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We consider harmonic maps from Minkowski space into the three-sphere. We are especially interested in
solutions which are asymptotically constant, i.e., converge to the same value in all directions of spatial infinity.
Physical three-space can then be compactified and topologically~but not metrically! identified with a three-
sphere. Therefore for fixed time, the winding of the map is defined. We investigate whether static solutions
with a nontrivial winding number exist. The answer which we can prove here is only partial: We show that
within a certain family of maps no static solutions with a nonzero winding number exist. We discuss the
existing static solutions in our family of maps. An extension to other maps or a proof that our family of maps
is sufficiently general remains an open problem.@S0556-2821~99!04612-3#

PACS number~s!: 11.27.1d, 02.40.2k, 11.30.Ly

I. INTRODUCTION

Many physical problems can be described by scalar fields
w with topologically nontrivial target spaces. The equation of
motion for w often requiresw to represent a harmonic map
from spacetime into the target space~in the physics literature
such maps are better known under the name ‘‘nonlinears
model’’!.

The question arises as to whether or not a given field
configuration is topologically trivial~continuously deform-
able to the constant map!. Topological defects are topologi-
cally nontrivial field configurations. If we consider a topo-
logically trivial four dimensional space-time manifoldM,
nontrivial field configurations are in general singular on a
certain submanifoldS,M. The dimension ofS depends on
the first nontrivial homotopy of w(M\S)[Imw: If
p0(Imw) is nontrivial, the submanifoldS forms a network of
‘‘domain walls’’ of space-time dimension 3. Ifp1(Imw) is
nontrivial, a network of ‘‘strings’’ of space-time dimension 2
is formed. Ifp2(Imw) is nontrivial ‘‘monopoles’’ of space-
time dimension 1 appear. And ifp3(Imw) is nontrivial ‘‘tex-
tures,’’ singular events of space-time dimension 0 appear.

Higher homotopy groups do not lead to topological de-
fects in four space-time dimensions. The simplest and most
common examples of topological defects are the cases Imw
5Sn, whereSn denotes the sphere of dimensionn and S0

5$21,1%. But also other examples play an important role in
solid state physics~helium @1#, liquid crystals@2#! and cos-
mology @3,4#.

In the case of a field living onSn with n<2 simple static
domain wall (n50), string (n51) and monopole (n52)
solutions are known~see, e.g.@4# or @5#!. The question which
we want to address here is whether there also exist static
texture solutions (n53). A static texture solution is different
from monopoles, strings and domain walls in that it is non-
singular: A map fromR3 to S3 which is asymptotically con-
stant, lim

uxu→`
w(x,t)5w0(t), can wind aroundS3 without

being singular anywhere. Derrick’s theorem@6# then already
implies that there is no static texture solution with finite en-
ergy. However, the simple static domain wall, string and
monopole solutions we are alluding to~which contain a sin-
gular sheet, line and point, respectively!, have infinite total
energy and we thus want to allow also for infinite energy
solutions. We therefore cannot apply Derrick’s theorem.
Nevertheless, numerical simulations@7,8# indicate, that
winding texture configurations always shrink, leading to a
singularity, the unwinding event, at a finite timetc , after
which the configuration becomes topologically trivial and
approaches the constant solution, as predicted by Derrick’s
theorem. The total energy of the initial configuration is, how-
ever, in general infinite so that Derrick’s theorem cannot be
applied.

This numerical finding prompted us to search for a proof
for the nonexistence of static texture on flat physical space.
Clearly, the result depends on the geometry of physical
space. If space is a three-sphere, the identity map represents
a well defined static texture solution. We want to investigate
whether such solutions are excluded, for example in
Minkowski space.

We do not quite succeed in this task. First, we shall as-
sume that the searched for static winding solution has a
spherically symmetric Lagrangian density. This assumption
does not bother us too much. It seems physically well moti-
vated ~we can, however not use any rigorous energy argu-
ments to justify it, since the total energy of our solution must
be infinite!. Also within the class of solutions with spheri-
cally symmetric Lagrangian densities we have a proof only
for a special ansatz for the field configuration and it remains
an open problem how general our ansatz is.

Our paper is organized as follows: In the next section we
write down the equations of motion for the scalar field and
specify our ansatz. In Sec. III we then show that within this
ansatz no static solution with nontrivial winding number can
exist and discuss the nature of the globally existing~non-
winding! static solutions. In Sec. IV we present the conclu-
sions and an outlook.
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II. SPHERICALLY SYMMETRIC ‘‘TEXTURE’’ FIELDS

We consider a scalar field~order parameter! w:M→S3

and we askw to be harmonic, a nonlinears model. A har-
monic map satisfies the Euler-Lagrange equations for the
action

S~w !5
1

2EMudwuS3
2 dx. ~1!

We consider the situation whereM is four-dimensional
Minkowski spacetime with the flat Lorentzian metricg and
S3 the unit three-sphere with the standard metric which we
denote byG.

Here dx denotes the volume element of the metricg on
M and

L~w !5udwuS3
2

5Traceg~w* G !

5gmn~x !G i j„w~x !…
]j i

]xm
~x !

]j j

]xn
~x !, ~2!

for some~local! coordinatesx5(x0 , . . . ,x3) on M and w
5(j1 ,j2,j3) on S3 ~we always assume summation over re-
peated indices!.

We only consider regular mapsw, i.e., maps that have
finite energy densityudwuS3

2 everywhere. In addition to being
stationary points of Eq.~1! we also demand our maps to be
asymptotically constant,

lim
uxu→`

w~x,t !5w0~ t !.

At fixed time we then can consider them as mapsw̄ t from
compactifiedR3,R3

5R3
ø$`%[S3 to S3, assigningw̄ t(x)

5w(x,t) and w̄ t(`)5w0(t).
The winding number of this extended mapw̄ t :S3→S3 is a

topological invariant and counts how many timesw̄ t(S3)
winds around the targetS3. This number cannot change un-
der continuous time evolution. We would like to show that
there are no static solutionsw with nonzero winding number.

Unfortunately, we are not able to solve the problem in this
generality. We thus impose some restrictions on the mapsw.
One way of doing this is to demandw to obey certain sym-
metry properties. We want to impose spherical symmetry,
i.e., invariance underSO(3), thegroup of rotations of physi-
cal space.

The action of an element of the rotation group,g
PSO(3) on the mapsw:M→S3 is given by

~g•w !~x !5w~g21•x ! ~3!

~scalar field!. The fixed points of the action~3! are the
spherically symmetric fields of the formw5w(r,t), r5uxW u.
We might want to require spherical symmetry of the fieldw
itself. For our purposes however, this restriction is too se-
vere: Since the image of a smooth map can never have di-
mension greater than the dimension of the domain, this
would limit us to only two-dimensional ranges~one-

dimensional in the static case! which are topologically not
interesting. Instead we will only demand that the Lagrangian
density

L5udwuS3
2

~4!

be SO(3) invariant,L(gw)5L(w).
We proceed as follows: We first derive the full Euler-

Lagrange equations and then make an ansatz forw ~which is
inspired by the symmetry requirements!. We then insert our
ansatz into the Euler-Lagrange equations. Since the equa-
tions remain self-consistent, we can try and solve them. The
solutions we find are then always solutions of the full Euler-
Lagrange equations. It remains to investigate whether they
can be topologically nontrivial, i.e., whether there exist so-
lutions with nonzero winding number.

We use standard spherical coordinates (r,u,f) for the
spatial part and write the standard metric on flat Minkowski
spacetimeM as

g52dt2
1dr2

1r2„du2
1sin2~u !df2…. ~5!

For yPS3 we use the standard spherical coordinates

y5~sinj3 sinj2 sinj1 ,sinj3 sinj2 cosj1 ,

sinj3 cosj2 ,cosj3!.

In our case thej i are functions living on spacetimeM,

j i :M→R, j i5j i~ t,r,u,f !. ~6!

The standard ranges for the anglesj i are j1P@0,2p#,
j2P@0,p# and j3P@0,p#. It is important to note that for a
map to cover all ofS3,j2 andj3 have to assume both bound-
ary values, 0 andp, andj1 must assume both 0 and 2p.

The standard metric onS3 expressed in terms of (j i) is

G5dj3
2
1dj2

2 sin2~j3!1dj1
2 sin2~j3!sin2~j2!. ~7!

The equations of motion corresponding to the Lagrangian
~1! are

¹mS ]L

]~¹mj i!
D5

]L

]j i
, 1<i<3. ~8!

With the standard metric~7! on S3 they become

05¹m¹mj32sin~j3!cos~j3!@~¹mj2!~¹mj2!

1sin2~j2!~¹mj1!~¹mj1!#,

05¹m¹mj212 cot~j3!~¹mj3!~¹mj2!

2sin~j2!cos~j2!~¹mj1!~¹mj1!, ~9!

05¹m¹mj112 cot~j2!~¹mj2!~¹mj1!

12 cot~j3!~¹mj3!~¹mj1!.

To obtain a spherically symmetric Lagrangian density we
use a generalized hedgehog ansatz:
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j i5j i~f,u !, i51,2 and j35j3~r,t !. ~10!

The idea behind this ansatz is that we want to make use of
the vast knowledge on harmonic maps on two-dimensional
spaces, which will help us to first solve the two-dimensional
problem forj1 andj2 in the coordinatesu andf and then
afterwards solve the equation for the remaining functionj3.
The crucial point in order for this to work is that the equa-
tions of motion must respect this ‘‘decomposition’’ ofw in a
(r,t)-dependent and a (u,f)-dependent part. This is the sub-
ject of the theory of (r,s)-equivariant maps which is ex-
plained in great detail in@11#.

With the ansatz~10! we may introduce a map

V:S2→S2, V~f,u !5~j1 ,j2! ~11!

with Lagrangian density

udVu25~¹mj2!~¹mj2!1sin2~j2!~¹mj1!~¹mj1!. ~12!

The total Lagrangian density of the mapw is then

udwu2
5~¹mj3!~¹mj3!1sin2~j3!udVu2. ~13!

Our ansatz~10! yields

udVu2
5

l~f,u !

r2
. ~14!

Spherical symmetry of the Lagrangian density then requires
l5const(>0). Inserting our ansatz~10! into the Euler-
Lagrange equations~10!, we find after multiplying withr2

that for the componentsj1 andj2 these equations are just the
Euler-Lagrange equations of the mapV:S2→S2. ThusV has
to be harmonic~on S2) with constant Lagrangian density
udVuS2

2
5l, whereu.uS2

2 now denotes the Lagrangian density
on S2. But this means thatV has to be an eigenmap of the
Laplacian onS2 with eigenvaluel ~in the sense of@11#!.
Therefore the componentsV i have to be given by linear
combinations of spherical harmonics of a fixed degreek,
Y km ,

V i5(
m

a imY km .

If we apply this to our mapV:S2→S2, we obtain for
udVu2 ~with respect to the metricg on spacetime!

udVu25
k~k11!

r2
, kPN. ~15!

We will always assumel5k(k11).0 since we are only
interested in spherically nontrivial maps. Note thatl52 just
corresponds toV5id, the identity map, used for example in
the ‘‘hedgehog’’ monopole.

The remaining Euler-Lagrange equation for the last com-
ponentj3 is now

05¹m¹mj32
k~k11!

2r2
sin~2j3!, kPN. ~16!

It is this equation that we would like to analyze in this
paper. In the next section we will prove the nonexistence of
static solutions with nonzero winding number, whereas an
infinite family of time-dependent solutions of Eq.~16! in
Minkowski space can be found for any winding numbern
PN @13#.

In @10# solutions from a geometricalS3 to S3 are studied
with an ansatz that is less general than our ansatz~10!. Here
we consider compactifiedR3, which is topologically equiva-
lent to S3, but with flat geometry. Using our ansatz~10! on
the geometricalS3, we can also generalize the results of@10#
by showing that there are actually two countable families of
such maps for everyk.0, kPN, wherek(k11) is the ei-
genvalue of the mapV defined in Eq.~11!. This will be done
in a subsequent paper@13#.

All of these results can also be found in@12#.

III. NONEXISTENCE OF STATIC WINDING SOLUTIONS

We consider maps to the standard three sphere where
spacetime is parametrized by standard Cartesian coordinates
r and t. In what follows we will use the notation

˙5
]

]t
, and 85

]

]r
. ~17!

Then Eq.~16! becomes

j392 j̈31
2

r
j382

k~k11!

2r2
sin~2j3!50, kPN. ~18!

An exact solution to Eq.~18! which describes a winding time
dependent texture for the casek51 has been found in@14#.
@Time-dependent solutions to Eq.~18! can in fact be found
for any kPN and for any winding numbernPN @13##. The
r-dependence of the last term in Eq.~18! shows that non-
trivial solutions of the formj35j3(t) are impossible fork
Þ0. However, for static maps the ansatz~10! becomesj3
5j3(r) and Eq.~18! reduces to (j[j3)

j91
2

r
j82

k~k11!

2r2
sin~2j !50, ~19!

the equation we will discuss in the following.

A. Local properties

Equation~19! has a singular point atr50. Since we re-
quire solutions to be regular for allr and t, we assume that
j(r) is described in a neighborhood ofr50 by some power
series

j~01e !5(
j50

`

a je
j. ~20!

If we multiply Eq. ~19! by r2 and insert Eq.~20! at r50
1e we obtain an equation in powers ofe:
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05(
j50

`

„~ j12!~ j11!a j12e j12
12~ j11!a j11e j11…2

k~k11!

2 Fcos~2a0!sinS 2(
j51

`

a je
jD 1sin~2a0!cosS 2(

j51

`

a je
jD G .

~21!

From comparison of the lowest order termse0 we obtain
immediately

sin~2a0!50⇒a05mp/2, mPZ. ~22!

Let l>1 be the smallest integer for whicha lÞ0. Then the
lowest order termse l yield

l~ l21!a l12la l2
k~k11!

2
cos~2a0!•2a l50. ~23!

Therefore

a l„l~ l11!2k~k11!cos~2a0!…50. ~24!

Combining this with Eq.~22! leads to

a l„l~ l11!2~21!mk~k11!…50, ~25!

thus form odd,a l50 for all l.0 and thusj is constant, but
for m even,j(r) has a nontrivial power series expansion at
r50 for every eigenmapV:S2→S2 with eigenvaluek(k
11), where the first nonvanishing expansion coefficient is
just ak . For the next higher ordersek11 andek12 we get in
a similar way

ak1150 and ak1252
k~k11!

3~2k13!
ak

3 . ~26!

Table I summarizes this information.

B. Global Properties

For a global analysis of the behavior of solutions of Eq.
~19! it is convenient to transform the equation into an au-
tonomous one by the transformation

s5
1

b
ln r, where b5A 2

k~k11!
. ~27!

The new variables runs from2` to 1`. Remember that
we always requirek.0, kPN, so that 0,b<1. Denoting
the derivative with respect tos again by a prime, Eq.~19!
transforms into

j91bj82sin~2j !50. ~28!

This differential equation describes the motion of a par-
ticle with constant dampingb and potential sin(2j). If we
switch off the damping, we obtain the conservative system

j952gradU~j !, ~29!

where the potentialU(j) is given by

U~j !5E
j0

j

2sin~2j !dj52sin2j2U0 . ~30!

The ‘‘energy’’ of this system

E~j,j8!5
1

2
j82

2sin2j2U0 ~31!

is conserved, and all solutions are periodic, lying on the sets
E5const. When we switch on the damping, the solutions no
longer remain on levels withE5const, but ‘‘fall down into
the potential wells’’ at@(2m11)p/2,0# ~see Fig. 1!.

FIG. 1. Phase diagram for the solutionsj(s) andj85dj/ds of
the damped system (k51,b51). Because of the energy loss the
solutions ‘‘fall down’’ into the potential wells at@(2m11)p/2,0#.

TABLE I. Expansion coefficients forj3 at r50 where k(k
11) is the eigenvalue of the mapV:S2→S2 andmPZ.

a05 mp (2m11)p/2
a j5 (0, j,k) 0 0

ak5 free 0
ak115 0 0
ak125

2
k~k11!

3~2k13!
ak

3
0
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If the damping is weak (b!1) they spiral several times
around those points, gradually loosing energy and moving
towards the center~underdamped motion!, whereas if the
damping is strong (b@1) they move towards the center
quickly ~overdamped motion!. In any case, since the energy
is no longer conserved, nontrivial periodic solutions are not
possible.

We can formulate this more precisely: If we differentiate
the ‘‘energy’’ ~31! with respect tos and insert Eq.~28! we
obtain

dE

ds
5j8j92sin~2j !j852bj82. ~32!

Thus the energy is always decreasing with growings ~for
nonconstantj). With this we can show the following
Lemma.

Lemma 3.1. If j(s0)5mp, mPZ, for some s0.2`, and
if j is not constant, it tends monotonically to 6` for s→2`.

Proof. ~The idea of the proof is taken from@10#!. Let
j(s0)5mp with j8(s0)5a. For s,s0 we have

0,E~s !2E~s0!5
1

2
j82

2sin2j2
1

2
a2<

1

2
j82

2
1

2
a2

~33!

and thusj82
.a2,;s,s0. ThereforeE is monotonically in-

creasing fors→2` andj82→` with j82
.0,;s,s0. Cor-

respondingly,j tends monotonically to6`, the sign de-
pending on the sign ofj8.

Lemma 3.2. If j(s0)5mp, mPZ for some s0, and
j8(s0)50, then if j is not constant either mp,j(s),(m
11)p or (m21)p,j(s),mp ;s.s0.

Proof. Let j(s0)5mp with j8(s0)50. If j is not con-
stant then fors.s0 we have

0.E~s !2E~s0!5
1

2
j82

2sin2j ~34!

and thus sin2 j.
1
2j

82>0, ;s.s0. Especially, sin2 j(s)
Þ0 ;s.s0 which implies our statement.

Corollary 3.1. There is no static texture solution which
satisfies the ansatz ~10! (a texture solution being a solution
with homotopy degree Þ0, i.e., one that really winds).

Proof. From Lemma 3.1: The only nonconstant regular
solutions through a pointmp are the ones with

j~2` !5 lim
s→2`

j~s !5mp. ~35!

Furthermore, for a regular solution

j8~2` !5 lim
s→2`

j8~s !5 lim
r→0

br
dj

dr
50. ~36!

To fully wind aroundS3, j5j3 with j5mp at r50 (s5

2`) would have to assume either the value (m21)p or
(m11)p which, according to Lemma 3.2 is not possible.

C. Existence and stability of static solutions

Finally, we would like to briefly verify that nonconstant
solutions to Eq.~28! do indeed exist globally, and we want to
review their properties. With the substitution

x5j, ~37!

y5j8, ~38!

Eq. ~28! is equivalent to the autonomous system of first order
differential equations

x85y , ~39!

y85sin~2x !2by . ~40!

Together with some initial conditionsx(0)5u0 , y(0)5v0,
this is an initial value problem~IVP! of the form

S x8

y8
D 5 f ~x,y !,

„x~0!,y~0!…5~u0 ,v0!. ~41!

The local existence and uniqueness of a solution to the IVP
~41! follow from standard theorems on ordinary differential
equations.

All solutions @x(s),y(s)# with

lim
s→2`

x~s !5mp, mPZ @and thus lim
s→2`

y~s !50#

~42!

are bounded for everysPR as follows directly from Lemma
3.2 and its proof. Therefore these solutions exist globally~cf.
@15#, Corollary 3.2!. @The local existence of solutions satis-
fying Eq. ~42! follows from our series expansion in Sec.
III B. #

Now let us discuss the stability of the critical points
(x0 ,y0) for this system which are given by

~x0 ,y0!5~mp/2,0!, mPZ. ~43!

In some neighborhood of a critical point we can approximate
Eq. ~41! by the linearized system

S x8

y8
D 5~D f !~x0 ,y0!S x

y D , ~44!

whereD f is the first derivative off ~with respect tox andy).
If we calculate the eigenvalues ofD f (x0 ,y0) and use the
principle of linearized stability@9# we find that the critical
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points (x0 ,y0)5(mp,0), mPZ are unstable, while the
critical points (x0 ,y0)5@(2m11)p/2,0#, are stable, and at-
tractive @in the sense, that if we start at any point close
enough to (x0 ,y0) then we will always end up at the critical
point itself for s→`#. The solutions thus spiral into a focus
at @(2m11)p/2,0#. This behavior is clearly seen in Fig. 1:
All trajectories that come close to the points (j,j8)5(0,0) or
(j,j8)5(p,0) are repelled and spiral intoj56p/2 andj
53p/2 respectively, depending on the sign ofj8.

In Fig. 1 we show the phase diagram forj(s) and j8

5dj/ds for the casek51(b51). Only the solutions with

lim
s→2`

j~s !5j~r50!5mp/2 and lim
s→2`

dj

ds
50

yield regular solutions in physical space. Remember that
from our power series expansion we needj(r50)
5mp, mPZ for a nonconstant solution~regular atr50).
Furthermore, since the ‘‘energy’’~31! is always decreasing
there are no periodic solutions, and thus all non-constant
regular solutions must end in one of the two focal points
„(2m61)p/2,0…. We can therefore conclude:

Proposition 3.1. The only nonconstant solutions to Eq.
~19! with k.0 that are regular for all r are the ones starting

at j~r50!5mp and ending in a focus at j~r→`!5~mp6p/2!
without ever leaving the strip @mp,mp1c# respectively
@mp2c,mp# for mPZ and some 0,c,p.

This result is also visible in Fig. 1.

IV. CONCLUSIONS

We have found that static ‘‘spherically symmetric’’ har-
monic maps~solutions of the nonlinears model! from com-
pactifiedR3 into S3 which satisfy our ‘‘ansatz’’ cannot have
nontrivial topology. Therefore, if static winding solutions ex-
ist, this map cannot be represented as the tensor product of a
map of the spherical angles~our V) and a radial function. It
is not clear to us whether such a decomposition should al-
ways exist globally.

We also could not show that each static solution should be
homeotopic to a spherically symmetric static solution and
thus spherical symmetry remains a nontrivial condition
which we have to pose.

In this sense, our partial result only hints to the following
which still remains to be fully proven~if true!:

Conjecture 4.1. There exist no static textures with every-
where finite energy density.
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