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Subjet headings: galaxies: general; galaxies: statistis, biasing; osmology:large-sale struture of the universeThe onept of bias has been introdued by Kaiser (1984), primarily to explain theobserved di�erene in amplitude between the orrelation funtion of galaxies and that ofgalaxy lusters. In this ontext the underlying distribution of dark matter is treated as aorrelated Gaussian density �eld. The galaxies of di�erent luminosities or galaxy lusters,are interpreted as the peaks of the matter distribution, whih have ollapsed by gravitationallustering. Di�erent kind of objets are seleted as peaks above a given threshold, witha hange in the threshold seleting di�erent regions of the underlying Gaussian �eld,orresponding to utuations of di�ering amplitudes. The redued two-point orrelationfuntion of the seleted objets is then that of the peaks ��(r), whih is enhaned withrespet to that of the underlying density �eld �(r). In a previous paper (Gabrielli, SylosLabini & Durrer, 2000 - GSLD00) some of us have disussed the problemati aspets of thismehanism. In partiular the ampli�ation of the orrelation funtion is in fat only linearin the regime in whih ��(r) � 1 (see also Politzer & Wise, 1984). In the region of mostobservational relevane (where ��(r)� 1) the orrelation funtion is atually distorted atleast exponentially. Furthermore we have drawn attention to the fat that the ampli�ationof the orrelation funtion by biasing reets simply that the distribution of peaks is morelustered beause peaks are exponentially sparser.In this letter we disuss a di�erent aspet of this model for bias. We are interestedin understanding the e�et of biasing on the power spetrum (PS). In partiular weaddress here a qualitative hange that is aused to the matter perturbations in instandard osmologial models. In real spae this hange manifests itself in a hange fromsub-Poissonian behaviour of the mass variane at large sales in the underlying density�eld, to Poissonian behaviour of the same quantity for the biased �eld. In k spae thisimplies a distortion of the PS at small k. Our analysis shows that this e�et an be veryimportant observationally, as it an make the \turn-over" in the dark matter PS disappearfrom the PS of visible matter. Furthermore it shows the importane of measuring not justnot just the PS of visible objets, but also their real spae orrelation properties. Earlierworks about the e�et of biasing in the PS an be found e.g. Coles (1993) and Sherrer &Weinberg (1998).Before onsidering threshold biasing, we reall the relevant part of the analysis given inGabrielli, Joye & Sylos Labini (2002) (hereafter GJSL02). In this paper we have disussedthe meaning of the ondition P (0) = 0 satis�ed by the PS of all urrent standard type



{ 3 {osmologial models (with Harrison-Zeldovih like spetra P (k) � k at small k). Whilethis point is often noted in the osmologial literature (see e.g. Padmanabhan 1993), itssigni�ane and impliations are not orretly appreiated (see GJSL02 for disussion).It implies the requirement that the integral over all spae of the orrelation funtionvanishes, meaning that in the system there is an exat balane between orrelations andanti-orrelations at all sales. This is a highly non-trivial, non-loal, ondition on thedistribution. Its spei�ity an be highlighted by the following lassi�ation of all stationarystohasti proesses into three ategories: (i) For P (0) = 1 the utuations are likethose in a ritial long range orrelated system, (ii) for P (0) = onstant > 0 the systemis Poisson-like at large sales e.g. any short-range positively orrelated system suh as aquasi-ideal gas at thermal equilibrium, and (iii) for P (0) = 0 the system is what we havetermed \super-homogeneous". The reason for the use of this last term omes from the fatthat the three ategories are distinguished most strikingly in real spae by the large distanebehaviour of the mass variane in spheres, as one an show that P (0) = limV!1 h(�M(V ))2i�2oVwhere h(�M(V ))2i is the mass variane in a volume V (and �o the mean mass density). Inthe Poisson type distribution this variane is proportional to the volume of the sphere, whilein the �rst ategory (ritial systems) it grows more rapidly (with a limiting behaviour of thevolume squared), while in the last (super-homogeneous distributions) the growth is slowerthan the Poissonian one. In partiular the ase of the H-Z spetrum marks the transitionto the limiting slowest possible growth of this quantity for any stohasti distribution ofpoints (Bek 1987), whih is a growth proportional to the surfae of the sphere.These super-homogeneous distributions are enountered in various ontexts instatistial physis. They are desribed in this ontext as glass-like: they are highly ordereddistributions like a lattie, but with full statistial isotropy and homogeneity. In Gabrielliet al. (2002) an example of a system with suh orrelations at thermal equilibrium is given,and a modi�ation of this same system whih should give preisely the orrelation of astandard osmologial model is desribed.We now turn to the threshold biasing mehanism. Following Kaiser (1984) we onsider astationary, isotropi and orrelated ontinuous Gaussian random �eld, Æ(x), with zero meanand variane �2 = hÆ(x)2i in a volume V as V ! 1. The marginal one-point probabilitydensity funtion of Æ is P(Æ) = 1p2��e� Æ22�2 . Using P(Æ), we an alulate the fration ofthe volume V with Æ(x) � ��, Q1(�) = R1�� P(Æ)dÆ : The orrelation funtion between thevalues of Æ(x) in two points separated by a distane r is given by �(r) = hÆ(x)Æ(x + rn)i.By de�nition, �(0) = �2. In this ontext, stationarity means that the variane, �2, and theorrelation funtion, �(r), do not depend on x. Statistial isotropy means that �(r) doesnot depend on the diretion n. The goal is to determine the orrelation funtion of loalmaxima from the orrelation funtion of the underlying density �eld. The problem an be



{ 4 {simpli�ed (Kaiser 1984) by omputing the orrelation of regions above a ertain threshold�� instead of the orrelations of maxima. However, these quantities are losely related forvalues of � signi�antly larger than 1. We de�ne the threshold density, ��(x) by��(x) � �(Æ(x)� ��) = ( 1 if Æ(x) � ��0 else. (1)Note the qualitative di�erene between Æ whih is a weighted density �eld, and �� whihjust de�nes uniform domains, all having equal weight, and h��(x)i = Q1.Let us now onsider how the biasing hanges the distribution in relation to thelassi�ation we have given in terms of P (0). In what follows we show, for � > �o > 0, (�ogiven below) P�(0) > P (0) (2)where P�(k) and P (k) are the PS of the biased and underlying �eld respetively, i.e.the Fourier transform of ��(r) and of the normalised underlying orrelation funtion�(r) � �(r)=�2 respetively. This result is independent of �(r). The orrelation funtion��(r) of the biased �eld is given (Kaiser 1984) by the expressionQ1(�)2(��(r) + 1) = 12�q1� �2 (r) Z 1� Z 1� dÆdÆ0� exp �(Æ2 + Æ02)� 2�(r)ÆÆ02(1� �2 (r)) ! (3)where the integrand on the right hand side is the two point joint probability density forthe Gaussian �eld Using the expression for Q1(�) given above, one an reast this after asimple hange of variables into the form��(r) = R1� dxe�x2=2 R �� dye�y2=2[R1� dxe�x2=2℄2 : (4)where � = (� � �x)=q1� �2 . In this form it is evident that �(r) = 0, ��(r) = 0 and thatsign[��(r)℄ = sign[�(r)℄.Taylor expanding this expression about � = 0, we �nd1��(r) = b1(�)�(r) + b2(�)�2 (r) + ::: (5)1For the expansion to all orders see Jensen & Szalay (1986).



{ 5 {with b1(�) = e��2=2 R1� dxxe�x2=2[R1� dxe�x2=2℄2 (6)b2(�) = 12�e��2=2 R1� dx(x2 � 1)e�x2=2[R1� dxe�x2=2℄2 : (7)The �rst term gives the linear relation obtained by Kaiser (1984), as b1(�) � �2 for � � 1,valid in the regime j�j � 1 and j��j � 1. It is easy to hek that b2(�) is positive de�nitefor � � 0 (and b2(�) � �4=2 for � � 1), so that to this order in �(r) one has the bound��(r) > b1(�)�(r) for ��(r) 6= 0 and � > 0 : (8)If j�(r)j � 1 at all r this bound suÆes to give the desired result (2) for all values of �suh that b1(�) � 1. As b1(�) is a monotonially inreasing funtion of � (with b1(0) = 2=�)this is equivalent to the requirement � � �o with �o suh that b1(�o) = 1 (i.e. �o ' 0:303).To show that there is a value of � above whih Eq. (2) is indeed satis�ed for all permittedvalues of �, it suÆes to �nd the threshold value �1 � �o suh that for all � � �1 one hassign "d��(r)d�(r) � b1(�)# = sign[�℄ 8r : (9)In fat this is a suÆient ondition to have the exat urve ��(�), given by Eq. (4), allabove the line �� = � for all �. We have found numerially, using Eq. (4), that thisondition is satis�ed for �1 ' 0:38.Note that, if the ondition (8) holds, this means simply that, relative to theasymptoti (j�j � 1 and j��j � 1) linearly biased regime in whih �� � b1(�)�, theanti-orrelated regions are less ampli�ed (j��j < b1(�)j�j) than the positively orrelatedregions (j��j > b1(�)j�j). Thus the integral over the biased orrelation funtion is alwayspositive, and the bound (2) thus holds. Further it is easy to see that P�(0) is �nite if P (0)is: �� is bounded for any value of �, and, has the same onvergene properties as � at largedistanes. This implies that, if the integral of � over all spae onverges, then also that of�� does.In terms of the lassi�ation of distributions by P (0) we thus draw the followingonlusion: Both the ritial type system (with P (0) = 1) and Poisson type system(with P (0) = onstant > 0) remain in the same lass; the super-homogeneous distribution(with P (0) = 0) however beomes Poissonian (P�(0) = onstant > 0). The essentialreason for these hanges is simple: as disussed above the behaviour of the PS is thesame as that of the mass variane at asymptotially large sales. The biasing proess



{ 6 {is stohasti in nature, and introdues a variane in the number of objets whih isproportional to the volume. This new variane will dominate asymptotially over thatof the original distribution only if the latter is super-homogenous (i.e. its asymptotinormalised variane is sub-poissonian, deaying faster than Poisson). Consider for examplethe ase of a perfet lattie, whih is a super-homogeneous distribution (P (0) = 0) in whihthe normalised variane �2(R) = h(�M(R))2i=hM(R)i2 in a sphere of radius R deaysasymptotially as 1=R4. The distribution obtained by keeping (or rejeting) eah pointwith probability p (or 1� p) is desribed by a simple binomial distribution, with a variane�2(R) / p(1� p)=N / 1=R3 (N being the mean number of points inside a sphere). Biasingis not suh a purely random sampling, but the e�et of stohastiity as a soure of Poissonvariane at large sales is similar. Translated in terms of the PS it gives the result we havederived.Now let us turn to the impliations of this result for osmologial models. Sine suhmodels have P (0) = 0 in the full matter spetrum, it is evident that we annot have thebehaviour P�(k) / b1(�)P (k) for small k whih one might naively infer from the fat that��(r) � b1(�)�(r) for large separations. Inevitably a non-linear distortion of the biasedPS at small k relative to the underlying one is indued. How important an the e�et bequalitatively for a realisti osmologial model? To answer this question we onsider thesimple model PS P (k) = Ake�k=k. The di�erenes with a old dark matter (CDM) model- whih has the same linear Harrison-Zeldovih form at small k but a di�erent (power-law)funtional form for large k - are not fundamental here, and this PS allows us to alulatethe orrelation funtion � analytially (see GJSL02). This greatly simpli�es our numerialalulation of the biased PS P�(k), whih we do by diret integration of ��(r) alulatedusing the approximation��(r) = 24vuut1 + �(r)1� �(r) exp �2 �1 + �!� 135 (1 + o(��1)) (10)whih is very aurate over most of the range of the integration 2. In Figure 1 we show P�(k)for various values of the threshold � = 1; 2; 3. We see that the shape of the PS at small k isompletely hanged with respet to the underlying PS. Indeed the main feature of the latterin this range - the display of a lear maximum and \turn-over" - is ompletely modi�ed.2This approximation is obtained by expanding the full expression for ��(r) given in Eq. (4) in 1=�, andfurther assuming only that �p(1� �)=(1 + �)� 1. It is a muh better approximation than that of Politzerand Wise both at small and larger values of �. In partiular it gives an asymptoti behaviour �� � (�2+1)�for �2� � 1 whih is a muh better approximation to the exat behaviour at typially relevant values of �(b1(1) � 2:4)



{ 7 {Qualitatively it is not diÆult to understand why this is so. The only harateristi salein the PS (and also in the orrelation funtion) is given by the turn-over (spei�ed in ourase by k = k). On the other hand, the value of P�(0) is just the integral over all spaeof �� whih is proportional to the overall normalisation A and (sine it is stritly positive)must be given on dimensional grounds by Ak times some funtion whih depends on �.For � ' 1 this funtion is of order one, so that P�(0) � max[P (k)℄.This last point is better illustrated by onsidering the integral J3(r; �) = 4� R r0 x2��(x)dxwhih onverges to P�(0) = limr!1 J3(r; �). In Figure 2 the value obtained for it bynumerial integration of the exat expression given by Eq. (4) for ��(r) is shown for� = 1; 2; 3. We also show the same integral for � whih onverges to P (0) = 0. Whilethe latter dereases at large r, onverging very slowly to zero (as 1=r sine �(r) / �1=r4at large sales), the former all onverge towards a onstant non-zero value We see thatthe integral piks up its dominant ontribution from sales around (and above for � = 1)r � 10 Mp (see aption for explanation of the normalisations, whih are irrelevant for thepresent onsiderations). From the inset in the �gure, whih shows both �(r) and ��(r),we see that this is the sale below whih the orrelation funtion is non-linearly ampli�ed.Moreover it is shown that the smaller sales at whih ��(r) is most distorted relative to�(r) do not ontribute signi�antly to J3 (beause of the r2 fator). This fat also explainsthe auray of the PS obtained using the approximation Eq. (10) for ��(r), whih anbe seen by omparing the asymptoti values of the integrals in Figure 2 with P�(0) inFigure 1. Note that for � = 1 the distortion away from linear is relatively weak in thepart of the orrelation funtion whih dominates the integral in J3(r; �), and that there iseven a non-negligible ontribution from the larger sales at whih the orrelation funtionampli�ation is extremely lose to linear.Let us now draw our onlusions. We have alulated the e�et of the distortionat small k of a biased PS relative to an underlying PS, whih we have shown to be aninevitable e�et of biasing on osmologial models. In partiular we have used a simpli�edmodel PS and the simplest (but referene) threshold biasing sheme of Kaiser. The latter isnot a realisti model of biasing for various reasons, most notably beause of the extremelystrong non-linear distortion of the two-point orrelation funtion at small sales whilst theobserved ratio of orrelation between galaxies and lusters is approximately linear. Ourresults however should be qualitatively orret for any biasing sheme and standard CDMtype model. The only thing whih we expet to depend on the biasing sheme is thefuntional form of the PS to the right of the turn-over (for k > k), and orrespondingly theshape of the orrelation funtion at small sales, whih will only make a minor numerialhange to our alulation. The essential feature of biasing whih brings about the e�et wehave disussed - a non-linear ampli�ation of the orrelation funtion - will be ommon to



{ 8 {any biasing model. In fat the onverse of what we have argued is that any biasing shemewhih is stohasti (i.e. any proedure for seleting sites for objets whih is probabilisti)must give suh a non-linear distortion of the orrelation funtion for osmologial models:if the orrelation funtion were ampli�ed linearly at all sales, the asymptoti behaviour ofthe variane will be sub-Poissonian instead of Poissonian.We �nally draw two onlusions with respet to the omparison of osmologial modelswith observational data. In order to make the link to observations of galaxies or lusters,urrent theories make use normally of biasing in one form or another. Invariably howeverthe measured PS from observations is �t to a model spetrum whih is just a resaled darkmatter PS (for a reent example see Lahav et al. 2002). Our �rst onlusion is that suh abehaviour annot be obtained by biasing as the PS is not linearly ampli�ed neither at smallnor at large wavenumbers. Our seond onlusion is that it will be very useful to measurenot just the PS at small k, but also the real spae orrelation funtion at large distanes.Invariably only the �rst is onsidered in analysis of observations of galaxy distributions atlarge sales, beause, it is argued, it is the natural probe given that osmologial models ofstruture formation are formulated in k spae. We have seen however that biasing leads to adistortion of the underlying dark matter PS, while (insert panel of Figure 2) the orrelationfuntion at suÆiently large distane remains undistorted. In partiular for standard modelswith a H-Z PS at small k, the leanest way to detet this behaviour in biased objets isby looking at the orrelation funtion at large sales, whih should maintain the behaviour��(r) � �r�4 assoiated with the small k behaviour of the underlying dark matter PS. Toaddress the viability of measuring this behaviour in urrent and forthoming surveys oflarge sale struture requires in partiular the detailed treatment of both the passage tothe disrete distribution (we have treated here always ontinuous density �elds), and thequestion of the variane of estimators of �(r).F.S.L. thanks the PostDotoral support of a Marie Curie Fellowship. R.D. and F.S.L.aknowledge support of the Swiss National Siene Foundation. This work is supported bythe TMR network FMRXCT980183 on Fratal Strutures and Self-Organization.REFERENCESBek, J., 1987, Ata Mathematia, 159, 1-878282.Coles, P., 1993 Mon.Not.R.aad.So, 264, 1065Gabrielli, A., Sylos Labini, F., and Durrer, R., 2000, Astrophys.J. Letters, 531, L1Gabrielli, A., Joye, M. and Sylos Labini, F., 2002, Phys.Rev., D65, 083523
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Fig. 1.| The PS P�(k) derived from the biased orrelation funtion ��(r) for values ofthe threshold � = 1; 2; 3 is shown. The underlying orrelation funtion whih gives �(r) isthat derived from the P (k) = Ake�k=k and the approximation given in Eq. (10) for �� isused. The lear distortion of the PS at small k is seen, the \turn-over" in the underlyingPS essentially disappears already for � = 1. The onstants k and A are �xed by �(0) = 1and the requirement that �(r) = 0 at r = 38 Mp. The latter is taken as in a typial CDMmodel (see e.g. Padmanabhan 1993). We ould alternatively �x the wavenumber at themaximum of the PS.
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