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AbstractThe aim of this paper is to show, that the 'oscillating universe' is a viablealternative to ination. We remind that this model provides a naturalsolution to the atness or entropy and to the horizon problem of standardcosmology. We study the evolution of density perturbations and determinethe power spectrum in a closed universe. The results lead to constraintsof how a previous cycle might have looked like. We argue that most ofthe radiation entropy of the present universe may have originated fromgravitational entropy produced in a previous cycle.We show that measurements of the power spectrum on very large scalescould in principle decide whether our universe is closed, at or open.
1 IntroductionIn a closed universe, the inevitable big crunch might actually be followed by asubsequent big bang. This idea is very old. It goes back to Lemâ�tres Phoenixpicture of 1933 [1]. As we shall remind especially younger readers, this 'oscillatinguniverse' provides quite naturally a solution to the atness or entropy and to thehorizon problem. This was well known before the advent of inationary modelsaround 1980 in seminal papers by Starobinski, Guth, Linde and others [2]. Sincethen, it has been so completely forgotten, that we ourselves originally believedto be the �rst to study these ideas and older colleagues had to refer us to theoriginal literature. However, it is not only ination which let people forget aboutthe oscillatory universe, but also an argument in essence due to Penrose [3] thatblack hole formation in a previous cycle leads to far too much entropy and therebyto an even more severe entropy problem in the opposite sense than the usual one.It is the aim of this paper to show that under most realistic circumstancesPenrose's conclusion need not be drawn. We shall see that some amount ofentropy production due to gravitational clumping can just somewhat acceleratethe growth of the maximal scale factor, amax, from one cycle to the next, withoutover producing entropy. This will lead us to the conclusion that the oscillatinguniverse remains a viable alternative to ination.We consider this especially important since ination has become some kind of'cosmological dogma' during the last ten years, despite the fact that no ination-ary scenario which solves the horizon and atness problems and yields acceptablysmall density uctuations has yet been constructed without substantial �ne tun-ing (which may be protected by a symmetry and thus be 'technically natural').Furthermore, many inationary models are built upon the gravitational action ofa cosmological constant, the most miraculous number in cosmology, which todayis by a factor of about 10100 times smaller than what we would expect from par-1



ticle physics [4]. A mechanism relying on such a completely mysterious number,to us, seems very unsatisfactory.Besides solving the horizon and entropy problems, ination generically pre-dicts a scale invariant Harrison{Zel'dovich initial spectrum of uctuations as itwas observed by the DMR experiment on the COBE satellite [5]. This observa-tions have been considered as great success of even 'proof' of ination. However,also global topological defects [6] or cosmic strings [7], which can form duringphase transitions in the early universe, naturally lead to a scale invariant spec-trum of uctuations but they cannot easily be reconciled with ination.These considerations prompted us to look for possibilities to solve the atnessand the horizon problem without invoking an inationary period.The basic picture which we work out in this paper is the following:The �rst 'big bang', the �rst 3{dimensional closed universe, emerged from quan-tum uctuation of some, e.g., string vacuum. Its duration was of the order ofa Planck time. Due to some non thermal processes there was a small gain ofentropy, S(1)in < S(1)end. The �rst big crunch triggered the formation of the nextbig bang who's entropy was slightly larger and therefore its duration was slightlylonger, S(1)in < S(1)end � S(2)in . This process continues with ever longer cycles. Weassume, that after a few Planck times during which the universe may have beenin some quantum gravity or stringy state, we have a mainly classical, radiationdominated universe. With the exception of short periods during which matterand radiation fall briey out of thermal equilibrium, the universe expands andcontracts adiabatically. As long as the universe is radiation dominated no blackholes can form. Only during a cycle with a long enough matter dominated erablack hole formation is possible. Penrose's argument now goes as follows: Duringa matter dominated era (small) black holes can form. These �nally, during thecollapse phase, coalesce into one huge black hole which at the end contains thewhole mass of the universe. Its entropy is thus given bySbh = (1=2)Abh=G = 2�R2s=G = 8�GM2bh � 10124; (1)where we have setMbh equal to the present mass within one Hubble volume whichis of order 1023M� to obtain the last inequality. Clearly, already a signi�cantlysmaller mass would do, since the actual radiation entropy within the presentHubble radius is of the order of SHubble � 1087, a discrepancy of nearly 40 ordersof magnitude. In terms of entropy per baryon, this yields ��1 = S=NB � 1044instead of the observed value ��1 � 109.Is there a way out of this simple but disastrous conclusion?The �rst and main objection is that the laws of black hole thermodynamics whichrely heavily on Hawking radiation, hold only in asymptotically at spacetimes.Or, at least, that the entropy of a black hole can be set equal to its area onlyfor an observer outside the black hole itself. Therefore, the black hole entropyformula should only be adopted for black holes much smaller than the size of theuniverse. Let us therefore add only the entropy of black holes which are at least10 times smaller than the curvature radius of the universe and neglect subsequent2



growth of entropy due to the coalescence of these black holes. Of course, this ruleis somewhat ad hoc, but as long as we have no clue of how to calculate in generalthe entropy of the gravitational �eld it seems to us a possible 'rule of thumb'.However, with this correction we gain only about a factor of 10 in the aboveentropy formula (1) and not the required factor of about 1038. But there is anadditional short come in the Penrose conclusion: The radiation entropy which weobserve today is the entropy generated mainly during the previous cycle whosematter dominated epoch might have been much shorter, leading to signi�cantlyless clumping and thus much less gravitational entropy production.Furthermore, as we shall see, it is not clear that structure forms via hierarchicalclustering. In a pure radiation universe, it may well be that large black holes form�rst (if at all!) and the black hole entropy formula cannot be applied.From these arguments it should be clear, that Penrose's objection to the oscil-lating universe does not have to be accepted and there may be ways out. Anotherpossibility not investigated in this work is Israel's idea of mass ination inside thehorizon of black holes [8, 9]. There Israel et al. accept the black hole entropyformula, but argue that inside the black hole horizon mass ination takes placesuch that the ratio ��1 gets reduced substantially.The reminder of this paper is organized as follows: In the next section we givea brief review of the oscillatory universe. In the main part of this paper, section 3,we investigate cosmological perturbation theory in a closed universe and deter-mine the evolution of a Harrison Zel'dovich initial spectrum in a purely radiationdominated universe and in a universe with an intermediate matter dominatedepoch. We discuss how the �nal spectrum depends on the duration of the matterdominated epoch and we formulate a limit for the maximum radiation entropy ofthe previous cycle. The �nal section is devoted to our conclusions.Notation: The scale factor of the Friedmann universe is denoted by a, weuse the conformal time coordinate and the metric signature (�;+;+;+), so thatthe Friedmann metric is given byds2 = a2(dt2 � ijdxidxj) ; (2)where ij is the metric of the unit three sphere, e.g.,ijdxidxj = d�2 + sin2(�)(d�2 + sin2 �d'2) :Cosmic time is denoted by � , � = R t adt.We normalize the scale factor a such that the curvature of the spatial sections isequal to 1=a2.2 Reminder to the oscillatory universeLet us �rst explain how the oscillatory universe solves the atness or entropyproblem. To do this it is useful to state the problem in a somewhat di�erentform: If the equation of state in a Friedmann universe satis�es the strong energy3



condition, � + 3p > 0, then � decays faster than 1=a2 and 
 = 1 is the unstable'initial' �x point of expansion. This means each Friedmann universe starts outat t � a few tPlanck with 
 � 1 and later deviates more and more from thisvalue. The atness problem can thus be stated as follows: How can it be, that ouruniverse at its old age, t � tPlanck, T � TPlanck still looks so young, 
 � 1?This problem is easily solved in the oscillating universe as we shall now show.The following arguments are due to Tolman [10]. Only a year after Lemâ�tre�rst brought up his phoenix picture Tolman realized: Since the entropy of thenext universal expansion can only be larger than the previous one, the maximumexpansion factor of the next cycle, amax, is larger than the corresponding maxi-mum of the previous cycle. Since the density parameter 
 starts deviating from 1only when the scale factor a approaches amax, in the next cycle it will take longeruntil this happens. We consider now a cycle with a duration substantially longerthan Planck time which has entered a radiation dominated phase. If relativisticmatter is in thermal equilibrium (which we assume to be true most of the time)its energy density and entropy density are given by (�h = c = kBoltzmann = 1)� = �230NT 4 (3)s = 2�245 NT 3 ; (4)where N denotes the e�ective number of degrees of freedom (spin states). N =Nb + (7=8)Nf . Here Nb are bosonic degrees of freedom and Nf are fermionicdegrees of freedom. Furthermore, from Friedmann's equation for a closed universe,� _aa�2 + 1 = 8�G3 a2� ; (5)together with (3) and (4) one �nds
� 1 = �� �c�c = 8�G�a2 � 3( _a=a)23( _a=a)2 = 1G �4N�45 �1=3 S2=3T 2 � 1 : (6)Here S is the total entropy of the universe, S = 2�2a3s. Therefore, the larger thetotal entropy S the smaller the deviation of 
 from the critical value 1 at a giventemperature T , or the lower temperatures are required for a substantial increase of
. Expressing the maximal scale factor, amax, the age of the universe at maximalexpansion, �max = �(amax) and the minimal temperature, Tmin = T (amax), interms of the entropy also show that these values grow, respectively decrease withincreasing entropy:amax = �1S2=3 ; �1 =  45G34�7N !1=6 ; (7)�max = Z tmax adt = amax ; tmax = �=2 ; (8)Tmin = �2S�1=3 ; �2 = � 454�G3N �1=6 : (9)4



The time it takes for the density parameter to di�er signi�cantly from 1 is asubstantial fraction of �max. Therefore, the universe 'looks young' for longer andlonger times as the entropy increases cycle by cycle.It is clear that in the oscillating universe also the horizon problem disappearssince the age of the universe is not given approximately by the inverse Hubbletime, which is the age of the present cycle, but the sum of the ages of all previouscycles has to be added, leading to a much larger age which might even be in�nite.For this solution to be valid, it is important that correlations are not lost during abig crunch/big bang passage and that the behavior of particles or strings duringthis time is governed by a causal theory. In Appendix B, we explore the possibilitythat quantum gravity may e�ectively lead to an Euclidean region of spacetimeclose to the big crunch/big bang era. This example of a causal continuation fromone cycle to the next is due to Ellis [11, 12]. The singularity in the metric inducedby the signature change is very mild. We show how in this case geodesics can becontinued through the crunch in a completely smooth manner.3 Cosmological Perturbation Theory in a ClosedUniverseIn this section we �rst study the equations which govern the time evolution ofradiation and matter density perturbations in a closed universe. We then de-termine the power spectrum, which we use to decide at which length scale thedensity perturbations might �rst lead to the formation of objects (e.g. galaxies orblack holes). We �nally use these results to argue how the entropy of the presentcycle may have been generated.3.1 Time Evolution of Density PerturbationsTo describe the time evolution of density perturbations we use gauge invariantlinear cosmological perturbation theory (see e.g. [13]). Assuming adiabatic per-turbations and neglecting anisotropic stresses, the evolution of the gauge invariantdensity perturbation variable D is governed by the equation�D � (r2 + 3)c2sD + (1 + 3c2s � 6!)� _aa� _D (10)�3(! ��aa�� 3� _aa�2 (c2s � !) + (1 + !)43�G�a2)D = 0:In a universe which consists of matter and radiation, ! = p=� = (1=3)(1+a=aeq)�1,c2s = _p= _� = (1=3)(1 + 3a=4aeq)�1, where cs is the sound velocity. A dot indicatesderivatives with respect to conformal time t and aeq is the scale factor when�rad = �mat. Two cases of particular interest are dust (! = c2s = 0; aeq = 0) andradiation (! = c2s = 1=3; aeq =1). 5



Expanding D in terms of scaler harmonic functions on S3, as described inAppendix A, leads to the following equation for the gauge invariant density per-turbation amplitude for the wavenumber l 2 f0; 1; 2; :::g:�Dl(t) + (l(l + 2)� 3)c2sDl(t) + (1 + 3c2s � 6!)� _aa� _Dl(t)�3(! ��aa�� 3� _aa�2 (c2s � !) + (1 + !)43�G�a2)Dl(t) = 0: (11)For most of the sequel we omit the index l which distinguishes the di�erenteigenfunctions of r2 on S3.In the following subsections we solve equation (11) in some cases of specialinterest. We then use our results to derive the power spectrum.3.1.1 Radiation Density Fluctuations in a Radiation UniverseAt early stages of expansion and at the end of the collapsing phase, the universewill consist of pure radiation, i.e., all matter will be relativistic. Therefore, thiscase is important for each hypothetical previous cycle, whether it entered thematter dominated era or it was always radiation dominated. For radiation, where! = c2s = 1=3, equation (11) reduces to�D + ((l(l + 2)� 3)3 � ��aa�� 163 �G�a2)D = 0: (12)Inserting the solution of the Friedmann equation for the scale factor of a radiationdominated universe, which is a(t) = amax sin t with amax = (8�G�a4=3)1=2, weobtain(sin2 t) �D +  l(l + 2)3 sin2 t� 2!D = 0; t 2 [0; �]: (13)The solution of this equation is given byD(t) = sin2 t 1sin t ddt!2 [c1 expfipaltg + c2 expf�ipaltg] (14)with al = l(l + 2)=3 and l 6= 0 (see [14]). We are only interested in real solutionsfor positive integers l, in which case D(t) can be written in the formD(t) = c1 [pal cot t sin(palt)� al cos(palt)]+ c2 [pal cot t cos(palt)� al sin(palt)] : (15)This solution is plotted in Fig. 1 for l = 20 and l = 80. Obviously the amplitudecot t diverges at the big bang and at the big crunch where t = 0 and t = �respectively. Since we assume that the uctuations are created at some timeti > 0 after the big bang, the divergence at t = 0 is not a problem. Apart fromits oscillation with frequency pal � l, the amplitude of density uctuations isapproximately constant for most of the cycle, but diverges close to the crunchlike Dl(t) / l(� � t)�1. 6



3.1.2 Matter Density Fluctuations in a Radiation Dominated Uni-verseFor dust (! = c2s = 0) equation (11) reduces to�D + _aa _D � 4�G�mata2D = 0: (16)As long as the universe expands, _a is positive and hence the second term in thisequation acts as a damping term. This term vanishes at maximum expansion andturns into a stimulation when the universe contracts. Therefore we expect thegrowth of uctuations to become substantially enhanced during the contractionphase.Inserting the scale factor a(t) = amax sin t for the radiation dominated uni-verse, we obtainsin t �D + cos t _D � �D = 0; t 2 [0; �]; (17)where � = 4�G�mata3 = (3=2)(amax=aeq) and amax = (8�G�a4=3)1=2. With thesubstitution x = sin t this equation leads tox(x� 1)(x+ 1)D00 + (2x2 � 1)D0 + �D = 0: (18)This equation is a special case of Heun's di�erential equation. For jxj < 1 onesolutionDa(x) = 1 + 1Xn=1 cnxnof (18) is a convergent power series withc1 = �cn+1 = n(n� 1)(n + 1)2 cn�1 + �(n + 1)2 cn:A numerical solution of (17) is shown in Fig. 2.Let us discuss the behavior of these matter density uctuations more closelyduring the di�erent epochs of a cycle. At early times, when t� 1, equation (17)simpli�es tot �D + _D � �D = 0 (19)which has a solution in terms of Bessel functions:D(t) = c1J0(2ip�t) + c2Y0(2ip�t) � ~c1 + ~c2ln(2p�t):Neglecting logarithmic growth, these uctuations are approximately constant fort � 1. Fig. 2 shows, that the logarithmic growth for small t is a good approxi-mation up to t � 1=10 which means that all scales with l � 10 or so enter thehorizon during this era, where we can consider the uctuations to be approxi-mately constant. This is the well known M�ez�aros e�ect: matter uctuations do7



not grow in a at radiation dominated universe. Close to maximum expansion(t = �=2� �; j�j � 1), equation (17) reduces tod2D�2 � �dD� � �D = 0The solution can be written in terms of the conuent hypergeometric function:D(�) = ��1=2e�2=4Y  �2 � 14 ; 14 ; ��22 ! ; (20)with Y (k;m; x) = c1Mk;m(x) + c2Mk;�m(x)Mk;m(x) = x1=2+me�x=2F (1=2 +m� k; 2m+ 1; x)F (a; b; x) = 1 + 1Xn=1 a(a + 1) : : : (a+ n� 1)xnb(b + 1) : : : (b+ n� 1)n! :Near maximum expansion, small j�j, D grows nearly exponentially, like in a non{expanding universe.Close to the Big Crunch, where t = � � �, we again obtain equation (19),replacing t and dots by � and derivatives with respect to �. This reects thesymmetry of the closed universe between (big bang, t) and (big crunch, �t) aslong as the entropy remains unchanged. Therefore, close to the big crunch Ddiverges logarithmically:D(t) / ln0@ 12q�(� � t)1A :This solution is valid until the particles become relativistic around the de{con�ne-ment phase transition where T �= 100MeV , from where on we have to considerpure radiation density uctuations.3.1.3 Matter Density Fluctuations in a Matter Dominated UniverseIn the case of a matter dominated universe, the scale factor is given by a(t) =(amax=2)(1� cos t), where amax = 8�G�a3=3 and hence (16) reads(1� cos t) �D + (sin t) _D � 3D = 0; t 2 [0; 2�]; (21)with the well known solution (see [15])D(t) = c1 "5 + cos t1� cos t � 3t sin t(1� cos t)2 #+ c2 " sin t(1� cos t)2 # (22)
8



At early times, equation (21) is approximately given by t2 �D + 2t _D � 6D = 0,such that D / t2 or D / t�3, for the growing and decaying mode respectively.Close to the collaps, for t = � � �, equation (21) reduces again to�2 d2d�2D + 2� dd�D � 6D = 0;but the growing and decaying modes are interchanged. Now the growing modesolution is given by D = D0��3 = D0(2� � t)�3. At maximum expansion, thedamping term again vanishes and the evolution of the uctuations around t = �is described by exponential growth or decay.3.1.4 Composite ModelTo construct a more realistic model where the scale factor is not only determinedby a single matter or radiation background, we now assume a simple compositemodel, where the energy density of the universe is given by�(a) = �eq2 "�aeqa �3 + �aeqa �4# :The �rst expression on the right hand side represents the a�3 behavior of thematter density and the second term reects the a�4 behavior of radiation density.The solution of the Friedmann equation (5) in this case isa(t) = p�sin t� arcsin ~ap�!!+ ~a = aeq(� sin t+ �2 sin2 t2); (23)where � = aeq=a0 with a0 = (4�G�eq=3)�1=2 and ~a = 12�2aeq, � = �2a2eq + ~a2.Furthermore, we �nd from (23) thatteq = arcsin(��1=2(aeq � ~a)) + arcsin(~a��1=2);tmax = �=2 + arcsin(~a��1=2);amax � a(tmax) = (�1=2 + ~a) = 12aeq� �� +p4 + �2� :We can use � as a parameter which determines the duration of the matter dom-inated epoch in a closed universe containing matter and radiation. For � � 1,amax � �aeq � aeq and the universe never becomes matter dominated. For �� 1,amax � �2aeq � aeq and teq � tmax � �; the universe experiences a long matterdominated era.For radiation density perturbations in this composite model, equation (11)yieldsa2(t) �D(t) + (a2(t) l(l + 2)� 33 !� a(t)�a(t)� 4aeq~a)D(t) = 0; (24)9



and for matter density perturbations we obtaina(t) �D(t) + _a(t) _D(t)� 3~aD(t) = 0; (25)with a(t) given by (23). We are particularly interested in equation (25). Numer-ical solutions for the growing mode of a short and long matter dominated phaseare shown in Fig. 3.3.2 The Power Spectrum3.2.1 The Harrison Zel'dovich initial spectrumThe power spectrum P (l; t) determines the scaling behavior of perturbations ata given time t. It is de�ned byP (l; t) � jDl(t)j2; (26)where Dl(t) is a solution of equation (11). To determine the power spectrum, wehave to specify the l{dependence of the initial amplitudes, Dl(tin). A preferredsuch choice, which we also adopt here, is the scale invariant or Harrison{Zel'dovichspectrum [16]. The power spectrum is called Harrison{Zel'dovich if the varianceof the mass uctuation on horizon scales RH = R t0 dt = t is constant, time inde-pendent:h(�M=M)2RH i = const.Here h�i denotes the statistical average over many 'realisations' of perturbed uni-verses with identical statistical properties. Since we know only one such universe,we assume that this statistical average can be replaced by a spatial average, a kindof 'ergodic hypothesis'. We want to express (�M)RH (t) as a function of Dl(t). Letus therefore identify the (gauge invariant) density variable D(x) with (��=�)(x)and let lH be the value of l corresponding to the horizon size RH = �=lH . Let usdenote the spherical harmonics on S3 by Yk, where k stands for the multi{index(l; j;m) specifying the the spherical harmonics on S3 (see Appendix A). We thenobtain for the mass uctuation inside a volume of size R3H(�M)RH (t) = ZVH d3x h1=2��(x; t) = � ZVH d3x h1=2(��=�)= � ZVH d3x h1=2Xk Yk  ��� !k (t) � �VH Xl�lHXj;m Yk(x)Dl(t):For the �nal approximation, we have assumed that perturbations on scales smallerthan �=lH average to zero due to the integration over VH , and that perturbationson scales larger than �=lH are approximately constant in a volume of size RH ��=lH , such that integration over VH just gives rise to the factor VH ( = volumeof a three dimensional patch of diameter 2RH on S3). With M = �VH , we thenobtain(�M=M)2RH � Xl;l0�lH X(j;m);(j0;m0)Yk(x)Y�k0(x)Dl(t)D�l0(t)10



and h(�M=M)2RH i � Xk;k0�lHDl(t)D�l0(t) ZS3 d3x h1=2Yk(x)Y�k0(x)= Xl�lH l�1Xj=0 jXm=�j Pl(t) = Xl�lH l2Pl(t): (27)Let tl � �=l denote the time when the scale l crosses the horizon, lH(tl) = l .Since Pl�lH l2 � l3H , we see from (27) that we have to demand thatP (l; tl = �=l) / l�3for h(�M=M)2RH i to be approximately constant, i.e., for a scale invariant spectrum.The notion of a scale invariant power spectrum can now be used to comparethe time evolution of density perturbations on di�erent length scales. We wantto investigate, which length scale collapses �rst. It is the scale at which thevariance of the mass perturbation �rst grows of order unity. At that time, linearperturbation theory breaks down and we expect matter perturbations to formgravitationally bound objects.3.2.2 The Final Power SpectraUp to an overall constant, the scale invariant spectrum is determined by the t-and l-dependence of the density perturbations Dl(t) and by the requirement thatDl(tl = �=l) is proportional to l�3=2. Then of course P (l; tl) is proportional to l�3and the variance of the mass perturbation is approximately constant.Let us �rst apply this procedure to the case of radiation density uctuations inthe radiation dominated epoch. From solution (15) we �nd that for a uctuationwhich crosses the horizon at times t� �, i.e. at times much smaller than the timeof the big crunch, the maximum amplitude of Dl is approximately constant (sincethe term containing cot t is small) and therefore c1 and c2 must be proportionalto l�7=2 (since al is proportional to l2) to obtain the required l�3=2 behavior ofDl(tl). Close to the crunch, when t! �, the expression containing cot t divergesas (��t)�1. But all scales l � 2 enter the horizon at times tl � �=2, and thereforethis divergence is only relevant for the mode l = 1, which enters the horizon atthe big crunch. Of course the scales which enter the horizon already for t � �,also begin to grow as (� � t)�1, when t approaches �. Disregarding the l = 1mode we thus obtainDl(t) / ( l�3=2; t� �l�3=2(� � t)�1; t! �; (28)or equivalentlyP (l; t) / ( l�3; t� �l�3(� � t)�2; t! � (29)11



for radiation perturbations in the radiation dominated era. At late times, closeto the crunch, we can therefore approximate the power spectrum by P (l; t) �=c2l�3(��t)�2. This power spectrum obviously takes its maximum for the smallestvalue of l, and the induced mass uctuations l3P (l) are independent of scale (seeFigs. 4A and 4B).As the next example we consider matter density perturbations in the radiationdominated era. We have found that for t < 1=10 they show logarithmic growthwhich we approximate by a constant. To obtain a scale invariant spectrum wetherefore have to require Dl / l�3=2 and hence again P (l) / l�3. Only thelargest scales which enter the horizon close to or after maximum expansion donot satisfy this proportionality since we can not assume the corresponding densityuctuations to be approximately constant. Since the density perturbations growwith a certain power of t, the slope of the spectrum will decrease towards thelargest scales. Matter density uctuations are a special case of the compositemodel, when the cycle never reaches the matter dominated phase, � � 1. Thenumerically determined power spectrum P (l) and the mass uctuation l3P (l) areshown in curves A and B of Fig. 5.Now we determine the scale invariant power spectrum for matter density uc-tuations in the matter dominated era. For small scales, which enter the horizonearly, where Dl(t) / Alt2 scale invariance requires Al / l1=2. However whenthe cycle approaches it's maximum expansion for t ! �, the damping term issmaller and Dl grows faster, say D / t� with � > 2 (around tmax = � there isactually exponential growth, i.e. � diverges for l = 1) and we need c / l�3=2+�.Towards the crunch, D is proportional to (2� � t)�3. We �nally obtain roughlythe following l-dependence of the power spectrumP (l; t) / ( l(2� � t)�6; l� 1; 0� 2� � t� 1l2��3(2� � t)�6; l �= 1; � > 2; 0� 2� � t� 1For small l (large scales), the slope of P (l) is bigger than one (in a log-log di-agram), where as for large l (small scales), the slope of P (l) is equal to one.This behavior is equivalent to the special case of the composite model with along matter dominated epoch, � � 1. Therefore P (l) and l3P (l) in the matterdominated universe are very similar to the power spectra shown in Fig. 5 (E) and(F) for l < 1000. This �gure actually shows a composite model with � = 1000.Therefore, scales with l > 1000 enter the horizon still in the radiation dominatedera and thus do not represent this case. In a pure matter universe, there is nobend in the power spectrum for l� 1.Finally we approximate the power spectrum for the realistic composite model.The power spectrum in this case is composed of three parts. At late times, whenall scales are already inside the horizon, we obtain (teq = �=leq denotes the timewhen �mat = �rad)P (l) / 8><>: l�3; l� leql; 1� l� leql2��3; l �= 1; � > 2: (30)12



Here, the l�3-dependence is due to uctuations which enter the horizon alreadyduring the radiation dominated epoch like in the at universe. The maximumof the power spectrum is expected at l � leq. In Fig. 5, (A){(F) some examplesfor the power spectrum and the corresponding mass uctuation are plotted. Ifthe cycle has a long matter dominated epoch, the largest scale l = 1 enters thehorizon soon after maximum expansion of the universe. This is di�erent if thecycle does not reach the matter domination. Then the largest scale enters thehorizon very close to the crunch and it will be the scale l = 2 which enters thehorizon close to maximum expansion.This leads to the following behavior: if a cycle is purely radiation dominated(i.e. a < aeq), the power spectrum takes its maximum for the smallest value of l.If a sequence of cycles approaches and �nally enters the matter dominated era,then there will be a 'critical cycle' from which on the maximum of P (l) is nolonger the largest scale, l = 1 but a scale comparable to leq > 1.Obviously equation (25) is independent of l and hence the shape of the powerspectrum is exclusively determined by the scale invariance condition at horizoncrossing and does not change during the subsequent growth of uctuations. This isnot the case, when the particles become relativistic. Then the evolution equation(24) does indeed depend on l and the shape of the power spectrum changes whenthe cycle approaches the crunch: further local maxima will occur due to theoscillating behavior of solutions of (24), but the global maximum of the powerspectrum remains the same. Numerical solutions for this last case are shown inFig. 6.In a spatially at universe containing matter and radiation, the power spec-trum for matter density perturbations can be approximated at times t � teqby P (k; t) �= C2kt4(1 + (k=keq)2)2 ; (31)which is similar to (30), only that k is continuous and the additional decrease ofP for small values of k does not occur (In an open universe the power spectrumeven starts to increase for the largest scales). Therefore a measurement of thepower spectrum at very large scales (even before a cycle has reached it's maximumexpansion) would (in principle) be a way to decide, whether our universe is at,open or closed. To see the departure of (30) from (31) for large scales, we haveplotted both curves together in Fig. 7.3.3 Interpretation of the Results, Entropy Production inthe Previous CycleWe have thus found that a short time before the big crunch, the mass uctuation,�2(l; t) = l3P (l; t) is scale independent in a pure radiation universe and decreasestowards large scales, l � leq in a matter/radiation universe.Furthermore, �2(l; t) diverges at the big crunch. Therefore, at least brieybefore the big crunch, linear perturbation theory is no longer applicable. In the13



pure radiation case, we expect non linear e�ects to stop gravitational instabilityand prevent black hole formation at least on small scales. The production ofgravitational entropy is thus probably not very signi�cant.However, if the universe undergoes an intermediate matter dominated period,�2(l; t) tends to raise towards smaller scales, approaching a very mild, logarithmicgrowth for l > leq (see Fig. 5D). We also know from the corresponding at universeanalysis, if uctuations grow non{linear before, due to contraction, the universebecomes radiation dominated again, non{linear gravity and the log{raise towardssmall scales will lead to the collaps of small scales and probably to the formationof small black holes.If we want to prevent excessive black hole and entropy formation in the cycleprevious to the present one, we thus have to require that perturbations never getstrongly nonlinear. This yields a limit for the radiation entropy in the previouscycle. To illustrate this, let us assume that in the present cycle perturbationsget non{linear, �2(l; t) � 1 around a redshift of z � 10, T � 30K. For thisnot to happen in the previous cycle, we have thus to require Tmin > 30K orS = (�2=Tmin)3 < 1084.The radiation entropy of the previous cycle thus has to be at least a factorof 103 times smaller than the present entropy. We therefore require that most ofthe radiation entropy of the universe at present, S � 1087, was produced in theform of gravitational entropy from small uctuations during the previous cycle.Unfortunately, we do not have a quantitative description for the entropy of thegravitational �eld (except in the case of black holes), but it is certainly relatedto the clumpiness of the matter which is determined by the Weyl part of thecurvature [3].We now postulate, that during the quantum gravity epoch of big crunch/bigbang passage the entropy of the gravitational �eld is completely transformedinto radiation entropy and the new cycle starts out from a state with vanishinggravitational entropy, a homogeneous and isotropic Friedmann Lemâ�tre universe.At �rst this postulate might seem somewhat ad hoc, but it is actually just whathappens if a black hole evaporates due to Hawking radiation.It is thus feasible that most of the entropy production in the universe is ac-tually due to mild gravitational clustering in the previous cycle and not due tolocal non{thermal processes.4 ConclusionsWe have revisited the oscillating universe and shown how it can yield a coherentsolution to the atness or entropy and the horizon problems of standard cos-mology. We have analized linear gravitational perturbations in a closed universeconsisting of matter and radiation. We can set an upper limit on the radiationentropy of the previous cycle which is at least a factor 103 below the entropy ofthe present universe. We thus postulate that most of the radiation entropy in thepresent cycle was produced as gravitational entropy by linear or mildly non{linear14



gravitational clustering in the previous cycle. During the quantum gravity bigcrunch/ big bang era, this gravitational entropy must then be transformed intoradiation entropy.Due to the lack of of a theory of quantum gravity, we have no precise ideahow this is accomplished. Nevertheless, this is exactly what happens if blackholes evaporate!The reader may now object that we postulate the emergence of a FriedmannLemâ�tre universe out of the quantum gravity era, whereas homogeneity andisotropy is naturally obtained in some inationary models, e.g. chaotic ination.However also in chaotic ination, where homogeneity and isotropy is achieved byblowing up small scales, one has to require a cut{o� of uctuations at some verysmall scale, typically around Planck scale.We consider it to some extend a matter of taste which of the two requirementsfor quantum gravity is more 'restrictive'; that it leads to a cut{o� of uctuationsaround the Planck scale or that it leads to the transformation of gravitationalentropy into radiation entropy in very high curvature regions. Nevertheless, itis a weakness of our model, that we cannot propose a clear picture of how thistransformation might take place. We plan to address this problem in the future.In our approach the creation of initial density uctuations is not addressed.They might be created in (or left over from) the Planck era or they might buildup during a phase transition in the early universe (topological defects) or byany other scale invariant process, like the self ordering of a global scalar �eld onHubble scale.Clearly, the easiest way to falsify this model would be to measure 
 < 1. Onthe other hand, if 
 � 1 we will never be able to decide whether 
 = 1 + � or
 = 1 � �, and other means to distinguish this scenario from, e.g., inationarymodels have to be developed.
Appendix
A Scalar Harmonic FunctionsIn the closed universe scalar quantities like D can be expanded in a complete setof scalar harmonic functions Yk(x) = Yk(�; �; �) on the three sphere S3:D(x) =Xk Yk(�; �; �)Dk(t); (32)where k = (l; j;m), l = 0; 1; 2; 3; : : :, j = 0; 1; : : : ; l � 1, m = �j;�j + 1; : : : ; j.The variables � 2 [0; �], � 2 [0; �] and � 2 [0; 2�] denote the angles describing15



the position on the three sphere. The functions Yk satisfy the Laplace-Beltramiequation with eigenvalue �k2:(� + k2)Yk = 0:Here � � rjrj denotes the three-dimensional Laplacian on S3, k2 = l(l + 2)Kand for our case of interest K > 0 (In most of the sequel we set K = 1). Theharmonic functions Yk(x) are given byYk(x) = �(+)�j (�)Yjm(�; �); �2 = k2 +K = (l + 1)2K;where Yjm(�; �) are the usual spherical harmonics on S2 and the �(+)�j can beexpressed in terms of generating functions�(+)�j (�) = ij sinj �(M j�)1=2  dd cos�!j+1 cos(��);where M j� is the normalization factorM j� = (�=2) l�1Yn=0(l2 � n2):The normalization of the functions Yk(x) is as usualZS3 d3x h1=2(x)Yk(x)Y�k0(x) = �k;k0;where h(x) is the determinant of the 3-metric of constant curvature K = 1 and�k;k0 is the Kronecker delta�k;k0 = ( 1; if k � (l; j;m) = k0 � (l0; j 0; m0)0; else:Furthermore we choose the phases of Yk such that Y�k(x) = Y�k(x), with �k �(l; j;�m). (See e.g. [17] or [18] for further details).B The Passage between two CyclesIn this Appendix we want to show briey, how the transition from a Big Crunchto a subsequent Big Bang can be described by an e�ective model. The mainidea is the appearance of a signature change in the metric from Lorentzian toEuclidian and back. By this mechanism, the singular behavior of spacetime ata = 0 disappears and the topology of the transition region is that of S4.In analogy to the change of signature idea of Hartle & Hawking [19] in quantumcosmology, Ellis [11] and Ellis et. al. [12] have shown that the classical Einstein�eld equations allow a change of signature when the metric is allowed to possessa mild singularity. The classical case leads to interesting possibilities for thedescription of an oscillating universe. 16



The signature change is implemented into the metric by introduction of alapse function n(�):ds2 = �n(�)d� 2 + a2(�) " dr21� kr2 + r2(d�2 + sin2 � d'2)# : (33)Here � denotes cosmic time: d� = a dt. For the discontinuous choice of the lapsefunction n(�) = � with � = �1, there exists a surface of change �, where themetric changes its signature. From (33) and Einstein's equations one derives theFriedmann and Raychaudhuri equations for the scale factor a(�), which then holdin the regions V+, where � = +1 and in V�, where � = �1, but not on the surfaceof signature change �, since there the metric tensor is not invertible. By choosingsuitable (physically motivated) jump conditions on �, one can �nd solutions forthe scale factor which pass continuously through the surface of signature change[11, 12].For the simple case of a scalar �eld � 2 R with LagrangianL = 12@��@��� V (�);such that _� = 0 (the no rolling case), Ellis et. al. have shown that the scale factorbehaves for k = 1 likea(t) = ( H�1 cos(H�); ��=(2H) � � � 0H�1 cosh(H�); � � 0 : (34)The corresponding space-time has no boundary and is geodesically complete (i.e.it has no singularity and the geodesics can be continued smoothly through thesurface of signature change). Only the length of the tangent vector jumps forphotons and spacelike geodesics at the surface of signature change �. Obviouslythe scale factor given by (34) inates for � > 0. We do not have an equivalentsimple example with the same nice features which does not inate. Howeverthere are other (rolling) solutions to get a successful exit from ination, but thesesolutions do not have the 'no-boundary' property of the above mentioned case.For a detailed discussion see [11] and [12]. Our main point is, that there is apossibility to continue the evolution of the universe smoothly through the crunchwhich might serve as an e�ective theory for the passage between two subsequentcycles.B.1 Geometric RepresentationIt is interesting to note that only geodesics describing massive particles at restpass through the point where a = 0, whereas a particle with velocity v� 6= 0 on� enters the Euclidian regime with an angle � as shown in Fig. 8 coordinatesshown are t and r. The angles � and � are suppressed, since we assume them tobe constant for the indicated geodesic). The coordinates of the plane with angle� in the y � z plane, are(x; y; z) = (x;�z tan�; z): 17
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Figure 1: The time evolution of Dl(t) for radiation density perturbations in aradiation dominated universe (in arbitrary units). The amplitude Dl(t) is shownfor the scales l = 20 and l = 80. Very close to the big crunch, the divergence dueto cot t takes over.
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Figure 2: The time evolution of D(t) for matter density perturbations in a radi-ation dominated universe (in arbitrary units). For comparison, a logarithmicallydivergent �t is shown close to the collaps (solid line). The vertical dotted lineindicates tmax, the time when the cycle reaches its maximum expansion.

Figure 3: The amplitude D(t) of matter density perturbations in the compositemodel (in arbitrary units). The solid line shows D(t) for a cycle with a shortmatter dominated phase (� = 4). The dashed line shows D(t) for a cycle with along matter dominated epoch (� = 1000, amax � aeq). The left and right verticaldotted lines indicate the time of maximum expansion of the cycle for � = 4 and� = 1000 respectively. 21



Figure 4: (A): The power spectrum P (l) as a function of l for radiation densityperturbations in the radiation dominated universe (in arbitrary units). P (l) isgiven at a time, when all scales l � 2 are inside the horizon.(B): The corresponding mass uctuation l3P (l) as a function of l.
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Figure 5: The power spectrum P (l) and the induced mass uctuation l3P (l) asa function of l for matter density perturbations in the composite model (in arbi-trary units) The lines connecting the points l 2 N are shown for clarity.(A) & (B): A purely radiation dominated cycle, �� 1, amax � aeq.(C) & (D): A cycle which just reaches the matter dominated epoch, � =1; amax = aeq.(E) & (F): A cycle including a short matter dominated epoch with � = 4 (squarepoints, maximum of P (l) in (E) at l � 4) and a cycle including a long matterdominated epoch (amax � aeq) with � = 1000 (hexagonal points, maximum ofP (l) in (E) at l � 1000).
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Figure 6: (A): The power spectrum P (l) in the composite model as a functionof l, when matter becomes relativistic close to the crunch (arbitrary units). Thecycle includes a long matter dominated epoch � = 1000 (The solid line simplyconnects the evaluated points).(B): The induced mass uctuation l3P (l) for the same cycle as in (A).

Figure 7: The discrete power spectrum P (l) for the composite model with � =1000 (square points connected by dots) in comparison with the continuous atspace analogon P (k) (solid line). 24


