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AbstractPre-big bang cosmology predicts tiny �rst-order dilaton and metric pertur-bations at very large scales. Here we discuss the possibility that other { morecopiously generated { perturbations may act, at second order, as scalar seeds oflarge-scale structure and CMB anisotropies. We study, in particular, the casesof electromagnetic and axionic seeds. We compute the stochastic uctuationsof their energy-momentum tensor and determine the resulting contributionsto the multipole expansion of the temperature anisotropy. In the axion caseit is possible to obtain a at or slightly tilted blue spectrum that �ts presentdata consistently, both for massless and for massive (but very light) axions.Typeset using REVTEX1



I. INTRODUCTIONString theory has recently motivated the study of a cosmological scenario in which theuniverse, starting from the string perturbative vacuum, evolves through an early inationary\pre-big bang" phase [1], until a transition to the radiation-dominated, decelerated evolutionoccurs.In spite of some attractive aspects of the pre-big bang picture, such as the underlyingduality symmetry [2], which naturally selects perturbative initial conditions and automat-ically leads to ination [1,3], it is fair to say that such a cosmological scenario is far frombeing understood in all of its aspects. In particular, on the more theoretical side, one islacking a complete and consistent description of the high-curvature, strong coupling regime,where the transition from the pre- to the post-big bang era is expected to take place [4].Furthermore, opinions vary [3,5] as to whether or not the pre-big bang scenario needs a largeamount of �ne-tuning. On a more phenomenological side, the main outstanding problemis to reproduce the observed amplitude and slope of the large-scale temperature anisotropy[6] and of large-scale density perturbations. The di�culty is that, unlike in the more con-ventional (de-Sitter-like) inationary picture, the ampli�cation of scalar and tensor metricperturbations here leads to primordial spectra that grow with frequency [7], and whose en-ergy density is normalized to an almost critical value at some short scale [8] (typically theGHz); in this way, too little power is left at scales that are relevant for anisotropies in theCosmic Microwave Background (CMB) [6] or to the problem of large-scale structure (unlessthe high-curvature phase is long enough and characterized by an almost constant dilaton�eld [9]).In this paper we address this problem and we discuss a possible solution, based on thecontribution of \seeds" [10] to density uctuations and to the anisotropy of the CMB radia-tion. The seeds are produced, in our context, by the ampli�cation of quantum uctuationsof some other �elds, which are present in string theory, but are not part of the homogeneous2



background whose perturbations we wish to study.We shall consider two examples, in which the seed inhomogeneity spectrum is due, respec-tively, to vacuum uctuations of the electromagnetic (EM) [11] and of the (Kalb-Ramond)axion (AX) [12] �eld. Both cases are typical of string cosmology, since no inhomogeneity isproduced, in either case, in a conventional scenario based on Einstein's equations, withoutaxion and dilaton. The spectra of EM and AX perturbations can be much atter than thoseof scalar and tensor perturbations of the metric and of the dilaton �eld.The idea of using the EM uctuations as seeds was already discussed in a previous paper[13], using however the perfect uid approximation for the EM stress tensor. Here we willcompute the scalar components of the energy-momentum-tensor uctuations due to the EMand AX seeds including an important anisotropic stress term, and will relate them to theprimordial spectral energy distributions. When these seed inhomogeneities are inserted inthe perturbed Einstein equations they generate scalar-metric uctuations which are largelycontrolled, for seeds with small enough anisotropic stresses, on super-horizon scales, bythe so-called compensation mechanism [14]. Finally, scalar-metric perturbations can beconverted in a standard manner into temperature uctuations �T=T via the Sachs-Wolfee�ect [15]. We will discuss whether the metric perturbation spectrum induced by seeds canbe at enough to match present observations, consistently with the COBE normalization ofthe amplitude on large scales, and with the high-frequency normalization of the primordialseed spectrum.It should be stressed that, in our model, the axion is not to be identi�ed with darkmatter. The KR axions are treated here as "seeds", i.e. as inhomogeneous perturbations ofa background which is not axion-dominated, so that our mechanism of anisotropy productionis di�erent from that of previous computation of isocurvature [16] and adiabatic [17] axionperturbations.The paper aims at being rather self-contained and readable by non-specialists in stringand/or cosmological perturbation theory, and is organized as follows. In Section II we set up3



the relevant equations needed to study super-horizon perturbations in the presence of seeds,and give their generic solution for seeds with \small" or \large" anisotropic stresses. We alsodiscuss the way the perturbations enter the multipole expansion of �T=T via the Sachs-Wolfee�ect. In Section III, after recalling known results about scalar, tensor, electromagnetic andaxion perturbations in the pre-big bang scenario, we estimate the contribution of the twolatter sources to the uctuations of the energy-momentum tensor, including the case ofmassive axions. In Section IV we combine the results of the previous two sections andcompute the contribution of EM and AX seeds to �T=T . Using COBE data, we �nallydiscuss, in the various cases, whether the seed mechanism alone is able to give a satisfactoryexplanation of large-scale temperature anisotropies. Section V contains our conclusions.Some technical details are relegated to the three appendices.Notation: The Friedmann metric is given by a2(�d�2 + ijdxidxj), where a denotes thescale factor and � is conformal time. Spatial indices, 1; 2; 3 are denoted by latin letterswhile spacetime indices, 0; 1; 2; 3 are denoted by greek letters. A dot denotes derivative withrespect to �.II. LARGE-SCALE PERTURBATIONS IN THE PRESENCE OF SEEDSBefore calculating CMB anisotropies for speci�c examples in the context of string cos-mology, we derive a general formula for large-scale CMB anisotropies in models with seedperturbations. A. Cosmological Perturbation Theory with SeedsIn this subsection we give a brief reminder of gauge-invariant perturbation theory withseeds. More details can be found in Refs. [10,18]. By seeds we mean an inhomogeneouslydistributed form of energy, which contributes only a small fraction to the total energy density4



of the universe and can thus be considered as a perturbation. Furthermore, we consider seedsthat interact only gravitationally with the cosmic uid.We restrict our discussion to scalar perturbations, which are of primary interest here.The corresponding equations for vector and tensor perturbations can be found in [18]. Themetric of a perturbed Friedmann universe isg�� = g(0)�� + a2h�� ; (2.1)where g(0) denotes the unperturbed metric:g(0)�� dx�dx� = a2(�)(�d�2 + ijdxidxj) : (2.2)Here a is the scale factor, � denotes conformal time and  represents a metric of constantcurvature K = �1; 0. Since we will be interested in a Friedmann universe that has undergonesubstantial ination, we neglect K in the sequel, setting ij = �ij.For scalar perturbations, a Fourier component of h�� with wave vector k can byparametrized by 4 scalar functions A;B;HL and HT , de�ned byh(k) = h��(k)dx�dx� = �2A(k)(d�)2 � 2ikjk B(k)d�dxj+2 �HL(k) + 13HT (k)� �ljdxldxj � 2klkjk2 HT (k)dxldxj : (2.3)These four functions are gauge-dependent, i.e. they depend on the choice of coordinates.In order to de�ne gauge-independent metric variables, we �rst make use of two geometricquantities: the spatial part of the scalar curvature of the perturbed metric, �R, and theshear (traceless) part of the extrinsic curvature, K(aniso). An elementary calculation gives[18]: �R = 4k2a�2R , R = HL + 13HT ; (2.4)K(aniso)ij = ak kikjk2 � 13�ij! � , � = _HT=k �B : (2.5)5



Studying the gauge transformation properties of A; R; and �, one easily �nds that thefollowing variables, called the (Fourier components of the) Bardeen potentials, are gauge-invariant (see [19,20]): � = R� ( _a=a)k�1� ; (2.6)	 = A� ( _a=a)k�1� � k�1 _� : (2.7)(Note that, throughout this paper, we shall always express the Bardeen potentials in mo-mentum space, even without indicating their k dependence explicitly.)Next, we discuss the perturbations of the energy-momentum tensor. Let us de�ne theperturbed energy density �(pert) and 4-velocity �eld u as the time-like eigenvalue and eigen-vector of the energy-momentum tensor:T �� u� = ��(pert)u� ; u2 = �1 : (2.8)The Fourier components of the perturbations in the density and velocity �eld are determinedby �(pert) = �(1 + �) ; (2.9)u0 = (1� A) ; uju0 = �ikjk v ; (2.10)where � denotes the unperturbed background density. The temporal component u0 is �xedby the normalization condition. We project the stress tensor onto the 3-space orthogonal tou: ��� = P ��P �� T��; P�� � g�� + u�u�; (2.11)and de�ne the scalar perturbations of � by:� ji = p "�1 + �L + 13�T� � ji � kikjk2 �T# : (2.12)6



The variable �L describes the pressure perturbation, �T is the potential of the anisotropicstresses and p is the unperturbed background pressure. Studying the behaviour of thequantities �, v, �L and �T under gauge transformations [21], one �nds the gauge-invariantvariables: � = �T ; � = �L � (c2s=w)�; V = v � k�1 _HT ;D = � + 3(1 + w)( _a=a)k�1(V + �); Dg = � + 3(1 + w)R : (2.13)Here � is the anisotropic stress potential, � is the entropy perturbation, V is the peculiarvelocity potential, D and Dg are di�erent choices for a gauge-invariant density perturbationvariable (for a physical interpretation of these variables, see [20,21]). Finally, w = p=�denotes the enthalpy and c2s = _p= _� stands for the adiabatic speed of sound. In this paper weshall limit ourselves to adiabatic perturbations (� = 0).The perturbation of Einstein's equations and of energy-momentum conservation can beexpressed in terms of these gauge-invariant variables (a derivation can be found in [20,21]).We obtain two constraint equations:4�Ga2�D = k2�; (2.14)4�Ga2(� + p)V = k h( _a=a)	� _�i ; (2.15)two dynamical equations:�8�Ga2p� = k2(� + 	); (2.16)8�Ga2p h� + (c2s=w)Dg + (2=3)k2�i == _aa ( _	� "a�1  a2�_a !�#�)+ "2a � _aa2�� + 3� _aa2�2# "	� a�1  a2�_a !�# ; (2.17)and two conservation equations:_D� � 3w�( _a=a)D� = �k h(1 + w�)V� + 2( _a=a)w�k�1��i+3(1 + w�)4�Ga2(�+ p)(V � V�) ; (2.18)_V� + (_a=a)V� = c2�1 + w�kD� + w�1 + w�k�� + k	� 2w�3(1 + w�)k�� : (2.19)7



The above conservation equations hold for any component � of the uid stress-energy tensorwhich interacts with the other components of the cosmic uid only gravitationally. Thevariables c� and w� denote the adiabatic speed of sound and the enthalpy of the uidcomponent, respectively. The total perturbations are de�ned as the sums:�D =X� ��D� ; (�+ p)V =X� (�� + p�)V� ; etc. (2.20)For interacting matter, the corresponding equations can be found in [20].In order to complete the above analysis we also need equations of state for the mattersources, which relate for instance � and � to D and V . Due to the Bianchi identities, theconservation equations for the total cosmic uid follow from the �eld equations (2.14){(2.17).Thus, we need not make explicit use of both dynamical equations, but we can use, say, (2.16)and one of the conservation equations (2.18), (2.19) for the total uid.We now add to the perturbation equations an inhomogeneous energy-momentum distri-bution, T (s)�� , generated by seed �elds that do not interact with the cosmic uid other thangravitationally.Since, by de�nition, seeds do not contribute as sources of the homogeneous background,the energy-momentum tensor T (s)�� is gauge-invariant by itself [22], and can be calculated bysolving the �eld equations for the seeds in the unperturbed background geometry. Let usassume that we can express the Fourier components of T (s)�� in terms of four scalar \seed-functions" f�, fp, fv and f� (we just neglect vector and tensor contributions; since they aredecoupled from density perturbations, in the linear approximation, this will not a�ect ourresults for scalar perturbations):T (s)00 (k; �) = a2�(s) =M2f�(k; �) ; (2.21)T (s)j0 (k; �) = �ikjk a2v(s) = �iM2kjfv(k; �) ; (2.22)T (s)ij (k; �) = a2 "�p(s) + 13�(s)� ij � kikjk2 �(s)#=M2 " fp(k; �) + k23 f�(k; �)!ij � kikjf�(k; �)# : (2.23)8



Note that f� and fp have dimension `�2, while fv has dimension `�1 and f� is dimensionless.Here M denotes an arbitrary mass scale, introduced for dimensional reasons, which willeventually drop out in physical predictions.Given an energy-momentum tensor T�� , which in general contains vector and tensorcontributions, the scalar parts fv and f� are determined by the identities:ikjT (s)0j =M2k2fv;�T (s)ij kikj + 13k2klT (s)kl = 23M2k4f� : (2.24)On the other hand, fv and f� are related to f� and fp, by the conservation equationsr�T (s)�� = 0: _f� + k2fv + (_a=a)(f� + 3fp) = 0; (2.25)_fv + 2( _a=a)fv � fp + (2=3)k2f� = 0 : (2.26)In the presence of seeds, and in the approximation in which perturbations are treatedlinearly, the total geometric perturbations can be separated into a part induced by the seeds,	s;�s, and a part induced by the perturbations of the cosmic uid, 	m;�m. The perturbedEinstein's equations (2.14) and (2.16) becomek2� = 4�G�a2D + � [f� + 3( _a=a)fv] ; (2.27)� + 	 = �8�Ga2k�2p�� 2�f� ; (2.28)where � � 4�GM2. If we de�ne	 = 	s +	m; � = �s + �m (2.29)with: k2�s = � [f� + 3( _a=a)fv)] ; �s +	s = �2�f�; (2.30)we easily �nd 9



�m = 4�G�a2k�2 �Dg + 3(1 + w)� _aa� Vk � 3(1 + w)�� ; (2.31)	m = ��m � 8�Ga2p�k�2 : (2.32)Equation (2.31) has been written in terms of the gauge-invariant density perturbation Dg,because this choice will simplify our �nal equations. Physically,Dg corresponds to the densityperturbation in the at slicing. The evolution of Dg and V is described by the conservationequations (2.18) and (2.19), which read explicitly:_Dg + 3(c2s � w) _aaDg = �(1 + w)kV; (2.33)_V + _aa(1� 3c2s)V = k(	� 3c2s�) + k c2s1 + wDg � 2w3(1 + w)k� : (2.34)To simplify the analysis, we will assume w = c2s = constant. The unperturbed backgroundequations are then solved by a / �r, with r = 2=(3w + 1). Since we are interested in verylarge scale perturbations in the cosmic microwave background, we concentrate our discussionon super-horizon scales, such that k� � 1. Eqs. (2.31) and (2.29) then lead to� = 13(1 + w)Dg + rk�V + 29r2(1 + w)(k�)2�s ; (2.35)where r = 1 for the radiation-dominated era, and r = 2 for the matter-dominated era.The evolution equation for Dg, Eq. (2.33), implies dDg=d(k�) = �(1 + w)V . In thephysical picture we have in mind, metric perturbations are triggered by the presence of theseeds alone, and we do not want to include an arbitrary contribution from the perturbationsof the homogeneous sources. We thus require Dg(0) = 0, which implies Dg � k�V . Hence,we may neglect the Dg-term in Eq. (2.35) for k� � 1.Combining Eqs. (2.35), (2.34), (2.28) we �nd, on super-horizon scales,	 = dVd(k�) + rk�V + 2w3r2(1 + w)(k�)2�s + 2(k�)29r2(1 + w)(2�f� +	 + �) : (2.36)The two equations (2.35) and (2.36) relate the three variables 	;� and V once theseeds are given. To proceed, we need an equation of state to close the system. For single10



component uids this equation usually takes the form � = �(Dg; V ). We are interestedin large-scale CMB anisotropies, which are induced at recombination and later, when theuniverse is already matter-dominated, with p � �. Thus, in what follows, we will considerthe case � = 0, which implies � + 	 = �2�f�: (2.37)Furthermore, in a matter-dominated Friedmann universe, r = 2 and w = 0. The equationof motion for V , obtained by combining Eqs. (2.35), (2.36), (2.37), then readsdVd(k�) + 4k�V = � 118(k�)2�s � 2�f� = � 118�2� [f� + 3( _a=a)fv]� 2�f� : (2.38)In the next subsection, we shall see that the large-scale anisotropies of the CMB are deter-mined by the combination 	{�. Using Eqs. (2.35), (2.37) and (2.38), we �nd immediately:	�� = dVd(k�) � 118�2� [f� + 3( _a=a)fv] : (2.39)Modulo numbers of order unity, which can be computed case by case, we �nally arrive atthe estimates: 	� � � dVd(k�) � Vk� � max��f�; ��2 �f� + 3 _aafv�� : (2.40)Depending on whether �2 (f� + 3( _a=a)fv) or f� dominates in Eq. (2.40), we can distinguishbetween seeds with small and large anisotropic stresses. We will discuss in Section III towhich case our string-cosmology seeds belong.If the term ��2 (f� + 3( _a=a)fv) = x2�s dominates, we conclude from Eqs. (2.38),(2.39)that � � 	 � (k�)2�s � (k�)2	s � �s � 	s ; (2.41)on super-horizon scales. This suppression of the total geometric perturbations, if comparedwith the source perturbations alone, is known under the name of \compensation" [14]. The11



conservation equations (2.18), (2.19) show that the presence of seeds induces matter pertur-bations that try to compensate the gravitational potential of the seeds. Since anisotropicstresses in the seeds cannot be compensated by a perfect uid, compensation is not e�ec-tive, if anisotropic stresses dominate. But, as shown here (see also [14]), the phenomenon ofcompensation is quite generic and, to a large extent, independent of the spectrum of seeductuations. B. The Seed Contribution to CMB anisotropiesIn this subsection we calculate the CMB anisotropies for models where perturbations areinduced by seeds, and their contribution to �T=T via the Sachs-Wolfe e�ect [15]. We �rstdiscuss in general the motion of photons in a perturbed Friedmann universe.We make use of the fact that the equations of motion of photons are conformally invariant.More precisely, two metrics that are conformally equivalent,d�s2 = a2ds2 ; (2.42)have the same light-like geodesics, only the corresponding a�ne parameters are di�erent.Let us denote the two a�ne parameters by �� and � respectively, and the tangent vectors tothe geodesic by n = dxd�; �n = dxd�� ; n2 = �n2 = 0 ; n0 = 1 ; n2 = 1: (2.43)Setting n0 = 1 + �n0, the geodesic equation for the perturbed metricds2 = (��� + h��)dx�dx� (2.44)yields, to �rst order, �n0jfi = hh00 + h0jnjifi � 12 Z fi _h��n�n�d� : (2.45)On the other hand, the ratio of the energy of a photon measured by some observer at tf tothe energy emitted at ti is 12



EfEi = (�n � u)f(�n � u)i = TfTi (n � u)f(n � u)i ; (2.46)where uf and ui are the four-velocities of the observer and emitter respectively, and thefactor Tf=Ti is the usual (unperturbed) redshift, which relates n and �n. The velocity �eld ofobserver and emitter is given byu = (1� A)@� + vi@i : (2.47)An observer measuring a temperature T0 receives photons that were emitted at the time�dec of decoupling of matter and radiation, at the �xed temperature Tdec. In �rst-orderperturbation theory, we �nd the following relation between the unperturbed temperaturesTf , Ti, the measurable temperatures T0, Tdec, and the photon density perturbation:TfTi = T0Tdec  1� �TfTf + �TiTi ! = T0Tdec �1� 14�()jfi � ; (2.48)where �() is the intrinsic density perturbation in the radiation and we used �() / T 4 inthe last equality. Inserting the above equation and Eq. (2.45) into Eq. (2.46), and usingEq. (2.3) for the de�nition of h�� , one �nds, after integration by parts [18]:EfEi = T0Tdec (1� �14D()g + V (m)j nj +	� ��fi + Z fi ( _	� _�)d�) : (2.49)Here D()g denotes the density perturbation in the radiation uid, and V (m) is the peculiarvelocity of the baryonic matter component (the emitter and observer of radiation). The �naltime values in the square bracket of Eq. (2.49) give rise only to monopole contributions andto the dipole due to our motion with respect to the CMB, and will be neglected in whatfollows.Evaluating Eq. (2.49) at �nal time �0 (today) and initial time �dec, we obtain the tem-perature di�erence of photons coming from di�erent directions n and n0�TT � �T (n)T � �T (n0)T ; (2.50)with temperature perturbation 13



�T (n)T = �14D()g + V (m)j nj +	� �� (�dec;xdec) + Z �0�dec( _	� _�)(�;x(�))d� ; (2.51)where x(�) = x0� (�0� �)n is the unperturbed photon position at time � for an observer atx0, and xdec = x(�dec). The �rst term in Eq. (2.51) describes the intrinsic inhomogeneitieson the surface of the last scattering, due to acoustic oscillations prior to decoupling. Ingeneral, it also contains contributions to the geometrical perturbations. This is especiallyimportant in the case of adiabatic inationary models [23]. However, for perturbationsinduced by seeds, which satisfy the initial condition Dg(k; �)! 0 for � ! 0, the geometricalcontributions to Dg can be neglected. The second term describes the relative motions ofemitter and observer. This is the Doppler contribution to the CMB anisotropies. It appearson the same angular scales as the acoustic term, and we thus call the sum of the acousticand Doppler contributions \acoustic peaks".The last two terms are due to the inhomogeneities in the spacetime geometry; the �rstcontribution determines the change in the photon energy due to the di�erence of the gravi-tational potential at the position of emitter and observer. Together with the part containedin D(r)g they represent the \ordinary" Sachs-Wolfe e�ect. The second term accounts for red-shift or blue-shift caused by the time dependence of the gravitational �eld along the path ofthe photon, and represents the so-called Integrated Sachs-Wolfe (ISW) e�ect. The sum ofthe two terms is the full Sachs-Wolfe contribution (SW).On angular scales 0:1� <� � <� 2�, the main contribution to the CMB anisotropies comesfrom the acoustic peaks, while the SW e�ect is dominant on large angular scales. Onscales smaller than about 0:1�, the anisotropies are damped by the �nite thickness of therecombination shell, as well as by photon di�usion during recombination (Silk damping).Baryons and photons are very tightly coupled before recombination, and oscillate as a one-component uid. During the process of decoupling, photons slowly di�use out of over-dense regions into under-dense ones. To fully account for this process, one has to solve theBoltzmann equation for the photons (see, e.g. [18]).14



The angular power spectrum of CMB anisotropies is expressed in terms of the dimen-sionless coe�cients C`, which appear in the expansion of the angular correlation function interms of the Legendre polynomials P`:*�TT (n)�TT (n0)+ (n�n0=cos#) = 14� X̀(2`+ 1)C`P`(cos#) : (2.52)Here the brackets denote spatial average, or expectation values if perturbations are quantized.To determine the C` we Fourier-transform Eq. (2.51), de�ning'(k) = 1pV ZV '(x)eik�xd3x ; (2.53)and using the identity eiz cos# = X̀(2`+ 1)i`j`(z)P`(cos#) (2.54)(where j` is the spherical Bessel function of order `). For the coe�cients C` of Eq. (2.52) weobtain: C` = 2� Z hj�`(k)j2i(2`+ 1)2 k2dk ; (2.55)where �`2`+ 1 = j`(k�0) �14D(r)g (k; �dec) + (	� �)(k; �dec)�� j 0̀(k�0)Vr(k; �dec)+ Z �0�dec( _	� _�)(k; �0)j` (k�0 � k�0) d�0= 14D(r)g (k; �dec)j`(k�0)� j 0̀(k�0)Vr(k; �dec)+k Z �0�dec(	� �)(k; �0)j 0̀ (k�0 � k�0) d�0 ; (2.56)and j 0̀ stands for the derivative of j` with respect to its argument. On large angular scales,k�dec � 1 (which corresponds to `� 100), the SW contribution dominates:CSW` = 2� Z k4dk*�Z �0�dec(	� �)(k; �)j 0̀ (k�0 � k�) d��2+ : (2.57)Let us approximate the Bardeen potentials on super-horizon scales by a power-law spec-trum: 15



hj	� �j2i = C2(k) (k�)2 : (2.58)Furthermore, we consider models where the seed contribution does not grow in time on sub-horizon scales. In this case the Bardeen potentials, inside the horizon, are dominated bythe cold dark matter contribution, which leads to time-independent � and 	. We can thusapproximate the Bardeen potentials by	� � � 8>><>>: C(k)(k�) ; k� � 1C(k) ; k� � 1 : (2.59)We further assume that also C(k) is given by a simple power law. Thus, for dimensionalreasons, it has the form C(k) = 8>><>>: Nk�3=2(k=k1)� ; k � k10 ; k > k1 ; (2.60)whereN is a dimensionless constant, and k1 denotes a comoving cuto� scale, i.e. the maximalampli�ed frequency determined by the explicit mechanism of seed production (in the case� = 0 no cuto� is needed). Inserting this in Eq. (2.57),CSW` � N 2 2� Z k10 dkk  kk1!2� jI(k)j2 ; (2.61)where, setting x = k�; x0 = k�0; xdec = k�dec,I(k) = Z 1xdec dxxj 0̀(x0 � x) + Z x01 dxj 0̀(x0 � x) (2.62)= Z 1xdec dxxj 0̀(x0 � x) + j`(x0 � 1) : (2.63)We can see explicitely from this equation that the relevant contribution of each mode tothe CMB anisotropy comes while the mode is still outside the horizon (k� < 1). We nowdistinguish two cases.If  > �1 the lower bound in eq. (2.63) can be safely extended to 0, and the integral isdominated by the region k� � 1, so that: 16



I(k) � j`(x0 � xdec) � j`(x0); xdec � 1 < x0 : (2.64)Inserting this in Eq. (2.61), the integral can be performed exactly (assuming �0k1 � `), withthe result, for � < 1,CSW` � N 2(k1�0)�2� �(2� 2�)4(1��)�(3=2� �) �(`+ �)�(`+ 2� �) ; � < 1 (2.65)(if � > 1, the integral grows towards large k and is dominated by the contributions at k � k1,leading to an `-independent result of order (N =k1�0)2). Comparing the above equation withthe standard inationary result [24],CSW` / �(`� 1=2 + n=2)�(`+ 5=2� n=2) ; (2.66)where n denotes the usual spectral index, we �nd that � is related to n by � = (n � 1)=2.The scale-invariant spectrum, as it has been observed by the DMR experiment aboard theCOBE satellite [26], requires 0:9 � n � 1:5 (2.67)so that, within 1� error bars, the COBE observations imply�0:05 � � � 0:25 ;  > �1 : (2.68)Consider now the second case,  + 1 � 0. The integral (2.63) is now dominated by itsvalue at the lower boundary and we getjI(k)j2 � 1( + 1)2x2(+1)dec " `2`+ 1j`�1(x0)� `+ 12`+ 1j`+1(x0)#2 : (2.69)If also � +  < 0, the k-integral converges and we obtain (see Appendix A):CSW` �N 222(�+)( + 1)2 �(�2(� + ))�(1=2� (� + ))2  �dec�0 !2(+1) (k1�0)�2� �(`+ 1 + � + )�(`+ 1� �� ) 1(2`+ 1)2� "`2(`� �� )`+ � +  + 2`(`+ 1)(1=2 + � + )(1=2� �� ) + (`+ 1)2(`+ 1 + � + )(`+ 1� �� ) # : (2.70)17



Comparing again this last result with that of standard ination, Eq. (2.66), and neglectingthe weak `-dependence of (2`+ 1)�2[� � �] in Eq. (2.70), we obtainn � 3 + 2(� + ) ; �+  < 0 : (2.71)(If, on the contrary, � +  > 0, the coe�cients C` are dominated by the large k (i.e. small-scale) contribution, even for the very low values of `. In this case the small-scale perturbationsbecome too large, which is excluded observationally by the fact that the spectrum, for CMBand matter perturbations, must be close to the Harrison-Zel'dovich spectrum [27]).The observational limits on n thus impose�0:05 <  + 1 + � < 0:25;  � �1 ; n ' 3 + 2(�+ ) (2.72)and �0:05 < � < 0:25;  > �1 ; n = 1 + 2�: (2.73)In the following sections we will apply these �ndings to electromagnetic and axionic seedsproduced in string cosmology. In the axions case we will discuss separately massless andmassive perturbations.III. SEEDS FROM STRING COSMOLOGYIn this section we compute the seed functions f�; fv; f�, and we estimate the Bardeenpotentials for electromagnetic and axion perturbations, including the case of massive axions.A. Ampli�cation of quantum uctuationsWe start by recalling the form of the (string-frame) low-energy string e�ective action[28]:�Seff = Z dDxqjgje�� �R + g��@��@��� 112g��g��g��H���H��� � 14g��g��F��F��� ; (3.1)18



where we have included the antisymmetric tensor H��� = @[�B��] and the U(1) gauge �eldF�� = @[�A�]. Note that this gauge �eld is typical of what emerges from heterotic stringcompacti�cation. For gauge �elds originating �a la Kaluza-Klein, the action and the spectraare somewhat di�erent, as discussed in [29].Upon compacti�cation down to four dimensions, and after introduction of the axion �eld� by the duality transformation:H��� = e�������@��; (3.2)one easily arrives at the dimensionally reduced action:�Seff = Z d4xqjgje�� �R + g��@��@��� 12e2�g��@��@�� � 14g��g��F��F��� : (3.3)The study of tensor (T), scalar-dilaton (SD), electromagnetic (EM) and axion (AX)perturbations is conveniently performed de�ning the external \pump �eld", responsible fortheir ampli�cation. To this aim, we �rst identify for each perturbation the canonical variables i, which diagonalize the perturbed action expanded up to second order [30]. In a purelymetric-dilaton background, such variables are easily found from (3.3) to be: T = ae��=2hTT � aEhTT ;  SD = ae��=2�+ : : : ; EM = e��=2A�;  AX = ae�=2� � aA�: (3.4)Here hTT denotes the transverse-traceless part of the metric perturbations, the dots in theequation for  SD represent the additional scalar-metric terms needed to reproduce the gauge-invariant scalar perturbation [30], aE is the scale factor in the Einstein frame, and aA in theaxion frame [12]. By varying the perturbed action, we �nd that the Fourier modes  k(�) ofeach of these four perturbations satisfy decoupled, linear equations of the type:� k +  k2 � �PP ! k = 0 ; (3.5)where P (�) is the pump �eld, obtained for each case from eq. (3.4) as:19



P T = P SD = aE ; PEM = e��=2 ; PAX = aA : (3.6)At the beginning of the inationary era, characterized by an accelerated evolution of thepump �eld, every perturbation is well inside the horizon and Eq. (3.5) has oscillating solu-tions, which can be consistently normalized to a vacuum uctuation spectrum. During thewhole pre-big bang phase the general solution can be written in terms of Hankel functions[31], with a Bessel index determined by the power that characterizes the background evolu-tion (in conformal time) of the pump �eld. This behaviour has to be matched with the oneafter the pre-big bang phase when, as we assume, the universe becomes radiation-dominatedand the dilaton freezes to its present value. In all four cases this implies a free Klein-Gordonequation for the canonical variable after the period of accelerated evolution. By matchingthe pre-big bang and radiation solutions of the perturbation equations, we eventually obtainthe �nal ampli�ed perturbations during the radiation era.For T and SD perturbations the time evolution of the background leads to a spectrum thatis in general too steep [7] (see also [32]) to be expected to give any signi�cant contributionto very large scale structures, or to temperature anisotropies on the COBE scale. The onlyway to achieve a reasonable contribution would be to have a very long string phase withan almost constant dilaton [9], which is not excluded, in principle, either theoretically orphenomenologically, but which looks somewhat unlikely, from both points of view.For EM perturbations, however, the situation seems to be more interesting. Consider infact the transition from a pre-big bang phase, with growing dilaton (� = �2� log j�j), to thestandard radiation-dominated phase with � = const, and call �1 the transition time scale.The electromagnetic uctuations are directly coupled to the dilaton background, in such away that each polarization mode  k satis�es at all times, in momentum space and in theradiation gauge, the evolution equation:� k + hk2 � e�=2 �e��=2���i k = 0: (3.7)In the pre-big bang phase, the general solution of this equation, normalized to a vacuum20



uctuation spectrum, can be written in terms of Hankel functions of the second kind as: k = �1=2H(2)� (jk�j); � = ����� � 12 ���� ; � < �1: (3.8)In the radiation era we have instead the free plane-wave solution, k = 1pk hc+(k)e�ik� + c�(k)eik�i ; � > �1: (3.9)By matching the two solutions at the transition time �1 we easily obtain, for jk�1j � 1 and� > �1,c� = �c(k)e�ik�;  k = c(k)pk sin kj� � �1j; jc(k)j ' (k=k1)���1=2; (3.10)where k1 = 1=j�1j represents the maximal ampli�ed frequency (higher-frequency modes areuna�ected by the background transition). The associated energy-density distribution of theproduced photons is then [11]:d�(k)d log k '  ka!4 jc�(k)j2 '  k1a !4  kk1!3�2� ; k < k1 ; � < 3=2; (3.11)where � < 3=2 to avoid photon overproduction which would destroy the homogeneity of theclassical background, and where the amplitude c(k) has been estimated modulo numericalfactors of order 1. At large times � � j�1j we thus obtain, in string cosmology, a cosmicbackground of electromagnetic uctuations that, for a long enough pre-big bang phase with� <� 2, are characterized by a rather at spectrum, and could provide the long-sought originof the galactic magnetic �elds [11]. The ampli�ed uctuations satisfy stochastic correlationfunctions, as a consequence of their quantum origin.Correspondingly, if we consider axionic perturbations, we are led to the canonical equa-tion � k + �k2 � �aAaA� k = 0; (3.12)very similar to Eq. (3.7). The same procedure as in the electromagnetic case then leads tothe spectrum (3.11) with � = jrj, where r parametrizes the three-dimensional axion scale21



factor as aA(�) � �r+1=2. For r = �3=2, in particular, the axion metric describes a de Sitterinationary expansion, and the energy density of a massless axion background has a atspectral distribution, d�=d log k ' (k1=a)4, as �rst noted in [12]. The value of r depends onthe number and on the kinematics of the internal dimensions, and the value �3=2 can beobtained, in particular, for a ten-dimensional background with special symmetries [29].In the axion case, however, the low frequency tail of the spectrum is further a�ected bythe radiation ! matter transition, as the axion pump �eld aA is not a constant (unlike thedilaton) in the matter-dominated era, where aA = a / �2. This has important consequencesthat will be discussed in detail in subsection III C.After these preliminary observations we shall now estimate the form of the seed functionsfor both EM and AX seeds. B. Electromagnetic seedsHere we determine the spectral components of the inhomogeneous stress tensor, for astochastic background obtained by amplifying the quantum EM uctuations of the vac-uum, as discussed in the previous subsection. However, independently of the productionmechanism, the results of this section can be applied to any EM uctuation backgroundparametrized by a vector potential that, in momentum space and in the radiation gauge,takes the form Ai(k; �) = ci(k)pk sin k�; kiAi = 0; A0 = 0 : (3.13)Ai is a Gaussian random variable which obeys the stochastic average condition:hAi(k)A�j(k0)i = (2�)32 �3(k � k0) �ij � kikjk2 ! jA(k; �)j2 : (3.14)The above condition has been normalized in such a way thatXi hAi(k)A�i (k0)i = (2�)3�3(k � k0) jA(k; �)j2 : (3.15)22



Taking into account that the electric component of the stochastic background is rapidlydissipated, because of the conductivity of the cosmic plasma [33], the seed stress tensor canbe expressed in terms of the magnetic �eld only. Setting Bi(k) = i�ijlkjAl(k), the condition(3.14) implies hBi(k)B�j (k0)i = (2�)32 �3(k � k0) �ij � kikjk2 ! jB(k; �)j2 ; (3.16)where jB(k; �)j2 = k2 jA(k; �)j2 = k jc(k)j2 sin2 k�: (3.17)In a process of photon production, the coe�cient jc(k)j2 represents the Bogoliubov coe�cient[30] �xing the average photon number density, hn(k)i, and is linked to the spectral energydistribution by d�(k)d logk =  ka!4 hn(k)i�2 '  ka!4 jc(k)j2�2 : (3.18)In what follows we shall use for jc(k)j2 a power-law spectrum, characterized by a cut-o�frequency k1, jc(k)j2 = 8>><>>: (k=k1)�2��1 ; ; k � k1; � � 3=20 ; k > k1 : (3.19)This reproduces in particular the spectral distribution (3.11), where � is �xed by the dilatongrowth rate.We shall now compute the two-point correlation functions, for the various componentsof the inhomogeneous stress tensor T �� , associated with the electromagnetic background:���(x; x0) = hT �� (x)T �� (x0)i � hT �� (x)ihT �� (x0)i (3.20)(no sum over �; �, and the angular brackets denote stochastic average). The Fourier trans-form of � is related to the scalar seed functions f�; fv; f�, de�ned in the previous section. For�00 we have, for instance, 23



�00(x; x0) = �Ma �4 Z d3k(2�)3 eik�(x�x0)jf�(k)j2: (3.21)For Ei = 0, in particular, we have to compute the correlation of a sum of terms that arequadratic in the magnetic �eld. We start considering the energy-density correlation function,�00(x; x0) = h�(x)�(x0)i � (h�(x)i)2 ; � = �T 00 = jBj28�a4 ; (3.22)and compute �Bij(x; x0) = hB2i (x)B2j (x0)i � hB2i ihB2j i (3.23)where, using the stochastic average (3.16) and the reality condition B�(k) = B(�k),hB2i (x)i = 12 Z d3k(2�)3 jB(k)j2  1� k2ik2! : (3.24)In momentum space, the two-point correlation function for the energy density can be writtenas a four-point correlation function for the stochastic �elds (see also [34]). We have, inparticular,hB2i (x)B2j (x0)i = Z d3k(2�)3 d3k0(2�)3 d3p(2�)3 d3q(2�)3 ei(k�x+k0�x0)hBi(p)Bi(k � p)Bj(q)Bj(k0 � q)i:(3.25)Decomposing the four-point bracket of the Gaussian variables Bj ashBi(p)Bi(k � p)ihBj(q)Bj(k0 � q)i++hBi(p)Bj(q)ihBi(k � p)Bj(k0 � q)i+ hBi(p)Bj(k0 � q)ihBi(k � p)Bj(q)i; (3.26)and using Eq. (3.16), we �nd that the �rst term in the above equation is exactly cancelledby the quadratic averages hB2i ihB2j i, while the other two terms give (no sum over i; j):�Bij(x; x0) = 12 Z d3k(2�)3 d3p(2�)3 eik��x jB(p)j2 jB(k� p)j2  �ij � pipjp2 ! �ij � (k � p)i(k � p)jjk� pj2 ! ;(3.27)24



where �x = x� x0. By summing over the vector components we obtain:�B(x; x0) =Xij �Bij(x; x0) == 12 Z d3k(2�)3 d3p(2�)3 eik��x jB(p)j2 jB(k� p)j2 "1 + jp � (k� p)j2p2jk� pj2 # : (3.28)According to Eq. (3.21), the energy-density spectrum of the electromagnetic seeds is thusdetermined byjf�j2 �Ma �4 = 12(8�a4)2 Z d3p(2�)3 jc(p)j2 jc(k� p)j2 pjk� pj �1 + cos2 �� sin2 p� sin2 jk� pj� ;(3.29)where � is the angle between p and k�p. Inserting the power spectrum (3.19), and de�ningy = p=k1, z = k=k1, the above integral can be written, in polar coordinates, asjf�j2 �Ma �4 = k512(8�a4)2(2�)2 Z 10 dyy2�2� Z 1�1 dx��2� �1 + cos2 �� sin2(yk1�) sin2(�k1�);(3.30)where we de�ned x = cos#, # being the angle between p and k, and�2 = jz� yj2 = y2 + z2 � 2xyz; cos2 � = ��2(y2 + x2z2 � 2xyz) : (3.31)The integral of Eq. (3.30) will be evaluated for jk�j = jzk1�j � 1, since we are interestedin the large-scale sector of the CMB anisotropy, namely in the spectrum of all modes thatare still outside the horizon at the time of decoupling. For EM seeds these modes givethe dominant contribution to the SW e�ect, as we will see in Section IV. Estimating thecontributions to the integral from the regions p� � 1, p� � 1 and p� � 1 , and recallingthat � � 3=2 according to Eq. (3.11), we �nd that the dominant contribution comes fromp� � 1 if � � 3=4. If 3=4 � � � 3=2, the integral is dominated from its contribution atp � k, thus p� < 1 on super-horizon scales. In both cases we obtain for f� a white noisespectrum, i.e. jf�(k)j2 � constant, but in the second case there is a parametric enhancement(see Appendix B). More precisely 25



k3 jf�j2 �Ma �4 ' 8>><>>: d2�(k1=a)8(k=k1)3; � � 3=4c2�(k1=a)8(k=k1)3(k1�)4��3; 3=4 � � � 3=2 ; (3.32)where d� and c� are dimensionless numbers of order 1. Consequently, the energy-densitycontribution of the EM seeds to the Bardeen potentials is, according to Eq. (2.40),��2 jf�j k3=2 ' 8>><>>: 4�Gd�(a�)2(k1=a)4(k=k1)3=2; � � 3=4;4�Gc�(a�)2(k1=a)4(k=k1)3=2(k1�)2��3=2; 3=4 � � � 3=2: (3.33)The contribution of the o�-diagonal scalar potential f� can be similarly obtained bycomputing the correlation function �ji (x; x0), with i 6= j. For purely magnetic seeds, fv = 0,we �nd f� = 3fp � k2f�; (3.34)so that the Bardeen potentials, according to Eq. (2.40), are always dominated by f� onsuper-horizon scales, as �2f�=f� � (k�)2 � 1. Thereforek3=2 j	� �j � �k3=2 jf�j '' 8>><>>: 4�Gd�(a�)2(k1=a)4(k=k1)�1=2(k1�)�2; � � 3=4;4�Gc�(a�)2(k1=a)4(k=k1)�1=2(k1�)2��7=2; 3=4 � � � 3=2: ; (3.35)where d� and c� are dimensionless numbers of order 1. By assuming that the universebecomes immediately radiation-dominated at the physical cut-o� scale H1 = k1=a1, sucha uctuation spectrum can be expressed in terms of 
(�) = (H1=H)2(a1=a)4, i.e. of thefraction of critical energy density in radiation at a given time �, and of g1 = H1=Mp, thetransition scale in units of the Planck massMp. Denoting with ! = k=a the proper frequency,and using �c = 3M2pH2=8� for the critical density, we obtaink3=2 j	� �j � 8>><>>: g21
(�)(!=!1)�1=2(!1=H)�2; � � 3=4;g21
(�)(!=!1)�1=2(!1=H)2��7=2; 3=4 � � � 3=2: (3.36)
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C. Axionic seedsAs a second example of seed inhomogeneities we will consider a pseudoscalar stochasticbackground, ampli�ed according to the perturbation equation (3.12).In the initial, higher-dimensional pre-big bang phase, i.e. for � < �1, the solution forthe canonical variable  can be written as in Eq. (3.8), with � = jrj � 3=2, as discussedpreviously. In the radiation era, i.e. for �1 < � < �eq, the e�ective potential �aA=aA isvanishing, as � =const and a � �, and  is given by the plane-wave solution (3.9). In the�nal matter-dominated era, i.e. for � > �eq, we have a � �2, and �aA=aA = 2=�2. Theplane-wave solution is still valid for modes with k > keq = ��1eq , that are una�ected by thelast transitions. Modes with k < keq feel instead the e�ect of the potential in the matterera, and the general solution of Eq. (3.12), for those modes, can be written as k(�) = pk�pk �AH(2)3=2 +BH(1)3=2�= pk�pk h(A+B)J3=2 � i(A� B)Y3=2i ; k < keq; � > �eq: (3.37)Here J3=2 and Y3=2 are Bessel functions of argument k� (we follow the conventions of [31]).The matching of the solutions at �1 determines the coe�cients c�(k) as in eq. (3.10).The matching at �eq givesA +B � c(k) (k�eq)�1 ; A�B � c(k) (k�eq)2 ; (3.38)so that the contribution of J3=2 to  k is always dominant with respect to the Y3=2 contribution,both for k� > 1 and k� < 1. In the matter-dominated era, i.e. for � > �eq, we can thusapproximate the produced stochastic axion background as follows:�(k; �) ' c(k)apk sin k�; k > keq;' c(k)apk  kkeq!�1 (k�)2; k < keq; k� < 1;' c(k)apk  kkeq!�1 ; k < keq; k� > 1: (3.39)27



The correlation functions for the various components of the stress tensor,T �� = @��@�� � 12��� (@��)2 (3.40)can be computed by exploiting the stochastic average conditions of the Gaussian variables�; _� and �j = @j�,h�(k)��(k0)i = (2�)3�3(k � k0)�1(k; �);h _�(k) _��(k0)i = (2�)3�3(k � k0)�2(k; �);h�i(k)��j (k0)i = kikj(2�)3�3(k � k0)�1(k; �);h�j(k) _��(k0)i = �h _�(k)��j (k0)i = ikj(2�)3�3(k � k0)�3(k; �) ; (3.41)where, according to Eq. (3.39),�1(k; �) ' jc(k)j2ka2 ; k > keq;' jc(k)j2ka2  kkeq!�2 (k�)4; k < keq; k� < 1;' jc(k)j2ka2  kkeq!�2 ; k < keq; k� > 1 (3.42)�2(k; �) ' k jc(k)j2a2 ; k > keq;' 0; k < keq; k� < 1;' k jc(k)j2a2  kkeq!�2 ; k < keq; k� > 1; (3.43)�3(k; �) ' jc(k)j2a2 ; k > keq;' 0; k < keq; k� < 1;' jc(k)j2a2  kkeq!�2 ; k < keq; k� > 1; (3.44)Following the same procedure as the one used for EM seeds, and collecting all contributionsto the correlation function of the axion energy density,28



�� = 12a2 h _�2 + (@i�)2i ; (3.45)we obtain from �00(x; x0) that the energy density spectrum is determined byk3jf�j2 �Ma �4 = 2k3(2a2)2 Z d3p(2�)3"�2(p)�2(k� p) + jp � (k� p)j2 �1(p)�1(k� p)� 2p � (k� p)�3(p)�3(k� p)#: (3.46)In order to evaluate this integral outside the horizon, in the region k� � 1, we mustdistinguish two cases, � < 3=4 and � > 3=4. In both cases, by separate integration in theranges 0 < p < ��1, ��1 < p < keq, keq < p < k1, we �nd a white noise spectrum,jf�j �const. In particular (see Appendix B):k3=2 jf�j�Ma �2 = 8>><>>: d��(k1=a)4(k=k1)3=2 h1 + ��� (keq=k1)2(k1�)2�+1=2i ; � � 3=4c��(k1=a)4(k=k1)3=2(keq=k1)2(k1�)2�+1=2; 3=4 � � � 3=2;(3.47)where c�� ; d�� ; ��� are dimensionless numbers of order 1. The same power spectrum is alsoobtained for the scalar velocity potential fv, associated to the axion seeds. An explicitcomputation gives in fact kfv � k�f� so that the contribution of f� and fv to the Bardeenpotential are both of the same order, namely:��2 jf�j k3=2 � ��2 _aa jfvj k3=2 == 8>><>>: 4�Gd��(a�)2(k1=a)4(k=k1)3=2 h1 + ��� (keq=k1)2(k1�)2�+1=2i ; � � 3=44�Gc��(a�)2(k1=a)4(k=k1)3=2(keq=k1)2(k1�)2�+1=2; 3=4 � � � 3=2: (3.48)We will now consider the anisotropic stress potential f�, de�ned according to (2.23) by:r4f� = 32M2@i@j ��i�j � 13�ij(@k�)2� ; r2 = �ij@i@j: (3.49)Summing all contributions in the two point correlation function, we �ndhr4f�(x)r4f�(x0)i � �hr4f�i�2 = 92M4 Z d3k(2�)3 eik��xk4Z d3p(2�)3p2jk� pj2�1(p)�1(k� p)�cos2 # cos2  � 13 cos# cos  cos� + 19 cos2 �� ; (3.50)29



where #, � and  are, respectively, the angles between p and k, p and k � p and k andk�p. The integral over p is of the same type as the integral for the energy density spectrum(see Eq. (3.46)), and gives for k2f� the same white noise spectrum (3.47) as for f� (modulonumbers of order 1) , sincek3=2 jf�(k)j ka!2M2 � k3=2 jf�(k)j�Ma �2 : (3.51)On super-horizon scales the contribution of f� to the Bardeen potentials is always dominantwith respect to the f� contribution since, from the above equation,�2f� � (k�)2f�: (3.52)In the whole range k� � 1 we can thus estimate the scalar perturbation spectrum, inducedby massless axion seeds, through the f� contribution to the Bardeen potentials. We �ndk3=2 j	� �j � �k3=2 jf�j =8>><>>: 4�Gd��(a�)2(k1=a)4(k=k1)�1=2(k1�)�2 h1 + ��� (keq=k1)2(k1�)2�+1=2i ; � � 3=4;4�Gc��(a�)2(k1=a)4(k=k1)�1=2(keq=k1)2(k1�)2��3=2; 3=4 � � � 3=2; (3.53)
� 8>><>>: g21
(�)(!=!1)�1=2(!1=H)�2 h1 + ��� (!eq=!1)2(!1=H)2�+1=2i ; � � 3=4;g21
(�)(!=!1)�1=2(!eq=!1)2(!1=H)2��3=2; 3=4 � � � 3=2: (3.54)where c��; d��; ��� are dimensionless numbers of order 1. As we will see in Section IV, thedominant contribution to the SW e�ect now comes, for each mode, from the time of reentry� � 1=k.Let us �nally discuss the case of massive axions, withT �� = @��@�� � 12��� h(@��)2 �m2�2i ; (3.55)and a primordial distribution again characterized by the index �, as in Eq. (3.19). The massterm directly contribute to f� and fp, and only indirectly to the o�-diagonal potentials fv,f�. We are interested in the axion perturbations that may be relevant to the large-scale30



CMB anisotropy, namely in the modes that are outside the horizon at the decoupling era,k < aHdec. If, for these modes, the mass contribution is negligible, ma < k < aHdec, thenthe AX seed functions and the corresponding Bardeen potentials are the same as in themassless case (see before). We will thus concentrate our discussion on the case in which theaxion mass is large enough, so that all modes outside the horizon at the equilibrium epochare already non-relativistic: ma > aHeq > k: (3.56)In this case we may neglect the e�ects of an additional axion production in the matter-dominated era, since a2m2 > �a=a at � � �eq. The axion uctuations are ampli�ed bythe ination ! radiation transition, but are to be evaluated in the non-relativistic regime(� > �eq), where the mass contribution is already important.For non-relativistic, super-horizon modes, the Fourier components of the axion �eld be-come (see the non-trivial calculation reported in Appendix C):�(k; �) = c(k)apma  kk1!1=2 �H1m �1=4 sin�mH� ; k < km = k1 � mH1�1=2 ; (3.57)where the initial distribution c(k) is still given by Eq. (3.19). Here km is the limit-ing frequency re-entering the horizon at the same time as it becomes non-relativistic, i.e.km=am = Hm = m. Indeed, we are assuming that at the transition scale H1 the mass term iscompletely negligible, m� H1, and all modes are relativistic. As the proper momentum isred-shifted, the modes become non-relativistic when m = k=a = !, and re-enter the horizonwhen H = !.For the axion �eld (4.14) the stochastic conditions (3.41) are still valid, but the squaredamplitude (3.42), averaged over time scales m=H � 1, now become�1(p; �) = jc(k)j22ma3  kk1!�H1m �1=2 = 1m2a2�2(p; �) = 1ma�3(p; �): (3.58)For the case we are considering, the contribution of f� to the Bardeen potentials is alwaysnegligible with respect to �2f�. An explicit computation gives, in fact,31



�2f�=f� ' m=H � 1; (3.59)where the last inequality is a consequence of (4.13). In addition, the mass contribution to theAX energy density dominates with respect to the momentum contribution, since m > k=a.The energy density correlation function thus becomes:�00(x; x0) = m4 �h�2(x)�2(x0)i � h�2(x)i2� (3.60)(as j _�(k)j = maj�(k)j), and gives, using Eq. (4.15):k3 jf�j2 �Ma �4 = m4k3 Z d3p(2�)3�1(p)�1(k� p)= mH18�2  k1a !6  kk1!3 Z 10 dyy2�2� Z 1�1 dx��2� (3.61)where x; y and � are de�ned in Section III B.It should be noted that the above expression for the spectrum is only valid if � > 3=4.Only in that case, in fact, is the integral over ydominated by the contribution of the lowerboundary, p=k1 ! 0, and is the use of Eq. (3.58) for the axion spectrum appropriate. Inthe opposite case, we have to take into account the di�erent spectrum of non-relativisticsub-horizon modes, for p > km, and possibly of relativistic modes in the high-frequency limitp ! k1. In both cases we obtain, for � < 3=4, a white noise spectrum and a negligiblecontribution to the large-scale anisotropy, as we will see in the next section.We will thus concentrate on the case 3=4 < � � 3=2. For this case the integral (3.61) isestimated in Appendix B, and we obtaink3 jf�j2 �Ma �4 = c2mmH1  k1a !6  kk1!6�4� ; 3=4 < � � 3=2 ; (3.62)where cm is a dimensionless number of order 1. The corresponding Bardeen spectrum is:k3=2 j	j � k3=2 j�j � ��2 jf�j k3=2 == 4�Gcm(a�)2 (mH1)1=2  k1a !3  kk1!3�2�� g21cm � mH1�1=2 �H1H �2 �a1a �3 � !!1�3�2� � 
�(!): (3.63)32



We may note that 	H2 evolves in time like a�3, so that, during the matter-dominated era(when H2 / a�3), the Bardeen potential 	 remains frozen at the value reached at the time�eq of matter-radiation equilibrium. Using (H1=Heq)2(a1=aeq)3 = (aeq=a1) = (H1=Heq)1=2, weobtain for � > �eq, k3=2 j	j � k3=2 j�j � cmg21  mHeq!1=2 � !!1�3�2� : (3.64)The CMB anisotropy induced by the EM and AX seeds discussed here will be analysedin the next section.IV. CMB FLUCTUATIONS FROM PRE-BIG BANG SEEDSFor electromagnetic seeds, with the assumption that the electric �eld is already dissipatedaway at recombination, we �nd that the seeds are generically suppressed by a factor (k�dec)2,and the anisotropic stress f� dominates over the density contribution f� (see the discussionat the end of Section IIA). By contrast, for massless axionic perturbations, there is no(k�dec)2 suppression for f�, while there is one for f�. For large wave numbers which enter thehorizon before matter and radiation equality, EM and AX seeds lead to similar amplitudes.Consequently, if the convolution leading to f� is dominated by small scale contributions,� < 3=4, the two cases give similar geometric scalar perturbations 	;�, through Eq. (2.40).However, on large scales, k�eq < 1, the additional axion production during the matter-dominated era leads to an enhancement by the factor (�=�eq)2. This changes the time-dependence of the Bardeen potentials and has important consequences as we will see below.A. Electromagnetic seedsThe scalar metric perturbation spectrum induced by EM seeds is reproduced inEqs. (3.35) and (3.36). Comparing with our parametrization in terms of � and  (seeEqs. (2.59), (2.60)) we �nd 33



 = 8>><>>: �4; � � 3=42�� 11=2; 3=4 � � � 3=2 (4.1)� = 8>><>>: 7=2; � � 3=45� 2�; 3=4 � � � 3=2 (4.2)and N = c� � g14��2 (k1�eq)2 (4.3)in both cases � < 3=4; � > 3=4 (modulo numbers of order 1).Since  + 1 < 0, in both cases the seeds decay fast enough outside the horizon, and ouranalysis of Section II applies. However, in both cases  + � = �0:5, which leads to thespectral index n = 2, i.e. to a spectrum that grows too fast with frequency to �t the resultsof COBE observations, see Eqs. (2.71), (2.72).The quadrupole amplitude is given by Qrms�PS = q(5=4�)C2T0, which has been mea-sured [35] to be Qrms�PS = (18� 2)�K. This leads toC2 = (1:09� 0:23)� 10�10 : (4.4)>From Eq. (2.70), using �+  = �1=2, k1�eq = (H1=Heq)1=2, g1 = H1=Mp, and setting ` = 2,we obtain: CSW2 � c2�g6��110(4�)4( + 1)2  MpHeq!2��  �dec�0 !2(+1)  �eq�0 !2� : (4.5)Compatibility with the COBE normalization, C2 <� 10�10, thus implies(6� �) log10 g1 <� 55(�� 2)� 6 + log10( + 1)2 � log10 c2� (4.6)(we have used Heq=Mp � 10�55, and �dec � �eq � 10�2�0). This important constraint iseasily satis�ed by a growing seed spectrum, � < 3=2, i.e. � > 2. In the limiting (and mostunfavorable) case � = 3=2, � = 2,  = �5=2, the above condition reduces tolog10 g1 <� � 1:4� 0:5 log10 c� : (4.7)34



Even in this limiting case there are no stringent constraints on the typical ination scaleof the \minimal" pre-big bang scenario [1,7,8], expected to approach the string mass scaleMs as g1 = H1=Mp �Ms=Mp. Indeed, the limiting condition (4.7) is marginally compatibleeven with the maximal expected value H1 �Ms, since [36]10�2 <� Ms=Mp <� 10�1: (4.8)To conclude, the EM uctuations seem to lead to a scalar perturbation spectrum thatgrows too fast with frequency to contribute in a signi�cant way to the observed large-scaleanisotropy. The positive aspect of our result is that there are no signi�cant constraintsfrom the COBE normalization to the production of seeds for galactic magnetic �elds, whichremains allowed as discussed in [11]. B. Axionic seedsLet us �rst consider massless axions. If � < 3=4, the situation is like in the electromag-netic case. The CMB uctuations induced have the wrong spectrum, but their amplitude issu�ciently low to avoid conict with observations.If 3=4 � � � 3=2 the situation becomes radically di�erent. Comparing Eq. (3.53) withthe ansatz (2.59), (2.60) we obtain, due to the additional factor (�=�eq)2, = 2�� 7=2; (4.9)� = � � 1=2 = �2�+ 3 : (4.10)In the limiting case � = 3=2 this yields  = �1=2 and � = 0, which corresponds to a Harrison-Zel'dovich spectrum of CMB uctuations, according to Eq. (2.73), with an amplitudeN ' g21 (4.11)(we have absorbed into g1 all dimensionless numerical coe�cients of order one appearing inthe spectrum (3.53)). Note that f� leads to a Bardeen potential with the same �, but with35



 = 2�� 3=2. However, since again  > �1, the contribution to the SW e�ect is the samefor f� and f� (see Section II).The normalization of the axion spectrum to the COBE amplitude (4.4), according to Eq.(2.65), imposes the conditionCSW2 ' N 2 (k1�0)�2� ' g41 �!0!1�6�4� ' 10�10; (4.12)which implies log10 g1 ' 164� 116�1 + 2� (4.13)(again we have absorbed numerical coe�cients into g1, and we have used !0 � 10�18 Hz,!1 � g1=21 1011 Hz, according to [7,8]). On the other hand, the allowed range for the spectralindex (see Eq. (2.73), combined with the condition � � 3=2 (required to prevent over-criticalaxion production), conservatively requiring 1 � n � 1:4, implies1:4 < � < 1:5: (4.14)The combination of (4.13), (4.14) leads to3� 10�3 <� g1 = (H1=Mp) <� 2:6; (4.15)which is perfectly compatible with the identi�cation H1 �Ms (see Eq, (4.8).A stochastic background of massless axions, produced in the context of the pre-big bangscenario, is thus a possible viable candidate for a consistent explanation of the large-scaleanisotropy observed by COBE. The important di�erence between AX and EM seeds is thenon-conformal coupling of the axions to the metric, that leads to an additional ampli�cationof perturbations after the matter-radiation equality.Another interesting case is that of a massive axion background, for which the f� con-tribution to the Bardeen potentials is negligible when the super-horizon modes are alreadynon-relativistic at the time of decoupling, m > Hdec. As seen in the previous section, onethen obtains constant Bardeen potentials, with  = 0, � = (n� 1)=2 = 3� 2� and36



N = g21  mHeq!1=2 (4.16)(see Eq. (3.64), where we have set cm = 1). A at Harrison-Zel'dovich spectrum is againpossible in the limiting case � = 3=2. The amplitude of perturbations, however, is enhancedby the factor (m=Heq)1=2, so that the value of the axion mass has to be bounded, to avoidconicting with the COBE normalization (4.4).We take again the allowed range for � to be given by (4.14). In addition, the presentaxion energy density is constrained by the critical density bound, 
�(�0) � 1, imposed at thepeak frequency !m of non-relativistic modes (see Appendix C). Actually, an even strongercondition is required for the validity of our perturbative approach, which neglects the back-reaction of the axionic seeds on the expansion of the universe. Using Eq. (C25) we thusimpose the condition
�(!m; �0) � g21  H1Heq!1=2 � mH1�2�� <� 0:1; (4.17)which implies(2� �) [log10(m=Heq)� log10 g1 � 55] + 52 log10 g1 + 552 < �1: (4.18)In order to �nd a possible AX mass window compatible with the COBE data, we nowimpose the normalization C2 ' 10�10 on the massive axion spectrum Eq. (3.64). From Eq.(2.65) we obtainCSW2 ' N 2(k1�0)�2� ' g41  mHeq!�!0!1�6�4� ' 10�10; (4.19)from which � ' [164� log10(m=Heq)� 4 log10 g1] =116 (4.20)(we have used !1=!0 � 1029, neglecting the weak dependence of !1 on the transition scaleg1). By eliminating � in terms of m and g1, according to the above equation, the constraints37



(4.14) and (4.18), plus the condition m > Hdec � Heq (assumed for the validity of thespectrum (3.64)), determine an allowed region in the plane (m;H1) as follows:8>><>>: 10�10 (Mp=H1)4 <� m=Heq <� 101:6 (Mp=H1)4 ; m >� Heq;[68 + log10(m=Heq) + 4 log10 g1] [log10(m=Heq)� 55� log10 g1] + 58 (55 + 5 log10 g1)<�� 1:(4.21)For a typical string cosmology scale, H1 � Ms � (10�1 � 10�2)Mp, we thus obtain themaximal allowed window: 10�27 eV <� m <� 10�17 eV: (4.22)As illustrated in Fig. 1, the window is shifted towards higher values of mass as the �nalination scale is lowered and as the spectral index is increased. The seed condition (4.17)becomes important only at low ination scales, H1=Mp <� 10�7. The stringent upper limitwe obtained for the mass can be traced back to the simplest model of background used inthis paper, that gives the same slope for the axion spectrum at low and high frequency (seeeqs. (C24), (C26)). It is not excluded that higher values of the mass may become possiblein a more complicated model of background, giving a steeper high frequency spectrum.V. CONCLUSIONSIn this paper we have considered the possibility that, in a string cosmology context, thelarge-scale temperature anisotropies may arise from the contribution of seeds to the metricuctuations, and not from the direct ampli�cation of the metric uctuations themselves, asin the conventional inationary scenario. We have discussed, in particular, two cases: onein which the seeds are EM vacuum uctuations ampli�ed by the growth of the dilaton �eld,and one in which the seeds are AX vacuum uctuations ampli�ed by the time evolution ofa higher-dimensional background. 38



FIG. 1. The phenomenologically allowed region is to the left of the curve 
� = 0:1, to the rightof the vertical dashed linem = Heq, and lies within the full lines n = 1, n = 1:4, to avoid conictingwith present COBE observations (n < 1 is excluded by over-critical axion production). The shadedarea de�nes the allowed mass window for an ination scale H1 =Ms, typical of string cosmology.In the case of EM perturbations we have found that the induced angular power spectrumof �T=T grows too fast to be compatible with COBE observations. However, the contribu-tion of the seeds to the large-scale anisotropy may be consistently imposed to be negligible,without constraining in a signi�cant way the basic parameters of the pre-big bang models.Massless AX perturbations, unlike EM perturbations, are also a�ected by the radiation! matter transitions. This changes the time dependence of the seed contribution to theBardeen potentials and, due to the integrated Sachs-Wolfe e�ect, a at or slightly tilted bluespectrum of temperature anisotropies can be induced, compatible with present COBE obser-vations. Scale-invariant massless axion seeds thus appear as possible promising candidatesfor structure formation. Determining in more details the CMB anisotropy spectrum also onsmaller angular scales requires however numerical simulations, which we defer to a futureresearch project.For massive AX seeds the situation is qualitatively di�erent if the mass is such that allmodes outside the horizon at the time of decoupling are already non-relativistic. In that39



case the contribution to �T=T is controlled by the axion mass, and a slightly tilted bluespectrum is still compatible with the amplitude and the slope measured by COBE, providedthe axion mass is inside an appropriate window, in the ultra-light mass region. Higher valuesof masses may become possible in models with more complicated backgrounds.At smaller angular scales, an axionic origin of CMB anisotropies should lead to acousticpeaks in the spectrum, with a structure di�erent from that of the standard inationaryscenario. This may in principle allow a test of models with axionic seeds through the veryaccurate observations of the CMB anisotropy planned in the near future [37]. It is possiblethat, in spite of the di�erences mentioned in the introduction, achieving enough power atscales smaller than COBE's will require a very blue spectrum (n > 1:5), as in the isocurvatureCDM model discussed in Ref. [38]. A thorough investigation of this possibility is postponedto a future paper. ACKNOWLEDGMENTSWe are grateful to Massimo Giovannini for helpful discussions. R. D. and M. S. arepartially supported by the Swiss NSF. M. S. acknowledges �nancial support from the TomallaFoundation.APPENDIX A: SACHS-WOLFE COEFFICIENTS FOR POWER-LAW SPECTRAAssume that the Bardeen potentials are given by power-law spectra as in Eq. (2.58),	� � = 8>><>>: C(k)x; x� 1C(k); x� 1 ; C(k) = Nk�3=2(k=k1)� ; (A1)where x = k�; x0 = k�0; xdec = k�dec. The SW contribution to the angular coe�cients C` isgiven by CSW` = N 2 2� Z k10 dkk  kk1!2� jI(k)j2; (A2)40



where I(k) = j`(x0 � 1) + Z 1xdec xj 0̀(x0 � x)dx ; (A3)and a prime stands for the derivative of j` with respect to its argument.We concentrate here on the case where  + 1 < 0. Furthermore, we are interested inthe situation where the integral in Eq. (A2) is dominated by large scales (small values of k),and therefore xdec � 1. In that case the integral I(k) is dominated by its value at the lowerbound:I(k) � 1j1 + jx+1dec j 0̀(x0) = 1j1 + jx+1dec " `2`+ 1j`�1(x0)� `+ 12`+ 1j`+1(x0)# : (A4)This leads to the following expression for the C`'s:CSW` = N 2 2�  �dec�0 !2(+1) 1j1 + j2 (k1�0)�2� Z 10 dx0x0 x2(�++1)0� " `2(2`+ 1)2 j 2̀�1(x0)� 2`(`+ 1)(2`+ 1)2 j`�1(x0)j`+1(x0) + (`+ 1)2(2`+ 1)2 j 2̀+1(x0)#= N 2j1 + j2 2�  �dec�0 !2(+1) (k1�0)�2�� " `2(2`+ 1)2 I(1)` � 2`(`+ 1)(2`+ 1)2 I(2)` + (`+ 1)2(2`+ 1)2 I(3)` # ; (A5)where, setting j` = q�=xJ`�1=2, we �nd (Ref. [39], number 6.574) for � +  < 0,I(1)` = �2 Z 10 dxx2(�+)J 2̀�1=2(x)= �2 �(�2(� + ))�(`+ � + )2�2(�+)[�(�(� + ) + 1=2)]2�(`� (�+ )) ; (A6)I(2)` = �2 Z 10 dxx2(�+)J`�1=2(x)J`+3=2(x)= �2 �(�2(� + ))�(`+ 1 + � + )2�2(�+)�(�(� + )� 1=2)�(3=2� (� + ))�(`+ 1� (� + )) ; (A7)I(3)` = �2 Z 10 dxx2(�+)J 2̀+3=2(x)= �2 �(�2(� + ))�(`+ 2 + � + )2�2(�+)[�(�(� + ) + 1=2)]2�(`+ 2� (� + )) : (A8)Finally, combining the above results, we obtain the result given in Eq. (2.70):41



CSW` = N 22�2(�+)( + 1)2 �(�2(� + ))�(1=2� �� )2  �dec�0 !2(+1) (k1�0)�2� �(`+ 1 + �+ )�(`+ 1�� )� " `2(2`+ 1)2 `� �� `+ � +  + 2`(`+ 1)(2`+ 1)2 1=2 + � + 1=2� ��  + (`+ 1)2(2`+ 1)2 `+ 1 + � + `+ 1� ��  # : (A9)It is interesting to note that, for �+ = �1=2, the mixed term I(2)` vanishes, which is indeedwhat happens in the case of electromagnetic seeds (see Section IV).APPENDIX B: THE SEED FUNCTIONS1. Electromagnetic SeedsFor purely magnetic seeds, all the seed functions can be approximately determined bythe energy density correlation function �00 , which leads to Eq. (3.30). The contribution ofsuper-horizon modes (k� � 1) to the spectrum can be estimated in the limit z = k=k1 ! 0.In this limit � ! y, cos2 �! 1, and the integral (3.30) reduces toI = k3k51a8 Z 10 dy y2�4� sin4(yk1�); � � 3=2: (B1)The dominant region of integration is easily shown to be y � 1 for � � 3=4 and yk1� � 1for 3=4 � � � 3=2. This givesI = 8>><>>: (k1=a)8(k=k1)3; � � 3=4(k1=a)8(k=k1)3(k1�)4��3; 3=4 � � � 3=2 ; (B2)modulo numerical factors of order one. This coincides with the result reported in Eq. (3.32).2. Massless AxionsFor massless axions, the seed spectral functions are determined by the integrals (3.46),(3.50). The various terms appearing in the integrands turn out to give comparable contri-butions, so let us concentrate on the typical term42



I = k3a4 Z d3p p2jk� pj2�1(p)�1(k� p): (B3)We distinguish di�erent integration regions: 0 < p < k, k < p < ��1, ��1 < p < keq,keq < p < k1. The dominant integration regions depend on the value of � but, for all� � 3=2, they always lie at p � ��1 > k. This is the reason why we always obtain awhite noise spectrum. On the other hand, the behaviour in � depends on which region of pdominates. Speci�cally we �nd:1) For 3=4 � � � 3=2 the leading contribution to I comes from p � ��1, and gives thesingle term appearing in eq. (3.47).2) For � < 3=4 the leading contribution comes either from p � k1 (giving the �rst termin the square brackets of (3.47)), or (for � very close to 3=4) from p � ��1 (giving the secondterm in the same brackets). 3. Massive AxionsFor massive actions, the energy density spectrum is determined by Eq. (3.61), with3=4 < � � 3=2. This integral is dominated by the region p � k, and its rough behaviourcan be easily obtained this way. For a more precise evaluation we proceed as follows: theangular integration givesk3jf�j2 �Ma �4 = mH116�2z(�� 1)  k1a !6  kk1!3 Z 10 dy y1�2� h(z � y)2�2� � (z + y)2�2�i : (B4)De�ning t = y=z we obtaink3jf�j2 �Ma �4 = mH116�2(�� 1)  k1a !6  kk1!3 z3�4� (A� B) (B5)where, after some manipulation [39],A = Z 10 dt t1�2� h(1� t)2�2� � (1 + t)2�2�i == 24��4p� �(2� 2�)�(2�� 3=4) [cos 2�(�� 1)� 1] (B6)43



and B = Z 11=z dt t1�2� h(1� t)2�2� � (1 + t)2�2�i : (B7)By evaluating this second integral in the limit z ! 0, we obtainB � z4��3 � A: (B8)so thatk3jf�j2 �Ma �4 = mH1A16�2(�� 1)  k1a !6  kk1!6�4� ; 3=4 < � < 3=2; (B9)as reported in eq. (3.62). Note that there is no singularity for � = 1, aslim�!1 �(2� 2�)(�� 1) [cos 2�(�� 1)� 1] = 4�2(�� 1)2 (�� 1)2 = const (B10)APPENDIX C: NON-RELATIVISTIC CORRECTIONS TO THE AXIONSPECTRUMFor a massive-axion perturbation �, the string frame actionS = 12 Z d4xp�ge� h(@��)2 �m2�2i ; (C1)in a conformally at background, can be written in terms of the canonical variable = z�; z = ae�=2; (C2)as S = 12 Z d3xd� � _ 2 � (@i )2 + �zz 2 �m2a2 2� (C3)(the dot denotes di�erentiation with respect to the conformal time �). The Fourier modes k satisfy the perturbation equation� k + �k2 � �zz +m2a2� k = 0: (C4)44



We shall consider the background transition at � = �1 from an initial pre-big bangphase in which the axion is massless, to a �nal radiation-dominated phase in which thedilaton freezes to its present value, and the axion acquires a small (in string units) mass.For � > �1 the solution of Eq. (C4) depends on the kinematics of the pump �eld z and,after normalization to an initial vacuum spectrum, it can be written in terms of the second-kindHankel functions [31] as:  k(�) = �1=2H(2)� (k�): (C5)In the radiation era, � > �1, the \e�ective potential" �z=z is vanishing, and the perturbationequation reduces to � k + �k2 + �2�2� k = 0; (C6)where we have put m2a2 = �2�2; � = mH1a21; (C7)using the time behaviour of the scale factor, a � �.Assuming that the mass term is negligible at the transition scale, m � k=a, we canmatch the solution (C5) to the plane-wave solution k = 1pk hc+(k)e�ik� + c�(k)eik�i ; (C8)and obtain: c� = �c(k)e�ik�; jc(k)j � (k=k1)���1=2: (C9)(We are neglecting, for simplicity, numerical factors of order 1, which are not very signi�cantin view of the many approximations performed. Their contribution will be included into anoverall numericalcoe�cient in front of the �nal spectrum.) In the relativistic regime, theampli�ed axion perturbation then takes the form:45



�(k; �) = c(k)apk sin(k�); (C10)used in Section III C for the massless-axion case.In the radiation era the proper momentum is red-shifted with respect to the rest mass,and all axion modes tend to become non-relativistic. When the mass term is no longernegligible, the general solution of Eq. (C6) can be written in terms of parabolic cylinderfunctions [31]. For an approximate estimate of the axion �eld in the non-relativistic regime,however, it is convenient to distinguish two cases, depending on whether a mode k becomesnon-relativistic inside or outside the horizon. De�ning as km the limiting comoving frequencyof a mode that becomes non-relativistic (km = mam) at the time it re-enters the horizon(km = Hmam), we �nd, in the radiation era,km = k1 � mH1�1=2 : (C11)We will thus consider the two cases k � km and k� km.In the �rst case, we rewrite the perturbation equation (C6) asd2 kdx2 +  x24 � b! k = 0; x = �(2�)1=2; � b = k2=2�; (C12)and we give the general solution in the form = AW (b; x) + BW (b;�x) ; (C13)where W (b; x) are the Weber parabolic cylinder functions (see [31], chap. 19). In order to�x the integration constants A and B we shall match the solutions (C13) and (C10) in therelativistic limit k2m2a2 = k2�2�2 = �4bx2 � 1: (C14)In this limit, as we are considering modes that become non-relativistic when they are alreadyinside the horizon, 46



 kkm!2 � k2� � (�b)� 1; (C15)we can expand theW functions for b large with x moderate [31]. Matching to the plane-wavesolution (C10), we obtain A = 0, and k ' c(k)�1=4W (b;�x): (C16)In the opposite, non-relativistic limit x2 � j4bj, the expansion of the Weber functions gives[31]  k ' c(k)(��)1=2 sin�mH� (C17)(we have used x2=4 = ma�=2 � m=H). The corresponding axion �eld is (inside the horizon)�(k; �) = c(k)apma sin�mH� ; k > km: (C18)Consider now the case of a mode that becomes non-relativistic when it is still outsidethe horizon, k � km. In this case, we cannot use the large jbj expansion as jbj < 1, and it isconvenient to express the general solution of Eq. (C12) as = Ay1(b; x) +By2(b; x) ; (C19)where y1 and y2 are the even and odd parts of the parabolic cylinder functions [31]. Matchingto (C10), in the relativistic limit x! 0, gives A = 0 and k ' c(k) k2�!1=2 y2(b; x): (C20)In the non-relativistic limit x2 � jbj we use the relation [31]y2 � [W (b; x)�W (b;�x)] � 1px sin x24 ; (C21)which leads to  k ' c(k)(��)1=2  k2� !1=4 sin�mH� : (C22)47



Using Eqs. (C15) and (C11) for k2=�, we �nally arrive at the non-relativistic axion �eldpresented in Eq. (4.14):�(k; �) = c(k)apma  kk1!1=2 �H1m �1=4 sin�mH� ; k < km: (C23)For later use, it is also convenient to de�ne the spectral energy density in critical units,
�(!) = d(�=�c)=d ln!, associated with the stochastic axion background in the three di�er-ent regimes de�ned before.For relativistic modes we �nd, from Eq. (C10),
�(!) � g21 � !!1�3�2� �H1H �2 �a1a �4 ; m < ! < !1: (C24)For modes that becomes non-relativistic after re-entry we �nd, from Eq. (C18),
�(!) � g21 mH1 � !!1�2�2� �H1H �2 �a1a �3 ; !m < ! < m: (C25)For modes that becomes non-relativistic before re-entry we �nd, from Eq. (C23),
�(!) � g21 � mH1�1=2 � !!1�3�2� �H1H �2 �a1a �3 ; ! < !m: (C26)The last two spectral distributions are constant during the matter-dominated era, and thelast one corresponds to the spectrum of the Bardeen potentials, as given in Eq. (3.63).
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