
Anisotropic 'hairs' in string cosmologyKerstin E. Kunze and Ruth DurrerD�epartement de Physique Th�eorique, Universit�e de Gen�eve, 24 quai Ernest Ansermet, CH-1211 Gen�eve 4, SwitzerlandIn this letter we investigate whether the isotropy problem is naturally solved in inationary cos-mologies inspired by string theory, so called pre-big-bang cosmologies. We �nd that, in contrast towhat happens in the more common 'potential ination' models, initial anisotropies do not decayduring pre-big-bang ination.PACS Numbers : 98.80.Cq, 98.80.EsIn most models, ination is driven by the potentialenergy of a scalar �eld. This has similar e�ects as addingvacuum energy or, equivalently, a positive cosmologicalconstant. For these models Wald [1] proved a cosmicno hair theorem, which implies that an initial shear isinated away [2].A couple of years ago, a new mechanism of inationhas been proposed, where ination is due to the kineticterm of the dilaton which is always present in the lowenergy e�ective action from a string theory. These stringcosmologies are symmetric under the duality transforma-tion, t ! �t and a ! 1=a. Here t is cosmic time anda is the scale factor. An expanding solution at negativetimes is inating [3]. Here, we want to study whethera 'no hair' theorem is also valid for these pre-big-banginationary solutions.We investigate especially spatially homogeneous, butanisotropic cosmologies in the pre-big-bang scenario.The aim is to determine the evolution of a possible pri-mordial shear. The pre-big-bang universe starts o� att ! �1 in a nearly Minkowski spacetime. But the hy-pothesis of low curvature and low coupling in the pre-big-bang scenario does not say anything about the possibilityof starting with an anisotropic spacetime.Recently, the initial conditions of the pre-big-bang sce-nario have been criticized not to be natural [4]. Buo-nanno et al. [5] have addressed this issue and haveshown that the pre-big-bang inationary phase in thestring frame is equivalent to gravitational collapse in theEinstein frame. They therefore have concluded that theinitial conditions for pre-big-bang ination are as naturalas those for gravitational collapse. However, the pre-big-bang bubble picture suggested in this work [5] seems tofavor anisotropic Kasner solutions. It is thus importantto investigate whether such initial anisotropies are in-ated away during the subsequent inationary evolution.Below we show that this is not the case. We �nd thatthe behaviour of shear in pre-big-bang cosmology is quitedi�erent from its behavior in ordinary potential inationand primordial shear is not inated away.We �rst briey recall the expressions for the Ricci ten-sor of spatially homogeneous models in the orthonormalframe. (Latin indices run from 0..3 and Greek indicesfrom 1..3.) The metric (gab) of spatially homogeneousmodels can be written asds2 = �dt2 + h��(t)!�!� (1)

where f!�g is an invariant basis of one-forms satisfyingthe algebra d!� = 12C���!� ^ !� ;where C��� are the structure constants of the symmetrygroup of the corresponding homogeneous model. Bianchimodels are divided into class A and B depending on prop-erties of the group structure constants. Here we restrictourselves to Bianchi class A models which are character-ized by C��� = 0:For these models h��(t) is diagonal and thus of the formh��(t) = diag �a21(t); a22(t); a23(t)� : (2)We also choose an orthonormal frame �(a), so thatds2 = �(a)(b)�(a)�(b) ; (3)where �(a)(b) = diag(�1;+1;+1;+1). Indices in paren-theses refer to the orthonormal frame.The relation between the basis one-forms and the or-thonormal frame is given by, �(�) = a�(t)!� (no sumover �).The parameter t is chosen such that gabnanb = �1,where n = � @@t is the normal to the (space-like) homo-geneous hyper-surfaces. The expansion and shear ten-sors, �ab and �ab respectively, of the hyper-surfaces ft =const.g are de�ned by [6]na;b = �ab (4)�ab = �ab � 13�(gab + nanb) ; (5)where � = �aa is the expansion. In terms of the scale-factors � = P3�=1 _a�a� . A dot indicates derivative withrespect to t. The shear �ab is trace-free. It is convenientto de�ne �2 � 12�ab�ab: (6)With this notation the non-vanishing components of theRicci tensor for Bianchi class A models in the orthonor-mal frame are given by (for useful formulae see [7] [8])1



R(0)(0) = � _� � 13�2 � 2�2R(�)(�) = _�(�)(�) + ��(�)(�) + 13 _� + 13�2 + F(�)(�) (7)where there is no sum over � and F(�)(�) is a functionof the scale factors de�ned byF(�)(�) =  (�)(�)(�) (�)(�)(�) �  (�)(�)(�) (�)(�)(�)�(�)(�)(�) (�)(�)(�) :The Ricci rotation coe�cients,  are given by(�)(�)(�) = 12 � a�a�a�C��� � a�a�a�C��� + a�a�a�C����= (�)(�)(�) =  (�)(�)(�) = : : : :The group structure constants C��� for the di�erentBianchi models can be found, for example, in [8].For Bianchi class B models the Ricci tensor has o�-diagonal components and additional terms in the diag-onal components (see for example [9]). However, allthese scale with the scale factors in such a way thatthey become sub-dominant during inationary expan-sion. Therefore, the discussion of Bianchi class A modelspresented here is su�cient.Let us now derive the equations of motion for pre-big-bang ination in this background. The low energy e�ec-tive action of string theory is given byS = � 116�G Z d4xp�ge��(R + @��@��) + Smatter: (8)As matter source we include a perfect uid. The equa-tions of motion derived from (8) are then given by [10]R�� +r�r�� = 8�Ge�T �� (9)R� (r��)2 + 2r�r�� = 0 (10)_�+ �(�+ p) = 0: (11)The last equation already uses the form of the energymomentum tensor Tab = �(t)nanb + p(t)(gab + nanb).We assume that the perfect uid satis�es the equation ofstate p = �.In order to discuss Bianchi class A space-times we usethe Ricci tensor given in Eq. (7). In the orthonormalframe de�ned above, these equations then read_�(�)(�) + (� � _�)�(�)(�) = �F(�)(�) + 13X� F(�)(�) (12)_� + (�� _�)� = �X� F(�)(�) + 8�Ge�3� (13)��+ (�� _�) _� = 8�Ge�(3 � 1)� (14)_�+ �(+1)� = 0 (15)13�2 � �2 � 12(2�� _�) _� = �12X� F(�)(�) + 8�Ge��: (16)

It is easy to see that for � = F(�)(�) = 0 this system isinvariant under the transformationa� ! 1=a� ; t! �t and _�! 2� � _� ; (17)the so called scale factor duality. Under these changes, anexpanding decelerating solution in the post-big-bang era(t > 0) transforms into an inating expanding solution inthe pre-big-bang era (t < 0) [10]. For the following dis-cussion about the pre-big-bang inationary era, we haveto keep in mind that t goes from �1 to 0.The evolution equation for the matter energy densityyields � = �0(a1a2a3)+1 : (18)We assume that ination has started and � describesan 'ordinary' uid with  > �1. As we shall check atthe end, it is then justi�ed to neglect terms involving �.Furthermore, the terms F(�)(�) can be neglected. Alsothis hypothesis will be checked later for consistency.With these approximations, Eqs. (12) to (16) reduceto _�(�)(�) + (� � _�)�(�)(�) ' 0 (19)_� + (� � _�)� ' 0 (20)��+ (� � _�) _� ' 0 (21)13�2 � �2 ' 12(2� � _�) _�: (22)But this set of equations can be readily solved and withscale factors of the form a� = (t=t0)��� which implies� = �P� ��t ; _� = �P� �� + 1t : (23)Since t is negative in our domain of interest and we wantpositive scale factors, we choose also t0 negative. Expan-sion in all directions is then garanteed if �� > 0.The evolution of �(�)(�) is given by�(�)(�) = 13 P� �� � ��t (24)The constraint equation (22) yields the Kasner constraintX� �2� = 1 :We have thus found that the quantities we are inter-ested in, the relative amplitudes of shear, i.e. �(�)(�)� and�2�2 remain constant. A primordial shear is not inatedaway during pre-big-bang ination,�(�)(�)� = const. �2�2 = const. (25)This is our main result.2



It remains to check that it is justi�ed to neglect termsinvolving �e� and the F(�)(�). The �rst expression isgiven by �e� � � tt0�P� ���1 : (26)Consistency requires (cf. equations (13), (14)) that,with increasing time, this term becomes less and less im-portant if compared, for example, with _�. In other words,P� �� � 1 > �2: For positive  this is always satis�edsince �� > 0. For  < 0 it leads to the constraintX� �� < 1j  j : (27)But the Kasner constraint which holds for the unper-turbed solution, P� �2� = 1, implies P� �� >P� �2� =1. Hence the inequality (27) is satis�ed for  > �1.Let us now discuss the behaviour of the functionsF(�)(�). In particular, we want to address the questionhow the shear can be e�ected by a contribution fromthe F(�)(�). For self consistency, we just have to checkthat for a solution close to Kasner, the F(�)(�)'s may beneglected. The dominant contribution to the Ricci ro-tation coe�cients comes from a factor � a�a�a� �2 wherea� expands fastest and a� and a� expand slowest. For aKasner solution the contribution to the Ricci rotation co-e�cients grows like � a�a�a� �2 / t2(��+�����). The termwith minimal �� + �� � �� = �min grows fastest. Butthe Kasner condition readily implies that 0 < �� < 1so that �min > �1. Therefore, if the deviation from the'Kasner solution' is small, it decreases with time and willeventually be negligible. If at some given time duringpre-big-bang ination, the universe is close to a a Kas-ner solution, it will approach the Kasner solution duringsubsequent evolution. In that sense the Kasner solutionsare (local) attractors of the Bianchi type A models withordinary matter content.Note also that, if the solution is reasonably close toisotropic, �� � 1=p3, �min is even positive and theF(�)(�) are very strongly suppressed. This means thatour argument applies and subsequent pre-big-bang evo-lution does not 'isotropize' the solution.As a simple example we consider a Bianchi II stringcosmology. We neglect a possible additional contributionfrom matter, � = 0. The exact 7 parameter family of so-lutions can be found in [11]. The evolution of the ratios�(�)(�)� for a particular choice of parameters is shown inFig. 1. We have chosen the parameters such that the so-lution converges to the Kasner solution with scale factorsa1 / (�t)��1 , a2 / (�t)��2 , and a3 / (�t)��3 , where�1 = 0:68, �2 = 0:61, and �3 = 0:42. These satisfy thestring Kasner conditionP31 �2i = 1. The evolution of theshear parameters �(�)(�) for this particular pre-big-banginationary solution is shown in Fig. 1. Clearly, �(�)(�)=�approaches the Kasner value,

�(�)(�)=� t!0��! �� � 13 P� ��P� �� :

FIG. 1. Evolution of the ratios �(�)(�)� in a Bianchi IImodel. The parameters are chosen in order to admit anpre-big-bang inationary solution with �1 � 0:68, �2 � 0:61and �3 � 0:42.The situation in pre-big-bang ination can be con-trasted with ordinary slow roll ination. There the scalefactor is expanding close to exponentially and � � const.The equation for �(�)(�) in slow roll ination is obtainedfrom (12) by setting the dilation term, _� = 0. Neglectingagain the right hand side of (12), we �nd in this case�(�)(�)� � e��t :Primordial shear decays exponentially and very soon itbecomes negligible.In contrary, in pre-big-bang ination the shear param-eter is essentially determined by its initial value. Thisbehaviour can also be understood by looking at the evo-lution in the Einstein frame in which usual general rela-tivity is recovered. The dilaton provides a matter contentwhich behaves as a sti� perfect uid (p = �) whose en-ergy density evolves like a�6. The shear �2 also evolvesas a�6, and again their ratio is a constant.It is known in vacuum general relativity that the singu-larity at t = 0 in spatially homogeneous models is eitherasymptotically velocity term dominated [12] (Kasner-like) or Mixmaster like [13]. Adding a massless scalar�eld destroys the Mixmaster behaviour after a �nite num-ber of oscillations leaving just the Kasner behaviour [14].Thus at su�ciently late times, t! �0 terms due to spa-tial curvature like the F(�)(�) terms in the string framebecome negligible.We consider our result as quite important for thepre-big-bang model. It implies that the problem of3



isotropization cannot be solved in the simplest versionof pre-big-bang ination. Especially, it cannot be solvedin the early, classical, low coupling regime. We also doubtthat this problem can be solved by quantum particle pro-duction back-reaction, a mechanism, which can be usedto some extent to damp anisotropies in the very earlypost-big-bang universe [15]. In our case, the anisotropiesare a very long range, low energy phenomena and it seemsunlikely to us that they can be cured by particle creationat very negative times.As t ! �tstring copious particle production and alsoother mechanisms, like higher order corrections to the ac-tion as conjectured in [16] may damp anisotropies. Butthese corrections only become important close to thePlanck time. During the entire pre-big-bang inationthe universe remains as anisotropic as in the initial con-ditions. This has signi�cant implications on quantumparticle creation during the pre-big-bang phase as hasbeen investigated in [16].Within string cosmology, cosmological uctuations aredue to coherent quantum particle production in the pre-big-bang phase [17]. It is still an open problem, to whatextent anisotropic cosmological uctuations would be vis-ible in the perturbations of the post-big-bang universe,like e.g. as a preferred direction in the anisotropies of thecosmic microwave background. A study of this problemis in preparation.AcknowledgmentsWe would like to thank G. Venezianofor discussions. This work is partially supported by theSwiss NSF.
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