
Adiabati
 perturbations in pre-big bang models:mat
hing 
onditions and s
ale invarian
eRuth Durrer and Filippo VernizziD�epartement de Physique Th�eorique, Universit�e de Gen�eve, 24 quai E. Ansermet, CH-1211 Gen�eve 4, SwitzerlandAt low energy, the four-dimensional e�e
tive a
tion of the ekpyroti
 model of the universe is equiva-lent to a slightly modi�ed version of the pre-big bang model. We dis
uss 
osmologi
al perturbationsin these models. In parti
ular we address the issue of mat
hing the perturbations from a 
ollapsingto an expanding phase. We show that, under 
ertain physi
ally motivated and quite generi
 assump-tions on the high energy 
orre
tions, one obtains n = 0 for the spe
trum of s
alar perturbations inthe original pre-big bang model (with vanishing potential). With the same assumptions, when anexponential potential for the dilaton is in
luded, a s
ale invariant spe
trum (n = 1) of adiabati
s
alar perturbations is produ
ed under very generi
 mat
hing 
onditions, both in a modi�ed pre-bigbang and ekpyroti
 s
enario. We also derive the resulting spe
trum for arbitrary power law s
alefa
tors mat
hed to a radiation dominated era.I. INTRODUCTIONObservational 
osmology has made enormous progressduring the last 
ouple of years. Most observations seemto agree with the fa
t that the total energy densityof the universe � is very 
lose to its 
riti
al value �
,
 � �=�
 = 1, and it is distributed in the form of pres-sureless dark matter �m and dark energy with negativepressure, P� <� �0:6��, 
 = 
�+
m = 1 with 
� ' 0:7and 
m ' 0:3. The 
lustering properties of the observeduniverse agree with a s
ale invariant spe
trum of adia-bati
 s
alar perturbations, n ' 1, with or without a ten-sor 
omponent. Many re
ent 
osmologi
al experimentsmeasure one or several of these parameters. Most no-tably 
osmi
 mi
rowave ba
kground anisotropy experi-ments [1{3℄, supernovae type Ia measurements [4,5℄, 
lus-ter abundan
es [6℄, analysis of the observed galaxy distri-bution [7,8℄, and of pe
uliar velo
ities [9℄ (see also [10℄).Although the presen
e of dark energy, 
� 6= 0, remainsvery mysterious, in
ation explains why 
 = 1 and n ' 1.The basi
 idea of in
ation is simple: If the energydensity in a suÆ
iently smooth pat
h of spa
e is dom-inated by the potential energy of some slowly varyings
alar �eld, this pat
h will expand very rapidly and evolveinto a large, very homogeneous, isotropi
 and 
at uni-verse. During this rapid expansion, the 
ausal horizonbe
omes mu
h larger than the Hubble horizon, alleviat-ing the horizon problem. In addition, quantum 
u
tua-tions in the s
alar �eld get ampli�ed and grow larger thanthe Hubble s
ale, H�1. They then `freeze in' as 
lassi
al
u
tuations in the energy density or, equivalently, in thegeometry, whi
h obey a s
ale invariant spe
trum.This standard pi
ture of in
ation does not emerge in adire
t way from any modern high energy physi
s model.This makes it very 
exible whi
h is probably one of themain reasons why the basi
 pi
ture has survived for solong. If a given model does not work, one is free toslightly 
hange the potential or other 
ouplings of thes
alar �eld. This has lead to many di�erent models of

in
ation presented in the literature [11℄. This 
exibilitymay be 
onsidered either as a strong point or as a draw-ba
k. It is in any 
ase 
ertainly very important to inves-tigate whether there are alternative explanations of thesize and the 
atness of the universe and of the observeds
ale invariant spe
trum of adiabati
 s
alar 
u
tuationsin the 
ontext of modern high energy physi
s.In this paper we dis
uss two attempts in this dire
-tion whi
h are both motivated by string theory: the pre-big bang model [12,13℄ and the ekpyroti
 model [14{16℄.Even though the high energy pi
tures of these models arevery di�erent, the four dimensional low energy e�e
tivea
tions agree and the models predi
t the same 
osmol-ogy at low energy up to possible high energy 'reli
s'. Inthe following we 
all a model of the universe a 'pre-bigbang model' if it 
ontains a low 
urvature phase beforethe big bang. In this sense also the ekpyroti
 s
enario isa pre-big bang model.The original pre-big bang model 
onsists just of thedilaton and the metri
, the two low energy degrees of free-dom whi
h are present in every string theory. The pres-en
e of the dilaton leads to a new symmetry 
alled 's
alefa
tor duality' of 
osmologi
al solutions: To ea
h solutionfor the s
ale fa
tor a(t) 
orresponds a solution a(t)�1, ora(�t)�1 if 
ombined with time reversal symmetry. If a(t)is an expanding, de
elerating solution, a(�t)�1 � â(t̂) isan expanding a

elerating solution, sin
edâdt̂ = 1a2 dadt > 0; (1)and d2âdt̂2 = � 1a2 d2adt2 + 2a3 �dadt�2 > 0: (2)The Hubble parameter Ĥ of this 'super-in
ating' solu-tion [12,13℄ grows as t̂ = �t in
reases. The solution ap-proa
hes trivial 
at spa
e and vanishing 
ouplings in thepast, t̂! �1, and a 
urvature singularity in the future,t̂! 0�.1



In this pre-big bang model, one supposes that 
ur-vature and strong 
oupling 
orre
tions of string the-ory 'bend' the evolution away from this singularity intoan expanding, de
elerating radiation dominated Fried-mann model. Several studies of toy models where this
an be a
hieved have been presented in the literature(see [17{20℄), but they usually just represent se
ond or-der 
orre
tions to the 
urvature and the 
oupling, andnot full string theory solutions.It has been shown [21℄ that a pure dilaton withoutpotential 
annot lead to a s
ale invariant spe
trum ofadiabati
 s
alar 
u
tuations. For this reason it has beenproposed that 
u
tuations may be indu
ed by axions viathe so 
alled seed me
hanism [22℄. Axions naturally dis-play a s
ale invariant spe
trum. However, the axion seedperturbations are of iso
urvature nature, whi
h is not inagreement with present observations. Me
hanisms whi
hmay 
onvert the axioni
 iso
urvature 
u
tuations intoadiabati
 ones are 
urrently under investigation [23℄.In this paper, we will instead repeat the basi
 argu-ments of [21℄, but we will show that the spe
trum ofperturbations whi
h one obtains in the radiation domi-nated post-big bang phase has the spe
tral index n = 0and not n = 4 as 
laimed in [21℄. We shall also show thatwhen adding an exponential potential to this a
tion, oneobtains a s
ale invariant spe
trum, n = 1.The high energy pi
ture behind the ekpyroti
 s
enario,the se
ond pre-big bang model dis
ussed in this paper, isquite di�erent. There one starts with a �ve-dimensionaluniverse 
ontaining two perfe
tly parallel 3-branes atrest [14,15℄, in a BPS state. One then supposes that thetwo branes approa
h ea
h other with some very small ini-tial velo
ity. It is argued that, from the four-dimensionalpoint of view of an observer on one of the branes, thissituation 
orresponds to a 
ollapsing Friedmann universewith a s
alar �eld, whi
h is related to the distan
e be-tween the two branes before the 
ollision. After the 
ol-lision the solution is supposed to turn into a radiationdominated Friedmann [14,15℄ (see [24{26℄ for 
riti
s).It is assumed that the s
alar �eld is minimally 
ou-pled and has a negative exponential potential V whi
hdes
ribes the attra
tion of the two branes. The s
alar�eld potential is due to non-perturbative string 
orre
-tions but has not been derived from any string the-ory, so far. In Refs. [15,16℄ it has been argued that,if V = �V0 exp(�
') at low 
urvature, with 
 � 1, as
ale invariant spe
trum of s
alar perturbations develops.This result has been 
riti
ized in Refs. [27{32℄, where aspe
tral index n = 3 has been obtained. We shall showhere that, even if the detailed arguments put forwardin Refs. [15,16℄ might not be valid, under quite generi
(although non trivial) assumptions one does obtain thespe
tral index n = 1.Like the original pre-big bang, this model starts outat low 
urvature and develops a singularity in the future.Like there, the belief is that string theory 
orre
tions will


hange the behavior of the s
ale fa
tor and the s
alar �eldaway from this singular evolution. In the �ve dimensionalpi
ture, this apparent 'singularity' 
orresponds to the 
ol-lision of the two branes whi
h then should result in theprodu
tion of radiation leading to a thermal, radiationdominated Friedmann model. We 
all the phase beforethe high 
urvature regime the 'pre-big bang phase' andthe regime after the big bang the 'post-big bang'.Even if the string theory 
orre
tions, whi
h must be-
ome important 
lose to the singularity, are not fully un-derstood, these models are promising 
andidates for al-ternatives to in
ation: They 
ertainly do not su�er froma horizon problem sin
e their age 
an be arbitrarily largeand is not related to the Hubble time. They do not dy-nami
ally imply 
atness, but this 
omes from very nat-ural va
uum (for the original pre-big bang) or BPS (forthe ekpyroti
 model) initial 
onditions whi
h are posed atlow 
urvature. Nevertheless, it is well known that thesemodels are not very eÆ
ient in smoothing out 
lassi
al in-homogeneities [33℄ and global anisotropies [34℄, and thismay remain a problem. In the most re
ent version ofthe ekpyroti
 model, a 
y
li
 universe, 
atness is also a
onsequen
e of a period of exponential expansion in theprevious 
y
le [35℄. A quite fair 
omparison of the ekpy-roti
 s
enario and ordinary in
ation is given in Ref. [36℄.In this paper we do not address the important debate ofthe 
atness problem, but we investigate the spe
trum ofperturbations generated during the pre-big bang phase.The aim of this paper is to learn as mu
h as possibleabout su
h models without spe
ifying the details of thehigh energy phase.In the next se
tion we write down the modi�ed pre-bigbang a
tion and the a
tion of the ekpyroti
 model. Weshow that they are related by a 
onformal transformationand we solve the equations of motion in both Einsteinand string frame. In Se
tions III and IV, whi
h are theheart of this paper, we dis
uss s
alar perturbations andthe mat
hing 
onditions between a 
ontra
ting, s
alar�eld dominated phase and an expanding, radiation dom-inated phase. In parti
ular we show that, under 
ertainwell de�ned 
onditions, without knowing the details ofthe mat
hing, one expe
ts n = 1 for the modi�ed pre-bigbang and the ekpyroti
 model. In Se
tion V we gen-eralize our results to arbitrary power law s
ale fa
torsmat
hed to a radiation dominated era. We end with our
on
lusions and an outlook.II. THE BACKGROUNDThe low energy e�e
tive a
tion of the original pre-bigbang model is simply gravity with a dilaton �. Herewe modify it by allowing for a dilaton potential. Weassume that we have a four-dimensional e�e
tive theory,any extra dimensions being frozen at a very small s
ale.The low energy a
tion for this theory is therefore [37℄2



Ŝ = 12�2 Z dx4p�ĝe�� hR̂+ (r̂�)2 � 2V̂ (�)i ; (3)with �2 = 8�G = 1=M2P , where MP = 2:4 � 1018GeVis the redu
ed Plan
k mass. This a
tion is written inthe so-
alled string frame. The hat ^ indi
ates that the
orresponding quantities have to be 
omputed using themetri
 in this frame. Therefore ĝ, R̂, r̂, and V̂ are thedeterminant of the metri
, the Riemann s
alar, the 
o-variant derivative, and the dilaton potential, respe
tively,in the string frame. With this a
tion � is dimensionlessand the usual s
alar �eld with dimension of mass is sim-ply MP�. Correspondingly, the potential V̂ has dimen-sions of (energy)2 and the usual potential is M2P V̂ . Weuse the metri
 signature �+++.It is possible to rewrite the a
tion in Eq. (3) in a 
on-formally related (and physi
ally equivalent) frame. If weperform a 
onformal transformation g�� = 
2ĝ�� thea
tion is modi�ed toS = 12�2 Z dx4p�g
�2e�� �R + (r�)2++6(r ln
)2 + 6(r� � r ln
)� 2
�2V̂ (�)i : (4)When 
hoosing 
 = exp(��=2), we 
an obtain the Ein-stein frame a
tion,SE = 12�2 Z dx4p�g �R� 12(r�)2 � 2V (�)� ; (5)where g�� = e��ĝ�� and V (�) = e�V̂ (�) (6)are the metri
 and the s
alar �eld potential, respe
tively,in the Einstein frame. Eq. (5) is the a
tion for a min-imally 
oupled s
alar �eld. Noti
e that the dilaton hasnot been 
hanged by the 
onformal transformation. We
an also allow for a res
aling of the s
alar �eld, ' = �=�,so thatSE = 12�2 Z dx4p�g �R� 12�2(r')2 � 2V (')� : (7)String 
osmology and, in parti
ular, the original pre-big bang s
enario, has been developed based on a
tion (3)with the dilaton potential set to zero. In our modi�edpre-big bang model we will allow a non-zero potential.Sin
e we want to obtain here the usual s
alar �eld a
-tion presented in [14℄ starting from the string 
osmol-ogy a
tion (3), we have to require �2=2 = 1. This �xes� = �p2. In terms of the new �eld ' the Einstein framea
tion now be
omesSE = 12�2 Z dx4p�g �R� (r')2 � 2V (')� : (8)For an exponential potentialV̂ (�) = e��V (�) = �V0e��; (9)

where � = �(1 + 
=�) with 
� 1, or equivalently forV (') = �V0e�
'; (10)we obtain pre
isely the low energy e�e
tive a
tion ofthe ekpyroti
 s
enario [15,16℄. The interpretation of the�eld ' is however quite di�erent. There ' is related tothe brane separation [15℄. At early times when the twobranes are separated by a large distan
e, the s
alar �eld' is very big and positive, ' ! 1. Therefore the rela-tion between the string 
osmology dilaton � whi
h tendsto �1 for very early times, t ! �1, and the �eld ' ofthe ekpyroti
 s
enario is � = �p2', � = �p2. Sin
e
 � 1 and � is negative, � > 0 so that the potential (9)goes asymptoti
ally to zero for very negative dilaton (atearly time), and does not spoil the initial 
onditions ofthe pre-big bang.Varying Eq. (8) with respe
t to ' we obtain the equa-tion of motion2'� V (');' = 2'� 
V0e�
' = 0; (11)where 2 = r�r�. Varying the a
tion with respe
t tothe metri
 yields the Einstein equations,G�� = �2T��; (12)where T�� is the energy-momentum tensor of the s
alar�eld,�2T�� = r�'r�'� 12g�� �(r')2 + 2V (')� : (13)We want to 
onsider a 
at homogeneous and isotropi
universe with metri
 ds2 = �dt2 + a2dx2. In this 
aseEq. (11) be
omes�'+ 3H _'+ V;' = 0; (14)where the over-dot is a derivative with respe
t to the 
os-mi
 time t, and (12) turns into the Friedmann equation,H2 = �23 � = 16 _'2 + 13V ('): (15)Eqs. (14,15) have the `ekpyroti
 solution' [15℄a(t) = (�t)p; '(t) = 2
 ln(�Mt); (16)with p = 2
2 ; M2 = V0p(1� 3p) : (17)At �rst it may seem strange that the enthalpy w � P=�and the sound speed 
2s � _P= _� are mu
h larger than one,
2s = w � 1, for small values of p (large 
),w = (1=2) _'2 � V(1=2) _'2 + V = 
2s = 23p � 1: (18)3



On the other hand, as long as we 
on
entrate on a timeinterval bounded away from the singularity, we 
an al-ways split the potential into V = V1(')+V2, where V2 isa very negative 
onstant and V1 is always positive. Inter-preting V2 as a negative 
osmologi
al 
onstant, we have�1 < w1 = (1=2) _'2 � V1(1=2) _'2 + V1 < 1; (19)as well as�1 < 
21 < 1 and w2 = 
22 = �1. However, sin
e
1 = �1=(�1 + V2) � 1 and 
2 = V2=(�1 + V2) � �1,the 'e�e
tive' w = w1
1 � 
2 
an be
ome mu
h largerthan 1 without implying any pathologi
al or even a
ausalbehavior of the s
alar �eld '
uid'.We shall see that the perturbations generated in this
ollapse phase a
quire a s
ale invariant spe
trum only ifthe 
ollapse pro
eeds very slowly, i.e. when 0 < p � 1.In the ekpyroti
 s
enario the 
ollapse is followed by anexpanding phase. Shortly before the boun
e at t ! 0�,when the s
alar �eld, after having be
ome negative, goesto minus in�nity, ' ! �1, the shape of the potentialhas to 
hange from the exponential expression, and turnupwards in su
h a way that V ! 0 for '! �1.Let us give here, for 
ompleteness, the equations de-rived from the string frame a
tion Eq. (3), where the po-tential V̂ (�) is given by Eq. (9), and their solutions. Byvarying this a
tion with respe
t to the �eld � we obtain2r̂�r̂��� (r̂�)2 + R̂� 2V̂ + 2V̂;� = 0: (20)Varying the a
tion with respe
t to ĝ�� yieldsĜ�� = �r̂�r̂��� 12 ĝ�� h(r̂�)2 � 2r̂�r̂��+ 2V̂ i :(21)For a homogeneous and isotropi
 universe with spatially
at se
tions, Eqs. (20) and (21) redu
e to��+ 3Ĥ _�� _�2 + 2V̂ + 2V̂;� = 0; (22)Ĥ2 � Ĥ _�+ 16 _�2 � 13 V̂ = 0; (23)where the over-dot here refers to 
osmi
 time in the stringframe, t̂.To �nd a solution to these equations we 
an simplytransform the solution found in the Einstein frame usingthe relationsdt̂ = e�=2dt = e�'=p2dt; â = e�=2a = e�'=p2a: (24)The �rst relation gives�M̂t̂ = (�Mt)1�pp; (25)where M̂ = M(1 � pp). For small p, p � 1, t̂ is very
lose to t and, as long as p < 1, t̂ grows from �1 to 0with t. Inserting the ekpyroti
 solutions in expressions(24) for â and �, we obtain

â = (�M̂ t̂)�pp; (26)and � = �p2' = � 2pp1�pp ln(�M̂ t̂); (27)up to possible integration 
onstants whi
h we have �xedto obtain â = a and t̂ = t in the limit p! 0.In this se
tion we have �rst shown that, from a purelyfour-dimensional point of view the ekpyroti
 s
enario isequivalent to the pre-big bang s
enario when the dila-ton has an exponential potential that tends to zero atsmall 
oupling. In doing so we have presented the equa-tions for these models, written in the string and Einsteinframes, and we have written down the solutions that holdin either frames. These solutions are useful for dis
ussingperturbations, whi
h is the subje
t of the next se
tion.III. SCALAR PERTURBATIONSWe now want to study linear perturbations of a generi
universe dominated by a minimally 
oupled s
alar �eldwith an exponential potential or an adiabati
 
uid withw = 
2s = 
onstant. This last 
ondition is automati
allysatis�ed for a s
alar �eld with exponential potential.As dis
ussed in the previous se
tion, pre-big bang ex-pansion in the string frame is equivalent to 
ontra
tion inthe Einstein frame, where the dilaton is minimally 
ou-pled. Therefore, pre-big bang with a dilaton 
orrespondsto a 
ollapsing universe dominated by a minimally 
ou-pled s
alar �eld and is in
luded in our study. It is im-portant to note that physi
al quantities, like the spe
tralindex or the perturbation amplitude are frame indepen-dent but they are more easily 
omputed in the Einsteinframe where linear perturbation theory is well established(see, e.g. the reviews [38,39℄).To dis
uss perturbations we work mainly in 
onfor-mal time �, whi
h is related to the physi
al time t byad� = dt. The derivative with respe
t to 
onformal timeis denoted by a prime, 0. For the sake of simpli
ity wenegle
t a possible 
urvature of the spatial se
tions. In a
at universe dominated by a 
uid or a s
alar �eld withenergy density � and pressure P the ba
kground Fried-mann equations areH2 = �23 �a2; (28)H0 = ��26 (�+ 3P )a2 = �H2 1 + 3w2 ; (29)where H = a0=a.If the energy density is dominated by a s
alar �eld, wehave �2� = 12a2'02 + V ('); (30)�2P = 12a2'02 � V ('); (31)4



and w + 1 = '023H2 : (32)When w = 
2s = 
onstant, the solution to the Friedmannequation is a power law. In terms of 
onformal time � itis given bya = ���� ��1 ����q ; q = 21 + 3w; H = q� ; H0 = � q�2 ; (33)where we have 
hosen the normalization 
onstant �1 su
hthat ��1 < 0 is a very small negative time at whi
h(higher order) 
orre
tions to the s
alar �eld a
tion be-
ome important. Sin
e a(�1) = 1, �1 = a(�1)�1 � t1
orresponds to a physi
al quantity, e.g. the string s
alein the pre-big bang model, 1=�1 � 1017 GeV. ComparingEq. (33) with the ekpyroti
 solutions in terms of physi
altime, we �nd q = p=(1� p).Let us now perturb the metri
. In longitudinal gaugeand in absen
e of anisotropi
 stresses, as it is the 
ase forperfe
t 
uids and for s
alar �elds, s
alar metri
 pertur-bations are given byds2 = a2(�)[�(1 + 2	)d�2 + (1� 2	)Æijdxidxj ℄: (34)In this gauge, the metri
 perturbation 	 
orresponds tothe gauge invariant Bardeen potential. Without gauge�xing the latter is given by a more 
ompli
ated expres-sions of the metri
 perturbations [38{40℄. The s
alar �eld' is also perturbed so that it 
an be divided into '(�)satisfying the ba
kground equation (14), and a perturba-tion Æ'(�;x).We now want to 
ompute the spe
trum of metri
perturbations generated from va
uum initial 
onditions.Generi
ally, 	 satis�es the equation [38,39℄	00 + 3H(1 + 
2s)	0 +(2H0 + (1 + 3
2s)H2 ���)	 = 0: (35)For adiabati
 perturbations of a 
uid, one �nds � = 
2s,where 
2s is the adiabati
 sound speed, while for a simples
alar �eld one �nds � = 1 (see, e.g. Ref. [38℄). Hen
efor a non-vanishing potential, V 6= 0 and hen
e 
2s 6= 1,simple s
alar �eld perturbations are not adiabati
 in athermodynami
 sense.If we restri
t ourself to the 
ase, w = 
2s = 
onstant,the mass term in Eq. (35), 2H0+(1+3
2s)H2, vanishes bythe use of the ba
kground Einstein equations, Eqs. (28)and (29). Thus, for s
alar perturbations we obtain nearlythe same equation as for tensor perturbations, whi
h we
an write in terms of Fourier modes as	00 + 3H(1 + w)	0 +�k2	 = 0: (36)This equation is valid in both phases of the universe,before and after the big bang, depending on the 
orre-sponding value of w and �. We 
all 	� the solutions

obtained in the pre-big bang 
ollapsing phase and 	+the one obtained in the radiation dominated phase. Inthe following we will work in Fourier spa
e.Let us now de�ne the variable u in order to simplifyEq. (36) [38℄. We setu = MPH a	: (37)Eq. (36) 
an then be written in terms of u asu00 + ��k2 � a(1=a)00�u = 0: (38)Let us now suppose that the 
ollapsing (or pre-bigbang) phase � < ��1 is dominated by the s
alar �eldso that � = 1. Eq. (38) then has the general solutionu = (kj�j) 12 [C(k)H(1)� (k�) +D(k)H(2)� (k�)℄; (39)with � = q + 1=2. Here H(i)� is the Hankel fun
tion ofthe i-th kind and of order �. One 
an generalize thissolution to the 
ase of a 
uid dominated universe simplyby repla
ing k� by 
sk�. This solution has to be gener-ated from the in
oming va
uum, so we assume that, forkj�j � 1, lim�!�1u = e�ik�k3=2 : (40)This assumption 
orresponds to normalizing the 
anoni-
al variable whi
h diagonalizes the perturbed se
ond or-der a
tion (
alled v in [38℄) or equivalently the perturba-tion of the s
alar �eld, Æ', to quantum va
uum 
u
tua-tions. With this normalization, the H(1)� mode, whi
happroa
hes exp(ik�) for kj�j � 1, has to be absent,C(k) = 0, and the solution to Eq. (36) be
omes	�(k; �) = qMPa�D(k)(kj�j)1=2H(2)� (k�); (41)where D(k) =p�=2k�3=2; (42)modulo some irrelevant phase.At late time kj�j � 1, this solution approa
hes	�(k; �) ' A�(k)Ha2 +B�(k); (43)where A� and B� are determined by the exa
t solution(41) (up to logarithmi
 
orre
tions),A�(k) ' 2��(�)MP �q1 k���1; (44)B�(k) ' �q1MP2��(�+ 1)k��1 : (45)The result (43) 
an be found dire
tly by solving Eq. (36)negle
ting the k2-term. The full solution is however5



needed to determine the pre-fa
tors A�(k) and B�(k)from the va
uum initial 
ondition. The A�-mode growsduring the pre-big bang phase and be
omes mu
h largerthan the 
onstant B�-mode.In the original pre-big bang, where the dilaton has nopotential, i.e. w = 
2s = 1 and hen
e q = 1=2, we have � =1. The A�-mode then has an n = 0 spe
trum, jA�j2k3 /k�1 / kn�1, while the B�-mode 
orresponds to n =4, jB�j2k3 / k3 / kn�1. If we have an exponentialpotential as for the ekpyroti
 model su
h that p � 1,and therefore q � 1, we have � ' 1=2 and hen
e jA�j2k3is k-independent. The A�-mode has a s
ale invariantspe
trum, n = 1, while jB�j2k3 / k2, whi
h 
orrespondsto a blue spe
trum, n = 3.If the A�-mode has a red spe
trum, as in the originalpre-big bang s
enario, we need to dis
uss its amplitude onlarge s
ales. It has been shown in [21℄ that a red (n = 0)A�-mode does not invalidate linear perturbation theoryduring the pre-big bang phase. Geometri
ally meaningfulquantities like C��
ÆC��
Æ=R2 � �2, where C��
Æ is theWeyl tensor and R is the 
urvature s
alar, remain small.In fa
t �2 / j(k�)2	j2k3. We 
an therefore 
ontinueto use the Bardeen potential even though it may be
omelarge for 
ertain k-modes. However, a red spe
trum leadsto serious problems in the subsequent radiation era wherethe Bardeen potential is 
onstant on super horizon s
alesand �2 grows larger than unity at horizon entry, k� � 1,for large s
ales.In the modi�ed pre-big bang models dis
ussed here,this problem does not o

ur, sin
e A� has a s
ale invari-ant spe
trum.At very early time after the big bang, in the radiationdominated phase, we 
an negle
t the term �k2 = k2=3in Eq. (38). We then have the same type of solution forsuper horizon modes,	+(k; �) = A+(k)Ha2 +B+(k): (46)In the next se
tion we will work out the mat
hing 
on-ditions between this solution and Eq. (43), in order todetermine the 
oeÆ
ients A+ and B+.IV. MATCHING CONDITIONSWe suppose that the solution given in Eq. (43) holdsuntil � = ��1, where higher order 
orre
tions begin toplay a role. These 
orre
tions may be quite di�erent forthe modi�ed pre-big bang model and for the ekpyroti
model, but in both 
ases they are supposed to lead overto a radiation dominated Friedmann model. Here we donot want to argue about the nature of the 
orre
tionsand how to determine them from string theory (even ifthis probably has to be 
onsidered as the most diÆ
ultand the main problem of these models), but we studywhi
h statements 
an be made under 
ertain assump-tions on the transition. For this we negle
t the details

of the transition and mat
h our pre-big bang solution at� = ��1 to a radiation dominated universe at � = +�1.In other words we suppose that the sli
e of spa
etime`squeezed' between ��1 and �1 is so thin 
ompared tothe s
ales we are interested in, that it 
an be repla
ed bya spa
elike hypersurfa
e. Therefore we 
an 
onsistentlyuse the thin shell formalism and apply the Israel jun
tion
onditions [41℄ for surfa
e layers on the � = ��1 hyper-surfa
e, in order to mat
h the spa
etime manifold M�before the big bang to the spa
etime manifoldM+ after.A. Mat
hing the ba
kgroundBefore spe
ifying the mat
hing of the perturbations,we have to mat
h the ba
kgrounds, i.e. we have to imposethe Israel jun
tion 
onditions on the s
ale fa
tor a and its�rst derivative. These 
onditions require the 
ontinuityof the indu
ed metri
,q�� = g�� + n�n� ; (47)where n� is the normal to the � = 
onstant hypersurfa
e,on the mat
hing hypersurfa
e � = ��1. Thus we have[q�� ℄� = 0; (48)where we de�ne[h℄� � lim�&�1 (h(�)� h(��)) � h+ � h�; (49)for an arbitrary fun
tion h(�). Here � & �1 indi
ates theright hand limit, i.e. � is de
reasing towards �1.Our 
onformal time 
oordinate � itself jumps,[�℄� = 2�1: (50)This simply means that the 
oordinates ofM� andM+are well de�ned only on the intervals � 2 (�1;��1℄ and� 2 [�1;1), respe
tively. The limit (49) is well de�nedfor every fun
tion whi
h is 
ontinuous, monotoni
 andbounded in open intervals (��2;��1) and (�1; �2), with�2 > �1, even if their value at ��1 is not de�ned.Eq. (48) implies a+ = a� = a�. A

ording to our nor-malization of the s
ale fa
tor, Eq. (33), a� = 1. We nev-ertheless prefer to leave a� in all the expressions whereit appears, so that its normalization 
an be 
onveniently
hanged.The se
ond Israel jun
tion 
ondition 
on
erns the ex-trinsi
 
urvature K�� on the mat
hing hypersurfa
e withnormal n�,K�� = 12(q �� r�n� + q �� r�n�): (51)In a Friedmann universe this isKij = �� a0a2� Æij = �Ha Æij : (52)6



The derivative a0 
hanges sign in the transition from a
ontra
ting to an expanding phase. Hen
e, the extrinsi

urvature is dis
ontinuous in the four-dimensional, lowenergy pi
ture if we simply 'glue' the 
ontra
ting phaseto the expanding phase with opposite sign for a0 and
onformal time � = +�1. On the other hand, the Israeljun
tion 
onditions allow for the existen
e of a surfa
estress tensor, [Kij ℄� = �2Sij ; (53)whi
h in our 
ase is non vanishing and diagonal, and itis 
hara
terized by a negative surfa
e tension Ps < 0,[Kij ℄� = �H+ �H�a� Æij = �2PsÆij : (54)Within the four dimensional pi
ture we have no expla-nation for this surfa
e tension; it has to be introdu
edby hand in order for the extrinsi
 
urvature to jump.Eq. (54) is a possibility to 'es
ape' the violation of theweak energy 
ondition, � + P < 0, whi
h is needed fora smooth transition from 
ollapse to expansion. Thishas been one of the obje
tions to the ekpyroti
 s
enarioin Ref. [42℄. Of 
ourse for � = �1 the 
ombination�+P+PsÆ(���1) be
omes negative, whi
h, in the widestsense, 
an also be interpreted as an 'e�e
tive' violation ofthe weak energy 
ondition. Clearly, this is the simplestway of 
onne
ting a 
ontra
ting phase to an expandingphase, but it is relatively 
lose to an approa
h motivatedfrom the �ve-dimensional pi
ture, where the singularityat a = 0 be
omes a narrow 'throat' [15℄. Here we repla
ethis throat by a sti� '
ollar' whose length we negle
t (seealso [16℄). B. Mat
hing the perturbationsLet us now perturb the Israel jun
tion 
onditions (48)and (53). Instead of 
onsidering the � = �1 hypersurfa
ewe want, in general, to 
onsider a hypersurfa
e whi
his linearly perturbed from it, de�ned by ~� = � + T =�1, where T is a small perturbation. The jump is nowrealized on the perturbed hypersurfa
e ~� = �1,[h℄� � lim~�&�1 (h(~�)� h(�~�)) � h+ � h�; (55)and in prin
iple we 
annot say anything about the 
on-tinuity of T , whi
h is also allowed to jump,[T ℄� = [~� � �℄� = 2�1 � [�℄�: (56)Nonetheless, this jump should be always small as it willbe
ome 
lear below.We assume that the old 
oordinates (�; xi) are those oflongitudinal gauge, so that the metri
 perturbations aregiven by Eq. (34), but we want to determine the pertur-bation of the Israel jun
tion 
onditions in the 
oordinate

system (~�; xi) on the surfa
es ~� = 
onstant. The metri
in this 
oordinate system is given by (see e.g. [39℄)d~s2 = a2(~�)f�(1 + 2	� 2(HT + T 0))d~�2 + 2T;i d~�dxi+(1� 2	� 2HT )Æijdxidxjg: (57)Hen
e the perturbation of the normal to the ~� = 
onstantsli
es is~Æn = 1af(�	+HT + T 0)�~� � T;i �ig; (58)and the extrinsi
 
urvature is given by [43℄~ÆKij = 1a �	0 +H	+ (H0 �H2)T	 Æij + T ;i;j : (59)The mat
hing 
onditions for the perturbations are ob-tained by perturbing Eqs. (48) and (53) on the ~� = �1hypersurfa
e. They be
ome[~Æqij ℄� = 0; [~ÆKij ℄� = �2~ÆSij : (60)From the above expressions for ~Æg�� and ~Æn�, the 
onti-nuity of the perturbation of the indu
ed metri
 Æqij onthe ~� = �1 hypersurfa
e leads to[	 +HT ℄� = 0: (61)For reasons that be
ome 
lear below, we assume in thefollowing that T = ~� � �, the lapse of time between theba
kground value � and the perturbed value ~�, remains asmall perturbation on large s
ales. This implies that also[T ℄� has to remain small. What is the meaning of 'smallperturbation' in this 
ontext? On
e a gauge is �xed, theBardeen potential 	 is the only degree of freedom 
har-a
terizing the perturbations. For dimensional reasons, itis natural to expe
t T to be given as a linear 
ombinationof 	 and 	0, in terms ofT = �P (k�)	 + �2Q(k�)	0; (62)where P and Q are polynomials of k�, whi
h may have�=�1 dependent 
oeÆ
ients. Here we assume that thesepolynomials do not 
ontain any negative power of k�, i.e.thatjT=�	j � jT=�2	0j � jP (k�)j+ jQ(k�)j k!0�! �nite: (63)On large s
ales T grows with s
ale at most as 	 or 	0.The reason for this is that we want that the ~� = �1hypersurfa
e does not arbitrarily diverge from the � = �1hypersurfa
e on large s
ales. In other words, we requirethe time at whi
h the boun
e happens to be stable underlarge s
ale perturbations. It is 
lear that this assumptionis not entirely trivial. It limits somewhat the large s
alepower of the `new physi
s' whi
h is needed to 
onvert
ontra
tion into expansion. This new physi
s may notindu
e very strong infrared perturbations, whi
h is veryreasonable and 
on�rmed by numeri
al examples on pre-big bang models [44℄.7



Under this assumption the anisotropi
 term on theright hand side of Eq. (59), �i�jT , is negligible on larges
ales and we shall not dis
uss the possible, but sub-dominant, anisotropi
 surfa
e stresses in what follows.On super horizon s
ales the perturbation of the extrinsi

urvature is dominated by the tra
e part, ~ÆKij = (~ÆK)Æijwith ~ÆK = 1a �	0 +H	+ (H0 �H2)T	 : (64)The mat
hing 
onditions for the perturbations be
omeEqs. (61), and�	0 +H	+ (H0 �H2)T �� = �2a�~ÆPs; (65)where ~ÆPs is the perturbation of the surfa
e tension.The 
ondition posed in Eq. (63) has the following im-portant 
onsequen
es: from Eq. (64) we see that with Tnot being 'redder' than 	 and 	0, also ~ÆK has typi
allythe same k-dependen
e as 	 or 	0. Therefore it remainssmall (of the same order as 	 or 	0 in k) when k�1 tendsto 0, ~ÆK=(H	); ~ÆK=	0 k!0�! �nite: (66)From Eq. (65) we then infer that ~ÆPs may as well havea non-trivial k-behavior but it remains small on larges
ales, ~ÆPs=(H	); ~ÆPs=	0 k!0�! �nite: (67)The k-dependen
e of ~ÆPs may be
ome important whenmat
hing the perturbations but it 
annot dominate onlarge s
ales.The assumptions (63) and its 
onsequen
es (66) and(67) be
ome important in Se
. IVD where we try toderive a general result from these mat
hing 
onditions.First, let us dis
uss some examples.C. Two examplesThe mat
hing 
onditions (61) and (65), whi
h the un-known details of the transition have to determine, �xthe 
oeÆ
ients A+(k) and B+(k). So far, in the liter-ature, for in
ation [43℄ as well as for the ekpyroti
 s
e-nario [27{30,45℄, the hypersurfa
e on whi
h the mat
hinghas been performed was always 
hosen to be the 
onstantenergy hypersurfa
e, � + Æ� = 
onstant. In this 
ase,T = Æ�=�0.The perturbed Einstein equations give (see e.g. [39℄,Eqs. (2.45) and (2.46), and use Æ� = �Ds in longitudinalgauge), Æ�� = � 2H2 �(3k2 +H2)	 +H	0	' �2 �	+H�1	0� ; (68)

on super horizon s
ales. With �0 = 2�(H0 � H2)=H wehave T = Æ�=�0 ' �1H0 �H2 (H	+	0): (69)Eq. (61) then leads to�	� HH0 �H2 (H	+	0)�� � [�℄� = 0; (70)where � is the 
urvature perturbation introdu
ed byBardeen [40℄. Furthermore, using Eq. (69), one �ndsthat ~ÆKij = 0 on large s
ales and we obtain [~ÆK℄� � 0.Hen
e, this mat
hing 
ondition 
an be satis�ed only ifthe surfa
e tension Ps is unperturbed, ~ÆPs � 0.These mat
hing 
onditions are often used in in
ation-ary models to go from the in
ationary phase to the Fried-mann radiation dominated phase. The di�eren
e with in-
ationary models is that here H jumps. Furthermore, 	in general will not be 
ontinuous at the transition, sin
eeven if T is 
ontinuous, HT is not. Noti
e that, eventhough H jumps at the transition from 
ontra
tion toexpansion, and hen
e H0 
ontains a Dira
 delta-fun
tion,[T ℄� is well de�ned as it is a 
ontinuous, bounded, mono-toni
 fun
tion in some open intervals (��2;��1) and(�1; �2).Inserting ansatz (43) and (46) in the 
ontinuity 
ondi-tion for the metri
, Eq. (70), yieldsB+�H0+ � 2H2+H0+ �H2+ � = B��H0+ � 2H2�H0� �H2� � : (71)Clearly, sin
e B+ 
ouples only to B� it inherits theblue spe
trum of B�. This is the main argument ofRefs. [27{32℄ against the ekpyroti
 model. As we shallsee below, this is also the mat
hing 
ondition whi
h leadsto the n = 4 spe
trum in the pre-big bang model givenin Ref. [21℄.There are two subtleties whi
h have been left out inthis argument. The �rst one is obvious: the surfa
e ten-sion Ps, the only ingredient of the high energy theoryin this approa
h, may well also have a perturbation ~ÆPs,requiring [~ÆK℄� = �2~ÆPs 6= 0. If this is the 
ase, themat
hing 
annot be de�ned on the 
onstant energy hy-persurfa
es, T = Æ�=�0. Se
ondly, and more importantly,in this model where 
ontra
tion goes over to expansion,a transition surfa
e with a physi
al surfa
e tension is re-quired and this surfa
e does need not to agree with the�+ Æ� = 
onstant!As a 
on
rete example, let us simply assume that thismat
hing surfa
e is given by the 
ondition that its shearvanishes. This is a
tually just the � = 
onstant surfa
ein longitudinal gauge, hen
e we have T = 0 in Eqs. (61)and (65). The jun
tion 
onditions on super horizon s
alesthen be
ome [	℄� = 0; (72)[H	+	0℄� = a��2ÆPs: (73)8



For our general solutions (43) and (46) this givesA+ = H�H+A� + a2�H+ (B� �B+) (74)B+ = �H+(H0�=H� �H�)�H0+ +H2+2H2+ �H0+ � H�a2� A�+�1 + H�H+ �H2+2H2+ �H0+ �B�+ H+2H2+ �H0+�2a�ÆPs: (75)Alternatively, we 
an express the mat
hing 
onditionsin terms of � given in Eq. (70) and its 
anoni
ally 
onju-gate variable � de�ned in Ref. [46℄, by� = 2M2P k2 a2H	: (76)On super horizons s
ales we have� = �1� H2H0 �H2�B(k); (77)� = 2M2Pk2�A(k) + a2HB(k)� : (78)The perturbation variable � is 
onstant and proportionalto the 
onstant B(k) while its 
onjugate momentum �is proportional to A(k)k2 and 
onstant up to a de
ayingpart proportional to B(k) whi
h will be negligible at thetime ��1, when we impose the mat
hing 
onditions.On the zero shear hypersurfa
e we 
an write the mat
h-ing 
onditions of the perturbations in terms of � and �as [H�℄� = 0; (79)�(H0 �H2)� �22k2a2�� �H��� = a�2ÆPs: (80)Therefore we have�+ = H+H���; (81)�+ = H+H� �H0� �H2�H0+ �H2+� ��+ �22k2a2� �H� � H0� �H2�H0+ �H2+H+���� H+H0+ �H2+ a��2ÆPs: (82)Hen
e, using mat
hing 
onditions on the zero shear hy-persurfa
e, � a
quires, in the radiation dominated era,a mode / ��k�2 / A� whi
h has a spe
tral indexn = 1 � 2q of A�. In terms of A+ and B+ this leadsagain to Eqs. (74) and (75).As A� represents the growing mode during the 
on-tra
ting phase, jA�H=a2j is mu
h larger than jB�j, andthe spe
trum of B+ inherits the s
ale invariant spe
trumof A�. It is easy to see from pure sign 
onsiderationsthat the pre-fa
tor of A� in Eq. (75) does not vanish.

D. A more general treatmentAs we have seen, the important question is to deter-mine the 
orre
t mat
hing hypersurfa
e and the pertur-bation of its tension. This 
an only be done by studyingthe high energy 
orre
tions of a spe
i�
 model. Neverthe-less, we now want to provide an argument why we thinkthat a s
ale invariant spe
trum is obtained in modelswhere the 
ollapsing phase is 
hara
terized by a / (��)qwith q � 1.As we have seen in the above examples, the mat
hing
onditions are �xed by T , given as some 
ombinationof 	 and 	0, and determine 	+ in terms of 	�, 	0�,and of the surfa
e stress perturbation ÆPs. The generalresult we are about to derive is based on one importantassumption, the smallness of T , as given in Eq. (63).As explained there, this assumption pre
isely limits the'infrared power' of the 'new physi
s' needed to 
onvert
ontra
tion into expansion. As we have seen [Eqs. (66)and (67)℄, as a 
onsequen
e the extrinsi
 
urvature andtension perturbations, ~ÆK and ~ÆPs, have the same k-dependen
e as 	 and 	0.This assumption �xes 
ompletely the �nal spe
trum,avoiding any arbitrariness su
h as the one found in [31℄for the ekpyroti
 s
enario. Then, in Eqs. (61) and (65)the k-dependen
e is given entirely in terms of the 
oef-�
ients A and B. As a result, the k-dependen
e of the
oeÆ
ients A+ and B+ is a mixture of the k-dependen
eof A� and B� given by Eqs. (44) and (45),A+(k) = �Ak�(1+�) + �Ak�1+�; (83)B+(k) = �Bk�(1+�) + �Bk�1+�; (84)where the �-terms 
ome from the A�-mode and the �-terms 
ome from the B�-mode. A

ording to our as-sumption, the 
oeÆ
ients �� and �� generi
ally 
ontaina 
onstant and positive powers of k�1. The A+-mode isde
aying and we may negle
t it soon after the mat
hing.Generi
ally we expe
t, a

ording to the amplitudes ofthe A� and B�-modes, that �A and �B are mu
h largerthan �A and �B . Comparing the A� and B�-modes weexpe
t O ��k�1��� � O �(k�1)�2� �k�1+�� ; (85)hen
e, for super horizon modes, k�1 � 1, we expe
t�k�1�� � �k�1+�, as long as � = q + 1=2 is positive.Therefore, one typi
ally inherits the spe
trum of the �-terms in the radiation era, leading toP	 = j	j2k3 = j�B j2k1�2� �/ kn�1� : (86)In this generi
 situation, we obtain a s
ale invariant spe
-trum 1 ' n = 2� 2� = 1� 2q if q is 
lose to zero, as inthe ekpyroti
 and modi�ed pre-big bang 
ase.Only if the mat
hing 
onditions are su
h that the �B-term is suppressed by a fa
tor smaller than (k�1)2�, the�B-term 
omes to dominate and the spe
trum be
omes9



P	 = j	j2k3 = j�B j2k1+2� �/ kn�1� : (87)Then, the spe
tral index n = 2 + 2� = 3 + 2q results.As an estimate, for s
ales of order the present Hub-ble parameter, relevant for the perturbations in the 
os-mi
 mi
rowave ba
kground, k = k=a� � H0, and for1=�1 = 1=(a��1) � 1017 GeV, we have k�1 � 10�59!Hen
e we typi
ally expe
t the �-terms to be about 1059times smaller than the �-terms on 
osmologi
ally rele-vant s
ales, ��k�1�� � 1059��k�1+�.For the 
onstant energy hypersurfa
e we have obtained�B � 0 and hen
e the generi
 inequality �k�1�� ��k�1+� is violated. But if the mat
hing hypersurfa
edeviates by more than about � 10�59 from the � = 
on-stant hypersurfa
e, we expe
t the A�-term, �k�1��, todominate in the Bardeen potential and to determine the�nal spe
trum.For a s
alar �eld without potential, as in the origi-nal pre-big bang model, we have q = 1=2 whi
h in the'generi
 
ase' leads to a spe
tral index n = 1�2q = 0 andonly under very spe
ial mat
hing 
onditions, like mat
h-ing on the 
onstant energy hypersurfa
e with ÆPs � 0,the spe
tral index n = 4 is obtained.In the 
ase of ordinary in
ation, q � �1, where� = 1=2 + q is negative, the situation is quite di�erent.There, the A�-mode is de
aying and the Bardeen poten-tial at the end of in
ation is dominated by the 
onstantB�-mode. Hen
e, we generi
ally expe
t to inherit in theradiation phase the spe
tral index from the B�-modewith n = 3 + 2q, leading to a s
ale invariant spe
trumfor ordinary in
ation, q � �1. This is also the spe
trumobtained when mat
hing on the 
onstant energy hyper-surfa
e.In Ref. [47℄, a radiation dominated 
ontra
ting phaseis 
onne
ted smoothly to a radiation dominated expand-ing phase, via a s
alar �eld with negative energy densitywhi
h 
omes to dominate in the high 
urvature regime.Here a n = �1 spe
trum of perturbation is found withanalyti
al arguments and via numeri
al simulation. Thisagrees with our result. In this 
ase, in fa
t, q = 1 anda

ording to our argument we would generi
ally expe
tn = 1�2q = �1, as obtained in Ref. [47℄. It is interestingto note that the mat
hing 
onditions of Ref. [47℄ 
orre-sponds to the mat
hing on the hypersurfa
es determinedby T = �H�1	 from longitudinal gauge. A

ording toEq. (57), this 
orresponds to the gauge with ~Ægij = 0,i 6= j, the `o�-diagonal gauge', whi
h has also been 
on-sidered in Ref. [21℄ as the gauge in whi
h perturbationsremain small during the pre-big bang phase.This is our main result: When mat
hing a 
ollapsinguniverse to an expanding one, we expe
t the Bardeen po-tential in the expanding phase to inherit the spe
trum ofthe mode whi
h grows during the 
ollapse phase, leadingto P	 / k�2q ; n = 1� 2q; (88)where q is the exponent with whi
h the s
ale fa
tor 
on-tra
ts in 
onformal time, a / j�jq . Remind that this

result holds only if we assume, as explained in Se
. IVB,that T is small on large s
ales [see Eq. (63)℄.V. USING 	 OR � ?In the above dis
ussion we have used mainly theBardeen potential 	. Several authors [28{30,45℄ use the
urvature perturbation � given in Eq. (70). In parti
ular,Ref. [45℄ has found� / j�j1=2a H(2)� (k�); � = jq � 1=2j: (89)This also follows from the de�nition of � [see Eq. (70)℄,together with the solution (41) for 	. During the pre-bigbang phase, � < ��1, this leads to the following spe
-trum for � on super horizon s
ales, modulo logarithmi

orre
tions,P� = j�j2k3 / � k4�2q j�j2�4q for q > 1=2;k2+2q for q < 1=2; (90)giving a spe
tral index for the variable �,n� = � 5� 2q for q > 1=2;3 + 2q for q < 1=2: (91)Sin
e in Ref. [45℄ the mat
hing 
ondition [�℄� = 0 is used,the spe
tral index of � translates dire
tly into the spe
tralindex of s
alar perturbations in the radiation era, where� and 	 essentially agree on super horizon s
ales. Thisis the reason why these authors obtain a s
ale invariantspe
trum also for q = 2 (while they obtain n = 3 for theekpyroti
 model).We have found the following behavior of the 	 spe
-trum on super horizon s
ales during the pre-big bangphase (see Eq. (41) in the limit kj�j � 1),P	 / � k�2qj�j�(2+4q) for q > �1=2;k2+2q for q < �1=2: (92)This leads to the spe
tral index of 	,n	 = � 1� 2q for q > �1=2;3 + 2q for q < �1=2: (93)Comparing Eq. (90) and Eq. (92) we see thatP� ' jk�j2
P	 � P	; (94)with 
 =8<: 0 for q < �1=2;1 + 2q for � 1=2 < q < 1=2;2 for q > 1=2: (95)As we have mentioned above, for 
osmologi
ally rele-vant s
ales, the fa
tor jk�j be
omes of the order of 10�59at the mat
hing surfa
e. We have argued in the previous10



subse
tion that the larger variable 	 should be relevantat the mat
hing surfa
e, and only under very spe
ial spe-
ial mat
hing 
onditions the spe
tral index of � is inher-ited after the big bang. Generi
ally we therefore expe
tn = n	 to be the spe
tral index in the radiation era. Ifq < �1=2, 	 and � agree up to a 
onstant pre-fa
tor,and this distin
tion be
omes irrelevant for the spe
tralindex. This is exa
tly what happens in 'ordinary in
a-tion' where q � �1. The fun
tions n	 and n� are shownin Fig. 1.

FIG. 1. The spe
tral indi
es n	 (solid) and n� (dashed)are shown as a fun
tion of q = H�. As argued in the text, weexpe
t a resulting spe
tral index n = n	 in the radiation era.Finally, for 
ompleteness, we want to emphasize thatthe Bardeen potential in a radiation dominated universereally determines the spe
tral index n via P	 = j	j2k3 /kn�1. A s
ale invariant spe
trum is de�ned as one forwhi
h D(ÆM=M)2Eh:
: is s
ale independent, where thebra
kets denote spatial average and the subs
ript h:
:indi
ates the s
ale of horizon 
rossing. Therefore, thespe
tral index is de�ned by D(ÆM=M)2Eh:
: / kn�1, sothat n = 1 represents a s
ale-invariant spe
trum.On the other hand*�ÆMM �2+ = k3 ����Æ�� ����2 : (96)On sub horizon s
ales and also at horizon 
rossing, Æ�=�is not strongly gauge dependent, so we may 
hoose what-ever gauge we please. We use 
omoving gauge (it is a sim-ple estimate to verify the same behavior, e.g. for longitu-dinal gauge). In 
omoving gauge we have the 
onstraintequation [39℄, k2	 = 3H22 �Æ�� �
om: : (97)

Using that H ' k at horizon 
rossing and that 	 is timeindependent on super horizon s
ales, we get�����Æ�� �
om:����2h:
: ' j	j2; (98)hen
e DjÆM=M j2Eh:
: ' k3j	j2 = P	 / kn�1:In the radiation dominated era � is roughly equal to 	and the above equation therefore holds also for P� .VI. CONCLUSIONSWe have dis
ussed the mat
hing from a 
ollapsing toan expanding Friedmann universe. We have noted thata non-vanishing surfa
e tension at the mat
hing surfa
eis needed to turn the pre-big bang 
ollapse into expan-sion. This surfa
e tension and its perturbation have tobe spe
i�ed by the high energy 
orre
tions of the theory.It is this surfa
e tension whi
h determines the 
orre
tmat
hing surfa
e and it will generi
ally not be parallelto the �+ Æ� = 
onstant surfa
es.We have found that, if the mat
hing is performed atthe � + Æ� = 
onstant hypersurfa
e, the growing modefrom the pre-big bang phase is 
onverted entirely into thede
aying mode in the radiation phase. In this 
ase thespe
tral index n = 3 + 2q is obtained, leading to n = 3for the ekpyroti
 and modi�ed pre-big bang model, andn = 4 for the original pre-big bang model. However, if themat
hing hypersurfa
e is 
hosen to be somewhat di�erentfrom �+ Æ� = 
onstant, one obtains n = 1� 2q. Hen
e,the ekpyroti
 and the modi�ed pre-big bang model 
anlead to a s
ale invariant spe
trum of s
alar perturbations.Our result is based on the assumption that perturb-ing our ba
kground boun
ing universe does not 
hange
ompletely the time and duration of the boun
e on larges
ales. We have formulated this requirement pre
isely byrestri
ting the allowed 'infrared power' of T .Noti
e that the spe
tral index resulting from ourmat
hing 
onditions of a pre-big bang transition, is neverblue, n � 1. This is not so surprising: On sub-horizons
ales, the perturbations are in their va
uum state. Theystart growing as soon as they exit the horizon until theend of the pre-big bang phase. Hen
e large s
ales, whi
hexit earlier, have more time to grow.Often, as a heuristi
 approa
h to obtain the spe
trumof 
u
tuations, one 
onsidered j	j2k3 at horizon 
ross-ing requiring that this behaves like kn�1. Applying thispro
edure during the pre-big bang at the �rst horizon
rossing (exit), one obtains the blue spe
tra n = 3 forthe ekpyroti
 or the modi�ed pre-big bang model andn = 4 for the original pre-big bang respe
tively. However,if one determines the same quantity at the se
ond hori-zon 
rossing (re-entry), during the radiation dominated11



phase, one obtains the 
orre
t spe
tral indi
es n = 1 andn = 0 respe
tively. Sin
e in an expanding universe theBardeen potential does not grow on super horizon s
ales,it does not matter at whi
h horizon 
rossing, exit or re-entry, the spe
trum is determined in the 
ase of ordinaryin
ation. In a pre-big bang model however, this di�er-en
e is 
ru
ial as we have seen.The dis
ussion presented in this paper does not a�e
tthe gravity wave spe
trum [48℄ whi
h still leads to thespe
tral index nT = 3 for both models and is a potentiallyimportant observable to dis
riminate them from ordinaryin
ation.The main open problem when studying this boun
-ing models remains the high energy transition from thepre- to the post-big bang. There, 
orre
tions should be-
ome important, and we have assumed here that for su-per horizon s
ales they 
an be summarized into a ten-sion on the mat
hing surfa
e. Furthermore, it has notyet been shown from string theory that the dilaton 
anobtain an exponential potential (in the modi�ed pre-bigbang model) or that the brane distan
e simply obeys theequation of motion of a minimally 
oupled s
alar �eldwith exponential potential from the brane point of viewfor the ekpyroti
 model.Also the quantum produ
tion of other modes possiblein these models, e.g. the axions and moduli in the mod-i�ed pre-big bang, or the 'graviphoton' and 'gravis
alar'
oming from the extra-dimension in the ekpyroti
 model,have to be investigated.Nevertheless, we 
on
lude that models where high en-ergy 
orre
tions lead a slowly 
ollapsing universe overinto an expanding radiation dominated phase may rep-resent viable alternatives to usual 'potential in
ation', ingenerating a s
ale invariant spe
trum of perturbations.However, many open questions, espe
ially 
on
erning thehigh energy 
orre
tions, and 
atness, still have to beproperly addressed.A
knowledgment We thank Robert Branden-berger, Cyril Cartier, Fabio Finelli, Maurizio Gasperini,David Langlois, Andrei Linde, Jerôme Martin, Patri
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