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AbstractWe discuss structure formation with topological defects. First we presenta partially new, local and gauge invariant system of perturbation equations totreat microwave background and dark matter uctuations induced by topolog-ical defects or any other type of seeds. We show that this system is well suitedfor numerical analysis of structure formation by applying it to the texturescenario. Our numerical results cover a larger dynamical range than previ-ous investigations and are complementary to them since we use substantiallydi�erent methods.PACS numbers: 98.80-k 98.80.Hw 98.80C



Despite great e�ort and considerable progress, the problem of structure formationin the universe remains basically unsolved. Observations show that the uctuationspectrum on large scales observed by COBE should be not very far from scale in-variant [1]. This has been considered as great success for inationary models whichpredict a scale invariant uctuation spectrum. In this letter we consider an alterna-tive class of models which also yield a scale invariant spectrum of Cosmic MicrowaveBackground (CMB) uctuations: Models where perturbations are seeded by globaltopological defects which can form during symmetry breaking phase transitions inthe early universe [2]. To be speci�c, we consider texture, �3{defects which lead toevent singularities in four dimensional spacetime [3]. A common feature of globaltopological defects is the behavior of the energy density of the scalar �eld whichscales like �T / 1=(at)2 and thus always represents the same fraction of the totalenergy density of the universe.�T =� � 8�G�2 � 2� ; (1)where � determines the symmetry breaking scale. The background spacetime is aFriedmann{Lemâ�tre universe with 
 = 1. We choose conformal coordinates suchthat ds2 = a2(�dt2 + �ijdxidxj) :Numerical analysis of CMB uctuations from topological defects on large scaleshas been performed in [4, 5]; a spherically symmetric approximation is discussedin [6]. Results for intermediate scales are presented in [7]. All these investigations(except [6]) use linear cosmological perturbation theory in synchronous gauge andtake into account only scalar perturbations. Here we derive a fully gauge invariantand local system of perturbation equations. The (non{local) split into scalar, vectorand tensor modes on hypersurfaces of constant time is not performed. We solve theequations numerically in a cold dark matter (CDM) universe with global texture. Inthis letter, we present some main results, detailed derivations of the equations and adescription of our numerical methods will be given in a longer paper [8]. Since thereare no spurious gauge modes in our initial conditions, there is no danger that thesemay grow in time and much of the di�culties to choose correct initial conditions(see e.g. [5]) are removed.We calculate the CMB anisotropies on angular scales which are larger than theangle subtended by the horizon scale at decoupling of matter and radiation, � > �d.For 
 = 1 and zd � 1000�d = 1=pzd + 1 � 0:03 � 2o : (2)It is therefore su�cient to study the generation and evolution of microwave back-ground uctuations after recombination. During this period, photons stream freely,only inuenced by cosmic gravitational redshift and by perturbations in the grav-itational �eld (if the medium is not reionized). The photon distribution func-tion which lives on a seven dimensional relativistic phase space P0M = f(x; p) 2TMjg(x)(p; p) = 0g, obeys Liouville's equationXg(f) = 0 : (3)1



In a tetrad basis e�, Xg is given by (see e.g. [9])Xg = (p�e� + !i�(p)p� @@pi ) ; (4)where !�� are the connection 1{forms of (M; g) in the basis e�.The metric of a perturbed Friedmann universe with 
 = 1 is given by ds2 =g��dx�dx� withg�� = a2(��� + h��) = a2~g�� ; (5)where (���) = diag(�;+;+;+) is the at Minkowski metric and jh��j � 1 is asmall perturbation. We now use the fact that the motion of photons is conformallyinvariant. Taking into account the di�erent a�ne parameters, (3) is equivalent to(X~gf)(x; ap) = 0 : (6)If �e� is a tetrad in Minkowski space, e� = �e� + (1=2)h���e� is a tetrad w.r.t theperturbed geometry ~g. We can thus de�ne the perturbation of the distributionfunction F byf(x; p�e�) = �f(x; p��e�) + F (x; p��e�) : (7)Furthermore, we set pi = pi, with p2 = P3i=1(pi)2 and v = ap. Liouville's equationfor f then yields a perturbation equation for F . We choose the natural tetrade� = @� + (1=2)h��@�. Using (3),(4) and (6) we obtain(@t + i@i)F = �[ _HL + (A;i+12 _Bi)i + ( _Hij � Bi;j)ij]vd �fdv ; (8)where we parametrize h by(h��) =  2A BiBi 2HL�ij + 2Hij ! ; (9)with H ii = 0.Let � = a�4 R fv3dv be the energy integrated brightness andm = (1=4) 4��ra4 Z Fv3dv :4m is the fractional perturbation of �. Setting � = ��(T (; x)), one �nds that mcorresponds to the fractional perturbation in the temperature,T (; x) = �T (1 +m(; x)) : (10)(A more explicit derivation of (10) is given in [10]). Integrating (8) over v withweight v3dv, we obtain@tm + i@im = _HL + (A;i+12 _Bi)i + ( _Hij � Bi;j )ij : (11)2



It is well known that photons only couple to the Weyl part of the curvature (nullgeodesics are conformally invariant). The r.h.s. of (11) is given by �rst derivativesof the metric only which could at most represent integrals of the Weyl tensor. Toobtain a local, non{integral equation, we thus rewrite (11) in terms of r2m. In fact,de�ning� = r2m� (r2HL � 12H;ijij )� 12r2Bii ;(11) yields for � the equation of motion(@t + i@i)� = �3i@jEij � kj�kli@lBij � ST (t;x; ) ; (12)where �kli is the totally antisymmetric tensor in three dimensions, Eij and Bij are theelectric and magnetic part of the Weyl tensor. The spatial indices in this equationare raises and lowered with �ij and therefore the index position is irrelevant. Doubleindices are summed over irrespective of their position. Eqn. (12) is the centralanalytical result of this letter.The divergence of the electric part of the Weyl tensor does not contain tensorperturbations. On the other hand, scalar perturbations do not induce a magneticgravitational �eld. The second contribution to the source term in (12) representsa combination of vector and tensor perturbations. If vector perturbations are neg-ligible, the two terms on the r.h.s. of (12) represent a split into scalar and tensorperturbations which is local. We �nd that the vector and tensor uctuations rep-resented by B contribute approximately 25 % to the total microwave backgroundanisotropies (see Fig. 1).In terms of metric perturbations, the electric and magnetic part of the Weyltensor are given by (see, e.g. [11])Eij = 12[4ij(A�HL)� _�ij � (r2Hij + 23H ;lmlm �ij)�H ;lil;j �H ;ljl;i ] (13)Bij = 12(�ilm�jm;l+�jlm�im;l ) ; (14)with �ij = 12(Bi;j +Bj;i )� 13�ijB0ll � _Hij and 4ij = @i@j � (1=3)�ijr2 :Since the Weyl tensor of Friedmann{Lemâ�tre universes vanishes, the r.h.s. of(12) is manifestly gauge invariant (this is the so called Stewart{Walker lemma [14]).Therefore also the variable � is gauge invariant.The general solution to (12) is given by�(t;x; ) = Z tti ST (t0;x+ (t0 � t); )dt0 + �(ti;x+ (ti � t); ) ; (15)where ST is the source term given on the rhs of (12).The electric and magnetic part of the Weyl tensor are determined by the per-turbations in the energy momentum tensor via Einstein's equations. We assume3



that the source for the geometric perturbations is given by the scalar �eld and darkmatter. The contributions from radiation may be neglected. Furthermore, vectorperturbations of dark matter (which decay quickly) are neglected. The divergenceof Eij is then determined by (see, [11] or [12])@jEij = �8�G�DMDi � 8�G(@i�T00 + 3( _aa)�T0i) + 12�G@j�ij ; (16)where�ij � Tij � (a2=3)�ijT ll = � (texture)ij = �;i �;j �(1=3)�ij(r�)2 ;�T0j = �T (texture)0j = _��;j ;�T00 = �T (texture)00 = 12(( _�)2 + (r�)2) ;and Dj is a gauge invariant perturbation variable for the density gradient (see [11,12, 8]). For scalar perturbationsDj = @jD. The evolution of the dark matter densityperturbation is governed by�D + ( _aa) _D � 4�Ga2�DMD = 8�G _�2 : (17)The equation for Bij is more involved. A somewhat cumbersome derivation [8]yields �Bij + 3( _aa) _Bij �r2Bij = 8�GS(B)ij ; (18)with S(B)ij = �lm(i�T0l;j)m�( _a=a)�lm(i�j)l;m :Here (i:::j) denotes symmetrization in the indices i and j.These equations are complemented with the evolution equation of the scalar �eld,��+ 2( _a=a) _��r2� = a2��(�2 � �2) : (19)We have solved the closed hyperbolic system (12, 16, 17, 18, and 19) numericallyon a 1923 grid for di�erent initial conditions on a NEC{SX3. The numerical methodsemployed and the di�erent tests of our programs are described in [8]. Here we justwant to present some main results.On subhorizon scales the gauge dependent variable ��=� D do not di�er substan-tially, and we can interpret D byD � (��=��) = � :Furthermore, we note that m = �T=T di�ers from � only by a monopole and adipole term:� = r2(�T= �T ) + monopole term + dipole term � r2(�) :4



Since we are only interested in spherical harmonic amplitudes alm with l � 2, thisdi�erence is irrelevant for CMB uctuations. (For a �xed observer, the monopoleterm cannot be distinguished from the background, and a dipole term cannot beseparated from peculiar motion.). Using fast Fourier transforms we calculate thespectrum P (k) = j�(k)j2 and �, which we then expand in spherical harmonics�(t0;x; ) =Xlm alm(x)Ylm() : (20)As usual, we assume that the average over Nx di�erent observer positions coincideswith the ensemble average and determinecl = 1(2l + 1)Nx Xm;x jalm(x)j2 ; l � 2 : (21)We have performed 10 simulations on a 1923 grid with about 100 di�erent observerpositions for each simulation. The average harmonic amplitudes with 1� varianceare shown in Fig. 2. The low order multipoles depend strongly on the randominitial conditions (cosmic variance), like in the spherically symmetric simulation [6].From Fig. 2 it is clear that the texture scenario is compatible with a scale invariantspectrum. The main di�erence of the currently favored inationary scenarios liesin the distribution of uctuations which is non Gaussian in models with topologicaldefects. The quadrupole amplitude is given byQ = (0:53� 0:16)� :To reproduce the COBE amplitude QCOBE = (0:6 � 0:1)10�5 [1], we have to nor-malize the spectrum by choosing the phase transition scale � according to� = 4�G�2 = (1:1� 0:5)10�5 : (22)This value is comparable with the value of � obtained in [4, 5].The power spectrum of dark matter density uctuations is shown in Fig. 3. Tobe compatible with observations [15], a somewhat high bias factor of b � 3� 1:5 isrequired. (The bias factor takes into account that the observed clustering of lightdoes not necessarily coincide with the clustering of dark matter.) Observations andsimulations of nonlinear clustering of dark matter and baryons [16] suggest a biasfactor b � 2.In this letter we have presented a closed system of cosmological perturbationequations which is not plagued by gauge modes and which is well suited for numericalanalysis. Up to some details, our numerical results are consistent with previousinvestigations [4, 5, 6], indicating that the texture scenario normalized to the COBEDMR experiment yields somewhat too much power on small scales.
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Figures

Figure 1: The amplitude of the electric and magnetic source terms to the photonequation if motion are shown as a function of wavenumber k in arbitrary scale. Onvery large scales the magnetic part contributes about 1/4 decaying to roughly 1/10on small scales ( �E = 13 Pi(@jEij)2 ; �B = 16 Pij(�jlk@lBki)2). ( �B is shown as solidline.)
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Figure 2: The harmonic amplitudes l(l + 1)cl are shown with 1� error bars. Theslight rise at large l is due to the �nite size of the texture core. No smoothing isapplied.

Figure 3: The power spectrum of the CDM uctuations induced by texture. Toenhance the dynamic range, three simulations with di�erent physical grid size havebeen patched together. The vertical scale is arbitrary.8


