises the acoustic peaks and moves them to slightly smaller scales. Asfound in [20], the power spectrum of the scalar component is always blue. The tensor and vector componentcounterbalance the increase of the tilt, maintaining a nearly scale invariant spectrum on large scales. Themodels can be clearly discriminated from the common inationary spectra by their isocurvature hump andby the position of the �rst peak. A discussion on the comparison of these results with recent CMB data willbe given in Section IV.We have also computed the CMB polarization for our model. The result for two di�erent spectral indices isshown in Fig. 6 where we compare it with the polarization from usual inationary models. It is interesting tonote that our models show a characteristic \polarization hump" which is signi�cantly smaller in inationarymodels. The polarization \hump" is completely suppressed for topological defects due to causality [31] andrepresents a very characteristic signature of \acausal seed models" like the one under consideration.B. DecoherenceIn order to estimate the accuracy of the results found in the previous subsection, we discuss here thedecoherence of the axion seeds showing that the di�erence between the coherent approximation and the14
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FIG. 4. The CMB anisotropy power spectrum for uctuations induced by axion seeds with a tilt n� = 1:1 and� = 0. This result is computed within the coherent approximation. We show the scalar (dot-dashed), vector (dashed)and tensor (dotted) contributions separately as well as their sum (solid).full incoherent calculation is very small. The decoherence is tested only for the scalar component of thespectrum, where it may lead to \smearing out" of the acoustic oscillations. Its e�ects on vector and tensorperturbations are expected to be small.We �rst introduce the property of \scaling" for the axion seeds. When working with seeds, to solve theproblem of the enormous dynamical range2 needed to compute the C`'s from ` = 2 to ` = 1500, one oftenmakes use of scaling properties. We call seeds scaling if their correlation function, hS(k; �)S(k; �0)i, is scalefree, i.e., the only dimensional parameters in Fij , G, and H are the variables �, �0, and k themselves. Aswe have already mentioned, axion seeds are not scaling since the correlation function contains factors of theform (k=k1)6�2n� . But such a simple analytical pre-factor can we written as(k=k1)6�2n� = (k�)6�2n�=(k1�)6�2n�and does not enter the costly numerical integration. Numerical calculations are reduced greatly if one canwrite the correlation function in the formFij(k; �; �0) = f(p��0; k1)Cij(y; r);G(k; �; �0) = g(p��0; k1)W (y; r); (3.4)H(k; �; �0) = h(p��0; k1)T (y; r);where y � kp��0 and r �p�0=�, and f , g, and h are given analytically. The matrix Cij and the functionsW and T are dimensionless by construction. In the following we shall call this behavior \modi�ed scaling".But even after this extraction of the explicit breaking of scaling, our source does not exactly obey \modi�edscaling" due to the radiation-matter transition. As one can see immediately from the evolution equationof the axions in the post-big bang phase, Eq. (2.32), the extra dimensional parameter implicitly contained2To compute the CMB and dark matter power spectra, we need to know the seed functions over a dynamical rangeof kmax=kmin � 300000 and this for all times �in � �; �0 � �0 with k�in � 1. This gives �nally more than 1000functions of two variables which have to be known accurately over a long time interval.15



10 100 1000
l

0

50

100

(l
(l

+
1)

C
l/2

π
)1/

2  [µ
Κ

]
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� = 0:7 (long dashed). The tiltis raising from bottom to top, n� = 1:1; 1:2; 1:3; 1:4; 1:5.in the unequal time correlators is �� which comes from the expression for the scale factor a, Eq. (2.19).The radiation-matter transition introduces the new scale �� and thereby spoils the modi�ed scaling behaviorof the axion seeds3. However, deep in the radiation or matter era, � � �� or � � �� respectively, thereduced correlation functions do obey scaling. In order to avoid this problem and to simplify the numericalcalculations, we therefore compute the axion �eld according to the equation for the pure radiation era, i.e.,setting a(�) = �. We call this the radiation approximation. This approximation a�ects the correlatorsand the CMB anisotropy power spectrum, especially at large angular scales, but is expected not to di�ersigni�cantly from the correct results on the scales of the acoustic peaks, and it allows us to obtain sourceswhich obey modi�ed scaling.In the coherent case, where we just need the equal time correlators, the numerical requirements have notbeen very involved and we have not been pushed to the radiation approximation. But, as we shall see, thefully decoherent calculation will not change the results considerably and therefore an enormous numericale�ort, which would be needed to compute the unequal time correlators without any use of scaling behavior,is not justi�ed for this simple test.In the matter dominated era, axion seeds are ampli�ed by quantum particle creation while in the radiationapproximation they do not experience this ampli�cation. Nevertheless, axions are massless particles and theybehave like a perfect radiation uid. Thus, their energy density decreases as 1=a4, faster than the cosmicuid in a matter dominate universe, where a / �2 and � / a�3, than in a radiation dominated universe,where a / � and � / a�4. This leads one to some overestimation of the sources at � > �� in the radiationapproximation.In Fig. 7 we compare the time behavior of one of the equal time correlators taking into account theradiation matter transition (dashed) with those obtained in the radiation approximation (solid line) fortwo di�erent values of k. Modes that enter the horizon before matter-radiation equality, k > keq , do notfeel quantum particle creation; therefore, there is no di�erence between the full result and the radiationapproximation on super-horizon scales. Inside the horizon, in the matter era the mode decays faster thanin the radiation approximation. Modes which enter the horizon after equality, k < keq , get �rst ampli�ed3This breaking of scale invariance is also found in models with topological defects.16



by particle creation, an e�ect which is missed in the radiation approximation, but then decay faster thanin the radiation approximation. As can be seen in Fig. 8, the slower decay has consequences on the CMBanisotropy power spectrum: using the radiation approximation somewhat enhances the Sachs-Wolfe plateauand the �rst peak.We now compute the CMB anisotropies in the full decoherent case for the radiation approximation,making use of modi�ed scaling. We restrict our attention to the scalar component, where decoherence canbe important.As explained in Eq. (3.4) we write the scalar correlation matrix Fij (for n� = 1) asFij(k; �; �0) = (��0)3=2Cij(y; r); (3.5)where Cij is only function of y and r and hence dimensionless. The matrix Cij is clearly symmetric underr ! 1=r as can be seen in Fig. 9. For y < 1 the sources decay like 1=y and after horizon crossing they beginto decay faster due to oscillations.The source correlation matrix Cij can now be considered as kernel of a positive hermitian operator in thevariables x = k� = y=r and x0 = k�0 = yr, which can be diagonalized [25],Cij(x; x0) =Xn �nvin(x)vjn(x0); (3.6)where fving is an orthonormal series of eigenvectors (ordered according to the amplitude of the correspondingeigenvalues) of the operator Cij for a given weight function w. The eigenvectors and the eigenvalues dependon the weight function w which can be chosen to optimize the speed of convergence of the sums (3.6).Inserting Eq. (3.6) in Eq. (2.39) leads tohXi(k; �0)Xj(k; �0)i =Xn �(n)X(n)i (k; �0)X(n)j (k; �0); (3.7)where X(n)i (�0) is the solution of Eq. (2.36) with deterministic source term v(n)i ,X(n)j (k; �0) = Z �0�in d�G(k; �0; �)jlv(n)l (k; x): (3.8)For the scalar CMB anisotropy spectrum this givesC(S)` = NXn=1�(S)n C(Sn)` ; (3.9)C(S)` is the scalar component of the CMB anisotropy induced by the deterministic source vn and N is thenumber of eigenvalues which have to be considered to achieve good accuracy.In our model we actually �nd it easier to diagonalize the matrix~Cij(x; x0) = Cij(x; x0)pxx0;whose diagonal is at for x < 0:01, exactly as in the large-N and texture models studied in [25]. In this casewe have Cij(x; x0) = NXn ~�n ~vin(x)px ~vjn(x0)px0 ; (3.10)where ~vjn and ~�n are the eigenvectors and the eigenvalues of the matrix ~Cij .We diagonalize the matrix ~Cij using the logarithmic weight function w = 1=x which allows us to samplethe range of scales of interest more evenly. In Fig. 10 we show the eigenvectors decomposition of one ofthe scalar correlators. Note that a rather high number of eigenvectors and eigenvalues is required to reacha good accuracy in the approximation of the diagonal of the correlation function. Summing up N = 5017



eigenvectors the convergence is guaranteed; the summed up correlation function reproduces the original tobetter than 1%.This is di�erent from the large-N model, where about 20 eigenvectors su�ce for the same accuracy. Weassume that this di�erence is due to the slower decay of the source functions. As can be seen from Fig. 10,the source function is decaying from its original value to about 1% over the interval 0:1 < k� < 10, while inthe large-N model this decay is achieved in the interval 0:5 < k� < 4.We now compute the scalar contribution to the CMB anisotropies using Eq. (3.9). The result is shownin Fig. 11. We note that decoherence slightly reduces the amplitude of the oscillations around the �rst peakleaving however the secondary peaks and their positions almost una�ected. Although axion perturbations arein principle incoherent, it is di�cult to observe this from the CMB power spectrum. The e�ects of decoherenceare indeed very weak and the spectrum obtained in the perfect coherent approximation reproduces thedecoherent result within less than 5%. We hence are con�dent to obtain a su�cient accuracy in the perfectlycoherent approximation which we shall apply for the rest of this paper.
IV. COMPARISON WITH CMB ANISOTROPY DATA AND MATTER PERTURBATIONSIn this section we compare the results found in the previous section with data discussing in particularthe consequences of the normalization of CMB anisotropies to COBE scale and presenting the cosmologicalparameters favored by our model. In Subsection D we �nally compute the dark matter power spectrum andwe compare it with data. A. Normalization and the kinkComparing our numerical result with the CMB data we normalize our curve to the uctuation amplitudeobserved by COBE. This provides a relation between the string scale and the scale of the break kb. Sincewe ignore constant factors of order unity in the overall amplitude in our calculation, the result for theamplitude is not very precise, but certainly correct within a factor of about 2. For the best �t value of thetilt, n� � 1 = � � 0:33, our numerical result on the COBE scale (at ` � 10) is `(`+ 1)C` ' 0:3g41(��kb)�2�.Here g1 is the dimensionless string coupling constant given by !1=mPlanck where !1 = k1=a1 = H(�1) is theinverse string scale. Comparing this with the COBE normalization, `(`+ 1)C`T 20 ' 5225�K2, yields��kb = (2:1� 103g21)1=�: (4.1)For example, if the string scale is 1018GeV, so that g1 � 0:1, we get kb � h2=(2kpc), where we have inserted�� � 20h2Mpc. An interesting constraint comes from the fact that the break in the spectrum should be on ascale which is smaller than the scale represented by the �rst acoustic peak in order not to reduce the latter.Since �� corresponds to the horizon scale at equality, this requires ��kb �> 1 or !1(a1) = H1 �> 0:02mPlanck.Together with H1 �< 0:1mPlanck, this brackets the string scale just in the bull park where it is expected forvery di�erent theoretical reasons.The length-scale/energy-scale corresponding to the break kb at the time �b, during the pre-big bang phase,when the expansion law is supposed to change, is given byjtbj � j�bja(�b)=a0 � j�bja(�b)a(�1)10�32 � j�bj �����b�1 �����1=4 10�32 � 6� 10�14cm � 3GeV�1; (4.2)where we have used �b � �� � 20Mpc and �1 � 0:1cm. The energy scale obtained in this way is uncertainwith a factor of about 10.In Fig. 12 we show the dependence of the CMB anisotropy spectrum on the position of the break. Typically,the break lowers the second and subsequent acoustic peaks while does not substantially a�ect the �rst peak.18



B. Cosmological parametersIn the last two years, a peak in the CMB power spectrum at ` � 200 as been detected by severaldi�erent experiments, most notably TOCO98 [1], B97 [2], B98 [3], and MAXIMA-1 [4]. Among them, theBOOMERanG-98 power spectrum [3] reported the best and at the same time most conservative detection,although coming from only 5% of their overall dataset. The position, amplitude and shape of the peak can be�tted by the power spectra expected in the simplest inationary scenario based on adiabatic perturbations ina spatially at universe [5], [8]. Therefore, this peak represents the biggest challenge for the model presentedhere.We want to investigate whether a suitable choice of cosmological parameters can bring our model inagreement with the above mentioned data. This question is also very important in view of the usual\determination of the cosmological parameters" from CMB anisotropies, in the sense that it shows how theresults can change when assuming a di�erent model of structure formation. In other words the so called\measurements" of cosmological parameters from CMB anisotropies are strongly model dependent!The peak position is determined mainly by the angular diameter distance parameterR =s 
mj
K j F (y)2 : (4.3)Here 
K = 1�
m �
� is the curvature parameter andF (y) = 8<: sinh y (open)y (at)sin y (closed) (4.4)depends on the geometry of the universe. The variable y is the following integral:y =pj
K j Z zdec0 dz[
m(1 + z)3 +
K(1 + z)2 +
�]1=2 : (4.5)As pointed out in [32], the condition R = constant identi�es curves in the 
m � 
� plane, with nearlydegenerate C` spectra, providing that the baryon density parameter 
baryon is kept constant.In Fig. 13 we plot likelihood contours, obtained as follows: we rescale the string cosmology power spectraplotted in Fig. 5, both in amplitude A (in COBE units) and position R. We compare the resulting spectrawith the BOOMERanG and MAXIMA-1 data in the region up to ` � 400 by a simple �2-�t. We �nd thatthe 68% con�dence limit for R marginalized over A is 1:50 � R � 1:63 with R = 1:57 as best �t (see Fig. 13).In Fig. 14 the con�dence levels on R are translated to con�dence levels in the 
� � 
m plane which arethen combined with the current SN1a results [33]. It is clear from this �gure that the model can be broughtin reasonable agreement with observations only if the universe is closed. The deviation from atness becomesless and less important towards 
m ! 0, where all the R = const lines converge at 
� = 1. While the regionwith 
m > 1 can be safely excluded from di�erent cosmological observations, a moderately closed universewith 
� � 0:85 and 
m � 0:4 is compatible with SN1a results and also with estimates for 
m from clusterabundance and X-ray data (see e.g. [34]).As we have seen, the position of the �rst acoustic peak can be adjusted by choosing 
� and 
m so that theresulting universe is marginally closed. Nonetheless, the width of the peak, compressed by the increase of R,is still not in very good agreement with the data, as well as the isocurvature hump. The resulting normalized�2 is about � 1:8 for the best-�t, which \excludes" the model at 70% con�dence. One has however to keepin mind that the C`'s are not Gaussian and therefore the probability for our model to lead to the measuredCMB anisotropies is even somewhat higher than 30%. In Fig. 15 two theoretical CMB spectra normalized tothe COBE data are shown together with the MAXIMA and BOOMERanG98 data. We did not optimize onthe axion spectrum, or the baryon density parameter, but we chose n� = 1:33, 
m = 0:4, and 
baryon = 0:05.Playing with the break-scale kb we can in principle lower the second peak leaving the �rst one almostunchanged. Nevertheless, the position of the second peak is di�erent from the one indicated by inationarymodels and the data. Inter-peak distance is therefore a better estimator of the validity of a model. Clearlymore and better data around the isocurvature hump region, i.e. ` � 100, is needed to decide de�nitelywhether the model is ruled out. This will most probably be achieved with the MAP satellite [35] plannedfor lunch in 2001. 19



C. PolarizationThe polarization spectrum distinguishes easily between the di�erent ination and axion seeds model. Thepreferred closed universe for axion seeds translates into a smaller distance between polarization peaks. Asthe physical distance between peaks depends only on the sound speed, which is only slightly dependent on
baryonh2, a quantity which is already tightly constrained by nucleosynthesis, the �` on which this distanceprojects is mainly determined by spatial curvature, 
K (it depends also somewhat on 
� as can be seenfrom Eq. (4.5)), and is independent on the model for the initial uctuations.D. The dark matter power spectrumThe computation of the dark matter power spectrum had already been performed in [22] where a consid-erable deviation from the data was found. In this work we repeat this computation taking into account thepreferred values of the axion spectral index and of the matter energy density found from CMB data, andwe introduce the break in the axion spectrum discussed above. With this additional input it is possible toestablish reasonable agreement between the data and the dark matter power spectrum (see Fig. 17).Since the computation of the theoretical matter power spectrum for a closed universe is relatively involvedand since, for the purpose of comparing the theoretical spectrum with observations, we are interested in scalesmuch below the curvature scale, we have computed it for a at universe, with matter and a cosmologicalconstant, assuming that the contribution from curvature is negligible on the scales under consideration.Indeed, what really plays a role for the matter power spectrum is the matter content, 
m, which �xes thetime of equality between matter and radiation, determines when structures can start growing, and �xes theposition of the bend in the power spectrum.In Fig. 17 we present the theoretical dark matter power spectra together with the data as compiled byPeacock and Dodds [36]. Depending on the scale of the break in the axion spectrum, �b = 1=kb, our modelcan be compatible with data for di�erent values of 
m in the range 0:2 � 
m � 0:4. The role of the break isthe following: if �b is small we subtract power only from small scales and we are able to reproduce a powerspectrum in good agreement with data even if 
m is relatively high. However, if we do not introduce anybreak in the axion spectrum we �nd too much power on small scales and our theoretical dark matter powerspectrum is incompatible with data (compare our present result with those found in [22]).The root mean square mass uctuation within a ball of radius 8h�1 Mpc for the model with n� = 1:33,kb = 3=��, and 
m = 0:25 and for the model with n� = 1:33, kb = 1=��, and 
m = 0:4 are �8 = 0:85 and�8 = 0:74 respectively. Analysis of the abundance of galaxy clusters suggests �8 � 0:5
�0:5m [37].E. ConclusionsWe have shown that it is possible to choose cosmological parameters which bring our model in reasonableagreement with the present CMB anisotropy measurements, which is however less favorable than the striking�t of simple at adiabatic inationary models. This is our main result.Even if our model will turn out to disagree with better data, we believe that we learn the importantlesson that cosmological parameters obtained from CMB anisotropies are strongly model dependent, a pointwhich is swept under the carpet by the vast majority of the circulating \parameter-�tting" literature. Webelieve that it is very important in the future to concentrate on model independent quantities, like inter-peakdistances, to determine cosmological parameters.
V. GRAVITATIONAL WAVESGravitational waves represent one of the most powerful tools to investigate the early history of the universe.They decouple at a temperature comparable to the string scale which makes them an important window20



for cosmological phenomena related to the string theory domain. In this section we show that axions cancontribute substantially to the production of the gravitational wave background in the pre-big bang modelby acting as a source in the tensor perturbation equation. This leads to a spectrum which is di�erentfrom the standard gravitational wave background of string cosmology based on the \direct mechanism" ofgraviton production by ampli�cation of quantum vacuum uctuation. This new \indirect mechanism" leadsto a at spectrum and can be easily distinguished from the direct one. Indeed, as we shall see, the axioninduced gravity wave background dominates the \direct background" on small frequencies and represents animportant observational constraint on string cosmology.A. Direct production { Ampli�cation of vacuum uctuationsSo far, ampli�cation of quantum vacuum uctuations have been considered as the principal mechanismfor the production of gravitational waves during the pre-big bang phase [38{40]. During the dilaton era,before the big bang, when the scale factor evolves according to Eq. (2.9), the Fourier modes of metric tensorperturbations satisfy an evolution equation similar to Eq. (2.13), namely� Tk +�k2 � �aTaT � Tk = 0; (5.1)where aT = ae��=2 is the pump �eld of gravity waves and  Tk is the canonical variable for tensor modesof the metric. For the isotropic case discussed in this work, one �nd that aT / j�j1=2 independently onthe evolution and number of dimensions during the pre-big bang phase. After proper normalization to theincoming vacuum, this yields the solution Tk = (��)1=2H(2)0 (k�); � < ��1: (5.2)After the big bang, in the radiation dominated era, � > �1, the solutions of Eq. (5.1) are simple planewaves. From the matching conditions between these two regimes, applying the same procedure as discussedin Subsection II B for the axion �eld, one obtains the following spectrum of gravitational waves,
g � !41H20m2Planck � !!1�3 � g21 � !!1�3 
 ; (5.3)which is a tilted spectrum, / !3, normalized to g21 at the string scale. One actually supposes that, at a stringepoch �s < ��1, the dilaton-vacuum regime behavior of Eq. (2.9) breaks down and the universe undergoes aDe Sitter expansion with linearly growing dilaton, which lasts until the beginning of the radiation dominatedera �1. This phase leads to a nearly at gravitational wave spectrum at very small scales. The normalizationof the spectrum to the string coupling g1 can then be performed at a lower frequency, !s < !1, leadingto a somewhat higher density of directly produced gravitons than the one discussed here. This is veryimportant in order to make the direct background observable and still compatible with nucleosynthesis.(See [41] and references therein for more details.) A more detailed discussion on the important signaturesand observational consequences of this direct production of gravitational waves can be found in [42] andreferences therein. B. Indirect production { Axion sourceLet us discuss now the production of a stochastic gravitational wave background generated by the presenceof axion seeds. This indirect background will be superimposed to the direct one discussed above and willdominate the total spectrum at large scales. These two production mechanisms are fundamentally di�erent.While the direct production of gravitons takes place during the pre-big bang phase and is due to theampli�cation of vacuum uctuations, the indirect production is sourced by the axions during the post-bigbang era. 21



The creation, propagation, and damping of gravitational waves in a Friedman background are describedby the tensor perturbation equation (see e.g. [43]),�hij + 3 _aa _hij ��hij = 16�G�ij ; (5.4)where tensor perturbations in the metric are parameterized by the traceless, divergence-free, symmetrictensor �eld hij , g�� = g�� + a2(�)h�� ; h�� = 0 = r�h��; (5.5)which is a gauge invariant variable. As before a dot denotes the derivative with respect to conformal time.Eq. (5.4) is a wave equation with source term �ij .The tensor �eld hij is usually decomposed into two polarization states ashij(x; �) = h�(x; �)��ij(x) + h+(x; �)�+ij(x); (5.6)where ��ij = e1i e1j � e2i e2j and �+ij = e1i e2j + e2i e1j are the polarization tensor �elds and (e1; e2; e3) is a localorthonormal basis (the wave is propagating in the e3 direction).The energy density of gravitational waves is given by the 00-component of the energy momentum tensorof the wave. This can be de�ned as a space-average over several oscillations,�g = h _hij _hiji16�Ga2 = h _h2�i+ h _h2+i16�Ga2 : (5.7)We decompose h� and h+ in Fourier modes,h�(x; �) = Z d3k(2�)3 eik�xh�(k; �); � = �;+; (5.8)therefore _h�(x; �) = Z d3k(2�)3 eik�x _h�(k; �): (5.9)The spatial average then becomesh _h2�i = Z d3k(2�)3 d3k0(2�)3 eix�(k+k0)h _h�(k; �) _h�(k0; �)i; (5.10)and we can use the stochastic average condition,h _h�(k) _h�0(k0)i = (2�)3�3(k � k0)���0 j _h�(k)j2; (5.11)which yields, under the hypothesis of statistical isotropy,�g = 1(�a)216�G Z dkk2j _h�(k; �)j2: (5.12)We now compute the spectrum j _h�(k; �)j2 in the coherent approximation. For this we introduce thedeterministic source function �(k; �) de�ned by�(k; �) � 14�GpH(k; �; �); (5.13)(for the function H , see Eq. (2.68)). The polarization tensors satisfy ��ij�ij�0 = 2��0� and we can hence rewriteEq. (5.4) in momentum space as �h� + 2 _aa _h� + k2h� = 8�G�: (5.14)22



The factor 1=2 comes from the fact that � sources both modes � and + of hij and, assuming againstatistical isotropy, each mode is sourced with the same strength. Since we want to compute a gravitationalwave spectrum we only consider modes which enter the horizon in the radiation dominated era, k�� > 1 and_a=a ' 1=�, the other modes being uninteresting (too large wavelength) for possible observations. Thereforewe also consider modes far from COBE scale, k � kb, and we can comfortably assume a at axion spectralindex, n� = 1. We then write Eq. (5.14) ash00� + 2xh0� + h� = � f(k)px x � 1 (active source)0 x � 1 (dead source), (5.15)where the conformal time derivative has been replaced by the derivative with respect to x = k�. In thisequation we assume that the axion source can be approximated by a power law behavior outside the horizonwhich is of the form 8�G�(k; x) = x�1=2k2f(k); f(k) ' 8�g21k�3=2; (5.16)and can be considered negligible inside the horizon where the correlators decay quickly.The homogeneous solutions to this equation are the spherical Bessel functions of index zero, j0(x) andy0(x). In the regime, x � 1, the solutions can be found with the Wronskian method, which yieldsh�(k; x) = f(k)[c1(x)j0(x) + c2(x)y0(x)]; x � 1; (5.17)where c1(x) = Z 10 dxx1=2 cosx; c2(x) = Z 10 dxx1=2 sinx; (5.18)while in the second regime, x � 1, they are a linear combination of the homogeneous solutions,h�(k; x) = A(k)j0(x) +B(k)y0(x) x � 1: (5.19)By matching Eqs. (5.17) and (5.19) at x = 1 we �ndh�(k; �) = f(k)[c1(1)j0(k�) + c2(1)y0(k�)]; A(k) = f(k)c1(1); B(k) = f(k)c2(1) (5.20)which yields, for x� 1, _h� � kh� � f(k)=�, and thusj _h�(k; �)j2 ' (8�)2g41�2 k�3: (5.21)Using Eq. (5.12) we hence �nd�g = 4g41�Ga2�2 Z dkk ; or d�gd log k = 2g41�Ga2�2 ; (5.22)which corresponds to a at spectrum of gravitational waves.On the other hand, at early time the radiation energy density, � , dominates the Friedman equation whichbecomes _a2a2 = 8�G3 �a2: (5.23)With _a=a ' 1=� we can write the gravitational wave background spectrum produced by the axion �eld as
g = �g�
 � 10g41
 : (5.24)
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C. Observational consequencesIn the previous subsection we derived the spectrum of gravitational waves induced by axion seeds andwe found that it is at on scales much smaller than the COBE scale and normalized such as to lead to thecorrect amplitude of uctuations in the CMB anisotropies.Its normalization depends on the fundamental ratio between the string and Planck mass which is usuallytaken to be of the order of g1 � 0:1� 0:01 [46]. The energy density of induced gravity waves is proportionalto the forth power of g1 like the CMB anisotropy spectrum. Since the COBE normalization also dependson kb (see Eq. (4.1)), which plays no rôle for the gravity wave spectrum on the scales considered here, g1alone is still allowed to vary in the range cited above even though Eq. (4.1) provides a precise constraintfor a combination of g1 and kb. Using the previous values for g1 we �nd a at spectrum of gravity waveswith h2
g � 4 � (10�8 � 10�12), a range which, most probably, will be reached by the third generationinterferometers [44]. This renders the indirect gravity wave background an important observable of stringcosmology. Note also that in the case of its detection it would provide a direct measurement of the stringscale!At present the most relevant observational bound for a gravity wave background comes from pulsars.In particular, the timing of the milli-second binary pulsar implies a limit on any stochastic gravity wavebackground of h2
g(atf = 4:4� 10�9Hz) < 1� 10�8 (at 95 % c.l.) [47], which transforms in our case intoa limit on g1 �< 0:07 in this model.The direct gravitational wave background has a blue spectrum and therefore dominates the indirect back-ground on small scales, as shown in Fig. 184. The crossover frequency !c between the two regimes isdetermined by g1 and the normalization frequency !s discussed above,!c = g2=31 !s: (5.25)This crossover may actually, depending on the unknown value !s, fall into the range of frequencies at whichinterferometers will be operating.Finally, we would like to point out that, like the CMB anisotropies of this model, the indirect gravity wavebackground considered here is not Gaussian, which can lead to interesting observational consequences.
VI. CONCLUSIONSWe have investigated the consequences of axion seeds which naturally occur in the context of stringcosmology. We found that these seeds may induce the observed large scale structure and CMB anisotropiesin the universe provided that there is a break in the primordial axion power spectrum which from slightlyblue on very large scales turns to a at spectrum on scales smaller than the break, k > kb. Such a breakappears if the expansion law undergoes a transition during the pre-big bang phase. For the scenario to agreewith observations the break must occur at �b � 0:3��, which corresponds to an energy scale of the order ofseveral GeV.The axion seed model leads to isocurvature uctuations with important contributions from vectors (about50%) and tensors (about 15%) on large scales. The �rst acoustic peak in the CMB anisotropy power spectrumis around ` � 300 for a at model, 
 = 
�+
m = 1. To reproduce observations the universe has to be closedwith parameters, 
� � 0:85 and 
m � 0:4. This parameter choice is also in agreement with supernovae andcluster data. Even though our model leads to a larger �2 when �t to the CMB data it cannot be excludedby the presently available data. However, the \isocurvature hump" at ` � 40 and the reduction not onlyof the second but also of the third acoustic peaks are signatures which clearly distinguish the model from4Sensitivity curves for LISA and LIGO are based on [44,45] and references therein. We acknowledge Carlo Ungarelli.24



standard inationary scenarios. Furthermore the CMB polarization spectrum signi�cantly di�ers from theinationary result.We have also studied gravitational waves which are generated during the post-big bang phase by the tensortype anisotropic stresses in the energy-momentum tensor of the axion �eld. We found that they lead to aat observable background of gravity waves which can give stringent constraints on the model if detected bythe planned LIGO-III and LISA observatories.As the model studied is very predictive let us �nally mention that its failure to reproduce observationaldata, which is hinted by present CMB anisotropy measurements and might be reinforced by future moreaccurate data, does not by itself rule out string cosmology. An additional important hypothesis of the modelis that non-gravitational interactions of the axion �eld with the dark matter may be neglected and the axionplays the role of a \seed". If this hypothesis is relaxed, the axions may interact with radiation and darkmatter and even lead to a standard adiabatic uctuation spectrum. This idea deserves further study, butmost probably the non-Gaussian character of the perturbations also survives in such a scenario.AcknowledgmentsWe are grateful to Gabriele Veneziano for stimulating discussions. We acknowledge Cyril Cartier, MartinKunz, and Carlo Ungarelli for helpful comments. This work has been supported by the Swiss NSF. One ofus (F.V.) acknowledges �nancial support from the Universit�a di Padova.
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FIG. 6. The CMB polarization power spectrum in linear scale (top) and log scale (bottom) for uctuations inducedby axion seeds and shown for 2 di�erent tilts, with 
� = 0:7, n� = 1:3 (lower solid line) and n� = 1:5 (upper solidline), are compared with the standard ination result (dashed line) for the same cosmological parameters. Polarizationclearly distinguishes between ination and axion seeds, especially via the isocurvature hump.
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FIG. 7. Time behavior of F11(k; �; �)k3, with spectral index n� = 1:1, for a mode which enters the horizon beforematter-radiation equality, '(k = 10keq ; �), and after, '(k = 0:1keq ; �). Solid lines show the modes in the radiationapproximation, dashed lines without approximation. For k > keq there is no di�erence on super-horizon scales,while for k < keq the additional ampli�cation experienced in the matter dominated phase is lost in the radiationapproximation. On sub-horizon scales, the radiation approximation decays slower than the correct result. A similarbehavior is found for the other correlators.
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FIG. 12. The inuence of the break position on the CMB power spectrum. The top solid line is the spectrumwithout break. The dashed lines from top to bottom represent a spectrum with break at kb = 3=��; 2=�� and 1=��respectively.

FIG. 13. Con�dence levels (68%, 95%, and 99%) for the rescaling factor R and the amplitude in COBE units A,from the recent BOOMERanG and MAXIMA-1 observations.32



FIG. 14. The 68%, 95%, and 99% con�dence levels for the cosmological parameters 
� and 
m, from the peakposition detected by BOOMERanG and MAXIMA-1 for the model presented in this paper (dashed). The solidcontours are obtained including the supernovae data.
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FIG. 15. Two theoretical CMB anisotropy spectra normalized to the COBE data, with 
� = 0:4 and axionicspectral index n� = 1:33, are compared with the MAXIMA and BOOMERanG98 data. From top to bottom, ourmodel has a break at kb = 3=�� and kb = 1=�� respectively. Lowering kb we subtract power on small scale and wecan lower the second peak leaving the �rst one almost unchanged.
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FIG. 16. The CMB polarization spectrum of our model (solid line) for the best �t parameters is compared withthe inationary CMB polarization spectrum in a critical universe with 
� = 0:7. The fact that in our model theuniverse is closed is visible in the smaller distances between successive peaks.
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FIG. 17. The linear dark matter power spectra for uctuations induced by axion seeds with spectral index n� = 1:33and a break in the spectrum at (a) kb = 3=�� and (b) kb = 1=��, for a at universe with 
m = 0:4 (dotted), 
m = 0:3(dot dashed), and 
m = 0:25 (dashed) are compared with data. We assume an IRAS galaxies bias of bI = 
�0:3m .
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