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AbstractA primordial stochastic background of very weakly coupled massless (pseudo-)scalars canseed CMB anisotropy, when large-scale uctuations of their stress-tensor re-enter the horizonduring the matter dominated era. A general relation between multipole coe�cients of theCMB anisotropy and the seed's energy spectrum is derived. Magnitude and tilt of theobserved anisotropies can be reproduced for the nearly scale-invariant axion spectra whichare predicted in a particularly symmetric class of string cosmology backgrounds.
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In this letter we point out a possible new mechanism for generating large-scale CMBanisotropies. We will show that a cosmologically ampli�ed stochastic background of massless(pseudo-)scalar perturbations, if primordially produced with a properly normalized nearlyscale-invariant spectrum, can seed CMB temperature anisotropies in a way consistent withobservations [1]. Axionic perturbations with the needed characteristics can be produced [2],[3], [4], for instance, in the so-called pre-big bang scenario [5] of string cosmology.For the sake of generality we de�ne a massless (pseudo-)scalar \seed" �eld � through theway it enters the low-energy e�ective action:Seff = �12 Z d4x p�g A (@��)2; (1)and by the two additional conditions:h�i = 0 ; 
� � 1: (2)In Eq. (1), A is, in general, a �-independent scalar combination of �elds providing, togetherwith the metric, the cosmological background. In Eq. (2), the brackets denote spatial aver-age (or expectation value if perturbations are quantized), and 
� is the fraction of criticalenergy density carried by the seed �eld. Such a fraction being small, seeds do not inuencethe background itself. The above conditions, together with the restriction to massless seeds,make it essentially mandatory for such seeds, if they exist, to consist of very weakly cou-pled pseudo-scalar (rather than scalar) particles. An example would be the gravitationallycoupled \universal axion" of string theory, on which we shall come back at the end.We have in mind, typically, a situation in which, in the absence of �, large-scale CMBanisotropies directly induced by quantum uctuations of the metric are too small, and wewant to investigate under which conditions seeds may provide the dominant source for them.Seed vacuum uctuations, after being ampli�ed outside the horizon during ination, re-enterduring the standard Friedman-Robertson-Walker (FRW) era as stochastic Gaussian �elds,and give rise to non-trivial { and not necessarily Gaussian { uctuations of the energy-momentum tensor.Within this general context, we derive a simple relation between the usual coe�cients Clof the multipole expansion of the CMB temperature uctuations,*�TT (n)�TT (n0)+ (n�n0=cos#) = 14� X̀(2`+ 1)C`P`(cos#) ; (3)and the fraction of critical density in the seeds. The relation reads:C` = K Z 10 d log k jj`(k; �0)j2 
2�(k; �re) ; (4)where K is a numerical fudge-factor O(1), 
�(k; �) � ��1cr d��=d log k is the seed fractionof critical energy density per logarithmic interval of frequency, evaluated at the conformal1



time �, �0 is the present (conformal) time and �re(k) indicates, for each comoving mode k,its time of re-entry, �re � k�1. For the relevant (large) scales, re-entry occurs during thematter-dominated era. A crucial aspect of (4) is the appearance of 
� at a k-dependent time(i.e. at re-entry), rather than at a common (e.g. at recombination) time. This is because,in the interesting cases, the so-called \integrated" Sachs-Wolfe (SW) contribution [6] turnsout to dominate over the \ordinary" SW term.In order to prove Eq. (4) we will proceed as follows. We start from a general formulaexpressing the spectrum of primordial seed uctuations in terms of the early, inationary evo-lution of the background. We then compute the inhomogeneities induced by this stochastic�eld in the energy-momentum tensor as well as the Bardeen potentials. Finally, we estimatethe large-scale temperature anisotropy via the (total) SW e�ect. The result (4) will thusimplicitly connect the observed CMB anisotropy to the very early (possibly to the pre-bigbang) history of the universe.This note is intended to give the essential points in the argument and their main con-sequences. For more details on the calculation in a speci�c case we refer the reader to ourlonger recent paper [7], where other kinds of seeds, as well as the case of massive seeds, arealso discussed. Further generalizations of the massive case will be discussed in [8].Our computation of the uctuations of � follows closely the general approach of [9]. Ina conformally at metric the e�ective action (1) becomes:Seff = 12 Z d3xd� S h(�0)2 � (r�)2i ; (5)where a prime stands for derivative with respect to conformal time �, and the so-calledpump �eld S is simply S � a2A, where a is the scale factor of the homogeneous, isotropic,spatially-at metric resulting after a long inationary phase1. The corresponding e�ectiveHamiltonian reads Heff = 12 Z d3x hS�1�2 + S(r�)2i ; (6)where � = S�0 is the canonical variable conjugate to �. The Fourier modes of �, whencorrectly normalized to the vacuum before they \exit" the horizon at the time jk�exj � 1,are given by�(k; �) = 1pkS e�ik�+i'k ; �(k; �) = pkSe�ik�+i'0k ; � < �ex � �k�1; (7)('k; '0k are random phases, originating from the random initial conditions). Furthermore,as far as the computation of energy spectra goes, uctuations on superhorizon scales can beconsistently truncated to their frozen modes [9] through�(k; �) = 1pkSex ei'k ; �(k; �) = qkSexei'0k ; �ex < � < �re � k�1: (8)1It is important to note that the results which we will obtain here are not valid for conformally coupled�elds, e.g for the electromagnetic �eld, since these do not couple to the scale factor.2



The matching at re-entry gives �nally, for k� > 1,�k(�) = 1pkS "�SreSex�1=2 cos(k�) ei'~k + �SexSre�1=2 sin(k�) ei'0~k# ;�k(�) = pkS "�SexSre�1=2 cos(k�) ei'0~k � �SreSex�1=2 sin(k�) ei'~k# : (9)A nice feature of these results is their generality. They hold for any kind of backgroundand irrespectively of whether a perturbation re-enters during the matter- or the radiation-dominated epoch. Furthermore, these equations respect an invariance [9] of cosmologicalperturbations under the duality transformation S ! S�1;r� $ �. For the sake of simplicity,we shall consider here the case of a growing pump �eld, keeping only the leading terms (thoseproportional to Sre=Sex � 1) in the uctuations. This will result in simpler formulae at theprice of loosing explicit duality.The basic information to be extracted from the preceding formulae is the stochastic(spatial) average of �: h�(k)��(k0)i = (2�)3�3(k � k0)�(k; �) (10)where, according to Eqs. (8), (9),�(k; �) = (kSex)�1 ; k� < 1 ;�(k; �) = (kSex)�1 SreS(�) ; k� > 1 : (11)Eqs. (10), (11) allow us to compute the correlation functions of the seed energy-momentumtensor: T (�)�� � T�� = Sa2 �@��@�� � 12 g��(@a�)2� : (12)Let us start with the average energy distribution d��(k)=d logk = (k3=a4)hHi which,after re-entry, can be computed from the Hamiltonian (6) as [9]:d�s(k)d log k '  ka!4 SreSex (k)�(k1 � k): (13)The end-point of the spectrum k1 is the maximal ampli�ed frequency (the frequency thatre-entered just after exiting), for which just one quantum is produced per unit phase space.Above k1 the spectrum is exponentially depressed and we thus neglect it. Below k1, we canexpress �s in units of critical energy density, �c = 3H2=(8�G) as
�(k; �) ' G k4�2a2 !� arearad� SradSex ' G kare!2 � arearad�2 �SradSex � �area � : (14)We have denoted by rad the beginning of the radiation era, and we have assumed thebackground �eld A to be constant for � > �rad. Also, we have limited our attention to3



scales relevant to the COBE DMR data, which re-enter during the matter-dominated era.The suppression factor naively expected for massless particles, (aeq=a), is actually replacedby (are=a). This is due to the additional ampli�cation of modes which are still outside thehorizon during (part of) the matter-dominated phase. In particular, just at re-entry, we �nd:
�(k; �re) ' G!2 � arearad�2 �SradSex � : (15)Clearly, some condition has to be imposed on the behaviour of S during ination to ensurethat 
� � 1 at all times.Let us consider next the uctuations of the various components of the energy momentumtensor and, in particular, their power spectra P �� de�ned by (no sum over �; � being implied):hT �� (x)T �� (x0)i � hT �� (x)ihT �� (x0)i = Z d3k(2�k)3 eik�(x�x0)P �� (k) : (16)One easily �nds that all the relevant components of P �� behave similarly, and are controlledby a convolution of the form:P �� (k; �) � � Sa2�2  k3a4!Z d3p p2jk � pj2�(p)�(k � p): (17)Using Eqs. (11) it is not hard to analyze the various integration regions in p in the aboveintegral while always keeping k� � 1. In the region 0 < p < ��1 the integrand is proportionalto dp p4 S�2ex (p). Imposing that seeds are never dominant makes this integrand peaked atits upper end. On the other hand, in the region ��1 < p < k1 the integrand behaves asdp p�4 (d��=d log p)2. If the seed spectrum 
�(p) grows with a small enough power of p, i.e.smaller than 3=2, this part of the integral is dominated by its lower end. In the oppositecase it is dominated by the cuto� region p � k1 with uninteresting consequences [7]. Inconclusion, in the interesting cases, the integral is dominated by the contribution aroundp � ��1 � k, giving the following white noise spectrum for the energy density:(P 00 )1=2 � k3=2a4�5=2 S(�)Sex(p � ��1) � (k=a)4 (k�)�5=2 S(�)S�1(��) (18)where positive and negative values of � correspond, respectively, to the standard deceleratedand accelerated (inationary) phases.According to standard cosmological perturbation theory [10], the spectrum of the Bardeenpotentials �;	, parameterizing in a gauge-invariant way the scalar uctuations of the metric,is related to P 00 by2: k3=2j	� �j(k; �) ' G (a=k)2(P 00 )1=2: (19)2In general there can be additional \compensation" factors (k�)2 appearing in this formula [7]. However,they will not matter since, in the end, we will evaluate everything at k� � 1.4



Recalling that S � a2 for � > �rad, we obtaink3=2j	� �j(k; �) ' G(k�)�5=2  ka!2 S(�)Srad SradS(��) ' G(k�)�5=2  karad!2 SradS(��)' (H1=MP )2 (k�)�5=2(k=k1)2 [Srad=S(��)] ; (20)where H1 � k1=arad is the Hubble parameter at the beginning of the radiation era. Thecombination of Eqs. (20), (14) provide the interesting relation:k3=2j	� �j(k; �) ' (k�)�5=2 [Sex(k)=S(��)] 
�(k; �re) (21)and, in particular:k3=2j	� �j(k; �re) ' 
�(k; �re) ' (H1=MP )2 (k=k1)2 [Srad=Sex(k)] : (22)At this point we insert the above result in the formula of the SW e�ect, which is knownto dominate the temperature anisotropies at large angular scales, ` � 100. Combining theso-called \ordinary" and \integrated" SW contributions, a standard analysis [7, 11] yields:CSW` = 2� Z dkk *"Z k�0k�dec k3=2(	� �)(k; �)j 0̀ (k�0 � k�) d(k�)#2+ ; (23)where jl are the usual spherical Bessel functions and �0; �dec are, respectively, the present timeand the time of decoupling of matter and radiation (a prime stands here for the derivative ofthe Bessel function with respect to its argument). We exploit the previously determined �-dependence of the Bardeen potentials, assuming that, after re-entry, the Bardeen potentialsare dominated by a cold dark matter (CDM) component and are therefore constant. We�nd [7] that the � integral in Eq. (23) is dominated by the region k� � 1, leading to:CSW` � Z d (log k)�hk3=2(	� �)(k; �re)j` (k�0)i2� : (24)Inserting (22) we immediately recover the desired result (4). Note that temperature uctu-ations are controlled, for each scale k, by the value of the Bardeen potentials at the time itre-enters the horizon. Roughly:(�T=T )(k) � (�� 	)(�)j��k�1 � 
�(k; �re) : (25)In this way, the � dependence of (� � 	) gets translated into a k (or l) dependence ofthe temperature uctuation spectrum. Thus a scale-invariant 
� leads to scale-invariantHarrison-Zeldovich [12] spectrum of CMB uctuations.For a simple power-law behaviour of the pump �eld, Srad=Sex(k) = (k=k1)��2, Eq. (24)can be integrated analytically with the result:CSW` � K(k1�0)�2�  H1Mp!4 �(2� 2�)4(1��)�(3=2� �) �(`+ �)�(`+ 2� �) : (26)5



Comparing (26) with the standard inationary result for CDM [13], where the spectral indexn is de�ned by [13] CSW` / �(`� 1=2 + n=2)�(`+ 5=2� n=2) ; (27)leads to the identi�cation (n � 1) = 2�. More generally, we can relate an e�ective (i.e.k-dependent) spectral index neff to the behaviour of the pump �eld during ination via therelation: (neff � 1)=2 = �eff � 2� [d logSex(k)=d logk] : (28)The nearly scale-invariant spectrum, measured by the DMR experiment aboard the COBEsatellite [14], requires 0:8 � neff � 1:4 (29)and thus, allowing for generous error bars, COBE's observations imply�0:1 � �eff � 0:2: (30)in the very small k region. Thus, through the de�nition of �eff in Eq. (28), one is able torelate COBE's data to the early-time evolution of the pump �eld.In this paper we have concentrated our attention on scalar perturbations. However, sincethe seeds are of second order in the scalar �eld, we also expect the presence of vector andtensor perturbations with roughly similar amplitudes.Turning to the absolute normalization, we see from Eq. (26) that it is controlled to alarge extent by the crucial parameter (H1=MP )4. The appearance of the fourth power ofH1=MP rather than the (more usual) second power is precisely the consequence of usingseeds | rather than �rst-order uctuations of the scalar �eld | for generating anisotropies.Thus �T=T goes like the square of the original uctuations. For the same reason, althoughthe uctuations of � are expected to be Gaussian, some non-Gaussianity is expected in theuctuations of �T=T , since they are sourced by the seed energy momentum tensor which isquadratic in the Gaussian variable �. Thus, we rather expect �T=T to obey a �2 statistics(note that this is one of the few non-Gaussian examples where we really have a handle onthe statistics).Let us �nally turn our attention to a speci�c example of our new mechanism, that ofthe universal axion in pre-big bang (PBB) cosmology. The universal axion of superstringtheory is just the (pseudo-scalar) partner of the dilaton in the string e�ective action, andis massless in perturbation theory because of a Peccei-Quinn (PQ) symmetry. While thedilaton is expected to acquire a mass as soon as supersymmetry is broken, the axion couldremain massless, or almost massless, because of its Nambu-Goldstone origin. Although thePQ symmetry is broken by instantonic e�ects, in the presence of various axions coupled tothe same topological current, a linear combination mainly lying along the invisible axionis expected to remain very light or massless (for the purpose of this work a mass of order6



H0 can be considered to be zero). Such a light particle, being a gravitationally coupledpseudo-scalar, should not lead to phenomenological di�culties.The �eld A of Eq. (1) turns out to be, in this case, e� (where � denotes the dilaton) andis related to the e�ective Newtonian constant, in the conventions used in PBB cosmology [5],by GeffN � e�. The pump �eld S is thus a2e�, and grows very fast during PBB ination sinceboth a and e� have accelerated behaviour (on the contrary, the pump �eld for dilaton andgravity wave perturbations is a2e��, and the two factors tend to cancel out giving too littlepower at large scales [15]). In the axion case the exponent � of Eq. (26) can be evaluated[2] from the known background solutions [5]. As noticed in [3], the desired value � = 0 isreached, in particular, for a highly symmetric, ten-dimensional PBB background in whichthe six extra dimensions evolve like the three ordinary ones (up to an irrelevant T-dualitytransformation). Precisely in this case, a scale-invariant spectrum for �T=T will result.Concerning the overall normalization, controlled by (H1=MP )2, we note that in the PBBscenario the inationary scale H1 is typically of order of the string scale Ms, usually takento be around 5�1017GeV . (H1=MP )2 thus typically varies between 10�2 and 10�4. We haveto add the fudge factor K which is hard to evaluate precisely, but is expected to containfactors like (16�2)�1. Thus, amusingly enough, the right order of magnitude [16] for C2(C2 � 10�10) may come out naturally from K(Ms=MP )4 (taking also into account that theslope of the spectrum could be slightly tilted, see [7] for a quantitative discussion).In conclusion, irrespectively of its possible model-dependent origin, we believe that acosmic background of massless pseudo-scalar uctuations may provide a consistent and in-teresting explanation of the anisotropies observed in the CMB temperature, at large angularscales. It is unclear, at present, whether such an axion-induced anisotropy may lead tosigni�cant di�erences in the acoustic peak structure of the CMB anisotropy spectrum atsmaller angular scales. If so, this (plus possibly some non-Gaussianity of the uctuations)should allow tests of our axionic-seed mechanism through the high precision measurementsplanned for the near future [17]. The discussion of this possibility is postponed to furtherwork.
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