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We study the effect of a possible helicity component of a primordial magnetic field on the tensor
part of the cosmic microwave background temperature anisotropies and polarization. We give an-
alytical approximations for the tensor contributions induced by helicity, discussing their amplitude
and spectral index in dependence of the power spectrum of the primordial magnetic field. We find
that an helical magnetic field creates a parity odd component of gravity waves inducing parity odd
polarization signals. However, only if the magnetic field is close to scale invariant and if its heli-
cal part is close to maximal, the effect is sufficiently large to be observable. We also discuss the
implications of causality on the magnetic field spectrum.
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I. INTRODUCTION

The observed Universe is permeated with large scale coherent magnetic fields. It is still under debate whether these
magnetic fields have been created by charge separation processes in the late Universe, or whether primordial seed
fields are needed. Recently, it has been proposed [1] that also ‘helical’ magnetic fields, i.e. fields with a non-vanishing
component in the direction of the current, B - (V x B) # 0, could be produced e.g. during the electroweak phase
transition (see also [2]).

Extended studies have already investigated effects of stochastic magnetic fields with vanishing helicity on the
cosmic microwave background (CMB) (see [3-6] and others). In a seminal paper [7], Pogosian and collaborators have
investigated the possibility that a helical magnetic field can induce correlations between the temperature anisotropy
and the B mode CMB polarization.

In this paper we want to go beyond that work. We determine all the effects on the CMB induced by a helical
magnetic field. We shall actually show that, contrary to the statement in Ref. [7], a helical component also introduces
pure CMB anisotropies and polarization. But of course its most remarkable effect is the above mentioned correlation
of temperature anisotropy and B polarization. We shall show that also a correlation between FE and B polarization
is induced.

In this paper we discuss only the tensor mode, gravitational waves, since the calculations for this case are simplest.
Even if the resulting observational effects are small and may not be detectable, we find it interesting since it is
completely new and contains several surprising elements. Furthermore, a fluid vorticity field or non parity invariant
initial spectrum of gravitational waves produced during inflation could induce very similar effects; in that sense our
results are more generic than their derivation.

In the next section, we discuss the magnetic field spectrum and define its symmetric and helical contributions.
Then we compute the tensor component of the magnetic field energy momentum tensor which acts as a source for
gravity waves. In Section IV we determine the induced gravity wave spectrum which also has a symmetric and a
helical contribution. In Section V we compute the induced CMB temperature anisotropy and polarization spectra as
well as the above mentioned correlations. Finally, we discuss our results and draw some conclusions. The paper is
complemented by an appendix where details of calculations and tests of some approximations can be found.
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II. THE MAGNETIC FIELD SPECTRUM

We consider a primordial stochastic magnetic field created before equality, during the radiation-dominated epoch (or
earlier). During this period of the evolution of the Universe, the conductivity of the primordial plasma on scales larger
than the Silk scale A > Ag is very high, effectively infinite [8]. Hence, the ‘frozen-in’ condition holds, E = —v x B,
where v is the plasma flux velocity, E is the electric field induced by plasma motions and B is the magnetic field.
Moreover, large scale magnetic fields always induce anisotropic stresses, so that their energy density B?/87 must
be a small perturbation, in order not to break the isotropy of the Friedmann Robertson Walker background. This
allows us to apply linear perturbation theory. Both, the magnetic field energy and the plasma peculiar velocity are
treated as first order perturbations; consequently, the energy density of the induced electric field will be 3rd order in
perturbations theory, and can be neglected. Also terms E;B; are of second order and therefore neglected.

At sufficiently large scales, it is possible to neglect the effects of back reaction of the fluid on the evolution of the
magnetic field: the time dependence decouples from the spatial structure, and, due to flux conservation, the magnetic
field evolves like B(n,x) = B(n9, x)/a(n)?, where we use the normalization a(ny) = 1 and a subscript 0 denotes today.
At smaller scales however, the interaction between the fluid and the magnetic field becomes important, leading mainly
to two effects: on intermediated scale, the plasma undergoes Alfvén oscillations, and B2(k) — B2(k) cos?(v4kn) (where
vy = B%/(4w(p + p)) is the Alfvén velocity, here B is the field averaged over a scale of order v4n); on very small
scales, the field is exponentially damped due to shear viscosity [3, 4, 9, 10]. As in Ref. [4], we will account for this
damping by introducing an ultraviolet cutoff at wavenumber kp(n) in the spectrum of B (see also [6]).

Following Refs. [1, 7], we introduce an helicity component A(k) in the magnetic field two point correlation function:
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where S(k) and A(k) are respectively the symmetric and helical part of the magnetic field power spectrum. P;; =
di; — k;ik; is the usual transverse plane projector satisfying the conditions P;; Pj, = Pix, Pijk; = 0, €;; is the totally
antisymmetric tensor, and k; = k;/k. We use the Fourier transformation convention

Bj(k) = /dSw exp(ik - x) B, (x), Bj(x) = #/dSk exp(—ik - x)B;(k) . (2)

For simplicity, as in Refs. [4, 6] and others, we shall assume that the magnetic field is a Gaussian random field.
Then all the statistical information is contained in the two-point correlation function and the higher moments can be
obtained via Wick’s theorem.

As explained in Ref. [7], the magnetic field helicity is determined by (B-(VxB)). For a better physical understanding
of the effects which this new helicity term has on CMB anisotropies, it is useful to introduce the orthonormal ‘helicity
basis’ (eT, e, e3 = k) (see also [7, 11]), where

et (k) = _é(e1 +ies) (3)

and (e;, e, e3 = lA() form a right-handed orthonormal basis with e; = k x e;. Under the transformation k — —k
we choose e, to change sign while e; remains invariant. The basis (e*, e_,lAc) has the following properties: et - eF =
-1, et -e* =0, and e*(k) = eT(—k), as well as ik x et = +e*. The components of a vector with respect to
this basis will be indicated by a superscript +. For a fixed (k-independent) basis we will instead use the usual Latin
letters as indices. An arbitrary transverse vector v can be decomposed as v = vTet + v~ e~. Here vT is the positive
helicity component and v~ is the negative helicity component.

With the definition (1), and the reality condition (B*(k))* = —B*(—k), we obtain the connection between the
power spectra S(k), A(k) and the magnetic field components in the new basis:

—(B¥(k)B* (k') + B~ (k)B~ (-k')) = (2n)’S(k)é(k — k') , (4)

(B¥(k)B*(-K') = B~ (k)B~(-k")) = (2m)°A(k)d(k - k') . (5)

In other words, A(k) represents the difference of the expectation values of the positive and negative helicity field
components. If A does not vanish, the left handed and right handed magnetic fields have different strength.

We assume that both the symmetric and helical terms of the magnetic field power spectrum (1) can be approximated
by a simple power law [7]:

N So k™S, for k< kp
S(k) = { 0 otherwise (6)



and

_ Ag k™4, for k < kp
A(k) = { 0 otherwise (7)

where Sp, Ap are the normalization constants, and ng, n4 the spectral indices of the symmetric and helical parts
respectively.

With (6, 7), we can express the normalization constants Sq and Ag in terms of the averaged magnetic field energy
density By\? = (B(x) - B(x))|x, and the absolute value of the averaged helicity Bx? = A(B(x) - (V x B(x)))||»
respectively, both smoothed over a sphere of comoving radius A. By measures the amplitude of helicity on the given
comoving scale .

In order to calculate these quantities, we convolve the magnetic field and its helicity with a 3D-Gaussian filter
function, so that B; — B; * f\, where fi(k) = exp(—A%k?/2). The mean-square values B} and B} are then given
by the Fourier transform of the products of the corresponding spectra S(k) and kA(k) with the square of the filter
function fy:

Bi _ (2711_)3 /dSkS(k)f/\(k)2 = (2‘57‘:)2 Ani-ﬁ-?’r <n82+3> ’ (8)
B = #/d%mw)lﬂ(w = (Ejfy )\ni+3r <nA2+4> ' Y

In order not to over-produce long range magnetic fields or helicity as £ — 0, we require for the spectral indices
ng > —3 and ng > —4 (for ng < —3 and ng < —4 the integrals (8) and (9) diverge at small k).

Using (8), (9) and the definition of the magnetic field spectrum (1), we can rewrite expressions (4) and (5) in the
form (see also [7])

N B2

—(BT(k)B*(-Kk')+ B~ (k)B~ (=k')) = (2w)5@()\k)”56(k -k, (10)
(B9 B*(-K) = BB~ (k) = (2n)" gty ()0 —1). (1)
for k < kp and 0 for & > kp.
Using that
Tim [{(k x B(k)) - B(~K")| < lim (B(k) - B(~k")
we can conclude that
S(k) > |AK)] - (12)

Since S(k) o (|B|?), it is clear that S(k) > 0. The reality condition requires Ag to be real, but it can be either
positive or negative. For Eq. (12) to be valid on very small values of k requires

nag >ng. (13)
Applying Eq. (12) also close to the upper cutoff kp, we have in addition
|Ag| < Sokpi™"4 . (14)
In terms of the magnetic fields on scale A this gives roughly
B3 < B (kp\)"s "4 . (15)

Usually the damping scale is much smaller than the physical scale of interest, A so that Akp > 1. Therefore, if
ng —na # 0, the helical contribution is significantly suppressed on all scales A > Ap = 1/kp. As we now show, this
is always the case if the magnetic field is causally produced.

Most mechanisms to produce magnetic fields with a helical component are causal. By this we mean that all
correlations above a certain scale, usually some fraction of the Hubble scale at formation, have to vanish. If this
is the case, causality implies an additional interesting constraint, which we now derive. For this we assume that
the correlation functions (B;(x)B;(y)) and (B;(x)(V x B(y));) have to vanish for [x —y| > R for some scale R.
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Hence they are functions with compact support, which implies that their Fourier transforms, P;;S(k) and eijlklA(k)
are analytic functions. Therefore, for sufficiently small values of k they can be approximated by power laws as in
Eqgs. (6,7). Since k; is not analytic but kk; is, this implies

ng>2 and mnyg>1, (16)

where ng has to be an even integer while n4 has to be an odd integer. But since we need n4 > ng, this leaves us
with

2, an even integer and (17)
3, an odd integer. (18)

ns 2
na >
Causality together with the condition (12) leads to an additional suppression of helical fields on large scales. Also
ordinary causal magnetic fields cannot be white noise but are severely suppressed on large scale due to the non-analytic
pre-factor P;; in the power spectrum which is a simple consequence of the fact that magnetic fields are divergence free
V B = 0. This has already been discussed in Refs. [4, 12]. The causality constraint need not to be satisfied if the
magnetic fields are generated before or during a period of inflation where the causal horizon diverges. For a detailed
discussion of causality see [13].

III. MAGNETIC SOURCE TERM FOR TENSOR METRIC PERTURBATIONS

The anisotropic stresses which act as source for metric perturbations are given by the magnetic field stress tensor
[14]

1 1 3 * 1 *
7 0) = g [ CPIBI; b —1) ~ 3BD)B; (b 3] (19)
Here we are interested in the generation of gravitational waves, and consequently we need to extract the transverse
and traceless part of 7;;. The form of a general projection to extract any mode (scalar, vector or tensor) from a
generic tensorial perturbation can be found in [15]. We make use of the tensor projector Tyjim = PijPjm — %Pijle
(see also [4]). The tensor contribution to 7, is given by

1
Tij = (PuPjm — 5 Pij Pim)im - (20)

Moreover, since the magnetic field is a stochastic variable, we need to calculate the two point correlation tensor of
7;;(k), which takes the form

(g (K)o (') = 1)2 ﬁ / &p / 4 (B:(p)B; (k — p)Bi(~@)Bun(a — K)) + -85+ 6, (21)

(4m
and we are not interested in terms proportional to d;; and d;,, , which after being projected out will not contribute to
the final result for the tensor perturbation (II;;II;,,) (see appendix A. in [6]). Before applying the tensor projection,
we can simplify the right hand side of (21) using Wick’s theorem, expressing the four point correlators in terms of the
two point ones,

(Bi(k;)Bj(k;)Bi(k;) B (km)) = (Bi(ki)B;(k;
+ (Bi(ki)Bi (ki) j
+ (Bi(k;) By (km)) (B (k;)Bi(ky)) . (22)

Since the two point correlation function given in Eq. (1) is not symmetric, we are not allowed to change the order
of indices 1, j,1,m inside an expectation value. With Eq. (1) we can then compute the correlation function (21)
which consists of a purely symmetric part proportional to [ d®pS(p)S(lk — p|) , a purely helical part proportional to
[ &*pA(p)A(k — pl) , and mixed term, i [ d®*pS(p)A(|k — p|) (the full expressions are given in Appendix A, Eq. (A1)).
The first two terms contribute to the symmetric part of the two point correlation function of the tensor source, while
the two latter terms give rise to a helical contribution. To express them we now introduce the two point correlation
function for the tensor source, which can be parameterized as

(T ()0}, (K')) = ~ [Mijim f (k) +iAijimg (k)] d(k — k') , (23)

I



where the tensors M, and A;jin, are given by

Mijim = PuPjm + PimPji — Pij Py, (24)

A~

k
Aijim = ?q(ijéuq + Piy€jmq + Pime€jig + Pji€img) - (25)

Clearly, both M, and A;jm, are symmetric in the first and second pair of indices. M ;i is also symmetric under
the exchange of ij with Im while A j;,, is anti-symmetric under this permutation. We shall often use simple properties
like

Mijiz = 4, Miim = Miju=0 (26)

PqiMijlm = qulm s Pinijlm = Aq]’lm (27)

MijimMijim = Aijim Aijim =8 (28)

AijimMijim = 0,  Aijij = Aiii = Aiju =0 . (29)
According to Eq. (20), we have now to act on (7,45 (k)7*,(k')) with the tensor projector
PN 1 N 1 N

?j%g(kak,) = (Piapjb - ijpab)(k)(Plchd - _lePcd)(kl) - (30)

2 2

In these calculations we don’t need to care about the position (up or down) of Latin indices as they are always
contracted by a Kronecker §. The symmetric and antisymmetric parts of Eq. (23) are invariant under the application
of the projector (30), so that it is easy to separate the symmetric and helical parts of the source spectrum, f(k) and

g(k):

S0~ K)F(K) = 5 Mapealran (K)ria(K) (31)
Sk —k)g(k) = ;Aabcd<7'ab(k)7-:d(k,)> . (32)

Moreover, by applying the tensor Mjim to Eq. (Al) of Appendix A, we obtain (the first term of this has already
been computed in Refs. [4, 6, 12])

1 1

flk) = 1 (402 /dSp[S(p)S(Ik—pl)(l+72)(1+62)+4A(p)z4(\k—p|)(76)] ; (33)

where vy = k-pand 8 =k- (k/—\p) Note that the square of the helical part of the magnetic field spectrum (1)
contributes to the symmetric part of the source spectrum. This is not surprising, since the product of two quantities
with odd parity has even parity. The antisymmetric part of the source spectrum is obtained by acting with Ajj;,, on
Eq. (A1) of Appendix A. It is given by the mixed terms,

@/dSpS(p)A(\k—pD(HV?)g_ 3

We can also express the correlator (23) in terms of the basis e?; introduced in [11],

g(k) =

3 . )
e?;. = —\/g(el :|:Ze2)i X (e1 ﬂ:ZEQ)j . (35)

These form a basis of tensor perturbations, satisfying the transverse-traceless condition (Sij@?; =0, I%iej; =0 and

ej;ej; = 3/2. Positive circularly polarized gravity waves are proportional to 627; while negative circularly polarized
gravity waves are given by the coefficient of e;;- In this basis II;; is expressed as

IL; (k) = eI (k) + eI (K) . (36)

We can rewrite f(k) and g(k) in terms of the components IT* as

0k~ K) F(k) = 80k~ k) ME)P = 5 (T (I () + T (R (k) (37)
5k~ K) g(k) = —5 (T ()T (K) ~ T (T *(K)) (38)



Here we have used the form of M and A in this basis,

4
_ + e
Mijim = 3 [ef ® e, +e;; @ efh]
44
_ + oo e
Aijim = 3 (e} ® e — €5 @ €]

and the simple properties of Mj;, and Aj;ji, mentioned above. Other useful relations are

(I ()T () + T (T (k) = 2 a0k~ K') (k) (39)
(I ()T ()~ T (T (k) = 2 6k ) g() (10)
(T () = 5 00k = K) (7(R) + (k) (1)
Similarly, defining the usual linear polarization basis
el = (e1 xer—exxe),
e = (e1xes+eyxer), (42)
and the components of II with respect to this basis,
I0; = O'ef; + e, (43)
we obtain also
(I )17 (1) 4+ T ()T () = a0 = K) f(k) (44)
(I ()T () — 117 ()T () = a6k~ K) (k) (15)
With Eqs. (33, 34), we find
£+ 9(06) = 17z [ EPIS@I1+7) +24()7]- [S(k = p (1 + 5 +24(k — p)8] (46)
Let us introduce the tensor
Quy00) = P (OS() + eyl ACK) (47)
so that
o e B9 () = B0 = K) Q50 (18)
with Qi;(—k) = Q};(k) one then finds
£ + 9(8) = [Py (K) = ieiz] [Pon () + ictmy ] [ @ Qis(0)Qi0c~p) (49)

Using Eqs. (6-9), (33) and (34), it is possible to calculate f(k) and g(k). The details of the calculations are given
in the Appendix A. The integrals cannot be computed analytically, but a good approximation gives, for k < kp (see
also [4, 6]):

~ ng+3 ns ang+3\ _ onats , Na—1 A 4+3
10 = As (e I ) g (g 4 P4 s (50)
ns+na+2
~ ns+na+2 na—1(%k
g(k) = € (Mkp)™> 7442 (A [1+ = (%) ] , 61)

where Ag, A4 and C are positive constants given in Egs. (A13) to (A15) of Appendix A. They depend on the
spectral indices ng and n4 of the magnetic field and on its amplitudes, which are given in terms of B3, B3, and .



Note that the contribution of magnetic field helicity to the symmetric part of the source, f(k), is negative. But
it is easy to check that Eq. (12) insures that it never dominates, hence f > 0. For ng,n4 > —3/2, the two terms
proportional to the upper cutoff k%nS'AH dominate in f(k), which consequently depends only on the cutoff frequency
and behaves like a white noise source [4]. For ng < —3/2 or also ny < —3/2, the dominating terms go like k?"s+3
and k27413 respectively. On the contrary, the antisymmetric source g(k) never shows a white noise behavior. For
ns +n4 > —2 the dominant term is proportional to k k7S T4 For ng + na < —2, g(k) does not depend on the
upper cutoff, but is proportional to k"s+m4+3, The singularities in the pre-factors Ag, A4 and C which appear at
ns = —3 and ng = —4 are the usual logarithmic singularities of scale invariant spectra. But as mentioned in Section II
the helical contribution must obey n4 > ng > —3. The apparent singularities in the pre-factors at ng 4 = —3/2 and
at ng+n4 = —2 are removable when multiplied with the k-dependent parts as in Egs. (50) and (51). In the integrals
over k which we shall perform to calculate the Cy’s we only take into account the dominant terms.

If the magnetic field is causal, we expect ng = 2 and n4 = 3, so that

f(k) =~ As(kp\)™ — Aa(kpA)? (52)
g(k) ~ CEXEDN)T . (53)

Comparing the limit given in Eq. (14) with the expressions for Ag and A4 derived in the Appendix A, it is easy to
see that f always remains positive.

The analysis of the evolution of a non-helical magnetic field interacting with the primordial plasma, and the
derivation of the appropriate damping scale kp, has been discussed in Refs. [3] and [10], where the authors considered
a magnetic field with a tangled component superimposed on a homogeneous field. We assume that the latter can be
obtained by smoothing our stochastic field on a scale which is larger than the damping scale (for details, see [4, 12]).
The damping scale for the tensor mode is obtained taking into account that the source of gravitational radiation
after equality becomes sub-dominant so that the relevant tensor damping scale is the Alfvén wave damping scale from
the time of the creation of the magnetic field up to equality [12]. Since we are interested here in the imprint of the
magnetic field on the CMB, we need not to care about the time evolution of the damping scale, the relevant scales for
the CMB tensor anisotropies being those which are greater or equal to the horizon at equality. Therefore, the relevant
cutoff scale is given by the Alfvén wave damping scale at equality kBl ~ vly(Teq), where I, (Teq) = 0.35 Mpc is the
comoving diffusion length of photons at equality (here we have used that P"Y*(T) ~ 10?*cm(T/Tyec) ™, from [10], as
well as zeq =~ 3454 and 24ec = 1088 from the WMAP results [16]). The Alfvén speed is at most of order 1073, so that
the damping scale is on the order of kpc or smaller.

Even if considering an helical component in the magnetic field, we set all the power to zero on scales smaller than
k;)l. This is not really correct since simulations show [17] that the spectrum simply decays like a power law with
index of the order of —4 on small scales, k& > kp. However, as we shall see, for ng 4 < —3/2 the induced C/’s are
dominated by the contribution at the largest scales, k[)l, for the kinks, ng a4 ~ —4 part of the spectrum. Therefore,
we do not loose much by neglecting the contribution from the scales smaller than kBl.

1

IV. MAGNETIC FIELD INDUCED TENSOR METRIC PERTURBATIONS

A stochastic magnetic field can act as a source for Einstein’s equations and hence generate gravitational waves, see
for example [4, 6, 12]. The tensor modes are the simplest case of metric perturbations, and in the transverse and
traceless gauge they are fully described by the tensor h;;(x,n), satisfying

hij = hjz'a hii = 0, hz‘j];}j =0. (54)
The linear evolution equation for gravitational waves is

hij (b, ) + 2% hij (k. m) + k2B (k) = SJT—GHU (k), (55)
a a?(n)

where I1;; (k) is the source tensor given in (20), and we have multiplied in the time dependence a=2(n), which comes
from the fact that the magnetic field is frozen in the plasma. Therefore, II;;(k,n) is a coherent source, in the sense
that each mode undergoes the same time evolution [12]. We neglect other possible anisotropic stresses of the plasma
(collisionless hot dark matter particles or massless neutrinos have anisotropic stresses which do source gravitational

waves, but this effect is very small [18]).
We want to compute the induced CMB anisotropies and polarization (see Section V), which can be expressed in

terms of the two-point correlation spectrum (f;(k)him (kK')), taking the form [4, 12]:

(hij (k, ) By, (K' 1)) = i[/\’liﬂmH(kan) + iAijimH(k,n)] 6(k — K') . (56)
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Here H(k,n)d(k — k') = ﬁ(h” (k)h;*J (k')} is the usual isotropic part of the gravitational wave spectrum which is
sourced by f(k), and H(k,n) describes the helical part, sourced by g(k).
The perturbation tensor h;; can also be expressed in terms of the basis efj defined in Eq. (35):

Just like for the anisotropic stress power spectra, we now find that

3

O(k —K') H(k,n) = S(h* (kmh** (&',n) +h™(k,n)h ™" (K',m)) , (58)
Sk ) Hkom) = —o (i (e, )™ () — b (b, )™ () (59)

In terms of AT and h*, defined like in Eq. (42), 1 parameterizes the correlation between h” and h*,
(h* (K)RT*(K') — hT (k) ** (k")) = id(k — k') H(k) . (60)

The evolution equation for the components h*(k,7) is simply

&G
= aQ(n)H (k) . (61)

We need to determine the functions h* (k,7) (see Eq. (68) below). An approximate solution to the above differential
equation can be found in [4] or [12]. The important point is that because of the rapid falloff of the magnetic field
source in the matter dominated era, perturbations created after equality (1eq) are sub-dominant, so that one obtains,
for the dominant contribution at 1 > 7eq:

. 167G Zin ja2(kn
i) = i (22 ) g 2000 (62)

W (k) + 220 (k, ) + k20 (k, )
a

where Q, is the radiation density parameter today and zineq correspond to the redshifts at the moment of creation of
the magnetic field and at matter radiation equality respectively. The function j, is the spherical Bessel function [19].
The term In(zin/2eq) accounts for the logarithmic build up of gravity waves from z, to zeq. For the spectra (58) and
(59) we then obtain

The gravity wave power spectra H/p, and H/p, are constant on large scales, kn < 1 and decay and oscillate inside
the horizon.

Our first result is that a helical magnetic field induced a parity odd gravity wave component. From Eq. (61) it is
clear, that such a component is introduced whenever there are parity odd anisotropic stresses. It could in principle also
be detected directly, via gravity wave background detections experiments. We do not discuss this very hypothetical
idea any further, but calculate the effect of such a component on CMB anisotropies and polarization.

V. CMB FLUCTUATIONS

Magnetic fields in the universe lead to all types of metric perturbations (scalar, vector and tensor, for more details
see [5]). In [6] it is shown that vector and tensor perturbations from magnetic fields induce CMB anisotropies of
the same order of magnitude. In this paper we estimate CMB fluctuations due to gravitational waves induced by a
stochastic magnetic field, the spectrum of which contains an helicity component, A(k) # 0. Since the CMB signature
of chaotic magnetic fields with only an isotropic spectrum is given in detail in Refs. [4, 6], here we concentrate on the
effects from the helical part of the magnetic field spectrum, and we will discuss the corrections which it induces to
the previous results.

To compute the CMB fluctuation power spectra we use the total angular momentum method introduced by Hu

and White [11]. By combining intrinsic angular structure with the spatial dependence of plane-waves, Hu and White



obtained integral solutions for all kind of perturbations. The angular power spectrum of CMB fluctuations can then
be expressed as [11]

x _2/ o wa Xmye(k,m0) X (mye(k, 10)
=5 ) dkk 22 20+ 1 20+ 1 ’ (65)

where X takes the values of ©, temperature fluctuation, E, polarization with positive parity, and B, polarization with
negative parity, for each perturbation mode. The index m indicates the spin, and for tensor modes m = 2. Since
we only consider tensor modes in this paper, we suppress the index 2 and just denote the two states by + and — in
what follows. The description given in Ref. [6] applies the total angular momentum method to parity even magnetic
field spectra: in this case, according to parity conservation the sum over + can be replaced by a factor 2. In our case
instead, we always need to sum over both states.

From the form of f(k), the parity even CMB fluctuation correlators can be expressed as:

CXX XX pA X : (66)

where Cﬁ’fl is the power spectrum induced by the purely helical part of the source term, proportional to
A(p)A(lk — p|). The contribution of this helical part to the parity even CMB power spectra is always negative,
but, as we shall see, the condition (12) insures that C(ﬁ’ﬁ < C'(A,;)f so that the power spectra do not become negative.

The new effect is that the helical part of the magnetic field now also induces parity odd CMB correlators, C2P
and CF'P (see also [7]). These are expressed in terms of the helical magnetic source g(k) which is proportional to the
convolution of A(k) with S(k) (see Eq. 343&

We now derive the CMB fluctuations © k), EF (o, k), Bf (o, k) and then perform the integral (65). Rather
than a numerical study, we present analytlcal apprommatlons for our results. These are not very accurate, but allow
a discussion of the dependence of the correlators on ng and n4. We will also be able to determine the spectral index
of the CMB correlators (dependence on /) as a function of ng and n4. At the present stage, we think this scaling
information is more interesting than accurate numerical results. These can than follow for specific, interesting values
of the spectral indices in future work. For a magnetic field with no helical component, this program has been carried
out in Ref. [6], and we shall just refer to their results but not re-derive them here.

Below, we shall always work in the approximation of ‘instant recombination’. Moreover, in our approximations
we didn’t take into account the decay of gravity waves for modes which entered the horizon before decoupling. Our
results therefore will be reasonable approximations (within a factor of two or so) only for £ < 60, where the tensor
CMB signal is largest. Even though, this may seem poor accuracy, here we only want to obtain estimates of the
correct order of magnitude of this anyway small effect. This will enable use to judge for which cases a more involved
numerical study is justified.

A. CMB temperature anisotropies

Within the instant recombination approximation, gravitational waves simply cause CMB photons to propagate
along perturbed geodesics from the last scattering surface to us. The induced CMB temperature anisotropies are
given by [20]

o .
00, k., ) ~ / dn exp(—i(0 — n)k - m)hs; (k, m)in; (67)
TNdec

In the total angular momentum formalism this becomes

6?:(1{7770) 4 o ;] + .+
Ze ) = k _
T 5/, dn h™(k,n)j;"[k(no —n)] (68)

where jéjc are the tensor temperature radial functions of the two different parities, both given by [11]

(69)

The somewhat unusual factor 4/3 comes from the fact that this formula takes into account polarization, while Eq. (67)
does not. A detailed derivation can be found in Ref. [11].
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Using the solution (62) for A% (k,7), we obtain

0 (k. no) - g(em)![ 8 1n<z'ﬂ>

e [ a3~

20+1 (L —=2)! | pQ2s Zeq e x  (xg—x)?
~ 2 (Z—“> Hi(k)ﬂgm‘]) e (70)
peSdy Zeq T

where we have set * = kn and xy = kng. For the second ~ sign we have used the approximation (B5) given in
Appendix B for the integral over z. This approximation is valid only for zgec = knjdec < 1.
The general expression (65) for the temperature anisotropy power spectrum now gives

16 1 2 245 [homo J? (%0) x
06 in 0+3 0
~— In{ — — deg ———f | — | . 1
Ce 3m [Pcnr (Zeq>} 773 /0 ’ 333 (770> (71

A good approximation for the function f(k) is given in Appendix A, Eq. (A9). The first term of (A9) comes entirely
from the non-helical component B), and has already been determined in Refs. ([4, 6]); the second term comes instead
from the helical component, and its influence on the C; is new. We denote it by C’g&. Then, splitting the induced
temperature anisotropy power spectrum as

CP® = CiEy — Conye » (72)

we obtain (now zg is renamed z)

Zin 2 na
oo, A4’ [ In (22)] £5< 1 )3/“’ g Jes@) | a1 <i>2 v (73)
(A = 9 (QRA T 3)F2 (nA2+4) UOkD 0 x4 na+4 \zp ;

where we have set zp = kpno. We have introduced the ‘helicity density parameter’ Q4 defined by

2 kD 82
Q= D (paymaria L / ol » o, (74)
87 pe Pe Jo

and analogously we will use

B3 1 [*» dkdpp(k) B}
g = A (kD/\)n5+3 ~ _/ i pB( ) ~ ko ’ (75)
8mpe pe o k dlogk 8mpe

where we have introduced B,%D = B3 (kpA\)"4T3, the field strength at the cutoff scale 1/kp, and correspondingly for
By,,. With these definitions the results will be expressed entirely in terms of physical quantities and the reference
scale A does no longer enter.

Remember also that (27)*(B3A"4+3)2 /T2 (2414) = | Ag|?, where |4, is the normalization of the helical component
of the magnetic power spectrum (7). The integral (71) is dominated at xq ~ £. With 2g/Zdec = 10/Ndec = 60, this
means that our approximation is valid for ¢ < 60.

If ng > —3/2, the first term in the square bracket in Eq. (73) dominates. Since the integral converges and is
maximal around k ~ £/ny < kp, we can replace it by the integral to infinity and use Eq. (B7) of Appendix B. This
gives

Q0

OO, ~

32(4r)t  [%2In (22)]7 (e )3
v (76)

27 (204 +3)12 (2255 \ koo
forng > -3/2.

The temperature power spectrum has the well known behavior of C;’s induced by white noise gravity waves, Cy o /.
If ng < —3/2, the second term in the square bracket of Eq. (73) dominates, and we find

CCOS ~

o(amyt  [Zn ()] F(%—nA)nA—1< ¢ )2””6 (77)

9T (2n4 + 3)T2 (224+) T(1 —na) na+4 \kpno
for —3<nyu<-3/2.
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Like for the symmetric contribution given in Refs. [4, 6], we get a scale-invariant spectrum for ny = —3. The
expressions for £2C’(®SC;)Z are obtained from those given above upon replacing Q4 by Qg, n4 by ng and I'? ("ATH) by
[? (2s£3) For —3 < ng < —3/2, one also has to replace the factor (ns —1)/(na + 4) by ns/(ns + 3). We do not
repeat these formulas here since they can be found in Ref. [6] (up to some factors of order unity which are of no
relevance for this discussion).

This is in principle the final result for temperature anisotropies. Let us check that C%& is indeed never larger than
C'(%C;)l so that

CP® =Cy —Cae >0

We first consider ng4 > ng > —3/2. Then

OCr _ BAT*(%52) (25 +3) (kpN)*"a ") Ao 2ns+3 _, (78)

In the first equality we have inserted the definitions of Q4 and Qg and the last inequality comes from Eqs. (14)
and (13). If instead ng < n4 < —3/2, we find

o9 Aol? R
(A)¢ ol ‘
=N
= (na,ns) s2 2(ns—na) (an()) ’ (79)

where N(n4,ngs) is a function of the spectral indices ng and n4. It is of order unity in the allowed range, —3 < n4 <
ng < —3/2. Now kpno > £ for all values of ¢ for which our result applies. Hence again

(7()()

<1. (80)
O
Finally, we consider the case —3 < ns < —3/2 < na, so that we have to apply the result (76) for CO, and (77)

with the mentioned modifications for O((?s(?z- A short calculation gives

C@@ 2 2ns+3
(e Ao (knno> <1, (81)

e s e

since the first factor is less than one due to Eq. (14) and kp > ¢/ny with ng < —3/2.
Clearly, the helical component is maximal for n4 ~ ng, where we may have |4g| ~ Sp.

B. The induced CMB polarization

Tensor perturbations induce both E polarization with positive parity, and B polarization with negative parity.
CMB polarization induced by gravity waves has been studied for example in Refs. [11, 21, 22], while the contribution
from a magnetic field has been discussed in [6, 23]. Our aim is to estimate the effect on the polarization signal from
the helical component of the magnetic field. Like for the temperature anisotropies, we use the angular momentum
method developed in Ref. [11].

1. E type polarization

The integral solution for E type polarization from gravity waves is given in [11]. Again, we will work in the ‘instant
recombination’ approximation. The order of magnitude of our result is still reasonable for £ < 60, since in this case
also we restrict ourselves to the evaluation of the super-horizon scales spectrum. In our approximation we have

2“ 1 \/7 dn h* (k, n)ei [k(no — )] , (82)

Ndec
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here

I . je(x) | g@)] 1[0, -
eéi(x) =1 {—jg($)+]2’(1’)+2$—2+447 ~ 1 E][—ng(x) for > 1 (83)
is the E-type polarization radial function for the tensor mode [11], and for the last equality we have used the recurrence
relations for spherical Bessel functions (B14, B15).

We now use our solution (62) to express h*(k,7) in terms of II*(k). With this, Eq. (82) becomes

B (k,10) \/5 1z g 7 ia(®) e,
Ze &) )2 In {2 | It (k S W -
20+ 1 2 | pcQ)y . Zeq (k) e du T + (o — ) je(wo — )
11 Zin \ | Jers(wo) 4
~ o | (A ) | 2e3R0) g 4
2 [pcﬂr " <zeq> vZo ( ) (8 )

where again x = kn and 29 = kno, and we have evaluated the time integral using approximation (B9). Here we have
also neglected a term of the order of (¢2/z2)J;13(x0), which in principle is of the same order in the above expression,
but is always subdominant once we perform the integral over k. Since the power spectra for the F polarization are
parity even, only the parity even part of the II* auto-correlator (Eq. (37)) contributes to the expression for C’fE
derivable from Eq. (65). Again we present here only the effect coming from the helical part of the magnetic field,

using Eq. (A9) we find (¢ is renamed x)
_ 1 2na4+3
1424 <i> ] . (85)

oee e (22 In (22))°
na+4 \zp

(WETZ 779 (20, + 3)r2 (Ratd

) (kpmo)™° /OZD d x J7, 5(x)

The corresponding equation for C@fe can be found in Ref. [6]. There, a somewhat different approximation than ours
has been used for the time integral.

For ng > —2, the integral over z is dominated by the upper cutoff, zp = kpno. Using the approximation (B10),
we obtain

1 forng > —3/2

Qa Zin 2
o NEE (47)3 [Q, In (Z)] l na—1 _ _
FOe= 3 (2n4 + 3)02 (24E4) \ kpmo X { Tardonarn for —2<na < -3/2 (86)
2 —%ln(%) for ny = -2

The result for C@fe is obtained upon replacing na by ns and Q4 by Qg (more precisely the factor I'’*(24+1) has to

be replaced by ['?(2552) and the factor (n4 —1)/(na +4) by ng/(ns+3)). For =3 < na < —2, using (B7), we obtain

o2yt [FIn () F(—nA—2)nA—1< (

2n4+6
for —3<ny < -2. 87
9vT (2n4 4+ 3)02 (24 T(—ny — 2)na + 4 kD770> A (87

5205& ~

Again the E polarization power spectrum from the symmetric part of the magnetic field spectrum is obtained upon
replacement of ns by ng and Q4 by g. Similar evaluations like the ones presented in the previous paragraph show
that

crP=cldi-clfi>o0. (88)

2. B type polarization

Like for E polarization, the integral solutions for B polarization in the case of tensor perturbations are given in
[11]. In the approximation of instant recombination we have

7o
2 - + _
2+1 V3, dn h* (k, )87 [k(no — )] , (89)

where

*(z) = i% [jé(x) + QjE(x)} ~ i% [5]4(:6) — Jor1(z) for£>1. (90)
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With Eq. (62) we can write the above integral in terms of the tensor sources IT* (k):

By (k,m) . V6, (Z‘_“> IT* (k) /;0 i 22) [ £ je(xo = @) = jes1(zo — @)

20+ 1 Pl Zeq e T To— T
F1 ( Zin ) Jora(zo) o4
~ In|{ — ) ————=II" (k) , 91
o () R (91)

where we have again used approximation (B9). Like for the E polarization, in this case also it is the parity even part
of the magnetic source, f(k), which contributes to the C;. Eq. (65) takes the form

g lal <i>2nﬁ3] . (92)

2in 12
orn o Aemt [arin(G2)]
(Ae—= "9 (2n4 + 3)I2 (nA2+4

na+4 \zp

] (kpmo) /OxD drx J7, 4 (2)

Note that within our approximation, for £ > 1, 054’)34 ~ C’@]fé . This is also the case for C(%lf[ and Cg)“;é , see [6].

Evaluating the integral using expressions (B10) and (B7), for the different ranges of the spectral index n 4, we obtain

1 forng > —3/2

Q4 | (22)]2 2
s e (41)° [ n(zeq)] ¢ na—1 B _
Pl = = (2na + 30 (2550) \kpne ) | aThlrath for =2 <ny < -3/2

! ? —%ln (—k%m) for ny = -2

Q in )12
pess o 200t e (G Tna-2) ( t >2nA+6 for my < —2 (93)

(D= "9/ (204 + 3)T2 (24E) T(—na — 3/2) \ kpmo :

Again, the contributions from the symmetric part are obtained by replacing Q4 by Qg and n4 by ng, up to factors
of order unity and we find

cpP =clf,-cbh, >o0. (94)

Within our approximation, which is better than a factor of 2, we have CPP ~ CFF . From ordinary inflationary

perturbations one expects C’fB ~ %CfE for gravity waves, which is comparable to our findings.

3. Temperature and E polarization cross correlation

The symmetric part of the source term, f(k), can only induce parity even CMB correlators. Besides the power
spectra for temperature anisotropies and E and B type polarizations analyzed in the previous subsections, it can also
source the cross-correlation between temperature anisotropy and E polarization. In order to evaluate this contribution,
we have to substitute into Eq. (65) the integral solutions for the tensor mode Egs. (70) and (84), to obtain:

Qa Zin )12 Ima+3
4(2m)* [G* In (£2)] _3 o Ji (@) na—1(u= 4
COF ~ - k 052 / dp 253 1 = . 95
e eyl = R S I )

We can evaluate this integral using (B7), and we find,

Qa zin |12 3 3
202m)  [FW(2)]" 1)/ ¢
EQCGE ~ r eq 1 . f S _3/2 96
(A)e 9v7 (2n4 + 3)I2 (nA2+4) F(%) kT , or n 4 / (96)
and
Q4 zin )12 2nA4+6
o2n)t [ (22)]" D(=Z-na)ns—1/ ¢ \™™
COT = . " i , for =3 <mna < —3/2. 97
(A)e 9vT (2n4 + 3)02 (nA2+4) 1—\(_% “na)na+4 \ ko or na / (97)

In this case also, the contribution from the symmetric part of the magnetic field spectrum to the @-F correlator is
always larger than this helical part.
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VI. CMB CORRELATORS CAUSED BY MAGNETIC FIELD HELICITY

If the source (or the initial conditions) have no helical component, (ITT (k)II*(k')) = (II~ (k)II~ (k')), the above
correlators are the only non-vanishing ones. However, as soon as the tensor magnetic source spectrum has a helical
contribution (see Eq. (38))

3

= (I ()T (k) — T ()T0*(K)) 0.,

g(k)

the parity odd CMB power spectra are non zero. This has been observed first in [7], where the vector contributions
have been calculated. Here we compute the gravity wave contributions. We need again to evaluate Eq. (65). Taking
into account that the gravity waves components hi(k) are directly proportional to the source components (Eq. (62)),
and considering the parity of the radial functions (Egs. (69, 83, 90))

jf (@) = j; (x), e (z) = € (x), Bf (z) = =B; (), (98)

it is clear that cross correlations between temperature and B polarization C?B, and between E and B polarization
C’fB, cannot vanish, since they are given by momentum integrals of g(k). Using the expression of the tensor integral
solutions @ff (70), E;t (84) and Bzi (91), we can calculate the power spectra CPF and CFB.

A. Temperature and B polarization cross correlation

For temperature and B polarization cross correlation we obtain after integrating over time

CPB ~ % chém In’ (j—’;)} /2 /OkD dk k* W(W(@H**(m — T (k)T *(k)) . (99)

The antisymmetric source function g(k) is given in Eq. (51), and the integral over k can be calculated using (B7).
Note that g(k) depends on both the spectral indices n4 and ng, and we will have to evaluate the integral dividing
the two cases ng4 +ng < —2. We finally arrive at

Ar)t Q54 In? (2= ~
9 Q2(na +ns + 2)0(2)D(25H)
x n n 2
X/* D i Jz+3($).]g+4($) 14 nag—1 <i> At+ns+
0 \/5 ns +3 D
4y/7/2(27)4 Qs Q4 In? (:) s\
2 OB T Q2(natns+2)l (P4 (M5T) (kuno) for ng +n4 > =2
PCOB ~ ) s () : ) e (100)
4(47r) QsQaln % T 7"714,123_,% na—1 ’ na+ng
T 9VmO2 (natns +2) T (AN T (Cna ns 1) s+ (kmzo) for =6 <ns+na < -2

Independently on the spectral indices, £2C’?B is always negative for positive Aq.

In this case of temperature and B polarization cross correlation, we have computed the spectrum (100) also numer-
ically, in order to test the reliability of our analytical estimation. The amplitude of the numerical result is bigger than
the analytic one by a factor of two or less, so within the error we estimated for our approximations (see Appendix B).
We expect this to be one of the worst approximations due to the relatively slow convergence of [ dzJii3(z)Ji+4(2)/ /.

B. FE and B polarization cross correlation

Following the same procedure as in the previous paragraph, we can evaluate the E and B polarization cross
correlation created by the helical part of the magnetic field. Using the formula (65), we get:

_2(471')4 QSQA1n2 (jf:)

CEB ~
‘ 9 Q3(na+ns +2T(EED(25ED)

(kpmo) ™ x
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-1 na+ngs+2
1+ 24 <i> . (101)

ns+3 \zp

X / drx 2* Joya(z) Jora(2)
0

In the case na +ng > —2, the integral in x = knyg is divergent, and we need to evaluate it using approximation (B12),
which gives:

4(47)?3 QsQan® (22) (~1)f
9 Q%(na+ns+2)T(24H)D(25E2) kpno
for ng +nyg > —2.

PCEB ~

sin(ZxD)< : >2 : (102)

kpng

It is not possible to assign a precise value to the variable xp = n9kp, because of the unavoidable incertitude in the
estimation of the magnetic field damping scale, which depends on the amplitude of the magnetic field and is therefore
smeared out over a certain range of scales. Therefore, we expect that the presence of the term sin(2zp) most probably
leads to a considerable suppression in the amplitude of the E — B cross correlation term.

For n4 + ng < —2, the momentum integral in Eq. (101) is dominated by the second term in the square brackets,
and in order to perform the integration, we need to distinguish two different cases: For —4 < n4 +ng < —2, the
exponent of z is still positive, so that we have to use the approximation given in Eq. (B12). A further distinction is
therefore necessary, since the dominant term in approximation (B12) depends on whether the exponent is above or
below 1 as discussed in the Appendix.

A(47)3 Q504 In” (£ —1(-1)* ?
popn o AT (Z _ma=1(=D) sin(2wp)< : ) , (103)
9 Q2(ng +ns +2)T(24E)0(252) ns + 3 kpno kpno

for =3 < ng+ng < —2;

4(4m)? Q504 In” (£2) na—1 (=1t
9 Q%(nA-Fns-}—Q)F(nATH)F(nSTH) ns + 3 (kpno)?

for —4 <ny +ng < -3.

Copt ~

02 natng+4
)

kpno

sin(2¢?) <

Both contributions are suppressed by the presence of the two terms sin(2¢2) and sin(2zp) since, usually one averages
over band powers in £ (for the second case) and also zp is not a very sharp cutoff but has a certain width, as mentioned
above (for the first case).

If —=6 < na+ns < —4, the second term in the integrand of Eq. (101) still dominates, but since the exponent of x
is now negative, the integral converges and we can make use of approximation (B7).

2 ( zin
2oEs o _Un)! QsQaln® (32) M-8 -5 -3)na—1 ( l >M+ns+6 (105)
CT 9T D2(na+ns + 2)T(2AEND(2E) T(— ma 1 1) ng+3 \ kpmo ’
for =6 < n4 +ng < —4. (106)

This result is not suppressed by oscillations.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have computed CMB anisotropies due to gravity waves induced by a primordial magnetic field.
We have mainly concentrated on the effects of a possible helical component of the field. Magnetic fields induce scalar,
vector and tensor perturbations which are typically of the same order. In this sense the tensor contribution can be
regarded as an order of magnitude estimate for the full contribution.

As it has already been found in Refs. [4, 6], the C’s are proportional to

20 o (28 12 (7 (107)
¢ X QT Zeq .

The first term is (%—3)2 ~ 1010 (B/IO’SGauss)4, hence for a primordial magnetic field of the order of B ~ 10~ to
108 Gauss we would expect to detect its effects in the CMB anisotropy and polarization spectrum. Here B = By, =
Bx(Akp)"*? is the maximum value of the B-field which is always the field at the upper cutoff scale 1/kp which we

also denote by By, .
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In Eq. (107) Qp stands for Qg or Q4 and in the above expression for By, , n stands for nyg or ng depending
on which contribution we are considering. The second term represents the logarithmic build up of gravity waves,
In? (2in/%eq) =~ 660 to 3100. Here the first value corresponds to magnetic field generation at the electroweak phase
transition, Ti, = 200 GeV and the second value represents a possible inflationary generation at T}, ~ 10'> GeV. For
scale invariant spectra, na = ng ~ —3, the right hand side of Eq. (107) gives roughly the amplitude of the induced
CMB perturbations.

Taking into account the pre-factor 2(4m)%/(9y/7), scale invariant magnetic fields produced at some GUT scale,
T ~ 10'® GeV have to be of the order of B ~ B ~ 10~!! Gauss to contribute a signal on the level of about 1% to the
CMB temperature anisotropies and polarization.

If the initial magnetic field is not scale invariant, the scales kp and 7y suppress the results by factors of 1/(kpmno)
and ¢/(kpno) which are much smaller than unity. Note that the reference scale A introduced in Eqgs. (8, 9), does not
enter in the final results at all, since it is of course arbitrary.

As already discussed, the damping scale kp is given by kp' = val,(Teq) =~ va x 0.35 Mpc, and vy is the Alfvén
velocity, v3 = (B)?/(4w(p + p)) for the magnetic field averaged over a scale larger than the damping scale. Clearly,
va < 1072 so that B does not induce density perturbations larger than 107°. Therefore, the damping scale is
of the order of 1 kpc or less. The latter value is reached for maximal magnetic fields which are of the order of
(B) ~ 10~°Gauss. On the other hand ag(1y — Ndec) = 7o is simply the angular diameter distance to the last scattering
surface, which has been very accurately measured with the WMAP satellite [16], 5o = d4 = 13.7 + 0.5 Gpc. So that
kpno ~ 107 or even larger, depending on the magnetic field amplitude.

Our results differ somewhat, but not in a very significant way from the results obtained in Ref. [6]. Since our
magnetic field spectra are either scale invariant or blue, the induced spectra ¢2C; are also either scale-invariant or
blue. They grow towards large £. It is therefore an advantage to choose ¢ as large as possible. However, in our
calculations we have not taken into account the decay of gravity waves which enter the horizon before decoupling.

Our results are therfore correct only for £ < 1g/ndec ~ 60. To be on the safe side, we choose ¢ = 50 in our graphics.

In Fig. 1, we show 6208‘()}2) at £ = 50 for the different quantities (temperature anisotropy, E and B polarization

and correlators) as a function of n4 with ng fixed to 2 and —2.99. We show the absolute value of the correlator in

units of
2 4
Qa2 (Zn) o qo-10 (—DBen
Q, Zeq) 10—9Gauss '

Qalts | o (zin) 10 Bip ’ B, )’
02 Zeq) 10—9Gauss 10—?Gauss )
XY)

Note that the correlators CZXX) and C’I(fE) are always negative and have to be subtracted from C'((S) which is of the
same order of magnitude or larger since Qg > Q4 and ng < n4. For the limiting case, Qs ~ Q4 and ng ~ n4, the
presence of an helical component in the magnetic field spectrum can in principle cancel the effect of the symmetric
part on the CMB. In that very particular case, the signature of the presence of a magnetic field will appear only
through the parity odd correlators.

From Fig. 1 it is clear that only for nas¢ < —2 and Q4 ~ Qg ~ 107°, the effect on the CMB will be of the
order of a percent or more. In Ref. [12] it has been shown that for ng > —2, magnetic fields with By > 107'°Gauss
over-produce gravity waves on small scales which is incompatible with the nucleosynthesis bound, for A ~ 1 Mpc.
Here we require By, < 1078 Gauss so that Qg remains a small fraction of the radiation density throughout. Then
By = By, (Mkp) "3 « By, for n > —2. Therefore, by keeping By, sufficiently small, we automatically satisfy the
bound derived in Ref. [12]. The result is most interesting for the window of =3 < ng <ny < —2and Q4 ~ Qg ~ 1077,
which requires By, ~ Bj, ~ 107!°Gauss. Especially, if magnetic field helicity is causally produced which implies
ns = 2 and n4 = 3, this effect cannot be observed in the CMB since the parity violating terms are suppressed by
about 15 orders of magnitude (see lines in the lower right corner of the bottom panel of Fig. 1).

In Fig. 2 we show the ratio Cfﬁl/C’ff)é for ng = —3 as function of n4. Again, we are mainly interested in the

and

part of the graph with —3 < n4 < —2, where this ratio raises from the order unity to about 10°. Hence if a close to
maximal helical magnetic field, with a spectrum not too far from scale invariant, —3 < ng < n4 < —2 is produced in
the early universe, it is more promising to search for its parity violating terms than for the parity even contributions.

We can conclude that helical magnetic fields with a spectrum close to the scale invariant value, —3 < ng ~nyg < -2
and close to maximal amplitudes on small scales, By, > 107! Gauss can lead to observable parity violating terms
C?P and CFP in the CMB. Such magnetic fields might in principle be produced during some inflationary epoch where
the photon is not minimally coupled or via its coupling to the dilaton (see [24, 25] for various proposal of magnetic
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FIG. 1: On the top panel we show the amplitudes of the parity even correlators, EQC((Z‘Q (solid, black),

620((55) (dotted, red) and £2C((ZJ)EZ) (dashed, blue) as a function of the spectral index na for ¢ = 50.
The logarithm of the absolute value of 6208")};) is shown in units of (Q24/Q:)? In*(2in/zeq). We do not

plot EQC((E)? which equals EQC((E)LZ) within our approximation. The spikes at na = —2 for EQClEEE)

and at na = —3/2 are not real. They are artefacts due to the break-down of our approximations at
these values.
On the bottom panel we show the corresponding parity odd correlators, EQC((Z?[) (solid, black), 620((55)

(dashed, red) in units of (24Qs/Q2)In?(2in/2eq) for ns = —2.99 and ns = 2. In this last case, only

the allowed range ma > ms = 2 is plotted. Again the spike at na = 1 for ng = —2.99 and the
precipitous drop at na = —1 in EQC((fﬁ), are due to the limitation of our approximation close to the

transition indices.

field production during an inflationary phase). However, so far no concrete proposal has led to ng 4 ~ —3, nor to the
creation of a helical term. As we have shown, the effect is largely suppressed and clearly unobservable for causally
produced magnetic fields, e.g. , during the electroweak phase transition or even later.

Nevertheless, our calculation also demonstrates the effect of parity violating processes during inflation which may
lead to a non-vanishing helical component of gravity waves, H # 0, see Eq. (59). In this case the above calculation
can be trivially repeated and will result in non-vanishing parity violating CMB correlators, C?B # 0 and CFB # 0.
We think that already this remark, together with our knowledge that at least at low energies, nature does violate
parity, should be sufficient motivation to derive experimental limits on these correlators.
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FIG. 2: We show the ratio of the correlators, C(@B)/CéeE) (solid, black), and CEEB)/CEEE) for
ns = —3 as functions of the spectral index na for £ = 50. The logarithm of the absolute value is
shown in units of Q4/Qs < 1. The spikes visible at certain values of the spectral index n4 are mainly
due to our relatively crude approximations.
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APPENDIX A: THE SOURCE FOR GRAVITY WAVES

In this appendix we present some details on how to compute the gravity waves source functions f(k) and g(k). The
first step is to evaluate the two point correlator of the magnetic field stress-energy tensor (21): using Wick’s theorem
(22) and definition (1), after a longish but simple calculation we obtain

1 —

(4W)25(k—k’)/d3p(5(p)5(\k—p\)[(5u—ﬁiﬁz)(%‘ —(k=p)j(k =p)m)

+(Bim — Pibm) (651 — (kK — p); (kK — p)1)]

~A(p) Ak — p|)leiteejmebr(K — P)r + €imyejighs (k — p),g]

+iS(p) A — D) lejme (i1 — Ditr) (K — D)y + €jig (Sim — Ditm) (K — )]

+iA(p)S ([ — p))eite (Sjm — (k — ), (K — B) )bt + €imys (S50 — (k — ), (k — p))bs] }

+ i O - (A1)

(7ij (&) 7 (K)) =

|

The isotropic tensor spectrum in the case of a magnetic field spectrum without helicity term is derived in [4]. Here
we concentrate on the source terms which contain the helical part of the magnetic field spectrum.

By acting with tensor projector on (Al), we find expressions (33) and (34) for the symmetric and helical parts of
the source spectrum. Taking into account that the angle § = k- k—-p) = \/#%, we can rewrite the two
—2kpy+p

expressions which contain A(k) in the form

1 1 v-(k—py)
A
£ = T [ A Ak —p) (42
11 (k—py)(++?) ( w1 -9 )
k) = = dp |S(p)A(k — A(p)S(|k — 20— ————— A3
o) = 5 [ 0|0k —p) LI ag)s(k—p) (20 - T ) |- (49
The contribution to f(k) from S alone is computed in Ref. [4]. There one finds
_1 (k —pv)?
S - - 3 2 R S o
P = g [ drsesik-ph o) (14 Y (A)

We can now substitute the power law Ansatz (6,7) for S and A in these expressions and try to calculate the integrals.
The integration over v = k - p is elementary, using

B 1 at2
/dv (k* +p*> — 2kpy)? = NTE)] (k2 + p® — 2kpy) ™7
/dv ™ (K 4 p? = 2kpy)? = B (K +p* — 2kpy) T + ——— /dV YL (K2 + P — 2kpy) T (AB)
kp(a + 2) kp(a+ 2)

This last integration by parts has to be performed in the worst cases three times, reducing the power m of v from 3
down to 0.
Since we are integrating 7 over the interval [—1, 1], we get a series of m + 1 terms of the form

(k +p)a+2n + ‘k _p‘oz+2n

A6

Top)r ; (A6)

with n = 1,2, ...(m+1). To evaluate the integral over p, we can expand those terms using the binomial decomposition
(14+2)* =1+ az + ala — 1)z? + ---. Since, in general, the value of the exponent « is not an integer, we need

to truncate the series somewhere, which is well justified only if 2 <« 1. To achieve this, we split the integral into

two contributions, fOkD = fok +fkkD. In the first term p/k < 1, while in the second k/p < 1, which allows us to
approximate Eq. (A6) truncating the binomial series at the second term,

20k 'p+ a(a— 1)(a —2)k*%p* p<k

R AR o M A A (A7)
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and

o a2k +ala— 1)k 2p? p<k
() k=i (S DRI pSb (A8)

We then perform the integration over p. For each contribution we keep only the terms which, depending on the value
of the spectral index, may dominate the result. So, we finally obtain, for k£ < kp

2

A3 (27)2 B} Dnet3 ng N
flk) = 4m(2ns + 3) |20 (2t <(>‘k)D + m(/\k) ) -
2
_ A3 (27?)21/),%‘ ()\k,)2nA+3 + L_l()\k)Q”A+3 (Ag)
12m(2n4 + 3) | 2T (nA2+4) D a4
-1
~ /\2ns+3 k2ns+3 n—S k2n5+3 _ /\2nA+3 anA+3 naA k2nA+3 AL
As <D +ns+3 Ax n +—nA+4 (A10)
2__ Nk (2m?B3 | [_(2m)B3 a1
k) ~ — A A Ak ns+na+2 AT ng+nat2 ALl
g( ) 3T (n5+nA+2) ar (nSTH) 2]:*(n,42+4) (( D) +n5+3( ) ( )
-1 k ng+na+2
~ CkX(Nkp)sTnat2 |q na Kk . i
CEX(Mkp) l + ne 13 \p , ( )

where the coefficients are given by the magnetic field amplitudes at scale A:

2

A3 (27)% B}
As =~ 2 A13
% 7 4n(2ns +3) | 2r (2552) (A13)
2
T (27)2 B2
As ~ A Al4
T 12m(2na +3) | 2T (2aH) (A14)
2 X (27)°B3 (27)°B3
~ — 3 a (A15)
3m (ns+mna+2) |20 (2552) | | 20 (2412)

The first part of f(k), which is the contribution from the symmetric part of the magnetic field power spectrum, has
been taken from [4, 6]. The singularities at ng, n4 = —3/2 respectively and at ng + n4 = —2 are removable.

APPENDIX B: USEFUL MATHEMATICAL RELATIONS
1. Integrals of Bessel functions

In Section V, we use approximate solutions for the three integrals

Zo Zo Zo

J2(x) je(wo — ) e Jj2(®) je(zo — 7) e J2()

r (zo—xz)2 "’ . x  (zg— 1)

dx

Je(wo — ) . (B1)

Tdec Tdec

These integrals are solvable only by numerical method. However, the aim of this paper is to give an approximate
analytic result. In this appendix we therefore derive and test analytic approximations to the above integrals. To
achieve this, we first modify them slightly, in order to make them solvable analytically. Then, we adjust the result
obtained in this way by comparing it with the exact numerical integration.

Let us concentrate, as an example, on the first integral. We first perform a variable transform to y = g — . The
integration boundaries then become 0 and xg — Z4ec. Below, we derive an approximation for

o i
/ J2(zo — y) je(y) dy
0 xo—y Yy

Since Bessel functions change on a scale Ay ~ 1, this approximation is good for the integrals in Eq. (B1) if zg4ec < 1.
After the integration over x in Eq.(B1) we have to perform an integration over k. For ¢ fixed, this integral is either
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dominated by the contribution art kng = xq = £ or at the upper cutoff, kp. For the integrals which are dominated
at xo = kng ~ £, the inequality zgec < 1 is equivalent to £ ~ xy ~ 6024ec < 60. In some cases, however, our integral
over k is dominated at the upper cutoff kp with ngeckp > 60 and of course also ngkp > 60. Since for £ ~ 60, the
dominant contribution to the integral comes from y < 60, our inaccuracy of the boundary will not invalidate the
approximation also for this case.

The approximation in the upper boundary of the integral, g — Z4ec ™~ 2o makes us miss the characteristic decay of
fluctuations on angular scales corresponding to £ 2> 60.

To make the first integral in Eq. (B1) solvable analytically, we now modify the powers of y and zg —y. Taking into
account that the spherical Bessel Function j, (z) has its maximum value at z ~ v, we make the attempt:

/mod Ja(@ )w _ E/zode5/2( )Jz+ 1(zg — )

z  (rg—x)? 32 (x9 — 2)5/2

\/7/ J5/2 2o —y) Je+ 1 (9) (B2)
To —Y y? '
g\/; Jexs (o) ”;%(”30) . (B3)

2_i m[‘b+p+m) L(b+m)
aq = m!Tb)T(p+m+1)

(Re(b+p) >0, Req > 0) (B4)

12

12

For the last equality, we have used 6.581.2 of [26] ,

(b+p+q+2m) Joyprgram(a) ,

/Oﬂ dra®'(a—z) ' Jp(z)J,(a —z) =

and the recurrence relation J,_1(z) + Jy41(z) = 22J, (9.1.27 of [19]), keeping only the highest order terms in . We
can now compare this approximated analytic result with an exact numerical integration. Since the analytic result is
again a Bessel function divided by a power law, it has a maximum at 2y ~ ¢, and its envelope has a power law decay
for xq > ¢. This two characteristics are very well reproduced by the numerical result, which however decays somewhat
faster; it turns out that a better approximation is

Jo(@) je(wo —x) 1 [3L Joys(zo)
Y ARG B
/ da (zo —l’)2 3V 2 ) (B3)

To estimate the goodness of our approximation, let us now take into account the integration over k, as in Eq. (65).
What we are finally interested in is (Eq. (73))

Tp J2 (xO) na — 1 z 2na4+3
dzg 22 “H222 1 =2 . B6
/0 oy TG (14 TAT (2 (B6)

As already discussed in the main text, this integral is always convergent and dominated by the contribution around

o ~ ¢ : we should therefore make sure that our approximation is good around that value. We have that for £ = 30,
our approximation underestimates the numerical result by about factor of two; for £ = 40, the error reduces to 15%,
and is always smaller for larger values of /.

Fig. 3 shows the numerical result for the integral in (B5) (green, dotted line), together with its analytical approxi-
mation (the right hand side of Eq. (B5), blue and long dashed) and a numerical evaluation of the same integral when
Zdec 18 DOt set to zero (red, solid). For small values of £ (in the left hand panel of Fig. 3, £ = 50), Eq. (B5) is a good
approximation in the region xzq ~ £. However, if £ > 60 setting z4ec — 0 causes a large overestimation of the result.
In the right hand panel of Fig. 3 it is shown that, for £ = 100, the difference between the integral with lower bound
0 and the one with lower bound z4ec is of more than a factor of ten. Consequently, as already stated before, we can
rely on all our approximations only for ¢ < 60.

We proceed now to evaluate integral (B6). Since zp = kpno 2> 10°, for £ < 60, integral (B6) can be calculated in
the limit zp — oo, using formula 6.574.2 of [26]:

NOINEEEEY
26T (*”‘12“’“) r (D+q;b+1) r (pfq;errl)
(Re(p+q+1) >Reb>0) .

/OOO dz J,(2)J,(2)z~" = (B7)
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FIG. 3: In both panels, as a function of zo: the green dotted line shows the numerical value of the integral
in (B5), the blue, long dashed line shows the analytic approximation (right hand side of Eq. (B5)), and
the red, solid line shows the numerical value of integral (B5) if Z4ec is not put to zero. All these functions
are squared, and multiplied by z3: this gives us an indication of the result, after the integration over o, as
stated in Eq. (B6). In the left panel £ = 50, in the right panel £ = 200. First of all, we note that it appears
clearly that the value of the integrals is dominated at zo ~ ¢, and that the function goes to zero quicker
than mg?’, which justifies our approximation £p — oo and the use of formula B7. Secondly, we note that
for £ = 50 and zo ~ ¢, our approximation (blue, long-dashed) is good for both the integrals. However, if
¢ =200, the approximation overestimate the correct numerical result by about a factor of ten.

This approximation is used for example in Eqgs. (76, 77).
With the same procedure we can approximate the second integral of Eq. (B1), for which we find (¢ < 60)

*o Jo(x) je(zo — ) 1 30 Jpys(zo)
L dem—ﬂ/;Z«ig' (B8)

dec

This approximation underestimates the numerical result with an error of about 40% for £ = 30, which reduces to 20%
at £ = 60. In this case also, the integral over zq is convergent, and we can proceed as before.

The situation is different for the third integral of Eq. (B1). In this case, the numerical result is approximated by
the following function (£ < 60):

o ga(x) 1 /2 Jpi3(20)
dz 2\ (w0 — x) = oy ) 2 23T B
/zdec i je(@o — ) 3V5 /xo (B9)

It is clear that if we insert this function in an integral like (B6) we cannot perform the limit zp — oo since this
integral is dominated at the upper cutoff. Consequently, we need a good approximation for the behavior of the
integral for large values of £y — xp. In this case, we no longer require our approximation to be accurate at xg ~ /,
but we concentrate on its behavior for high values of zq, which will dominate in the integral over zy. Fig. 4 shows
the approximation for £ = 30, which overestimate the numerical result by an error within 1%.

We also have to evaluate the integral over x3 dxg of the square of (B9), which we encounter in two different cases.
The first (see Section V B) is of the kind foxD dz P JZ (). For p < 0 this integral converges and we may evaluate it in
the limit zp — oc, in which it is of the form (B4). For p > 0 and xp > ¢2, the integral can be approximated using
the asymptotic expansion of Jy(z) for large arguments [19], Ji(x) ~ \/2/(7z) cos[z — (2¢ + 1)m/4]. Approximating
the oscillations by a factor of 1/2, we obtain

rp rp 5
/ dx P JZ (z) ~ dx 2P J} (z) ~ { pm’ p>0 (B10)
0 Iz = =0.
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FIG. 4: We plot the value of integral (B9) squared and multiplied by z§ as function of zo, for £ = 30. The
green, dotted line represents again the numerical result (z4ec — 0), and the blue, long dashed line is the
analytic approximation. In this case the slope is positive, and hence the integral dzo/zo of this function is
dominated by the upper cutoff.

For the second case, fozD dx 2P Ji(x)Jp41(z), which we encounter in Section VI, we use again the large argument
approximation for the Bessel functions, for z > ¢2,

Jo(x)Jpg1 (z) = % cos (a: — (20 + 1)2) cos (m — (20 + 3)%) = % cos (a: — (20 + 1)2) sin (a: — (20 + 1)2)

2 gin <2m _ (e + %) 7r> _ D s (B11)

T T

so that for p > 0

Tp (_1)£+1 TD _1)Z+1
/ dx 2P Jo(x) Jppr1 (v) ~ ——— dx 2P~ cos (2z) ~
0

(mp‘l sin(2zp) — (2P sin(%?)) . (B12)
T 2 2m
In the limits to which we have restricted ourselves, we always have zp > ¢2. Consequently, the dominant contribution
in the last expression can be given either by the first term in the bracket, if p > 1, or by the second term, if p < 1.
Numerical checks show that the approximation is good for p > 1, but it is rather poor in the second case, p < 1. Since
we shall not be very much interested in this case, we do not go any further in this work.

When evaluating expression (B7), we often also use

r(2z) = 2\;7; [(z)T <w + %)
I'(z+a) a a—b—1
m ~ 2%t O(x b ) forz>1 (B13)

(see Egs. (6.1.18) and (6.1.47) of [19]).

2. Recurrent Relations for spherical Bessel Functions

We use several recurrence relations for spherical Bessel functions in our derivations, most notably

L) + i) = o (@) (B14)
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