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Gravitational Radiation of Cosmic String Loops
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AbstractWe discuss gravitational radiation of cosmic string loops in 
at background. After presentinga general formula for the gravitational angular momentum radiation of localized periodic sources,we calculate the radiation of energy, momentum and angular momentum for some classes of loopcon�gurations (one with cusps and another without cusps but with kinks). We �nd that the angularmomentum radiated always points opposite to the angular momentum of the string itself.Finally we investigate some cosmological consequences of our results.
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Gravitational Radiation of Cosmic String LoopsRUTH DURRERPrinceton University, Department of Physics: Joseph Henry Laboratories, Jadwin Hall, POB 708,Princeton NJ 08544, USA
1 INTRODUCTIONIn this conference we heard a lot about the evolution of cosmic string networks in a Friedman universe(see contributions by Albrecht & Turok (AT), Benett & Bouchet (BB) and Shellard et al. in thisproceedings). But up to now we did not discuss another important ingredient for the fate of cosmicstrings: gravitational radiation.Cosmic string loops are topologically unstable, i.e., they can decay. For the non superconducting,local cosmic strings discussed in this talk gravitational radiation is the most e�ective energy lossmechanism, as long as the curvature radius of the string is much larger than its thickness.For several examples energy and momentum radiation ( _E and _P) have already been calculated byVachaspati & Vilenkin (1985) and Gar�nkle & Vachaspati (1987), but the radiation of angular momen-tum, _L, has never been investigated. In this work we thus especially emphasize angular momentumradiation.There have been arguments (Vachaspati & Vilenkin 1985) that the `rocket{e�ect' proposed byHogan & Rees (1984) and Hogan (1987), i.e. acceleration due to radiation of transversal momentum,can be substantially reduced by angular momentum radiation which might rotate the direction of _P.We shall �nd in Section 3 that _L is always anti{parallel to the angular momentum of the string. L(st)is thus only diminished by angular momentum radiation but not rotated. Therefore, also the anglebetween _P and L(st) remains constant, i.e. _P is not rotated. This, and the result that the velocityof the loop never becomes so small that dynamical friction has to be taken into account (Durrer1989) lead us to the conclusion that typical cosmic string loops do show a substantial rocket{e�ect .This result is important for models of cosmological structure formation with cosmic string loops (seeSection 4).In Section 2 we discuss the general formalism for the treatment of gravitational radiation of periodicsources, and we present our results on gravitational angular momentum radiation (Durrer 1989). InSection 3 we apply this formalism on cosmic string loops and discuss numerical results for two classesof loops; one with cusps and one without cusps but with kinks. (The notion of cusps and kinksis explained in the introductory talk by T.W.B. Kibble.) Finally, we investigate some cosmologicalconsequences of our results in Section 4.2 GRAVITATIONAL RADIATION OF PERIODIC SOURCES2.1 Gravitational Radiation of Isolated Systems2



For isolated systems with asymptotically 
at geometry, one can de�ne an energy momentum `tensor',t��, t� � t����. Although t�� does not transform like a tensor, the integrals of �t� over spacelikehypersurfaces make physical sense.(��)3�=0 are an orthonormal, asymptotically Lorentzian basis of one forms and � denotes the Hodgedual.To obtain a conserved angular momentum in the usual way, we must require t�� to be symmetric.We therefore adopt the Landau{Lifshitz energy momentum tensor which can be given in the form�t� = � 116�G���
�(!�� ^ !�
 ^ �� � !�
 ^ !�� ^ ��) ; (0.1)where !�� are the connection forms for the basis (��) (Straumann 1985).For our discussion we work within the weak �eld limit:g�� = ��� + h�� ; (0.2)(���) = diag(�1; 1; 1; 1). We de�neh�� � h�� � 12���h�� ; (0.3)and adopt the harmonic gauge conditionh��;� = 0 :Einstein's �eld equations then take the well-known form2h�� = �16�GT�� + O(h2) (0.4)with the retarded solutionh��(x; t) = �4G Z T��(x0; tret)jx� x0j d3x0 ; tret = t� jx� x0j : (0.5)Since tret = t� r + n � x0 + O(jx0j=r)jx0j , we haveh��;i = �h��;0ni + O(h=r) ;where r = jxj and n = x=r .With the help of this identity and equation (0.1) one �nds the energy, momentum and angular mo-mentum radiated out to in�nity by gravitational radiation:< _E > = 132�G ZS < h��;0h��;0 > r2d
 ; (0.6)< _P i > = 132�G ZS < h��;0h��;0 > r2nid
 ; (0.7)< _Li > = � �ijk16�G ZS < 1=2h��;kh��;l � h��;kh�l;� � hk�;�h��;l > njnlr3d
 ; (0.8)where < � � � > denotes the time average over a mean period of the radiation and S is a huge sphereof radius r containing the source. Equations (0.6) to (0.8) have been derived by Peters (1964) andDurrer (1989). 3



At �rst glance the integral on the r.h.s. of (0.8) seems to diverge in the limit r ! 1, but oneeasily establishes that due to the antisymmetric tensor and the time average the 1=r2 terms in < � � � >vanish and _L remains �nite. There is actually also an h3 term which yields a �nite contribution to _Lin the limit r!1, but for cosmic strings this term is always much smaller than the h2 contribution(Durrer 1989). We therefore neglect it in the sequel.2.2 Periodic SourcesLet us now consider a periodic source with period T :T ��(x; t) = T ��(x; t + T ) :Setting !l = 2�lT , l 2 N, we haveT ��(x; t) = 1Xl=1 e�i!ltT ��(!l;x) + C.C. : (0.9)(By `C.C.' we denote the complex conjugate of the preceeding expression.)The Fourier transform of T �� and its �rst moment can be given byT ��(!l;n) = Z d3xT ��(!l;x)e�in�x ; (0.10)T ��p(!l;n) = Z d3xT ��(!l;x)x0pe�in�x : (0.11)One harmonic mode of frequency ! in solution (0.5) expanded up to order 1=r2 inserted in the radiationformulas (0.6), (0.7) and (0.8) yields< d _E(!)d
 > = �G!2� PijPlm[T �ilT jm � 12T �ijT lm] ; (0.12)< d _Pk(!)d
 > = �G!2� nkPijPlm[T �ilT jm � 12T �ijT lm] ; (0.13)< d _Li(!)d
 > = < d _L(1)i (!)d
 > + < d _L(2)i (!)d
 > ; (0.14)with< d _L(1)i (!)d
 > = � iG!2� �ijknjnlP pq(3T �klT qp + 6T �kpT ql) + C.C. (0.15)< d _L(2)i (!)d
 > = �G!22� �ijknjP lmP pq[2T �kmqT lp � 2T �kmT lpq�T �lpkT mq + (1=2)T �lmkT pq] + C.C. : (0.16)Pij = �ij � ninj is the projection onto the plane orthogonal to n.Equation (0.12) is well-known, Weinberg (1972). Equation (0.14) is new. Its somewhat involvedderivation is explicitly presented in Durrer (1989). The two terms _L(1) and _L(2) show in general adi�erent asymptotic behaviour for ! !1 (see Section 3.2).To �nd the total energy, momentum and angular momentum radiated one has of course to integrateover all directions and, for arbitrary periodic sources, to sum over all harmonic frequencies !l (cross4



terms vanish in the time average).3 GRAVITATIONAL RADIATION OF COSMIC STRING LOOPS3.1 Cosmic String LoopsNon{superconducting cosmic strings have no internal structure, i.e., no preferred frame of reference.Neglecting their �nite thickness, they can thus be described by the Nambu action2. Parametrizingthe points on a string world sheet by (t;x(�; t)), where � is a spacelike parameter `along the string'and denoting the derivative with respect to � by a prime, the Nambu equations of motion in a 
atbackground are given by�x� x00 = 0 ; (0.17)if the gauge constraints_x � x0 = 0 ; _x2 + x02 = 1 are satis�ed. (0.18)A general solution of (0.17) is of the formx(�; t) =  L4� [a(�) + b(�)] ; (0.19)with � = 2� L (� � t) and � = 2� L (� + t) . The constraints (0.18) yield(a0)2 = (b0)2 = 1 ;where here the prime denotes the derivative with respect to � and � respectively.Let us now restrict our discussion to string loops, i.e. a and b have to be periodic. Choosing  Lsuch that a and b have the period 2�, we �ndx(� +  L; t) = x(�; t) and therefore x(� +  L=2; t +  L=2) = x(�; t) :The fundamental period of a loop is thus T =  L=2.In our gauge the energy momentum tensor of a loop is given byT ��(y; t) = � Z  L0 d�( _x� _x� � x0�x0�)�3(y � x(�; t)) ; (0.20)(x0(�; t) = t.)Let us de�ne the integralsIk(l;n) � 12� R 2�0 d�e�il(�+n�a)a0kJk(l;n) � 12� R 2�0 d�eil(��n�b)b0kMkj(l;n) � 12� R 2�0 d�e�il(�+n�a)a0kajNkj(l;n) � 12� R 2�0 d�eil(��n�b)b0kbj : (0.21)2It is clear to us that the two limits, thickness, � ! 0 and weak �elds, are in principle not compatible. But we hopeall the same that there exists a regime (�;G�) where this limit yieldS, at least in order of magnitude, correct results. Ourhopes have recently been nourished by investigations on exact solutions of cosmic string loops (Frolov, Israel & Unruh1989) and by calculations of backreaction (Quashnock & Spergel 1988).5



The Fourier transform of the energy momentum tensor (0.20) and its �rst moments can be expressedin terms of these integralsT kj(!l;n) = �  L�2 [Ik(l;n)Jj(l;n) + Ij(l;n)Jk(l;n)] (0.22)T kij(!l;n) = �  L2�8� [IkNij + IiNkj + JkMij + JiMkj] : (0.23)According to (0.12) to (0.16), the integrals (0.21) inserted in (0.22) and (0.23) yield the angulardistribution of gravitational radiation of frequency !l for a given string loop (a,b). To obtain thetotal radiation emitted we have to integrate this distribution over all directions and to sum up overall frequencies !l; l 2 N.3.2 AsymptoticsThe sum over all frequencies !l is of course not possible numerically. One has thus to �nd theasymptotic behaviour of _E(!l), _P (!l) and _L(!l) for large l. One can then calculate _E(!l), _P (!l)and _L(!l) numerically until the asymptotic regime is reached and estimate the remainder by theasymptotic behaviour.To discuss the asymptotics, we de�ne for arbitrary vectors v, wIl(n;v) = Ik(l;n)vk Jl(n;v) = Jk(l;n)vkMl(n;v;w) = Mkj(l;n)vkwj Nl(n;v;w) = Nkj(l;n)vkwj : (0.24)Let us now choose v;w such that (n;v;w) form an orthonormal frame. _E(!;n), _P(!;n) and _L(!;n)can then be expressed in terms of the integrals (0.24) (see Durrer 1989).In the �rst example of the next subsection (for � = 0) the integrals (0.24) can be carried outanalytically and yield Bessel functions. The asymptotic behaviour is thus most easily discussed andleads to the following results which are derived in Durrer (1989):_E(!l) / l�4=3 ; _P = 0 ; _L(1)(!l) / l�2 ; _L(2)(!l) / l�4=3for large l.In the case of cuspless (but possibly kinky) loops (a(�) 6= �b(�) 80 � �; � � 2�, Gar�nkle &Vachaspati (1987) derivedIl(n;v) / 8>><>>: l�1; if n does not lie on the �a0 curvel�2=3; if n lies on the �a0 curvefor all v orthogonal to n. The same is true for Jl(n;v) with �a0 replaced by b0. One easily obtainsthe same result for Ml(n;v;w) and Nl(n;v;w) for vectors v,w orthogonal to n. For Il(n;n) one �ndsby similar methodsIl(n;n) / 8>><>>: l�1; if n does not lie on the �a0 curvel�1=3; if n lies on the �a0 curve6



Again the same holds for Jl(n;n) with �a0 replaced by b0.For cuspless loops n can lie either on the �a0 or on the b0 curve but not on both since they do notintersect. Therefore either (Il and Ml) or (Jl and Nl) can decay slower than l�1 but not both of them.Taking this into account one �nds the asymptotic behaviour of T ij(!l;n) and T ijk(!l;n). Inserted in(0.12), (0.13) and (0.14) this yields the asymptotic behaviour for gravitational radiation of cusplessloops: _E(!l) / l�4=3 ; _P / l�4=3 ; _L(1)(!l) / l�2 ; _L(2)(!l) / l�4=3for large l. This is the same result as above, but it surely cannot be expanded to general `cuspy' loopssince there are well known examples where Pl _E(!l) and Pl _L(!l) diverge (e.g. in our �rst numericalexample for � = �!).3.3 Numerical ResultsWe have calculated the gravitational radiation numerically for the families of loops given below:a = [(1� �) sin � � (1=3)� sin 3�]e1 � [(1� �) cos � + (1=3)� cos 3�]e2+q�(1� �)(sin 2�)e3 ; (0.25)b = (sin �)e1 � (cos � cos �)e2 � (sin � cos �)e3 ; (0.26)0 � � � 1 ; 0 � � � � :The energy and momentum radiation for some loops of this con�guration have already been cal-culated by Vachaspati & Vilenkin (1985). For � 6= 0 these loops are asymmetric, hence they radiatetransversal momentum.The angular momentum of a loop (0.25,0.26) is easily calculated with the resultL(st) = �� L24� [sin(�=2)fcos(�=2)e2 + sin(�=2)e3g+ �(�=3 � 1)e3] : (0.27)These are all loops with cusps. As a second example we calculated the radiation for a family ofkinky but cuspless loops:a = (1=p) sin(p� + �)e1 � (1=p) cos(p� + �)e2 ;� = (1� p)�[�=�] ; (0.28)b = (1=q) sin(q� + �)e1 � (1=q) cos(q� + �)(cos �e2 + sin �e3) ;� = (1� q)(�=2 + �[�=�]) ; (0.29)0 < p; q < 1 (Gar�nkle & Vachaspati 1987).The square bracket [x] denotes the nearest lower integer.For these loop con�gurations the angular momentum is given byL(st) = �� L28� [ sin �q e2 + (1p � cos �q )e3] : (0.30)Our numerical results are presented in Figs 1 to 7 and Tables 1 to 4. In Figs. 1 to 4, we plot _E(!N ),_P (!N ) and _L(!N ) for some con�gurations. In Figs. 2 and 3 the actual fallo� of _L is compared withthe asymptotic behaviour calculated in the previous subsection. In Fig. 4 one sees that for each mode7



of radiation _L(!N ) is perfectly antiparallel to L(st). This remarkable result holds also for all otherexamples which we have investigated (see Tables 1 and 3). Angular momentum radiation tends thusalways to diminish the angular momentum of the loop and does never rotate or even increase it!Unfortunately we are (up to now) not able to give a general proof of this purely numerical result.In Durrer (1989) we have shown that for a � b, _L = 0. Since these are the only C1 { loops withL(st) = 0, this means that for L(st) = 0 also _L = 0. Loop con�gurations (0.25), (0.26) with � = 0exhibit no radiation of transversal momentum. In Figs. 5, 6 and 7 energy and angular momentumradiation of these loops are given as functions of the parameter �. _E diverges for � = 0; � and _Ldiverges for � = � (see Vachaspati & Vilenkin 1985, Durrer 1989). The numerical result is comparedwith the result obtained in quadrupole approximation. To our surprise the quadrupole approximationis never more than a factor of 2 o� from the numerical value. We suppose that this is due to the highdegree of symmetry of � = 0 loops, since for � 6= 0 the corresponding di�erence can amount to up totwo orders of magnitude (see Table 2).According to Fig. 7 and Tables 3 and 4 we adopt the following `mean' values of _E, _P and _L:_E = 
EG�2 , _P = 
PG�2 , _L = �
LG�2  Le(st) (e(st) is the direction of L(st)) with
E ' 50 ;
P ' 5 ;
L ' 5 : (0.31)The direction of _L seems not to be correlated with the direction of _P.
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(�=�; �) < _L�L(st)>j _Lj�jL(st)j < _L� _P>j _Lj�j _Pj(0.0 , 0.5) -1.0 0.78(0.25, 0.5) -0.98 -0.4(0.5 , 0.5) -1.0 -0.93(0.75, 0.5) -0.99 -0.37(0.25, 0.8) -0.99 -0.84(0.5 , 0.8) -1.0 -0.48(0.75, 0.8) -0.98 0.36Table 1: The angle between the angular momentum radiated away, _L, and L(st) respectively _P.
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(�=�; �) _E _E(q) _L _L(1) _L(2) _L(q)(0.0 , 0.5) 52.3 2.63 3.67 2.55 1.12 0.0(0.25, 0.5) 54.1 3.16 3.45 2.29 1.16 2.21(0.5 , 0.5) 56.9 5.59 4.07 2.43 1.65 5.33(0.75, 0.5) 56.6 9.61 4.81 2.92 1.91 8.61(0.25, 0.8) 75.1 0.51 6.09 3.61 2.48 0.35(0.5 , 0.8) 63.9 0.89 4.46 2.43 2.08 0.85(0.75, 0.8) 48.1 1.55 3.02 1.45 1.63 1.38Table 2: Comparison of the numerical values of energy and angular momentum radiation with the valuespredicted by the quadrupole approximation. ( _E in units G�2, _L in units G�2  L.)�=�; (p; q) 
E 
L < _L�L(st)>j _Lj�jL(st)j0.8 , (0.4,0.2) 22. 7.4 0.990.5, (0.6,0.4) 19 2 -0.990.5, (0.4,0.8) 26 4 -0.970.5, (0.9,0.9) 42 4.5 -1.0Table 3: Energy and angular momentum radiation for some loops of the class (0.28), (0.29).Figure 1: Energy , � _E (}), and momentum radiation, j _Pj (�), are drawn logarithmically as a functionof the mode number N , !N = 4�N= L, in units of G�2. For di�erent values of the parameters (�; � 6= 0) thecorresponding plots look similar.

10



4 COSMOLOGICAL CONSEQUENCESIn this section we discuss the implications of our results to cosmic string loops in a 
at, matterdominated Friedman universe. (The scale factor evolves thus according to a / t2=3.) As long as thelength of the loop is much smaller than the horizon size ( L � t) the 
at spacetime results of thepreceeding section remain valid.4.1 The Rocket{E�ectHogan & Rees (1984) suggested that due to asymmetrical gravitational radiation cosmic string loopsmight speed up and travel through the universe at extremely high speed.For a loop of length  L, born (i.e. chopped o� an in�nite string, see AT and BB) at time ti withconstant radiation rates _P = 
PG�2 and _E = 
EG�2 and initial momentum pi, we �ndv(t) = pix�2=3 + (3=5)
PG�2tix[(� L� (x� 1)(
EG�2ti))2 + (pix�2=3 + (3=5)
PG�2tix)2]1=2 ;where x = t=ti. For vi � 0:5, 
P � 2 and ti �  L the result simpli�es tov(t) ' [ (x�2=3 + G�x)2(x�2=3 + G�x)2 + (1�G�
Ex)2 ](1=2) : (0.32)For this case v(t) is shown in Fig. 8. For reasonable (i.e. relativistic) initial velocities v(t) � vmin �0:01, and dynamical friction never becomes important (Durrer 1989). The velocity then really evolvesaccording to equation (32).We thus conclude that cosmic string loops typically have highly relativistic peculiar velocities. Aswe discuss in the next subsection, this result substantially alters the picture of accretion of matteronto string loops.Of course all the results presented in this section have to be taken with a grain of salt. Firstof all, we do not know how the mean values 
E; 
P and 
L of our numerical examples are relatedto corresponding values of a cosmological network. We just hope that they are of the same orderof magnitude. (For some justi�cation of this hope see Durrer (1989).) Furthermore, the radiationbackreaction was taken into account only by the conservation laws, so that it alters the string energy,momentum and angular momentum but not its shape. This is of course far from obvious and it remainsan important open question for how many oscillations _P points approximately in the same direction.If this number of coherent oscillations, Nc, is big, Nc � 1000, our results remain qualitatively valid.But if Nc � 10, the acceleration of the loops has to be treated as a random walk and the velocity issubstantially reduced. The fact that gravitational radiation does not change the direction of L(st) andrecent investigations on the backreaction problem of Quashnock & Spergel (1989) hint that Nc might
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in fact be rather large.

Figure 8: The velocity evolution of a cosmic string loop born at relativistic speed, vi ' 0:5, with  L ' ti isshown. The decay time, td ' 2 � 104ti is indicated4.2 Accretion of Matter around Fast Moving Cosmic String LoopsAs before, we denote by ti the time when the loop was born. Let us �rst neglect the �nite size of acosmic string loop. We can then apply a simple model proposed by Bertschinger (1987) for accretionof cosmic dust onto a fast moving point source. We consider a disk orthogonal to the velocity of theloop with the position of the loop at a time t0 at its center. Within this model, the radius of the diskwhich has been accreted (i.e. turned around) until some time t is given bydacc(t0; t) ' ti(t=ti)1=3(G� Lvstt0 )1=2 <dacc(ti; td) ' ti( L=ti)5=6(
EG�)�1=3(G�=vst)1=2 ' 0:1 L(ti= L)1=6;where td denotes the decay time of the loop and vst is a typical string velocity. The last approximationwas obtained setting vst = 0:1, 
E = 50 and G� = 10�6. This result shows that the �nite size of fastmoving loops cannot be neglected.On the other hand, treating the string as in�nite, dacc �  L, yields (Bertschinger, 1987) dacc '40 L( L=ti)1=3 ; which again means that this approximation is not valid. Hence, for reasonable valuesof 1 >  L=ti > 10�6, we conclude that the radius of the accreted matter is comparable with the size ofthe loop,dacc(ti; td) '  L :(Note that the lifetime of a loop is (
EG�)�1  L � 2 � 104  L. Thus if  L=ti < 0:5 � 10�4, the loop lives forless than one expansion time and thus has not much time to accrete matter.)12



The above result is valid only for cold particles. We have neglected thermal velocities. For particleswith some �nite mean thermal velocity vT , dacc has to be compared with a typical thermal distancedT � vT (td � ti) :For accretion to take place at all, we must require dT < dacc, i.e.,vT <  L=(td � ti) � 10�4 :In particular, hot dark matter cannot be accreted onto fast moving loops.The results of this section together with observational limits imposed on G� from bounds on thegravitational wave background (see AT and BB) imply that cosmic string loops are most probablyunimportant for structure formation in the universe. Whether or not in�nite strings can produce theobserved structure remains unclear (see contributions of Brandenberger and Stebbins in this proceed-ings).ReferencesT. Vachaspati, A. Vilenkin, Phys. Rev. D31 (1985) 3052D. Gar�nkle and T. Vachaspati, Phys. Rev. D36 (1987) 2229C.J. Hogan and M.J. Rees, Nature 311 (1984) 109C.J. Hogan, Nature 326 (1987) 853R. Durrer, Nucl. Phys. B, in printN.Straumann, General Relativity and Relativistic Astrophysics (Springer, Berlin 1985)P.C. Peters, Phys. Rev. 136 (1964) 1224S.Weinberg, Gravitation and Cosmology (Wiley & Sons, New York, 1974)V.P. Frolov, W. Israel and W.G. Unruh, Phys. Rev. D39 (1989) 1084J.M. Quashnock and D.N. Spergel, Cosmic Strings: The Gravitational Backreaction Problem, Prince-ton Observatory Preprint 283 (1988)E. Bertschinger, Astrophys. J. 316 (1987) 489
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Figure 2: Angular momentum radiation ( _L(1)2 (�); _L(1)3 (�); _L(2)2 (4) and _L(2)3 (}) is drawn logarithmicallyas a function of the mode number N in units of  LG�2. The numerical fallo� is compared with the theoreticallypredicted one.

Figure 3: The same as Figure 2 for a kinky loop con�guration.
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Figure 4: j _Lj in units of ( LG�2) (�) and _L�L(st)j _LjjL(st)j (?, linear scale) are drawn as functions of the modenumber. The same diagram for di�erent loop con�gurations looks quite similar.

Figure 5: Energy radiation for � = 0 con�gurations (}) is shown as a function of the parameter � and iscompared with the amount expected in quadrupole approximation (4). The units are G�2.
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Figure 6: The total angular momentum radiation (4), for � = 0 con�gurations is shown as a function ofthe parameter � in units  LG�2 and is compared with the amount expected in quadrupole approximation, _L(q)(}). (j _L(1)j (�), j _L(2)j (�))

Figure 7: For � = 0 con�gurations the values 
E (}) and 
L (4) are drawn as functions of the parameter �.
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(�=�; �) 
E 
P 
L(0.0 , 0.5) 52.3 0.02 3.67(0.25, 0.5) 54.1 5.66 3.45(0.5 , 0.5) 56.9 2.35 4.07(0.75, 0.5) 56.6 5.51 4.81(0.25, 0.8) 75.1 2.31 6.09(0.5 , 0.8) 63.9 1.79 4.46(0.75, 0.8) 48.1 0.84 3.02Table 4: Energy, momentum and angular momentum radiation for some loops of the class (0.25), (0.26).
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