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Gauge-Invariant Cosmological Perturbation Theorywith Seeds

Ruth DurrerDepartment of Physics, Jadwin HallPrinceton UniversityPrinceton, NJ 08544
AbstractGauge-invariant cosmological perturbation theory is extended to handle perturbations inducedby seeds. A calculation of the Sachs{Wolfe e�ect is presented. A second order di�erential equationfor the growth of density perturbations is derived and the perturbation of Liouville's equation forcollisionless particles is also given.The results are illustrated by a simple analytic example of a single texture knot, where we calculatethe induced perturbations of the energy of microwave photons, of baryonic matter and of collisionlessparticles.



1 IntroductionWithin standard cosmology the formation of large scale structure is probably the biggest unsolvedproblem.The most extensively worked out scenarios like isocurvature baryons or baryons and collisionlessmatter (CDM or HDM) face severe problems (for a short review see [1]).On the other hand there are lots of interesting possibilities which induce perturbations in thebaryonic and dark matter by seeds, e.g. cosmic strings, primordial black holes, a �rst generation ofstars or texture [2].By seeds we mean a inhomogenously distributed form of energy which contributes only a smallfraction of the total energy density of the universe. Linear perturbation theory is thus justi�ed.Gauge-invariant linear perturbation theory [3] is superior to any arbitrary choice of gauge since it isnot plagued by gauge modes and it leads in all known cases to the simplest systems of equations.The goal of this paper is to expand gauge-invariant linear perturbation theory to include seedperturbations. In Section 2 the terminology is laid down and the gauge-invariant forms of the pertur-bation of Einstein's equations, the conservation equations and Liouville's equation are given. A newformula for the Sachs-Wolfe e�ect is also presented.In Section 3 the introduction of seeds is discussed and a gauge-invariant equation for the growthof density perturbations induced by seeds is derived.In Section 4 a simple example of a single texture solution [4] is discussed.2 Gauge-invariant perturbation theory and the Sachs{Wolfe e�ect2.1 Basic equationsA gauge transformation in the context of linear perturbation theory of gravity is a linearized coordinatetransformation. It is thus given by a vector �eld X. Any tensor �eld Q changes under a gaugetransformation by the linearized ux in direction of X which is given by the Lie derivativeQ! Q+ �LXQ : (2.1)Separating Q into a background component and a small perturbation, Q = Q(0) + �Q(1), we �nd thefollowing transformation law for Q(1) :Q(1) ! Q(1) + LXQ(0) : (2.2)Thus tensors with vanishing background component are gauge-invariant. Since all the relativisticequations are covariant, it is always possible to express the corresponding perturbation equations interms of gauge-invariant variables.In this subsection we de�ne the well-known gauge-invariant variables which describe the pertur-bations of the metric, the energy momentum tensor and the one particle distribution function in aFriedman background (see also [5] and [6]). We then write down the perturbation of Einstein's equa-tion, energy momentum conservation and Liouville's equation in a form which will be convenient later.All these equations are most easily derived using the 3+1 formalism of gravity (see [5]).Using conformal time we de�ne the perturbation in the lapse function �, the shift vector � andthe 3-metric g of the slices of constant time by� = a(1 +A) ; (2.3)1



� = alBji@i ; (2.4)g = a2[(1 + 2HL � (2=3)l22HT )ij + 2l2HT jij]dxidxj : (2.5)(3{dimensional vector and tensor �elds are denoted by bold face letters, j and 2 denote the covariantderivative and Laplacian with respect to the metric , which is the metric of a three space withconstant curvature K.)A; B; HL; and HT are arbitrary functions of space and time. To keep them dimensionless we haveintroduced the length l which in applications will be chosen to be a characteristic scale of the problem.By de�ning the metric perturbations according to (2.3), (2.4) and (2.5), we restrict ourselves toscalar type perturbations, but we shall not perform the harmonic analysis any further. There are ofcourse also vector and tensor type perturbations but we ignore them in what follows since they don'tgive rise to density perturbations.Writing the 4{dimensional metric in the formg�� = g(0)�� + a2h�� ; (2.6)the above de�nitions of the perturbation variables yieldh = �2A(dt)2 � 2lB;i dtdxi + 2(HL � (l2=3)4HT )ijdxidxj + l2HT jijdxidxj : (2.7)From (2.3), (2.4) and (2.5) one can calculate the 3{dimensional Riemann scalar and the extrinsiccurvature with the result�R = a�2(2� 3K)R , R = HL � (l2=3)2HT ; (2.8)K(aniso)ij = �al(�jij � 1=32�) , l� = l2 _HT � lB : (2.9)K(aniso) is the traceless contribution to the extrinsic curvature of the slices of constant time or, whatamounts to the same thing, the shear of the normal to the slices.Deriving the gauge transformation properties of A; R; and �, one easily �nds that the followingvariables, the so called Bardeen potentials are gauge-invariant (see [5] and [6]):� = R� ( _a=a)l� (2.10)	 = A� ( _a=a)l� � l _� : (2.11)Now we proceed to the perturbations of the energy momentum tensor. We de�ne the perturbedenergy density, � and velocity �eld u as the timelike eigenvalue and eigenvector of the energy mo-mentum tensor (note that apart from symmetry we do not make any assumptions on the nature ofT �� ): T �� u� = ��u� ; u2 = �1 :We then de�ne the perturbations in the density and velocity �eld by� = �(0)(1 + �) ; (2.12)u = u0@t + ui@i ; with u0 = (1�A) ; ui = �lv;i : (2.13)2



u0 is already �xed by the normalization condition. In the 3{space orthogonal to u we de�ne theperturbations of the stress tensor by� ji = p[(1 + �L � (l2=3)2�T )� ji + l2� jjT ji ] : (2.14)Calculating the behavior of the quantities � ; v ; �L and �T under gauge transformations, one �ndsthe following gauge-invariant variables:� = �T , anisotropic stress,� = �L � (c2s=w)� , entropy perturbation,lV = lv � l2 _HT , peculiar velocity,Ds = � + 3(1 + w)( _a=a)l�Dg = � + 3(1 + w)RD = Ds + 3(1 + w)( _a=a)lV :Dg;Ds and D are di�erent choices for a gauge-invariant density perturbation variable. For a physicalinterpretation of these variables see [5] and [6]. Here we just want to show that for perturbationswhich are small compared to the horizon distance, lH all the gauge-invariant combinations V and D(:)approach the usual v and �. Let us now choose our free length scale l to be the typical size of a givenperturbation. From the above equation it is then clear that for l� lH = � , D � Ds.Noting that perturbations to the Einstein tensor are given by second derivatives of the metricperturbations (Palatini's identity, see e.g. [7]), we obtain the following order of magnitude equation:O(�TT )O(8�GT��) = O(��2 �gg + (l�)�1 �gg + l�2 �gg ) : (2.15)Using Friedman's equationO(8�GT��) = O( _a=a)2 = O(1=�2)this yieldsO(�TT ) = O(�gg + (lH=l)�gg + (lH=l)2 �gg ) : (2.16)On subhorizon scales the metric perturbations are thus always much smaller than the matter pertur-bations and the di�erence between the gauge-invariant quantities V , D(:) and v, � becomes negligiblefor l=lH � 1.The perturbations of Einstein's equations and energy momentum conservation can be expressedin terms of these gauge-invariant variables (A simple derivation is given in [5]):Constraint equations4�Ga2�D = �(2+ 3K)� (2.17)4�Ga2(�+ p)lV = (_a=a)	� _� : (2.18)
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Dynamical equations �8�Ga2p� = 2(� + 	) : (2.19)8�Ga2p(� + (c2s=w)Dg � (2=3)l22�) = ( _a=a)f _	� [(1=a)(a2�_a )�]�g+f2a( _a=a2): + 3( _a=a2)2g[	� 1=a(a2�_a )�] : (2.20)Conservation equations_D� � 3w�( _a=a)D� = (2+ 3K)[(1 + w�)lV� + 2( _a=a)w�l2��]+3(1 + w�)4�Ga2(�+ p)(lV � lV�) ; (2.21)l _V� + (_a=a)lV� = c2�1 +w�D� + w�1 + w��� +	+ 2=3(2 + 3K) w�1 + w� l2�� : (2.22)Equations (2.21, 2.22) are the conservation equations for a matter component �, which does notinteract other than by gravity with the rest of the content of the universe. The total perturbationsare de�ned as the sums:�D =X� ��D� ; (�+ p)V =X� (�� + p�)V� ::: (2.23)The adiabatic sound speed, c� and enthalpy, w� arec2� = _p�= _�� ; w� = p�=�� and w = P� p�P� �� :The corresponding equations for interacting matter components are given in [6]. In order to completethe above analysis one also needs to include matter equations1.Collisionless matterAs one example of a matter equation let us now briey discuss the case of collisionless particles. Theyare described by their one particle distribution functionf = f (0) + f (1)which lives on the mass bundle, Pm = f(p; x)jg(x)��p�p� = �m2g . The matter equation is Liouville'sequation [7]. From the background Liouville equation it is easy to see that the unperturbed distributionfunction, f (0) is a function of the redshift corrected momentum, v := amqg(0)ij pipj alone.Studying the somewhat complicated gauge transformation properties of f (1) one �nds the followinggauge-invariant combination (see [5] and [9]):F = f (1) � fvR+ (q=v)lvi@i�gdfdv (0) ; (2.24)1To calculate the time evolution of the perturbations in the background matter components, we need not to makeexplicit use of the somewhat unwieldy equation (2.20), but we can use (2.19) and one of the conservation equations (2.21)and (2.22) which are of course equivalent to (2.19, 2.20). 4



with q := (v2 + a2)1=2.Note that in an orthonormal frame, p = p�e�, (for K = 0 we have e� = a�1@�) v and q are just givenby v = am jpj and q = amp0 :The perturbation of Liouville's equation can now be expressed in terms of F :fq@� + vk@k +K=2[xivivj � v2xj ] @@vj gF = dfdv (0)[(q=v)vk@k	� (v=q)vk@k�] ; (2.25)where we treat F as a function of (�;x;v). A derivation of this equation is given in [5] and [9] for thecase K = 0. The generalization to K 6= 0 is discussed in [10].To connect (2.25) to Einstein's equation, we have to calculate the energy momentum tensor fromf . The gauge-invariant perturbation variables are then found to be the following momentum integralsof F (see [5] and [9]):Dg = m4a4�(0) Z v2qFdvd
 (2.26)l2V = �m4a4(�(0) + p(0)) Z v2vi@iFdvd
 (2.27)l2�jij = m4a4p(0) Z v2q (vivj � v23 �ij)Fdvd
 (2.28)� = m4a4p(0) Z (v4=3q � c2sv2q)Fdvd
 : (2.29)(2.30)These matter variables inserted in Einstein's equations (2.17) and (2.19) yield the geometrical pertur-bations 	 and � which enter in (2.25). In Section 3 we shall discuss how this closed system is alteredin the presence of seeds.2.2 Sachs{Wolfe e�ectOn their way from the last scattering surface into our antennas, the microwave photons travel througha perturbed Friedman geometry. Thus, even if the photon energy density was completely homogeneousat the last scattering surface, we would receive it slightly perturbed. | This is the Sachs{Wolfe e�ect[11]. we will now calculate it to �rst order perturbation theory.For sake of simplicity we shall restrict ourselves to K = 0 in this subsection. Two metrics whichare conformally equivalent,d�s2 = a2ds2 ;have the same lightlike geodesics, only the corresponding a�ne parameters are di�erent. Let us denotethe a�ne parameters by �� and � respectively and the tangent vectors to the geodesic byn = dxd� and �n = dxd�� ; n2 = �n2 = 0 ; n0 = 1 ; n2 = 15



Setting n0 = 1 + �n0 the geodesic equation fords2 = (��� + h��)dx�dx�yields to �rst order�n0jfi = [h00 + h0ini]fi � 1=2 Z fi _h��n�n�d� : (2.31)The ratio of the energy of a photon measured by some observer at tf to the energy emitted at ti isgiven byEf=Ei = (�n � u)f(�n � u)i = (Tf=Ti)(n � u)f(n � u)i ; (2.32)where uf and ui are the four velocities of the observer and the emitter respectively and the factorTf=Ti is the usual redshift which relates n and �n. We write Tf=Ti and not af=ai here since alsothis redshift is slightly perturbed in general and we want to reserve a to denote the unperturbedbackground expansion factor.Since this is a physical, in principle measurable quantity it is independent of coordinates. It mustthus be possible to write it in terms of gauge-invariant variables. The gauge-invariant expression forEf=Ei can be obtained in the following way: Let us assume the observer and emitter are moving withthe cosmic uid. We thus haveu = (1�A)@t � lvji@i :Further, since the photon density may itself be perturbedTf=Ti = (ai=af )(1 + �TfTf � �TiTi ) = ai=af (1 + (1=4)�() jfi ) ;where �() is the intrinsic density perturbation in the radiation. This term was neglected in the originalanalysis of Sachs and Wolfe, but since it is gauge dependent doing so violates gauge invariance. Wetherefore keep it for the time being . Inserting all this and (2.31) into (2.32) yieldsEf=Ei = (ai=af )[1� njv;j jfi +Ajfi � (1=4)�() jfi � 1=2 Z fi _h��n�n�d�] :With the help of equation (2.7) for the de�nition of h�� one �nds after several integrations by partEf=Ei = (ai=af )f1 � [(1=4)D()s + lV (m)jj nj �	]jfi � Z fi ( _�� _	)d�g : (2.33)Here D()s denotes the density perturbation in the radiation and V (m) is the peculiar velocity of thematter component (the emitter and observer of radiation).For a discussion of the Sachs{Wolfe e�ect we neglect the intrinsic density perturbation of theradiation, i.e., we set D()s = 0, which now is a gauge-invariant statement. V (m) is a Doppler termdue to the relative motion of the emitter and receiver. The 	 { term accounts for the redshift dueto the gravitational �eld and the integral is a path dependent contribution to the redshift. (A similarequation was obtained in [12].) 6



3 Gauge-invariant perturbation theory in the presence of seedsBy seeds we mean density perturbations originating from an inhomogenously distributed form ofenergy whose mean density is much smaller than the density of the Friedman background, e.g. a �rstgeneration of stars, primordial blackholes, cosmic strings, texture, ... . We assume that these seedsdo not interact with the rest of the matter other than gravitationally.Since the energy momentum tensor of the seeds, T ��(s) has no homogeneous background contribution,it is gauge-invariant by itself according to (2.2).T ��(s) can be calculated by solving the matter equations for the seeds in the Friedman background ge-ometry. (Since T ��(s) has no background component it satis�es the unperturbed matter and conservationequations.) Let us assume that we can express the solution T ��(s) in terms of scalar functions: If not wejust neglect vectorial and tensorial contributions. Since they do not give rise to density perturbationsand since they decouple within linear perturbation theory, this will not a�ect our results.T (s)00 = a2�(s) = (M2=l2)f� ; (3.34)T (s)i0 = �a2lv(s)ji = �(M2=l)fv ji ; (3.35)T (s)ij = a2[(p(s) � (l2=3)2�(s)) + l2�(s)jij ]= M2[fp=l2 � (1=3)2f�)ij + f� jij] : (3.36)Here l is introduced merely to keep the functions f: dimensionless. It may be chosen to denote atypical size of the seeds. M denotes a typical mass of the seeds. (It is of course possible to choosel =M�1.)If we are given the energy momentum tensor T (s)�� which may still contain vectorial and tensorialcontributions, the scalar parts fv and f� are in general determined by the identitiesT (s) jj0j = (M2=l)2fv(T (s)ij � 1=3ijklTkl)jij = 23M2(2+ 3K)2f� :On the other hand 2fv and 2(2+3K)f� are also determined in terms of f� and fp by the conservationequations:_f� � l2fv + (_a=a)(f� + 3fp) = 0 (3.37)l _fv + 2( _a=a)lfv + fp + (2=3)l2(2+ 3K)f� = 0 (3.38)For seeds the energy momentum tensor is determined by background variables alone. Interactionswith the perturbations of the other components do not contribute to �rst order.The geometricalperturbations can then be separated into a part induced by the seeds and a part caused by theperturbations in the remaining matter components:	 = 	s +	m and � = �s +�m :
7



By Einstein's equations we can directly calculate the geometry perturbations induced by the seeds:�(2+ 3K)�s = �(f�=l2 + 3( _a=a)fv=l) ; (3.39)2(�s +	s) = �2�2f� ; (3.40)(3.41)where � = 4�GM2 is assumed to be much smaller than 1, to justify linear perturbation analysis.The geometry perturbations induced by the matter, 	m and �m are determined by equations (2.17)to (2.19) as before. But in the conservation equations and in any matter equations the full geometryperturbations, 	 and � have to be inserted.We now have a closer look at the example of a single uid where � and � are given in terms ofD and V . We assume that in addition to the seeds we have one perturbed matter component whichwe indicate by a subscript m. Other components which contribute to the background but whoseperturbations can be neglected may also be present. The conservation equation (2.21) then reads_Dm � 3wm( _a=a)Dm = (2+ 3K)[(1 + wm)lVm + 2( _a=a)wml2�m] + 3(1 + wm)�fv=l : (3.42)The last term describes the additional work done upon the spacetime due to the perturbation of theexpansion rate by the seeds.Solving this equation for (2+ 3K)lVm and inserting the result and its time derivative into (2.22)yields a second order equation for Dm. Using(2+ 3K)	 = 4�G�a2(Dm � 2wml2(2+ 3K)�m) + �(f�=l2 � 2(2+ 3K)f�)and the conservation equation (3.38) we �nd�D � (2+ 3K)c2sD + (1 + 3c2s � 6w)( _a=a) _D � 3(w(�a=a)� 3( _a=a)2(c2s � w) ++(1 + w)(4�=3)G�a2)D =(2+ 3K)w� + 2( _a=a)wl2(2+ 3K) _�+f2(�a=a)w � 6( _a=a)2(c2s � w) + (1 + w)8�Ga2p+ 2=3(2 + 3K)wgl2(2+ 3K)�+(1 + w)�(f� + 3fp)=l2 ; (3.43)where we have dropped the subscript m.This equation describes the behavior of perturbations in the presence of seeds in an arbitrary Friedmanbackground. We have not used Friedman's equations to express �a=a in terms of w and _a=a, or � interms of ( _a=a)2 so that (3.43) is valid also if there are unperturbed components which contribute tothe expansion but not to the perturbation. Note that within this gauge-invariant treatment the sourceterm is up to a factor (1+w) just the naively expected term 4�Ga2(�(s)+3p(s)) for all types of uids.Let us now simplify equation (3.43) in the case where � = � = 0 (adiabatic perturbations and noanisotropic stresses) and K = 0:�D�2c2sD+(1+3c2s�6w)( _a=a) _D�3[w(�a=a)�3( _a=a)2(c2s�w)+(1+w)(4�=3)G�a2]D = S ;(3.44)where S = (1 + w)�(f� + 3fp)=l2 . 8



If we Fourier transform (3.44) we �nd�D+k2c2sD+(1+3c2s�6w)( _a=a) _D�3[w(�a=a)�3( _a=a)2(c2s�w)+(1+w)(4�=3)G�a2]D = ~S :(3.45)~S = (1+w)�( ~f�+ ~fp)=l2 is the Fourier transform of S and we denote the Fourier transform of D againwith D.If we know the homogeneous solutions D1 and D2 of (3.45), we can �nd the perturbation inducedby S by the Wronskian method:D = c1D1 + c2D2 with (3.46)c1 = � Z ( ~SD2=W )d� , c2 = Z ( ~SD1=W )d� ; (3.47)where W = D1 _D2 � _D1D2 is the Wronskian determinant of the homogenous solution.This leads to the following general behavior: If the time dependence of D1, D2 and ~S can be approxi-mated by power laws, the contribution to D with maximum growth behaves like D / ~S�2. If D1 andD2 are waves with approximately constant amplitude and frequency !, D can be approximated by awave with amplitude proportional to !�1 R ei!� ~Sd� . Thus after a long time only typical frequenciesof the source survive.As a second example, we look at collisionless particles. The source term on the r.h.s. of Liouville'sequation, (2.25) can be separated as above into a part due to the collisionless component and a partinduced by the seeds. Equation (2.25) then becomesfq@� + vk@k +K=2[xivivj � v2xj ] @@vj gF = dfdv (0)[(q=v)vk@k	m � (v=q)vk@k�m] + S ; (3.48)with S = dfdv (0)[(q=v)vk@k	s � (v=q)vk@k�s] : (3.49)If one chooses a density parameter 0:2 � 
 � 1, which one might do in a realistic calculation, thecurvature term in (3.48) can always be neglected at early times, e.g., for redshifts z � 5. It is of theorder (l=lK)2 as compared to the other contributions. (l and lK = K�1=2 denote the typical size ofthe perturbation and the radius of curvature respectively.)With the integrals for the uid variables Dg, V , � and � as given in Section 2 and Einstein'sequations (2.17) to (2.19) for the geometrical perturbations 	m and �m induced by the collisionlesscomponent this forms a closed system.4 The texture knotAs an analytic application we now discuss the perturbations induced in the microwave background,in a cosmic dust component (baryons) and in collisionless particles by a single texture knot [2] onsubhorizon scales.Turok & Spergel [4] have obtained (to �rst order perturbation theory) the energy momentumtensor of a spherical texture knot in at spacetime:�T00 = 2�2 r2+3t2(r2+t2)2�T0i = �2( 2tr2+t2 );i�Tij = 2�2 r2�t2(r2+t2)2 �ij ; (4.50)9



where � is given by the symmetry breaking scale.We now set M2 = 4�2 and l = rc, the core radius of a texture knot, i.e., the scale where the �-model treatment of the �eld equations for texture and therefore the result (4.50) break down (see [4]).De�ning x = r=rc, y = t=rc we �nd with the terminology of the previous sectionf� = (1=2) x2 + 3y2(x2 + y2)2 ; (4.51)fv = (1=2) y(x2 + y2) ; (4.52)fp = (1=2) x2 � y2(x2 + y2)2 ; (4.53)f� = 0 (4.54)The variable t in (4.50) is de�ned to vanish when the knot collapses. It is not the age of the universe.From equations (3.39) to (3.40) in Minkowski space, i.e., _a = 0 we �nd the following perturbation ofthe geometry:�s = �1=4� log(r2 + t2r2c ) (4.55)	s = ��s + f(t) ; (4.56)with � = 16�G�2. 	s is only determined up to a function of time, which we choose to insure 	s ! 0,for t! �1. This initial condition yields	s = 1=4� log(r2 + t2t2 ) : (4.57)Of course, physical observables shall not depend on this choice.The 3{dimensional Riemann scalar on the surfaces of constant time is then�3R = a�22R � a�22� = � �2a2 r2 + 3t2(r2 + t2)2 ; (4.58)where we again have neglected the expansion of the background. So, far away from the collapsingknot and at early and late times we approach at space.4.1 Distortion of the microwave skyThis result can be used to calculate the energy shift which a photon experiences by passing a textureknot. If we neglect the distinctive dipole term and intrinsic density perturbations, equation (2.33)leads to(�E=E)fi = (ai=af )[Z fi ( _�� _	)d�+	jfi ] : (4.59)Denoting the impact parameter of the photon trajectory by R and the time when the photon passesthe texture knot by t�, we get r2 = R2 + (t� t�)2 . (4.59) then yields(�E=E)fi = (ai=af ) ��t�(t2� + 2R2)1=2 [arctg( 2t� t�(t2� + 2R2)1=2 )]fi : (4.60)10



For tf ; �ti � t�; R, we obtain(�E=E)fi � �(��=2) t�(t2� + 2R2)1=2 � aiaf : (4.61)Another derivation of this result and its interpretation is presented in [4]. We just notice that thosephotons which pass the texture knot before it collapses, t� < 0 are blueshifted and those passing theknot after collapse t� > 0 are redshifted. This results in a very distinctive hot spot | cold spot signalin the microwave sky wherever a texture has collapsed.Of course our result is not strictly correct in the expanding universe since we neglected expansionin the calculation of 	s and �s. But since the main contribution to the energy shift comes from timesjtj � jt�j+R, our approximation is reasonable also for the expanding case, if jt�j � RH and R � RH ,where RH denotes the horizon distance at the time of collapse, t = 0. On the other hand, by causalityarguments the texture cannot have a big e�ect on photon trajectories with jt�j > RH or R > RH . Agood approximation to the situation in the expanding universe is thus(�EE )fi = 8>><>>: ���=2 t�(t2�+2R2)1=2 (ai=af ) ; for jt�j < RH and R < RH0 ; for jt�j > RH or R > RH : (4.62)4.2 Baryons around a texture knotLet us now briey discuss the behavior of cosmic dust (baryons) in the �eld of a single texture knot.Equation (3.43) for a knot in a at dust universe (c2s = w = 0 ; _a = 0) yieldsd2Ddy2 + 4�G�(0)r2cD = S ; (4.63)with S = 2� x2(x2 + y2)2 :The term 4�G�(0)r2cD leads to exponential growth of perturbations which is a feature of the nonexpanding universe only. But our approximation, neglecting expansion, means that all times involvedare much smaller than Hubble time. This coincides with 4�G�(0)r2c � 1=x. Within our approximationit is thus consistent to neglect this self gravitating term in (4.63). Direct integration then yields thesolutionD = �[(y=x)arctg(y=x) + c1(x)y + c2(x)]= �(t=r)[arctg(t=r) + �=2] + � ; (4.64)where we have chosen the integration constants c1 and c2 such that D converges to 0 for large negativetimes, D(t = �1) = 0 and D converges to a constant for large radii, D(t; r =1) = �. Since D is onlya function of the self similarity variable t=r we cannot consistently choose both boundary conditionsto be 0. For late times, t=r � 1 D grows linearly with time:D = ��(t=r) ;Near the time of collapse, jt=rj � 1, D is of the order of �, D(t = 0; r) = �. At a given time t� after theknot has collapsed which is small compared to the Hubble time, D has the following pro�le: For large11



radii D / 0:5��t�=r + � and roughly at r = t� bends into D / ��t�=r and diverges for r ! 0. Thisdivergence leads to early formation of nonlinear structure on small scales. At time t� perturbationson scales of the order of r � rnl = ��t� have become nonlinear.The total mass accumulated around a texture diverges like the mass of the texture itself (see [4]).But in the real, expanding universe one has to cut it of at roughly the Hubble radius at the time whenthe texture collapses, RH .In this simple approximation we end up with the following picture: Due to the textures forming ata time t in the universe, objects of massM � 2�MH(t), form at separations on the order of p�1RH(t).Where MH denotes the horizon mass at the time when the texture collapses and p is the probabilitythat a four component vector �eld which is distributed in a completely uncorrelated manner over a2-sphere winds around a 3-sphere (i.e. the probability of texture formation at the horizon). Thisprobability has been found to be substantially less than 1 [13].A thorough discussion of the linear perturbation spectrum which is expected from this simplepicture will be presented elsewhere [14].From matter conservation, (3.42) for w = 0 we obtain2V = �=r[arctg(t=r) + �=2]� (�=2) tr2 + t2and thereforevi = �@iV = �(�=2)ni[arctg(t=r) + �=2]: (4.65)The total change in a particle's velocity as the knot collapses is thus independent of the particlesdistance from the knot and is given by�vj = vj(1)� vj(�1) = �(�=2)�nj (4.66)in agreement with [4].A numerical calculation for the distribution of texture in an expanding Friedman universe, wherethe growth of density perturbations is given according to (3.43) with w = c2s = 0, is underway [13].4.3 Collisionless particles around a texture knotLet us calculate the perturbations in the distribution function of collisionless particles induced by atexture knot. As for dust, we neglect self gravity. Setting K = 0 in (3.48) we obtainq@tF + vk@kF = dfdv (0)[(q=v)vk@k	s � (v=q)vk@k�s] � S ; (4.67)where 	s and �s are the metric perturbations due to the texture. Inserting the results (4.57) and(4.55) yieldsS = (�=2)dfdv (0)(q=v + v=q) v � xr2 + t2 : (4.68)The general solution of (4.67) isF(t;x;v) = F(t0;x�w(t� t0);v) + Z tt0 S(t0;x�w(t� t0);v)dt0 ; (4.69)12



with w = v=q.In the case of the texture knot the integral in (70) can be solved analytically. Let us assume that atsome initial time t0, long before the knot collapses, we can neglect the perturbation of the distributionfunction, F(t0; :::) = 0. Then F is given by the integral above:F(t;x;v) = (�=2) dfdv (0)(q=w) fw � (x�wt)� [arctg(x �w + t� )� arctg(x �w � w2(t� t0) + t0� )]+w22 log( r2 + t2(x� (t� t0)w)2 + t20 )g : (4.70)Here � is given by�2 = w2r2 � (w � x)2 + (x�wt)2 :This result has to be inserted in equations (2.26) to (2.29) to obtain the induced perturbations ofthe energy momentum tensor. Since we neglected expansion of space, it is not worth doing this withthe full result (4.70). Instead we take the nonrelativistic limit, w � 1. Then � � jx �wtj and thelogarithmic term in (4.70) can be neglected.Nonrelativistic limit:F(t;x;v) = (�=2)q dfdv (0)w � (x�wt)wjx�wtj [arctg(x �w + tjx�wtj ) + �=2] ; (4.71)where we have taken the limit t0 ! �1.We want to use this result to calculate the induced velocity perturbations. In the baryonic case wesaw that most of the velocity perturbations at a given distance r are induced at times t � r. We thusmake the additional assumption O(t) � O(r) so that terms wt are much smaller than t and r. Withthis additional approximation we �ndF = (�=2)dfdv (0)qx � wwr [arctg(t=r) + �=2] : (4.72)Setting � = x � w=(wr) we then obtainvi@iF = (�=2)dfdv (0)f(1 � �2)[arctg(t=r) + �=2] � �2 tr2 + t2 gvq : (4.73)Using now R (1� �2)d
 = 8�=3 and R �2d
 = 4�=3 equation (2.27) yieldsl2V = ��[arctg(t=r)� t2(t2 + r2) ] m44�3a4(�(0) + p(0)) Z v3qdf (0)dv dv : (4.74)Reinserting the de�nitions jpj = vm=a, p0 = qm=a and integrating by parts �nally leads tol2V = � arctg(t=r)� (�=2) tr2 + t2 : (4.75)As expected, we obtain the same result as for cosmic dust, i.e. baryons (4.65).Of somewhat more interest is of course the corresponding calculation in the expanding universe,for which we leave for a future project. 13
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