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1 IntroductionThe theoretical and observational determination of anisotropies in the cosmic microwave back-ground radiation (CMB) has recently attracted a lot of attention. One has justi�ed hopes tomeasure the CMB anisotropies to a precision of a few percent or better within the next ten years.Furthermore, if initial 
uctuations are induced during a primordial in
ationary period and no ex-ternal sources induce perturbations at later times, CMB anisotropies can be calculated by linearcosmological perturbation theory to very good accuracy. Since the detailed results depend notonly on the primordial spectrum but also on the parameters of the cosmological model considered,the anisotropy spectrum may provide a mean to determine these parameters to an accuracy of afew percent.This problem has been extensively investigated mainly for scalar perturbations [1].As it is well known, also tensor perturbations can by generated during in
ation. They playan important role: As shown in [2], the presence of gravitational waves can crucially change the1



theoretical predictions of cluster abundance, which is an important test of cosmological models.In particular, power spectra of mixed dark matter (MDM) models normalized to the COBE 4-year data [4] provide cluster abundances higher than observed. This is one of the di�culties ofstandard MDM models. Taking into account a gravitational wave contribution, this inconsistencycan be circumvented. Hence, the question how gravitational wave contributions depend on modelparameters is very important.Here we discuss the model dependence of anisotropies due to gravitational waves for models witha total density parameter 
 = 1 which are thus spatially 
at. However, we vary the contributionsof cold dark matter (CDM), hot dark matter (HDM) and a cosmological constant, which are givenin terms of the parameters 
C ; 
H and 
�. We also vary the number of degrees of freedom formassless neutrinos and hot particles.We consider a �xed input spectral index n = 0 from in
ation. For a general input spectrumhjh(tin; k)j2i = A(k)2k�3, our output spectrum hj _h(t; k)j2i has to be multiplied by jA(k)j2.In Section 2 we present the perturbation equations and describe the models considered inthis work. In Section 3 we discuss our results and we conclude in Section 4. The non-trivialrelation between the temperature anisotropy spectrum, C`, and the metric 
uctuation spectrumhhij(t;k)hlm(t0;k)�i for tensor perturbations is derived in the appendix.Notation: The Friedmann metric is given by a2(�dt2 + 
ijdxidxj), where a denotes the scalefactor, t is conformal time, and 
 is the metric of a three space with constant curvatureK. We shallconsider a spatially 
at universe, the case K = 0 exclusively. An over-dot stands for derivativewith respect to conformal time t, while prime denotes the derivative with respect to kt � x.
2 The modelsThe basics of linear perturbations of Friedmann universes are discussed in [5]. We shall adopt thenotation of [5] in this work. We want to determine the evolution of tensor perturbations in spatially
at Universes which contain a fraction of cold dark matter (CDM), hot dark matter (HDM) anda cosmological constant �, such that: 
0 = 
H + 
C + 
� = 1, where 
� denotes the densityparameter today, i.e. at t0. We neglect the contribution of photons, massless neutrini and baryons(which may be included in CDM) to 
0.The expansion of the Universe is described by the Friedmann equation for the scale factor:� _aa�2 = 8�3 G�Ma2 + 13�a2 (1)where �M is the total density of matter in the Universe, �M = �C+�H+��0 +�
 . Here �
 denotesthe density of photons, ��0 is the density of massless neutrini and �C , �H denote the densities ofCDM and HDM respectively.The metric element for a Friedmann universe with tensor perturbations is given by:ds2 = a2(t)(�dt2 + (�ij + 2hTij)dxidxj) (2)where we choose c = 1, t is conformal time and a(t) denotes the scale factor. For tensor perturba-tions, the metric 
uctuations hTij satisfy the conditionshTii = 0; hTji ki = 0 (3)where k is the wave vector which may be set equal to (0; 0; k), such that the conditions (3) reduceto hT11 = �hT22; and hTi3 = hT3i = 0 : (4)2



We describe dynamics of tensor perturbations in a medium containing collision-less particles,whose anisotropic stresses are not damped by collisions. As long as the collision-less componentis relativistic, it provides a source for gravitational waves. The evolution equation for tensorperturbations of the metric is given by [5]:�hTij + 2 _aa _hTij + k2hTij = 8�Ga2p�ij : (5)Here p is the pressure of the collision-less component and � denotes the tensor contribution to theanisotropic stresses, which in our case are due to the presence of relativistic, collision-less particles.Denoting the tensor part of the perturbed distribution function of the collision-less component byF , � is given by �ij = 1pa4 Z v4q (ninj � 1=3�ij)Fdvd
 (6)where ni is a spatial unit vector, denoting the photon directions, v is the redshift corrected velocityand q the redshift corrected energy of the collision-less particles (see [5]). In the case of masslessparticles (massless neutrini) q � v. Liouville's equation leads to the following perturbation equationfor F [5], q _F + vnjkjF = qvninj _hTji dfdv ; (7)f denotes the unperturbed distribution function.The set of Eqs. (1) to (7) fully describes the evolution of tensor perturbations in media con-taining perfect 
uids and collision-less particles. In our models we have in principle three kindsof collision-less particles: Hot dark matter, massless neutrini and, after recombination, the pho-tons. Studying the initial conditions, we shall �nd that for the growing mode anisotropic stressesare extremely small on super horizon scales. However, when the scales relevant for tensor CMBanisotropies (�� tdec) enter the horizon, t� tdec HDM particles are already non relativistic. Wemay thus neglect their contribution to anisotropic stresses. Hence, we just consider the pressureanisotropy from massless neutrini and, after recombination, from the photons themselves.For massless particles we can simplify Eqs. (6) and (7) by introducing the brightness perturba-tion M M � 4���0a4 Z 10 Fv3dv (8)In terms of M Liouville's equation (7) becomes:_M + injkjM = �4nlnj _hTlj (9)and the anisotropic stresses are given by:�ij = 34� Z (ninj � 1=3�ij)Md
 : (10)Equations (5),(9),(10) for perturbations and eqn. (1) for scale factor together with the usual equa-tions determining �C ; �H ��0 and �
 form the closed system of ordinary di�erential equation whichwe have solved.We assume standard in
ation according to which the initial amplitude of gravitational wavesis independent of scale i.e., hjh(tin; k)j2i / k�3.Each solution of Eqs. (5),(9) and (10) can be presented as a sum of growing and decaying modesand an in�nite number of modes corresponding to perturbations of the collision-less medium [6]. Weare only interested in the growing mode which is given by the initial condition hTij(t! 0) =const.and _hij(t! 0) = 0.If _hij = 0, Eq. (9) does not admit a tensor contribution to M . In this case, M / exp(in � k)and all components of the induced anisotropic stress normal to k vanish. Therefore, the correct(tensorial) initial condition for M is M(t! 0) = 0 and also �ij(t! 0) = 0.3



These initial values remain unchanged as long as kt� 1. Assuming, e.g. spherical polarizationand a 
at spectrum from in
ation, at some early time, kt � 1 for all wavelengths considered, wethus choose the initial conditionshjhT11j2i = hjhT12j2i = hjhj2i = A2k�3; �11 = �12 = 0; M = 0 ; (11)where A is the amplitude of gravitational waves. It is easy see that on superhorizon scales (kt� 1),h =const. and the evolution of gravitational waves and as a result �T=T are independent of themodel parameters. For scales kt � 1, the metric perturbations begin to oscillate and eventually(kt � 1) damp away (see Figs. 1 and 2). The non-zero _h then induces anisotropic stresses viaEqs.(9) and (10). Very often, these anisotropic stresses have been neglected in the literature. Herewe �nd that their e�ect is indeed very small. There is typically about 1% additional damping dueto the loss of some gravitational wave energy into anisotropic stresses.The main model dependence is the modi�cation of the damping term ( _a=a) in the di�erentbackgrounds considered.We want to determine the CMB anisotropy spectrum induced by gravitational waves. Usingthat the brightness perturbation M for photons is actuallyM = 4�TT :we obtain by integrating Eq. (9) for photons1�TT (t0;k;n) = exp(ik � nt0) Z t0tdec ninj _hTij(t;k) exp(�ik � nt)dt : (12)The power spectrum, Cl of the CMB anisotropies can de�ned by the expansion of the correlationfunction into spherical harmonics.C(cos �) = ��TT (t0; x0;n) � �TT (t0; x0;n0)�(n�n0)=cos � = 14��(2l + 1)C`P`(cos �) (13)A somewhat lengthy calculation relates the gravitational wave spectrum j _h(t; k)j2 via Eqs. (12) and(13) to the C`'s. Taking into account the conditions (3), it is possible to split this integral into twopart coming from hT11 and hT12. If we assume initially hjhT11j2i = hjhT12ji = jH j2 (no polarization),the two terms are equal. C` = 2� Z dkk2jI(`; k)j2`(`� 1)(`+ 1)(`+ 2) ; (14)with I(`; k) = Z t0tdec dt _H(t; k)j`((k(t0 � t))(k(t0 � t))2 (15)(see also [7]), where j` denotes the spherical Bessel function of order `. A self contained derivationof Eq. (15) is presented in the appendix.Before we come to a description of the model dependence of the results, let us discuss theexpected behavior in general. For a rough discussion we may neglect the anisotropic stresses inEq. (5). We �rst consider large scales which enter the horizon only after decoupling, ktdec � 1.These scales contribute to jI(`; k)j2 by roughly A2k�3j 2̀(kt0)=`4. Inserting such a contribution inEq. (14) and integrating over k yields `2C` � A2 : (16)1Prior to and during recombination, photons Thomson scatter with the electrons. For photons, we thus, inprinciple, have a collision term on the right hand side of Eq. (9). But this is only important on relatively smallangular scales, ` >� 500, which we are not investigating here. We thus neglect the collision term.4



The integration over k is only justi�ed if the main contribution to j 2̀ comes from the regime,where ktdec � 1, in other words, if kt0 � ` for a value of k with ktdec � 1, which is equivalent to`� tdec=t0 � 50.Perturbations on small scales, ktdec � 1 are damped by a factor of about (tenter=tdec)2 �1=(ktdec)2 until decoupling2. Here tenter � 1=k denotes the scale at which the mode k enters thehorizon. Since the main contribution to C` comes from the scales k with kt0 � `, we obtain anapproximate behavior of `2C` � A2�50̀�4 for `� tdec=t0 � 50 : (17)This analysis explains the generic behavior of the curves shown in Fig. 3.Let us now come to a more detailed analysis. Having calculated the metric perturbations hTijnumerically, we can determine the CMB 
uctuation spectrum according to Eq. (15) by means ofnumerical integration (we have used 60 to 100 point Gauss-Lagrange and Gauss-Laguerre integra-tions) and investigate it's dependence on the model parameters.3 ResultsWe have solved Eqs. (5), (9) and (10) numerically for tin � t � t0 choosing the initial conditionsof the growing mode and unpolarized, isotropic waves, hjhT11j2i = hjhT12j2i. For a given model ofin
ationary initial perturbations, our results would have to be properly weighted and added to thescalar C`'s.We have chosen a 
at initial spectrum, such that hTin = Ak�3=2 and _hin = 0.We have investigated 80 models varying the �ve parameters (h0;
�;
H=
C ; �� ; �H), whereh0 is the Hubble parameter H0 in units of 100km/s/Mpc, �� denotes the number of degrees offreedom in massless neutrini and �H is the corresponding number for hot dark matter particles.All the models lead to similar gravity wave induced anisotropies which, for reasonable parameterchoices, di�er by less than about 10%. The changes due to anisotropic stresses are extremely small,on the order of 1% or less. The main di�erence is caused by a non-zero cosmological constant, whichenhances the damping at late times and thus leads to somewhat smaller perturbation amplitudes(see also [8]). A similar e�ect is obtained if we increase the Hubble parameter. Hot dark matterdoes not induce signi�cant changes since, at times when the wavelengths leading to substantialCMB anisotropies enter the horizon, hot dark matter is already non-relativistic, resulting in nearlythe same expansion law as cold dark matter. In Fig. 1, we show the dependence of _h(t; k) for�xed k as a function of time varying several model parameters. We have chosen k = 20=t0, whichcontributes mainly to an angle of � � 6o in the sky, or to the C`'s with ` � 10 to 20. For some ofthese models we also show _h(t; k) as a function of k for �xed time t = t0=2 in Fig. 2.The solid line always shows standard CDM, i.e. 
C = 1 and �� = 6 for comparison. Themaximum amplitudes for standard CDM and CDM+� di�er by more than 30%, while the mixeddark matter models show di�erences of about 1% only. The somewhat weaker damping due to theabsence of the anisotropic stresses provided by a massless neutrino component and the decrease of_a=a leads to the slight increase in amplitude for mixed dark matter models with 
H = 0:5. Thisresult does not change if we increase the amount of hot dark matter. However, if we decrease 
Hto 0.3 or less no amplitude change is left and only a small decrease in wavelengths builds up afterabout one oscillation. Due to the smallness of these e�ects, which remain of the order of 1% to 2%when translated into the C`'s, we disregard mixed dark matter models in what follows and claimthat, on the level of 1% accuracy, MDM and CDM lead to the same gravitational wave spectra.2Here we neglect the short matter dominated period before decoupling and approximate the damping factor byits behavior in the radiation dominated era, ( _a=a) � 1=t.5



Changing the number of degrees of freedom in massless neutrini or HDM also induces very smalldi�erences of the order of 1%.Taking into account that an experiment always just measures the sum of tensor and scalarcontributions and �rst has to disentangle the probably signi�cantly smaller gravitational wavecontribution, we can disregard such small e�ects, even if the experimental error is as small aspossible, i.e. dominated by cosmic variance.The relevant parameters to be considered are thus 
M = 
C +
H ; 
� and h0.In the k dependence of _h an additional e�ect comes into play: Due to the model dependenceof t0, the oscillations in _h at a �xed fraction t = ft0 of t0 have di�erent wavelengths if measuredin units of t0. Models with a larger cosmological constant oscillate slower in kt0 than models withsmall cosmological constant. Therefore, the cancelation due to oscillations in the integral (15) ismore severe for models with small cosmological constant. This e�ect �nally dominates over thelarger amplitude of _h which models with large � actually have. In Fig. 3 we show the C` spectrafor several models and in a Fig. 4 the relative di�erences are indicated. The �-models shown inframes (a) of Figs. 3 and 4 show a slightly increasing amplitude with increasing �. As can be seenin frames (b) of Figs. 3 and 4, increasing h0, which does not lead to an increase in the relativeoscillation frequency, just decreases the 
uctuations due to stronger damping. The detailed modelparameters of the frames (b) are just given for information. The only parameters which reallymatter are 
� and h0. The variations induced by changing the other parameters are on the 1%level and thus swamped by cosmic variance.The variation of the tensor C` spectrum for di�erent cosmological models with �xed Hubbleparameter which are not already excluded by other observations than CMB anisotropies neverexceed 10% for ` < 60, while variations of the Hubble parameter can lead to changes in thespectrum of up to 15%.4 ConclusionsWe have calculated the tensor contribution to the CMB anisotropies in mixed dark matter modelswith and without cosmological constant. We have included a previously neglected source termin the evolution equation for metric perturbations. Our �ndings are however quite modest: Byreasons of cosmic variance, the statistical relative error in C` measured from only one point in theuniverse is always 1=p2`+ 1. This is a very signi�cant uncertainty, especially for the gravitationalwave contribution which peaks around ` � 20 and has already dropped by a factor of about 2 at` = 60 (see Fig. 3).In non of the considered models the in
uence of the anisotropic stress source becomes largeenough to induce a di�erence in the C` spectrum which is larger than cosmic variance. The sameis true for hot dark matter contributions. Only an extremely large cosmological constant or adi�erence in the Hubble parameter can induce changes in the gravitational wave spectrum whichare in principle observable but nevertheless small.This �nding has one negative and one positive aspect: Unfortunately, the gravitational wavecontribution does not contain detailed information about the cosmological parameters consideredhere and can thus not be used to measure them with high accuracy. On the other hand, since thiscontribution is so model independent, it conserves its information about the initial condition andthus about the amplitude and spectral index which it inherited during, e.g., an in
ationary epoch.Acknowledgments: T. Kanhiashvili would like to express her thanks to the University ofGeneva for hospitality. T.K. is grateful to R. Valdarnini and H. Miheeva for helpful remarks. Itis a pleasure to thank also A. Melchiorri and N. Straumann for useful discussions. This work waspartially supported by the Swiss National Science Foundation.6



Appendix: The C`'s from gravitational wavesWe consider metric perturbations which are produced by some isotropic random process (for ex-ample during in
ation). After production, they evolve according to a deterministic equation ofmotion. The correlation functions of hij(k; t) have to be of the formhhij(k; t)h�lm(k; t0)i = [kikjklkmH1(k; t; t0) +(kikl�jm + kikm�jl + kjkl�im + kjkm�il)H2(k; t; t0) +kikj�lmH3(k; t; t0) + klkm�ijH�3 (k; t0; t) ++�ij�lmH4(k; t; t0) + (�il�jm + �im�jl)H5(k; t; t0)] : (A1)Here the functions Ha are functions of the modulus k = jkj only. Furthermore, all of them exceptH3 are hermitian in t and t0. This is the most general ansatz for an isotropic correlation tensorsatisfying the symmetries required. To project out the tensorial part of this correlation tensor weact on hij it with the tensor projection operator,T abij = (PilPjm � (1=2)PijPlm)PmaP lb with (A2)Pij = �ij � k̂ik̂j : (A3)This yields hh(T )ij (k; t)h(T )�lm (k; t0)i =H5(k; t; t0)[�il�jm + �im�jl � �ij�lm + k�2(�ijklkm +�lmkikj � �ilkjkm � �imklkj � �jlkikm � �jmklki) +k�4kikjklkm] : (A4)From Eq. (12), we then obtain��TT (n)�TT (n0)� � 1V Z d3x��TT (n;x)�TT (n0;x)� =� 12��3 Z k2dkd
k̂ Z t0tdec dt Z t0tdec dt0 exp(ik � n(t0 � t)) exp(�ik � n(t0 � t0)) �hh _h(T )ij (t;k) _h(T )�lm (t0;k)ininjn0ln0mi : (A5)Here d
k̂ denotes the integral over directions in k space. We use the normalization of the Fouriertransform f̂(k) = 1pV Z d3x exp(ix � k)f(x) ; f(x) = 1(2�)3 Z d3k exp(�ix � k)f̂(k) ;where V is an (arbitrary) normalization volume.We now introduce the form (A4) of < h(T )h(T ) >. We further make use of the assumption thatthe perturbations have been created at some early epoch, e.g. during an in
ationary phase, afterwhich they evolved deterministically. The function H5(k; t; t0) is thus a product of the formH5(k; t; t0) = H(k; t) �H�(k; t0) : (A6)Introducing this in Eq. (A5) yields��TT (n)�TT (n0)� =� 12��3 Z k2dkd
k̂ �(n � n0)2 � 1 + �02 + �2 � 4��0(n � n0) + �2�02� �Z t0tdec dt Z t0tdec dt0 h _H(k; t) _H�(k; t0) exp(ik�(t0 � t)) exp(�ik�0(t0 � t0))i ; (A7)7



where � = (n � k̂) and �0 = (n0 � k̂). To proceed, we use the identity [9]exp((ik�(t0 � t)) = 1Xr=0(2r + 1)irjr(k(t0 � t))Pr(�) : (A8)Here jr denotes the spherical Bessel function of order r and Pr is the Legendre polynomial ofdegree r.Furthermore, we replace each factor of � in Eq. (A7) by a derivative of the exponentialexp(ik�(t0 � t)) with respect to k(t0 � t) and correspondingly with �0. We then obtain��TT (n)�TT (n0)� =� 12��3Xr;r0 (2r + 1)(2r0 + 1)i(r�r0) Z k2dkd
k̂Pr(�)Pr0(�0)�h2(n � n0)2 Z dtdt0jr(k(t0 � t))jr0(k(t0 � t0)) _H(k; t) _H�(k; t0)� Z dtdt0[jr(k(t0 � t))jr0(k(t0 � t0)) + j00r (k(t0 � t))jr0(k(t0 � t0)) +jr(k(t0 � t))j00r0(k(t0 � t0))� j00r (k(t0 � t))j00r0(k(t0 � t0))] _H(k; t) _H�(k; t0)�4(n � n0) Z dtdt0j0r(k(t0 � t))j0r0(k(t0 � t0)) _H(k; t) _H�(k; t0)i : (A9)Here only the Legendre polynomials, Pr(�) and Pr0(�0) depend on the direction k̂. To perform theintegration d
k̂, we use the addition theorem for the spherical harmonics Yrs,Pr(�) = 4�(2r + 1) rXs=�r Yrs(n)Y �rs(k̂) : (A10)The orthogonality of the spherical harmonics then yields(2r + 1)(2r0 + 1) Z d
k̂Pr(�)Pr0(�0) =16�2�rr0 rXs=�r Yrs(n)Y �rs(n0) =4��rr0Pr(n � n0) : (A11)In Eq. (A9) the integration over d
k̂ then leads to terms of the form (n � n0)Pr(n � n0) and (n �n0)2Pr(n � n0). To reduce them, we usexPr(x) = r + 12r + 1Pr+1 + r2r + 1Pr�1 : (A12)Applying this and its iteration for x2Pr(x), we obtainh�TT (n)�TT �(n0)i =12�2 Xr (2r + 1) Z k2dk Z dtdt0 _H(k; t) _H�(k; t0)n� 2(r + 1)(r + 2)(2r + 1)(2r + 3)Pr+2 + 1(2r � 1)(2r + 3)Pr + 2r(r � 1)(2r � 1)(2r + 1)Pr�2��8



jr(k(t0 � t))jr(k(t0 � t0))� Pr[jr(k(t0 � t)j00r (k(t0 � t0))+jr(k(t0 � t0))j00r (k(t0 � t))� j00r (k(t0 � t))j00r0(k(t0 � t0))]�4 � r + 12r + 1Pr+1 + r2r + 1Pr�1� j0r(k(t0 � t))j0r(k(t0 � t0))o ; (A13)where the argument of the Legendre polynomials, n � n0, has been suppressed. Using the relationsj0r = � r + 12r + 1jr+1 + r2r + 1jr�1 (A14)for Bessel functions, and its iteration for j00, we can rewrite Eq. (A13) in terms of the Besselfunctions jr�2 to jr+2.To proceed we use the de�nition of C`:��TT (n) � �TT (n0)�(n�n0)=cos � = 14��(2l + 1)C`P`(cos �) (A15)If we expand �TT (n) = X̀;m a`;mY`;m(n) (A16)and use the orthogonality of the spherical harmonics as well as the addition theorem, Eq. (A10),we get C` = ha`;ma�̀;mi : (A17)We thus have to determine the correlatorsha`ma�̀0m0i = Z d
n Z d
n0 ��TT ��TT �Y �̀m(n)Y`0m0(n0) : (A18)Inserting our result (A13), we obtain the somewhat lengthy expressionha`ma�̀0m0i =2� �``0�mm0 Z dkk2 Z dtdt0 _H(k; t) _H�(k; t0)njl(k(t0 � t))jl(k(t0 � t0))�� 1(2`� 1)(2`+ 3) + 2(2`2 + 2`� 1)(2`� 1)(2`+ 3) + (2`2 + 2`� 1)2(2`� 1)2(2`+ 3)2� 4`3(2`� 1)2(2`+ 1) � 4(`+ 1)3(2`+ 1)(2`+ 3)2�� [j`(k(t0 � t))j`+2(k(t0 � t0)) + j`+2(k(t0 � t))j`(k(t0 � t0))]�12l+ 1 �2(`+ 2)(`+ 1)(2`2 + 2`� 1)(2`� 1)(2`+ 3)2 + 2(`+ 1)(`+ 2)(2`+ 3) � 8(`+ 1)2(`+ 2)(2`+ 3)2 �� [j`(k(t0 � t))j`�2(k(t0 � t0)) + j`�2(k(t0 � t))j`(k(t0 � t0))]�12l+ 1 �2`(`� 1)(2`2 + 2`� 1)(2`� 1)2(2`+ 3) + 2`(`� 1)(2`� 1)(2 � 8`2(`� 1)(2`� 1)2 �+j`+2(k(t0 � t))j`+2(k(t0 � t0))�� 2(`+ 2)(`+ 1)(2`+ 1)(2`+ 3) � 4(`+ 1)(`+ 2)2(2`+ 1)(2`+ 3)2 + (`+ 1)2(`+ 2)2(2`+ 1)2(2`+ 3)2�+j`�2(k(t0 � t))j`�2(k(t0 � t0))�� 2`(`� 1)(2`� 1)(2`+ 1) � 4`(`� 1)2(2`� 1)2(2`+ 1) + `2(`� 1)2(2`� 1)2(2`+ 1)2�� (A19)9



An analysis of the coe�cient of each term reveals that this result is equivalent to Eq. (14) with.I(`; k) = j`+2(k(t0 � t))(2`+ 3)(2`+ 1) + 2j`(k(t0 � t))(2`+ 3)(2`� 1) + j`�2(k(t0 � t))(2`+ 1)(2`� 1)y (A20)= j`(k(t0 � t))(k(t0 � t))2 : (A21)
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Figure 1: The variable _h is shown at �xed wave number k = 20=t0 as function of time for di�erentmodels. In frame (a), we consider models without HDM. The solid line shows pure CDM (with 3sorts of massless neutrini). The dotted, dashed, long dashed and dash{dotted lines show modelswith increasing 
�. In frame (b), mixed dark matter models with 
H = 0:3 (dotted) and 
H = 0:5(dashed) are compared with standard CDM (solid line). In frame (c) standard CDM (solid line),with 
CDM = 
� = 0:5 (dotted line) and 
CDM = 0:5; 
� = 
H = 0:25 (dashed line) are shown.In frame (d) we compare 
� = 0:3 models with Hubble parameters h0 = 0:5 (dotted) and h0 = 0:75(solid); and 
� = 0:7 models with h0 = 0:5 (dash-dotted) and h0 = 0:75 (long-dash-dotted).
11



Figure 2: The variable _h is shown at �xed time, t = t0=2 as function of the wave number k fordi�erent models. In frame (a), we consider models without HDM. The solid line shows pure CDM(with 3 sorts of massless neutrini). The dotted, dashed, long dashed and dash{dotted lines showmodels with increasing 
�. In frame (b) standard CDM (solid line), with 
CDM = 
� = 0:5(dotted line) and 
CDM = 0:5; 
� = 
H = 0:25 (dashed line) are shown.
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Figure 3: In frame (a), the angular power spectra of CMB anisotropies induced by gravitationalwaves are shown for models with di�erent values for the cosmological constant. The solid linerepresents the model 
� = 0 (solid line) and the amplitude increases with increasing �. In frame(b), we show the e�ect of increasing the Hubble parameter. The models chosen are mixed darkmatter models with cosmological constant, 
H=
CMD = 0:15; 
� = 0:7 with h0 = 0:5 (solid line)and h0 = 0:75 (dotted line); and 
H=
CDM = 0:35; 
� = 0:5 with h0 = 0:5 (dashed line) andh0 = 0:75 (long dashes) are shown.

Figure 4: The relative di�erences for the models given in Fig. 3 are shown. In frame (a) the sameline types as in Fig 3a are chosen, and the di�erence from standard CMB is indicated. In frame (b)The di�erence between h0 = 0:5 and h0 = 0:75 is shown for the model 
H=
CDM = 0:35; 
� = 0:5(solid line) and 
H=
CMD = 0:15; 
� = 0:7 (dashed line).13


