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al Observatory, 2A, Kazbegi ave., Tbilisi, 380060, Georgia(Dated: November 4, 2003)We study the e�e
t of a possible heli
ity 
omponent of a primordial magneti
 �eld on the tensorpart of the 
osmi
 mi
rowave ba
kground temperature anisotropies and polarization. We give an-alyti
al approximations for the tensor 
ontributions indu
ed by heli
ity, dis
ussing their amplitudeand spe
tral index in dependen
e of the power spe
trum of the primordial magneti
 �eld. We �ndthat an heli
al magneti
 �eld 
reates a parity odd 
omponent of gravity waves indu
ing parity oddpolarization signals. However, only if the magneti
 �eld is 
lose to s
ale invariant and if its heli-
al part is 
lose to maximal, the e�e
t is suÆ
iently large to be observable. We also dis
uss theimpli
ations of 
ausality on the magneti
 �eld spe
trum.PACS numbers: 98.70.V
, 98.62.En, 98.80.CqI. INTRODUCTIONThe observed Universe is permeated with large s
ale 
oherent magneti
 �elds. It is still under debate whether thesemagneti
 �elds have been 
reated by 
harge separation pro
esses in the late Universe, or whether primordial seed�elds are needed. Re
ently, it has been proposed [1℄ that also `heli
al' magneti
 �elds, i.e. �elds with a non-vanishing
omponent in the dire
tion of the 
urrent, B � (r�B) 6= 0, 
ould be produ
ed e.g. during the ele
troweak phasetransition (see also [2℄).Extended studies have already investigated e�e
ts of sto
hasti
 magneti
 �elds with vanishing heli
ity on the
osmi
 mi
rowave ba
kground (CMB) (see [3{6℄ and others). In a seminal paper [7℄, Pogosian and 
ollaborators haveinvestigated the possibility that a heli
al magneti
 �eld 
an indu
e 
orrelations between the temperature anisotropyand the B mode CMB polarization.In this paper we want to go beyond that work. We determine all the e�e
ts on the CMB indu
ed by a heli
almagneti
 �eld. We shall a
tually show that, 
ontrary to the statement in Ref. [7℄, a heli
al 
omponent also introdu
espure CMB anisotropies and polarization. But of 
ourse its most remarkable e�e
t is the above mentioned 
orrelationof temperature anisotropy and B polarization. We shall show that also a 
orrelation between E and B polarizationis indu
ed.In this paper we dis
uss only the tensor mode, gravitational waves, sin
e the 
al
ulations for this 
ase are simplest.Even if the resulting observational e�e
ts are small and may not be dete
table, we �nd it interesting sin
e it is
ompletely new and 
ontains several surprising elements. Furthermore, a 
uid vorti
ity �eld or non parity invariantinitial spe
trum of gravitational waves produ
ed during in
ation 
ould indu
e very similar e�e
ts; in that sense ourresults are more generi
 than their derivation.In the next se
tion, we dis
uss the magneti
 �eld spe
trum and de�ne its symmetri
 and heli
al 
ontributions.Then we 
ompute the tensor 
omponent of the magneti
 �eld energy momentum tensor whi
h a
ts as a sour
e forgravity waves. In Se
tion IV we determine the indu
ed gravity wave spe
trum whi
h also has a symmetri
 and aheli
al 
ontribution. In Se
tion V we 
ompute the indu
ed CMB temperature anisotropy and polarization spe
tra aswell as the above mentioned 
orrelations. Finally, we dis
uss our results and draw some 
on
lusions. The paper is
omplemented by an appendix where details of 
al
ulations and tests of some approximations 
an be found.�Ele
troni
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aprini�astro.ox.a
.ukyEle
troni
 address: ruth.durrer�physi
s.unige.
hzEle
troni
 address: tinatin�amorgos.unige.
h



2II. THE MAGNETIC FIELD SPECTRUMWe 
onsider a primordial sto
hasti
 magneti
 �eld 
reated before equality, during the radiation-dominated epo
h (orearlier). During this period of the evolution of the Universe, the 
ondu
tivity of the primordial plasma on s
ales largerthan the Silk s
ale � > �S is very high, e�e
tively in�nite [8℄. Hen
e, the `frozen-in' 
ondition holds, E = �v �B,where v is the plasma 
ux velo
ity, E is the ele
tri
 �eld indu
ed by plasma motions and B is the magneti
 �eld.Moreover, large s
ale magneti
 �elds always indu
e anisotropi
 stresses, so that their energy density B2=8� mustbe a small perturbation, in order not to break the isotropy of the Friedmann Robertson Walker ba
kground. Thisallows us to apply linear perturbation theory. Both, the magneti
 �eld energy and the plasma pe
uliar velo
ity aretreated as �rst order perturbations; 
onsequently, the energy density of the indu
ed ele
tri
 �eld will be 3rd order inperturbations theory, and 
an be negle
ted. Also terms EiBj are of se
ond order and therefore negle
ted.At suÆ
iently large s
ales, it is possible to negle
t the e�e
ts of ba
k rea
tion of the 
uid on the evolution of themagneti
 �eld: the time dependen
e de
ouples from the spatial stru
ture, and, due to 
ux 
onservation, the magneti
�eld evolves like B(�;x) = B(�0;x)=a(�)2, where we use the normalization a(�0) = 1 and a subs
ript 0 denotes today.At smaller s
ales however, the intera
tion between the 
uid and the magneti
 �eld be
omes important, leading mainlyto two e�e
ts: on intermediated s
ale, the plasma undergoes Alfv�en os
illations, and B2(k)! B2(k) 
os2(vAk�) (wherev2A = B2=(4�(� + p)) is the Alfv�en velo
ity, here B is the �eld averaged over a s
ale of order vA�); on very smalls
ales, the �eld is exponentially damped due to shear vis
osity [3, 4, 9, 10℄. As in Ref. [4℄, we will a

ount for thisdamping by introdu
ing an ultraviolet 
uto� at wavenumber kD(�) in the spe
trum of B (see also [6℄).Following Refs. [1, 7℄, we introdu
e an heli
ity 
omponent A(k) in the magneti
 �eld two point 
orrelation fun
tion:hBj(k)B�l (k0)i = (2�)32 Æ(k � k0)[PjlS(k) + i�jlmk̂mA(k)℄ ; (1)where S(k) and A(k) are respe
tively the symmetri
 and heli
al part of the magneti
 �eld power spe
trum. Pij �Æij � k̂ik̂j is the usual transverse plane proje
tor satisfying the 
onditions PijPjk = Pik , Pij k̂j = 0, �ijl is the totallyantisymmetri
 tensor, and k̂i = ki=k. We use the Fourier transformation 
onventionBj(k) = Z d3x exp(ik � x)Bj(x); Bj(x) = 1(2�)3 Z d3k exp(�ik � x)Bj(k) : (2)For simpli
ity, as in Refs. [4, 6℄ and others, we shall assume that the magneti
 �eld is a Gaussian random �eld.Then all the statisti
al information is 
ontained in the two-point 
orrelation fun
tion and the higher moments 
an beobtained via Wi
k's theorem.As explained in Ref. [7℄, the magneti
 �eld heli
ity is determined by hB�(r�B)i. For a better physi
al understandingof the e�e
ts whi
h this new heli
ity term has on CMB anisotropies, it is useful to introdu
e the orthonormal `heli
itybasis' (e+; e�; e3 = k̂) (see also [7, 11℄), wheree�(k) = � ip2(e1 � ie2) ; (3)and (e1; e2; e3 = k̂) form a right-handed orthonormal basis with e2 = k̂ � e1. Under the transformation k ! �kwe 
hoose e2 to 
hange sign while e1 remains invariant. The basis (e+; e�; k̂) has the following properties: e� � e� =�1, e� � e� = 0, and e�(k) = e�(�k), as well as ik̂ � e� = �e�. The 
omponents of a ve
tor with respe
t tothis basis will be indi
ated by a supers
ript �. For a �xed (k-independent) basis we will instead use the usual Latinletters as indi
es. An arbitrary transverse ve
tor v 
an be de
omposed as v = v+e+ + v�e�. Here v+ is the positiveheli
ity 
omponent and v� is the negative heli
ity 
omponent.With the de�nition (1), and the reality 
ondition (B�(k))� = �B�(�k), we obtain the 
onne
tion between thepower spe
tra S(k), A(k) and the magneti
 �eld 
omponents in the new basis:�hB+(k)B+(�k0) +B�(k)B�(�k0)i = (2�)3S(k)Æ(k� k0) ; (4)hB+(k)B+(�k0)�B�(k)B�(�k0)i = (2�)3A(k)Æ(k � k0) : (5)In other words, A(k) represents the di�eren
e of the expe
tation values of the positive and negative heli
ity �eld
omponents. If A does not vanish, the left handed and right handed magneti
 �elds have di�erent strength.We assume that both the symmetri
 and heli
al terms of the magneti
 �eld power spe
trum (1) 
an be approximatedby a simple power law [7℄: S(k) = � S0 knS ; for k < kD0 otherwise (6)



3andA(k) = � A0 knA ; for k < kD0 otherwise (7)where S0, A0 are the normalization 
onstants, and nS , nA the spe
tral indi
es of the symmetri
 and heli
al partsrespe
tively.With (6, 7), we 
an express the normalization 
onstants S0 and A0 in terms of the averaged magneti
 �eld energydensity B�2 � hB(x) � B(x)ij�, and the absolute value of the averaged heli
ity B�2 � �jhB(x) � (r � B(x))ijj�respe
tively, both smoothed over a sphere of 
omoving radius �. B� measures the amplitude of heli
ity on the given
omoving s
ale �.In order to 
al
ulate these quantities, we 
onvolve the magneti
 �eld and its heli
ity with a 3D-Gaussian �lterfun
tion, so that Bi ! Bi � f�, where f̂�(k) = exp(��2k2=2). The mean-square values B2� and B2� are then givenby the Fourier transform of the produ
ts of the 
orresponding spe
tra S(k) and kA(k) with the square of the �lterfun
tion f̂�: B2� = 1(2�)3 Z d3k S(k)f̂�(k)2 = S0(2�)2 1�nS+3��nS + 32 � ; (8)B2� = �(2�)3 Z d3k kjA(k)jf̂�(k)2 = jA0j(2�)2 1�nA+3��nA + 42 � : (9)In order not to over-produ
e long range magneti
 �elds or heli
ity as k ! 0, we require for the spe
tral indi
esnS > �3 and nA > �4 (for nA � �3 and nA � �4 the integrals (8) and (9) diverge at small k).Using (8), (9) and the de�nition of the magneti
 �eld spe
trum (1), we 
an rewrite expressions (4) and (5) in theform (see also [7℄) �hB+(k)B+(�k0) +B�(k)B�(�k0)i = (2�)5 �3B2�� �nS+32 � (�k)nSÆ(k � k0) ; (10)hB+(k)B+(�k0)�B�(k)B�(�k0)i = (2�)5 �3B2�� �nA+42 � (�k)nAÆ(k� k0) ; (11)for k < kD and 0 for k > kD.Using that limk0!k jh(k̂ �B(k)) �B(�k0)ij � limk0!khB(k) �B(�k0)iwe 
an 
on
lude that S(k) � jA(k)j : (12)Sin
e S(k) / hjBj2i, it is 
lear that S(k) � 0. The reality 
ondition requires A0 to be real, but it 
an be eitherpositive or negative. For Eq. (12) to be valid on very small values of k requiresnA � nS : (13)Applying Eq. (12) also 
lose to the upper 
uto� kD, we have in additionjA0j � S0knS�nAD : (14)In terms of the magneti
 �elds on s
ale � this gives roughlyB2� < B2�(kD�)nS�nA : (15)Usually the damping s
ale is mu
h smaller than the physi
al s
ale of interest, � so that �kD � 1. Therefore, ifnS � nA 6= 0, the heli
al 
ontribution is signi�
antly suppressed on all s
ales � > �D = 1=kD. As we now show, thisis always the 
ase if the magneti
 �eld is 
ausally produ
ed.Most me
hanisms to produ
e magneti
 �elds with a heli
al 
omponent are 
ausal. By this we mean that all
orrelations above a 
ertain s
ale, usually some fra
tion of the Hubble s
ale at formation, have to vanish. If thisis the 
ase, 
ausality implies an additional interesting 
onstraint, whi
h we now derive. For this we assume thatthe 
orrelation fun
tions hBi(x)Bj(y)i and hBi(x)(r � B(y))j i have to vanish for jx � yj > R for some s
ale R.



4Hen
e they are fun
tions with 
ompa
t support, whi
h implies that their Fourier transforms, PijS(k) and �ijlk̂lA(k)are analyti
 fun
tions. Therefore, for suÆ
iently small values of k they 
an be approximated by power laws as inEqs. (6,7). Sin
e k̂j is not analyti
 but kk̂j is, this impliesnS � 2 and nA � 1 ; (16)where nS has to be an even integer while nA has to be an odd integer. But sin
e we need nA � nS , this leaves uswith nS � 2 , an even integer and (17)nA � 3 , an odd integer: (18)Causality together with the 
ondition (12) leads to an additional suppression of heli
al �elds on large s
ales. Alsoordinary 
ausal magneti
 �elds 
annot be white noise but are severely suppressed on large s
ale due to the non-analyti
pre-fa
tor Pij in the power spe
trum whi
h is a simple 
onsequen
e of the fa
t that magneti
 �elds are divergen
e freer � B = 0. This has already been dis
ussed in Refs. [4, 12℄. The 
ausality 
onstraint need not to be satis�ed if themagneti
 �elds are generated before or during a period of in
ation where the 
ausal horizon diverges. For a detaileddis
ussion of 
ausality see [13℄.III. MAGNETIC SOURCE TERM FOR TENSOR METRIC PERTURBATIONSThe anisotropi
 stresses whi
h a
t as sour
e for metri
 perturbations are given by the magneti
 �eld stress tensor[14℄ �ij(k) = 1(2�)3 14� Z d3p [Bi(p)B�j (p� k)� 12Bl(p)B�l (p� k)Æij ℄ : (19)Here we are interested in the generation of gravitational waves, and 
onsequently we need to extra
t the transverseand tra
eless part of �ij . The form of a general proje
tion to extra
t any mode (s
alar, ve
tor or tensor) from ageneri
 tensorial perturbation 
an be found in [15℄. We make use of the tensor proje
tor Tijlm = PilPjm � 12PijPlm(see also [4℄). The tensor 
ontribution to �lm is given by�ij = (PilPjm � 12PijPlm)�lm : (20)Moreover, sin
e the magneti
 �eld is a sto
hasti
 variable, we need to 
al
ulate the two point 
orrelation tensor of�ij(k), whi
h takes the formh�ij(k)��lm(k0)i = 1(4�)2 1(2�)6 Z d3p Z d3q hBi(p)Bj(k� p)Bl(�q)Bm(q � k0)i+ � � � Æij + � � � Ælm ; (21)and we are not interested in terms proportional to Æij and Ælm , whi
h after being proje
ted out will not 
ontribute tothe �nal result for the tensor perturbation h�ij�lmi (see appendix A. in [6℄). Before applying the tensor proje
tion,we 
an simplify the right hand side of (21) using Wi
k's theorem, expressing the four point 
orrelators in terms of thetwo point ones, hBi(ki)Bj(kj)Bl(kl)Bm(km)i = hBi(ki)Bj(kj)ihBl(kl)Bm(km)i+ hBi(ki)Bl(kl)ihBj(kj)Bm(km)i+ hBi(ki)Bm(km)ihBj(kj)Bl(kl)i : (22)Sin
e the two point 
orrelation fun
tion given in Eq. (1) is not symmetri
, we are not allowed to 
hange the orderof indi
es i; j; l;m inside an expe
tation value. With Eq. (1) we 
an then 
ompute the 
orrelation fun
tion (21)whi
h 
onsists of a purely symmetri
 part proportional to R d3pS(p)S(jk� pj) , a purely heli
al part proportional toR d3pA(p)A(jk� pj) , and mixed term, i R d3pS(p)A(jk� pj) (the full expressions are given in Appendix A, Eq. (A1)).The �rst two terms 
ontribute to the symmetri
 part of the two point 
orrelation fun
tion of the tensor sour
e, whilethe two latter terms give rise to a heli
al 
ontribution. To express them we now introdu
e the two point 
orrelationfun
tion for the tensor sour
e, whi
h 
an be parameterized ash�ij(k)��lm(k0)i � 14 [Mijlmf(k) + iAijlmg(k)℄ Æ(k � k0) ; (23)



5where the tensors Mijlm and Aijlm are given byMijlm � PilPjm + PimPjl � PijPlm ; (24)Aijlm � k̂q2 (Pjm�ilq + Pil�jmq + Pim�jlq + Pjl�imq) : (25)Clearly, both Mijlm and Aijlm are symmetri
 in the �rst and se
ond pair of indi
es. Mijlm is also symmetri
 underthe ex
hange of ij with lm while Aijlm is anti-symmetri
 under this permutation. We shall often use simple propertieslike Mijij = 4 ; Miilm =Mijll = 0 (26)PqiMijlm = Mqjlm ; PqiAijlm = Aqjlm (27)MijlmMijlm = AijlmAijlm = 8 (28)AijlmMijlm = 0 ; Aijij = Aiijl = Aijll = 0 : (29)A

ording to Eq. (20), we have now to a
t on h�ab(k)��
d(k0)i with the tensor proje
torPab
dijlm(k̂; k̂0) = (PiaPjb � 12PijPab)(k̂)(Pl
Pmd � 12PlmP
d)(k̂0) : (30)In these 
al
ulations we don't need to 
are about the position (up or down) of Latin indi
es as they are always
ontra
ted by a Krone
ker Æ. The symmetri
 and antisymmetri
 parts of Eq. (23) are invariant under the appli
ationof the proje
tor (30), so that it is easy to separate the symmetri
 and heli
al parts of the sour
e spe
trum, f(k) andg(k): Æ(k� k0)f(k) = 12Mab
dh�ab(k)��
d(k0)i (31)Æ(k� k0)g(k) = �i2 Aab
dh�ab(k)��
d(k0)i : (32)Moreover, by applying the tensor Mijlm to Eq. (A1) of Appendix A, we obtain (the �rst term of this has alreadybeen 
omputed in Refs. [4, 6, 12℄)f(k) = 14 1(4�)2 Z d3p [ S(p)S(jk� pj)(1 + 
2)(1 + �2) + 4A(p)A(jk � pj)(
�) ℄ ; (33)where 
 = k̂ � p̂ and � = k̂ � (\k� p). Note that the square of the heli
al part of the magneti
 �eld spe
trum (1)
ontributes to the symmetri
 part of the sour
e spe
trum. This is not surprising, sin
e the produ
t of two quantitieswith odd parity has even parity. The antisymmetri
 part of the sour
e spe
trum is obtained by a
ting with Aijlm onEq. (A1) of Appendix A. It is given by the mixed terms,g(k) = 1(4�)2 Z d3p S(p)A(jk � pj)(1 + 
2)� : (34)We 
an also express the 
orrelator (23) in terms of the basis e�ij introdu
ed in [11℄,e�ij = �r38(e1 � ie2)i � (e1 � ie2)j : (35)These form a basis of tensor perturbations, satisfying the transverse-tra
eless 
ondition Æije�ij = 0, k̂ie�ij = 0 ande�ije�ij = 3=2. Positive 
ir
ularly polarized gravity waves are proportional to e+ij , while negative 
ir
ularly polarizedgravity waves are given by the 
oeÆ
ient of e�ij . In this basis �ij is expressed as�ij(k) � e+ij�+(k) + e�ij��(k) : (36)We 
an rewrite f(k) and g(k) in terms of the 
omponents �� asÆ(k� k0) f(k) � Æ(k� k0) j�(k)j2 = 32 h�+(k)�+�(k0) + ��(k)���(k0)i ; (37)Æ(k� k0) g(k) = �32 h�+(k)�+�(k0)���(k)���(k0)i : (38)



6Here we have used the form of M and A in this basis,Mijlm = 43 �e+ij 
 e�lm + e�ij 
 e+lm�Aijlm = 4i3 �e+ij 
 e�lm � e�ij 
 e+lm� ;and the simple properties of Mijlm and Aijlm mentioned above. Other useful relations areh��(k)�+�(k0) + �+(k)���(k0)i = 23 Æ(k� k0) f(k) (39)h�+(k)���(k0)���(k)�+�(k0)i = 23 Æ(k� k0) g(k) (40)h�+(k)���(k0)i = 13 Æ(k� k0) (f(k) + g(k)) : (41)Similarly, de�ning the usual linear polarization basiseTij = (e1 � e1 � e2 � e2)ije�ij = (e1 � e2 + e2 � e1)ij ; (42)and the 
omponents of � with respe
t to this basis,�ij = �T eTij +��e�ij ; (43)we obtain also h�T (k)�T�(k0) + ��(k)���(k0)i = Æ(k� k0) f(k) (44)h��(k)�T�(k0)��T (k)���(k0)i = iÆ(k� k0) g(k) : (45)With Eqs. (33, 34), we �ndf(k) + g(k) = 14 1(4�)2 Z d3p [S(p)(1 + 
2) + 2A(p)
℄ � [S(jk� pj)(1 + �2) + 2A(jk� pj)�℄ : (46)Let us introdu
e the tensor Qij(k) � 1(4�) [Pij(k̂)S(k) + i�ijq k̂qA(k)℄ (47)so that 2(2�)3 14� hBi(k)B�j (k0)i = Æ(k� k0)Qij(k) ; (48)with Qij(�k) = Q�ij(k) one then �ndsf(k) + g(k) = hPij(k̂)� i�ijq k̂qi hPlm(k̂) + i�lmq0 k̂q0i Z d3p Qij(p)Q�lm(k� p) : (49)Using Eqs. (6-9), (33) and (34), it is possible to 
al
ulate f(k) and g(k). The details of the 
al
ulations are givenin the Appendix A. The integrals 
annot be 
omputed analyti
ally, but a good approximation gives, for k < kD (seealso [4, 6℄): f(k) ' AS �(�kD)2nS+3 + nSnS + 3(�k)2nS+3��AA�(�kD)2nA+3 + nA � 1nA + 4(�k)2nA+3� (50)g(k) ' C (�kD)nS+nA+2 (�k) "1 + nA � 1nS + 3 � kkD�nS+nA+2# ; (51)where AS , AA and C are positive 
onstants given in Eqs. (A13) to (A15) of Appendix A. They depend on thespe
tral indi
es nS and nA of the magneti
 �eld and on its amplitudes, whi
h are given in terms of B2�, B2�, and �.



7Note that the 
ontribution of magneti
 �eld heli
ity to the symmetri
 part of the sour
e, f(k), is negative. Butit is easy to 
he
k that Eq. (12) insures that it never dominates, hen
e f � 0. For nS ; nA > �3=2, the two termsproportional to the upper 
uto� k2nS;A+3D dominate in f(k), whi
h 
onsequently depends only on the 
uto� frequen
yand behaves like a white noise sour
e [4℄. For nS < �3=2 or also nA < �3=2, the dominating terms go like k2nS+3and k2nA+3 respe
tively. On the 
ontrary, the antisymmetri
 sour
e g(k) never shows a white noise behavior. FornS + nA > �2 the dominant term is proportional to k knS+nA+2D . For nS + nA < �2, g(k) does not depend on theupper 
uto�, but is proportional to knS+nA+3. The singularities in the pre-fa
tors AS , AA and C whi
h appear atnS = �3 and nA = �4 are the usual logarithmi
 singularities of s
ale invariant spe
tra. But as mentioned in Se
tion IIthe heli
al 
ontribution must obey nA � nS > �3. The apparent singularities in the pre-fa
tors at nS;A = �3=2 andat nS +nA = �2 are removable when multiplied with the k-dependent parts as in Eqs. (50) and (51). In the integralsover k whi
h we shall perform to 
al
ulate the C`'s we only take into a

ount the dominant terms.If the magneti
 �eld is 
ausal, we expe
t nS = 2 and nA = 3, so thatf(k) ' AS(kD�)7 �AA(kD�)9 (52)g(k) ' Ck�(kD�)7 : (53)Comparing the limit given in Eq. (14) with the expressions for AS and AA derived in the Appendix A, it is easy tosee that f always remains positive.The analysis of the evolution of a non-heli
al magneti
 �eld intera
ting with the primordial plasma, and thederivation of the appropriate damping s
ale kD, has been dis
ussed in Refs. [3℄ and [10℄, where the authors 
onsidereda magneti
 �eld with a tangled 
omponent superimposed on a homogeneous �eld. We assume that the latter 
an beobtained by smoothing our sto
hasti
 �eld on a s
ale whi
h is larger than the damping s
ale (for details, see [4, 12℄).The damping s
ale for the tensor mode is obtained taking into a

ount that the sour
e of gravitational radiationafter equality be
omes sub-dominant so that the relevant tensor damping s
ale is the Alfv�en wave damping s
ale fromthe time of the 
reation of the magneti
 �eld up to equality [12℄. Sin
e we are interested here in the imprint of themagneti
 �eld on the CMB, we need not to 
are about the time evolution of the damping s
ale, the relevant s
ales forthe CMB tensor anisotropies being those whi
h are greater or equal to the horizon at equality. Therefore, the relevant
uto� s
ale is given by the Alfv�en wave damping s
ale at equality k�1D ' vAl
(Teq), where l
(Teq) � 0:35Mp
 is the
omoving di�usion length of photons at equality (here we have used that lphys
 (T ) ' 1022
m(T=Tde
)�3, from [10℄, aswell as zeq ' 3454 and zde
 = 1088 from the WMAP results [16℄). The Alfv�en speed is at most of order 10�3, so thatthe damping s
ale is on the order of kp
 or smaller.Even if 
onsidering an heli
al 
omponent in the magneti
 �eld, we set all the power to zero on s
ales smaller thank�1D . This is not really 
orre
t sin
e simulations show [17℄ that the spe
trum simply de
ays like a power law withindex of the order of �4 on small s
ales, k > kD . However, as we shall see, for nS;A < �3=2 the indu
ed C`'s aredominated by the 
ontribution at the largest s
ales, k�1D , for the kinks, nS;A � �4 part of the spe
trum. Therefore,we do not loose mu
h by negle
ting the 
ontribution from the s
ales smaller than k�1D .IV. MAGNETIC FIELD INDUCED TENSOR METRIC PERTURBATIONSA sto
hasti
 magneti
 �eld 
an a
t as a sour
e for Einstein's equations and hen
e generate gravitational waves, seefor example [4, 6, 12℄. The tensor modes are the simplest 
ase of metri
 perturbations, and in the transverse andtra
eless gauge they are fully des
ribed by the tensor hij(x; �), satisfyinghij = hji; hii = 0; hij k̂j = 0 : (54)The linear evolution equation for gravitational waves is�hij(k; �) + 2 _aa _hij(k; �) + k2hij(k; �) = 8�Ga2(�)�ij(k); (55)where �ij(k) is the sour
e tensor given in (20), and we have multiplied in the time dependen
e a�2(�), whi
h 
omesfrom the fa
t that the magneti
 �eld is frozen in the plasma. Therefore, �ij(k; �) is a 
oherent sour
e, in the sensethat ea
h mode undergoes the same time evolution [12℄. We negle
t other possible anisotropi
 stresses of the plasma(
ollisionless hot dark matter parti
les or massless neutrinos have anisotropi
 stresses whi
h do sour
e gravitationalwaves, but this e�e
t is very small [18℄).We want to 
ompute the indu
ed CMB anisotropies and polarization (see Se
tion V), whi
h 
an be expressed interms of the two-point 
orrelation spe
trum h _hij(k) _hlm(k0)i, taking the form [4, 12℄:h _hij(k; �) _h�lm(k0; �)i = 14 [MijlmH(k; �) + iAijlmH(k; �)℄ Æ(k � k0) : (56)



8Here H(k; �)Æ(k � k0) = 1(2�)3 h _hij(k) _h�ij(k0)i is the usual isotropi
 part of the gravitational wave spe
trum whi
h issour
ed by f(k), and H(k; �) des
ribes the heli
al part, sour
ed by g(k).The perturbation tensor hij 
an also be expressed in terms of the basis e�ij de�ned in Eq. (35):hij(k; �) = h+(k; �)e+ij + h�(k; �)e�ij : (57)Just like for the anisotropi
 stress power spe
tra, we now �nd thatÆ(k� k0) H(k; �) � 32h _h+(k; �) _h+�(k0; �) + _h�(k; �) _h��(k0; �)i ; (58)Æ(k� k0) H(k; �) � �32h _h+(k; �) _h+�(k0; �)� _h�(k; �) _h��(k0; �)i : (59)In terms of hT and h�, de�ned like in Eq. (42), H parameterizes the 
orrelation between hT and h�,h _h�(k) _hT�(k0)� _hT (k) _h��(k0)i = iÆ(k� k0) H(k) : (60)The evolution equation for the 
omponents h�(k; �) is simply�h�(k; �) + 2 _aa _h�(k; �) + k2h�(k; �) = 8�Ga2(�)��(k) : (61)We need to determine the fun
tions _h�(k; �) (see Eq. (68) below). An approximate solution to the above di�erentialequation 
an be found in [4℄ or [12℄. The important point is that be
ause of the rapid fallo� of the magneti
 �eldsour
e in the matter dominated era, perturbations 
reated after equality (�eq) are sub-dominant, so that one obtains,for the dominant 
ontribution at � > �eq:_h�(k; �) ' 16�GH20
r ln� zinzeq���(k) j2(k�)� ; (62)where 
r is the radiation density parameter today and zin,eq 
orrespond to the redshifts at the moment of 
reation ofthe magneti
 �eld and at matter radiation equality respe
tively. The fun
tion j2 is the spheri
al Bessel fun
tion [19℄.The term ln(zin=zeq) a

ounts for the logarithmi
 build up of gravity waves from zin to zeq. For the spe
tra (58) and(59) we then obtain H(k; �) ' � 16�GH20
r ln� zinzeq� j2(k�)� �2 f(k) ; (63)H(k; �) ' � 16�GH20
r ln� zinzeq� j2(k�)� �2 g(k) : (64)The gravity wave power spe
tra H=�r and H=�r are 
onstant on large s
ales, k� � 1 and de
ay and os
illate insidethe horizon.Our �rst result is that a heli
al magneti
 �eld indu
ed a parity odd gravity wave 
omponent. From Eq. (61) it is
lear, that su
h a 
omponent is introdu
ed whenever there are parity odd anisotropi
 stresses. It 
ould in prin
iple alsobe dete
ted dire
tly, via gravity wave ba
kground dete
tions experiments. We do not dis
uss this very hypotheti
alidea any further, but 
al
ulate the e�e
t of su
h a 
omponent on CMB anisotropies and polarization.V. CMB FLUCTUATIONSMagneti
 �elds in the universe lead to all types of metri
 perturbations (s
alar, ve
tor and tensor, for more detailssee [5℄). In [6℄ it is shown that ve
tor and tensor perturbations from magneti
 �elds indu
e CMB anisotropies ofthe same order of magnitude. In this paper we estimate CMB 
u
tuations due to gravitational waves indu
ed by asto
hasti
 magneti
 �eld, the spe
trum of whi
h 
ontains an heli
ity 
omponent, A(k) 6= 0. Sin
e the CMB signatureof 
haoti
 magneti
 �elds with only an isotropi
 spe
trum is given in detail in Refs. [4, 6℄, here we 
on
entrate on thee�e
ts from the heli
al part of the magneti
 �eld spe
trum, and we will dis
uss the 
orre
tions whi
h it indu
es tothe previous results.To 
ompute the CMB 
u
tuation power spe
tra we use the total angular momentum method introdu
ed by Huand White [11℄. By 
ombining intrinsi
 angular stru
ture with the spatial dependen
e of plane-waves, Hu and White



9obtained integral solutions for all kind of perturbations. The angular power spe
trum of CMB 
u
tuations 
an thenbe expressed as [11℄ CX ;X 0` = 2� Z dk k2 +2Xm=�2 X(m)`(k; �0)2`+ 1 X 0�(m)`(k; �0)2`+ 1 ; (65)where X takes the values of �, temperature 
u
tuation, E, polarization with positive parity, and B, polarization withnegative parity, for ea
h perturbation mode. The index m indi
ates the spin, and for tensor modes m = �2. Sin
ewe only 
onsider tensor modes in this paper, we suppress the index 2 and just denote the two states by + and � inwhat follows. The des
ription given in Ref. [6℄ applies the total angular momentum method to parity even magneti
�eld spe
tra: in this 
ase, a

ording to parity 
onservation the sum over � 
an be repla
ed by a fa
tor 2. In our 
aseinstead, we always need to sum over both states.From the form of f(k), the parity even CMB 
u
tuation 
orrelators 
an be expressed as:CX ;X 0` = CX ;X 0(S)` � CX ;X 0(A)` ; (66)where CX ;X 0(A)` is the power spe
trum indu
ed by the purely heli
al part of the sour
e term, proportional toA(p)A(jk � pj). The 
ontribution of this heli
al part to the parity even CMB power spe
tra is always negative,but, as we shall see, the 
ondition (12) insures that CX ;X(A)` < CX ;X(S)` so that the power spe
tra do not be
ome negative.The new e�e
t is that the heli
al part of the magneti
 �eld now also indu
es parity odd CMB 
orrelators, C�B`and CEB` (see also [7℄). These are expressed in terms of the heli
al magneti
 sour
e g(k) whi
h is proportional to the
onvolution of A(k) with S(k) (see Eq. (34)).We now derive the CMB 
u
tuations ��̀(�0; k), E�̀(�0; k), B�̀(�0; k) and then perform the integral (65). Ratherthan a numeri
al study, we present analyti
al approximations for our results. These are not very a

urate, but allowa dis
ussion of the dependen
e of the 
orrelators on nS and nA. We will also be able to determine the spe
tral indexof the CMB 
orrelators (dependen
e on `) as a fun
tion of nS and nA. At the present stage, we think this s
alinginformation is more interesting than a

urate numeri
al results. These 
an than follow for spe
i�
, interesting valuesof the spe
tral indi
es in future work. For a magneti
 �eld with no heli
al 
omponent, this program has been 
arriedout in Ref. [6℄, and we shall just refer to their results but not re-derive them here.Below, we shall always work in the approximation of `instant re
ombination'. Moreover, in our approximationswe didn't take into a

ount the de
ay of gravity waves for modes whi
h entered the horizon before de
oupling. Ourresults therefore will be reasonable approximations (within a fa
tor of two or so) only for ` . 60, where the tensorCMB signal is largest. Even though, this may seem poor a

ura
y, here we only want to obtain estimates of the
orre
t order of magnitude of this anyway small e�e
t. This will enable use to judge for whi
h 
ases a more involvednumeri
al study is justi�ed. A. CMB temperature anisotropiesWithin the instant re
ombination approximation, gravitational waves simply 
ause CMB photons to propagatealong perturbed geodesi
s from the last s
attering surfa
e to us. The indu
ed CMB temperature anisotropies aregiven by [20℄ �(�0;k; n̂) ' Z �0�de
 d� exp(�i(�0 � �)k � n) _hij(k; �)n̂in̂j : (67)In the total angular momentum formalism this be
omes��̀(k; �0)2`+ 1 = �43 Z �0�de
 d� _h�(k; �)j�̀[k(�0 � �)℄ ; (68)where j�̀ are the tensor temperature radial fun
tions of the two di�erent parities, both given by [11℄j�̀(x) =s38 (`+ 2)!(`� 2)! j`(x)x2 : (69)The somewhat unusual fa
tor 4=3 
omes from the fa
t that this formula takes into a

ount polarization, while Eq. (67)does not. A detailed derivation 
an be found in Ref. [11℄.



10Using the solution (62) for _h�(k; �), we obtain��̀(k; �0)2`+ 1 ' �s38 (`+ 2)!(`� 2)! � 8�

r ln� zinzeq����(k) Z x0xde
 dx j2(x)x j`(x0 � x)(x0 � x)2' �2�

r ln� zinzeq���(k)J`+3(x0)x30 `5=2 (70)where we have set x � k� and x0 � k�0. For the se
ond ' sign we have used the approximation (B5) given inAppendix B for the integral over x. This approximation is valid only for xde
 = k�de
 . 1.The general expression (65) for the temperature anisotropy power spe
trum now givesC��` ' 163� � 1�

r ln� zinzeq��2 `5�30 Z kD�00 dx0 J 2̀+3(x0)x40 f �x0�0� : (71)A good approximation for the fun
tion f(k) is given in Appendix A, Eq. (A9). The �rst term of (A9) 
omes entirelyfrom the non-heli
al 
omponent B�, and has already been determined in Refs. ([4, 6℄); the se
ond term 
omes insteadfrom the heli
al 
omponent, and its in
uen
e on the C` is new. We denote it by C��(A)`. Then, splitting the indu
edtemperature anisotropy power spe
trum as C��` = C��(S)` � C��(A)` ; (72)we obtain (now x0 is renamed x)C��(A)` ' 4(4�)49 �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 �`5� 1�0kD�3 Z xD0 dx J 2̀+3(x)x4 "1 + nA � 1nA + 4 � xxD�2nA+3# ; (73)where we have set xD = kD�0. We have introdu
ed the `heli
ity density parameter' 
A de�ned by
A � B2�8��
 (kD�)nA+3 ' 1�
 Z kD0 dkk d�B(k)d log k ' B2kD8��
 ; (74)and analogously we will use 
S � B2�8��
 (kD�)nS+3 ' 1�
 Z kD0 dkk d�B(k)d log k ' B2kD8��
 ; (75)where we have introdu
ed B2kD = B2�(kD�)nA+3, the �eld strength at the 
uto� s
ale 1=kD, and 
orrespondingly forBkD . With these de�nitions the results will be expressed entirely in terms of physi
al quantities and the referen
es
ale � does no longer enter.Remember also that (2�)4(B2��nA+3)2=�2 �nA+42 � = jA0j2, where jA0j is the normalization of the heli
al 
omponentof the magneti
 power spe
trum (7). The integral (71) is dominated at x0 ' `. With x0=xde
 = �0=�de
 ' 60, thismeans that our approximation is valid for ` . 60.If nA > �3=2, the �rst term in the square bra
ket in Eq. (73) dominates. Sin
e the integral 
onverges and ismaximal around k ' `=�0 � kD , we 
an repla
e it by the integral to in�nity and use Eq. (B7) of Appendix B. Thisgives `2C��(A)` ' 32(4�)327 �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � � `kD�0�3 (76)for nA > �3=2 :The temperature power spe
trum has the well known behavior of C`'s indu
ed by white noise gravity waves, C` / `.If nA < �3=2, the se
ond term in the square bra
ket of Eq. (73) dominates, and we �nd`2C��(A)` ' 2(4�)49p� �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � � � 12 � nA��(1� nA) nA � 1nA + 4 � `kD�0�2nA+6 (77)for � 3 < nA < �3=2 :



11Like for the symmetri
 
ontribution given in Refs. [4, 6℄, we get a s
ale-invariant spe
trum for nA = �3. Theexpressions for `2C��(S)` are obtained from those given above upon repla
ing 
A by 
S , nA by nS and �2 �nA+42 � by�2 �nS+32 �. For �3 < nS < �3=2, one also has to repla
e the fa
tor (nA � 1)=(nA + 4) by nS=(nS + 3). We do notrepeat these formulas here sin
e they 
an be found in Ref. [6℄ (up to some fa
tors of order unity whi
h are of norelevan
e for this dis
ussion).This is in prin
iple the �nal result for temperature anisotropies. Let us 
he
k that C��(A)` is indeed never larger thanC��(S)` so that C��` = C��(S)` � C��(A)` � 0 :We �rst 
onsider nA � nS > �3=2. ThenC��(A)`C��(S)` = B4� �2(nS+32 ) (2nS + 3) (kD�)2(nA�nS)B4� �2(nA+42 ) (2nA + 3) = jA0j2S20 k2(nS�nA)D 2nS + 32nA + 3 � 1 : (78)In the �rst equality we have inserted the de�nitions of 
A and 
S and the last inequality 
omes from Eqs. (14)and (13). If instead nS � nA < �3=2, we �ndC��(A)`C��(S)` = N(nA; nS) jA0j2S20 k2(nS�nA)D � `kD�0�2(nA�nS) ; (79)where N(nA; nS) is a fun
tion of the spe
tral indi
es nS and nA. It is of order unity in the allowed range, �3 < nA �nS < �3=2. Now kD�0 � ` for all values of ` for whi
h our result applies. Hen
e againC��(A)`C��(S)` � 1 : (80)Finally, we 
onsider the 
ase �3 < nS < �3=2 < nA, so that we have to apply the result (76) for C��(A)` and (77)with the mentioned modi�
ations for C��(S)`. A short 
al
ulation givesC��(A)`C��(S)` ' jA0j2S20 k2(nS�nA)D �kD�0` �2nS+3 � 1 ; (81)sin
e the �rst fa
tor is less than one due to Eq. (14) and kD � `=�0 with nS < �3=2.Clearly, the heli
al 
omponent is maximal for nA ' nS , where we may have jA0j ' S0.B. The indu
ed CMB polarizationTensor perturbations indu
e both E polarization with positive parity, and B polarization with negative parity.CMB polarization indu
ed by gravity waves has been studied for example in Refs. [11, 21, 22℄, while the 
ontributionfrom a magneti
 �eld has been dis
ussed in [6, 23℄. Our aim is to estimate the e�e
t on the polarization signal fromthe heli
al 
omponent of the magneti
 �eld. Like for the temperature anisotropies, we use the angular momentummethod developed in Ref. [11℄. 1. E type polarizationThe integral solution for E type polarization from gravity waves is given in [11℄. Again, we will work in the `instantre
ombination' approximation. The order of magnitude of our result is still reasonable for ` . 60, sin
e in this 
asealso we restri
t ourselves to the evaluation of the super-horizon s
ales spe
trum. In our approximation we haveE�̀(k; �0)2`+ 1 =r23 Z �0�de
 d� _h�(k; �)��̀[k(�0 � �)℄ ; (82)



12here ��̀(x) = 14 ��j`(x) + j00̀(x) + 2j`(x)x2 + 4j 0̀(x)x � ' 14 � `2x2 j` � 2j`(x)� for `� 1 (83)is the E-type polarization radial fun
tion for the tensor mode [11℄, and for the last equality we have used the re
urren
erelations for spheri
al Bessel fun
tions (B14, B15).We now use our solution (62) to express _h�(k; �) in terms of ��(k). With this, Eq. (82) be
omesE�̀(k; �0)2`+ 1 ' r32 � 1�

r ln� zinzeq����(k) Z x0xde
 dx j2(x)x ��2 + `2(x0 � x)2 � j`(x0 � x)' �12 � 1�

r ln� zinzeq�� J`+3(x0)px0 ��(k) (84)where again x � k� and x0 � k�0, and we have evaluated the time integral using approximation (B9). Here we havealso negle
ted a term of the order of (`2=x20)J`+3(x0), whi
h in prin
iple is of the same order in the above expression,but is always subdominant on
e we perform the integral over k. Sin
e the power spe
tra for the E polarization areparity even, only the parity even part of the �� auto-
orrelator (Eq. (37)) 
ontributes to the expression for CEE`derivable from Eq. (65). Again we present here only the e�e
t 
oming from the heli
al part of the magneti
 �eld,using Eq. (A9) we �nd (x0 is renamed x)CEE(A)` ' 4(2�)49 �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � (kD�0)�3 Z xD0 dx x J 2̀+3(x)"1 + nA � 1nA + 4 � xxD�2nA+3# : (85)The 
orresponding equation for CEE(S)` 
an be found in Ref. [6℄. There, a somewhat di�erent approximation than ourshas been used for the time integral.For nA � �2, the integral over x is dominated by the upper 
uto�, xD = kD�0. Using the approximation (B10),we obtain `2CEE(A)` ' (4�)39 �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � � `kD�0�2 �8><>: 1 for nA > �3=2nA�1(nA+4)(2nA+4) for �2 < nA < �3=2� 32 ln �kD�0`2 � for nA = �2 (86)The result for CEE(S)` is obtained upon repla
ing nA by nS and 
A by 
S (more pre
isely the fa
tor �2(nA+42 ) has tobe repla
ed by �2(nS+32 ) and the fa
tor (nA�1)=(nA+4) by nS=(nS+3)). For �3 < nA < �2, using (B7), we obtain`2CEE(A)` ' 2(2�)49p� �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � �(�nA � 2)�(�nA � 32 ) nA � 1nA + 4 � `kD�0�2nA+6 for �3 < nA < �2 . (87)Again the E polarization power spe
trum from the symmetri
 part of the magneti
 �eld spe
trum is obtained uponrepla
ement of nA by nS and 
A by 
S . Similar evaluations like the ones presented in the previous paragraph showthat CEE` = CEE(S)` � CEE(A)` � 0 : (88)2. B type polarizationLike for E polarization, the integral solutions for B polarization in the 
ase of tensor perturbations are given in[11℄. In the approximation of instant re
ombination we haveB�̀(k; �0)2`+ 1 =r23 Z �0�de
 d� _h�(k; �)��̀[k(�0 � �)℄ ; (89)where ��̀(x) = �12 �j 0̀(x) + 2j`(x)x � ' �12 � x̀ j`(x)� j`+1(x)� for `� 1 : (90)



13With Eq. (62) we 
an write the above integral in terms of the tensor sour
es ��(k):B�̀(k; �0)2`+ 1 ' �p6�

r ln� zinzeq���(k) Z x0xde
 dx j2(x)x � `x0 � xj`(x0 � x)� j`+1(x0 � x)�' �12�

r ln� zinzeq� J`+4(x0)px0 ��(k) ; (91)where we have again used approximation (B9). Like for the E polarization, in this 
ase also it is the parity even partof the magneti
 sour
e, f(k), whi
h 
ontributes to the C`. Eq. (65) takes the formCBB(A)` ' 4(2�)49 �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � (kD�0)�3 Z xD0 dx x J 2̀+4(x)"1 + nA � 1nA + 4 � xxD�2nA+3# : (92)Note that within our approximation, for ` � 1, CBB(A)` ' CEE(A)` . This is also the 
ase for CBB(S)` and CEE(S)` , see [6℄.Evaluating the integral using expressions (B10) and (B7), for the di�erent ranges of the spe
tral index nA, we obtain`2CBB(A)` ' (4�)39 �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � � `kD�0�2 �8><>: 1 for nA > �3=2nA�1(nA+4)(2nA+4) for �2 < nA < �3=2� 32 ln �kD�0`2 � for nA = �2`2CBB(A)` ' 2(2�)49p� �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � �(�nA � 2)�(�nA � 3=2) � `kD�0�2nA+6 for nA < �2 : (93)Again, the 
ontributions from the symmetri
 part are obtained by repla
ing 
A by 
S and nA by nS , up to fa
torsof order unity and we �nd CBB` = CBB(S)` � CBB(A)` � 0 : (94)Within our approximation, whi
h is better than a fa
tor of 2, we have CBB` ' CEE` . From ordinary in
ationaryperturbations one expe
ts CBB` ' 813CEE` for gravity waves, whi
h is 
omparable to our �ndings.3. Temperature and E polarization 
ross 
orrelationThe symmetri
 part of the sour
e term, f(k), 
an only indu
e parity even CMB 
orrelators. Besides the powerspe
tra for temperature anisotropies and E and B type polarizations analyzed in the previous subse
tions, it 
an alsosour
e the 
ross-
orrelation between temperature anisotropy and E polarization. In order to evaluate this 
ontribution,we have to substitute into Eq. (65) the integral solutions for the tensor mode Eqs. (70) and (84), to obtain:C�E(A)` ' 4(2�)49 �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � (kD�0)�3 `5=2 Z xD0 dx J 2̀+3(x)x3=2 "1 + nA � 1nA + 4 � xxD�2nA+3# : (95)We 
an evaluate this integral using (B7), and we �nd,`2C�E(A)` ' 2(2�)49p� �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � �( 34 )�( 54 ) � `kD�0�3 ; for nA > �3=2 (96)and `2C�E(A)` ' 2(2�)49p� �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � �(� 34 � nA)�(� 14 � nA) nA � 1nA + 4 � `kD�0�2nA+6 ; for �3 < nA < �3=2. (97)In this 
ase also, the 
ontribution from the symmetri
 part of the magneti
 �eld spe
trum to the �-E 
orrelator isalways larger than this heli
al part.



14VI. CMB CORRELATORS CAUSED BY MAGNETIC FIELD HELICITYIf the sour
e (or the initial 
onditions) have no heli
al 
omponent, h�+(k)�+(k0)i = h��(k)��(k0)i, the above
orrelators are the only non-vanishing ones. However, as soon as the tensor magneti
 sour
e spe
trum has a heli
al
ontribution (see Eq. (38)) g(k) � �32h�+(k)�+�(k)���(k)���(k)i 6= 0 ;the parity odd CMB power spe
tra are non zero. This has been observed �rst in [7℄, where the ve
tor 
ontributionshave been 
al
ulated. Here we 
ompute the gravity wave 
ontributions. We need again to evaluate Eq. (65). Takinginto a

ount that the gravity waves 
omponents _h�(k) are dire
tly proportional to the sour
e 
omponents (Eq. (62)),and 
onsidering the parity of the radial fun
tions (Eqs. (69, 83, 90))j+̀(x) = j�̀(x); �+̀(x) = ��̀(x); �+̀(x) = ���̀(x); (98)it is 
lear that 
ross 
orrelations between temperature and B polarization C�B` , and between E and B polarizationCEB` , 
annot vanish, sin
e they are given by momentum integrals of g(k). Using the expression of the tensor integralsolutions ��̀ (70), E�̀ (84) and B�̀ (91), we 
an 
al
ulate the power spe
tra C�B` and CEB` .A. Temperature and B polarization 
ross 
orrelationFor temperature and B polarization 
ross 
orrelation we obtain after integrating over timeC�B` ' 2� � 1(�

r)2 ln2� zinzeq�� `5=2 Z kD0 dk k2 J`+3(x)J`+4(x)x 72 h�+(k)�+�(k)���(k)���(k)i : (99)The antisymmetri
 sour
e fun
tion g(k) is given in Eq. (51), and the integral over k 
an be 
al
ulated using (B7).Note that g(k) depends on both the spe
tral indi
es nA and nS , and we will have to evaluate the integral dividingthe two 
ases nA + nS 7 �2. We �nally arrive atC�B` ' �8(4�)49 
S
A ln2 � zinzeq �
2r(nA + nS + 2)�(nA+42 )�(nS+32 ) (kD�0)�4 `5=2 �� Z xD0 dx J`+3(x)J`+4(x)px "1 + nA � 1nS + 3 � xxD�nA+nS+2#`2C�B` ' 8>>><>>>: � 4p�=2(2�)4
S
A ln2 � zinzeq �
2r(nA+nS+2)�(nA+42 )�(nS+32 ) � `kD�0�4 for nS + nA > �2� 4(4�)4
S
A ln2 � zinzeq �9p�
2r(nA+nS+2)�(nA+42 )�(nS+32 ) ���nA2 �nS2 � 34����nA2 �nS2 � 14� nA�1nS+3 � `kD�0�nA+nS+6 for �6 < nS + nA < �2(100)Independently on the spe
tral indi
es, `2C�B` is always negative for positive A0.In this 
ase of temperature and B polarization 
ross 
orrelation, we have 
omputed the spe
trum (100) also numer-i
ally, in order to test the reliability of our analyti
al estimation. The amplitude of the numeri
al result is bigger thanthe analyti
 one by a fa
tor of two or less, so within the error we estimated for our approximations (see Appendix B).We expe
t this to be one of the worst approximations due to the relatively slow 
onvergen
e of R dxJ`+3(x)J`+4(x)=px.B. E and B polarization 
ross 
orrelationFollowing the same pro
edure as in the previous paragraph, we 
an evaluate the E and B polarization 
ross
orrelation 
reated by the heli
al part of the magneti
 �eld. Using the formula (65), we get:CEB` ' �2(4�)49 
S
A ln2 � zinzeq �
2r(nA + nS + 2)�(nA+42 )�(nS+32 ) (kD�0)�4 �



15� Z xD0 dx x2J`+3(x)J`+4(x)"1 + nA � 1nS + 3 � xxD�nA+nS+2# : (101)In the 
ase nA+nS > �2, the integral in x = k�0 is divergent, and we need to evaluate it using approximation (B12),whi
h gives: `2CEB` ' 4(4�)39 
S
A ln2 � zinzeq �
2r(nA + nS + 2)�(nA+42 )�(nS+32 ) (�1)`kD�0 sin(2xD)� `kD�0�2 ; (102)for nS + nA > �2.It is not possible to assign a pre
ise value to the variable xD = �0kD, be
ause of the unavoidable in
ertitude in theestimation of the magneti
 �eld damping s
ale, whi
h depends on the amplitude of the magneti
 �eld and is thereforesmeared out over a 
ertain range of s
ales. Therefore, we expe
t that the presen
e of the term sin(2xD) most probablyleads to a 
onsiderable suppression in the amplitude of the E | B 
ross 
orrelation term.For nA + nS < �2, the momentum integral in Eq. (101) is dominated by the se
ond term in the square bra
kets,and in order to perform the integration, we need to distinguish two di�erent 
ases: For �4 � nA + nS < �2, theexponent of x is still positive, so that we have to use the approximation given in Eq. (B12). A further distin
tion istherefore ne
essary, sin
e the dominant term in approximation (B12) depends on whether the exponent is above orbelow 1 as dis
ussed in the Appendix.`2CEB` ' 4(4�)39 
S
A ln2 � zinzeq �
2r(nA + nS + 2)�(nA+42 )�(nS+32 ) nA � 1nS + 3 (�1)`kD�0 sin(2xD)� `kD�0�2 ; (103)for �3 < nA + nS < �2;`2CEB` ' 4(4�)39 
S
A ln2 � zinzeq �
2r(nA + nS + 2)�(nA+42 )�(nS+32 ) nA � 1nS + 3 (�1)`+1(kD�0)2 sin(2`2)� `2kD�0�nA+nS+4 ; (104)for �4 < nA + nS < �3:Both 
ontributions are suppressed by the presen
e of the two terms sin(2`2) and sin(2xD) sin
e, usually one averagesover band powers in ` (for the se
ond 
ase) and also xD is not a very sharp 
uto� but has a 
ertain width, as mentionedabove (for the �rst 
ase).If �6 < nA + nS < �4, the se
ond term in the integrand of Eq. (101) still dominates, but sin
e the exponent of xis now negative, the integral 
onverges and we 
an make use of approximation (B7).`2CEB` ' � (4�)49p� 
S
A ln2 � zinzeq �
2r(nA + nS + 2)�(nA+42 )�(nS+32 ) ��� nA2 � nS2 � 32���� nA2 � nS2 � 1� nA � 1nS + 3 � `kD�0�nA+nS+6 ; (105)for �6 < nA + nS < �4. (106)This result is not suppressed by os
illations.VII. DISCUSSION AND CONCLUSIONSIn this paper we have 
omputed CMB anisotropies due to gravity waves indu
ed by a primordial magneti
 �eld.We have mainly 
on
entrated on the e�e
ts of a possible heli
al 
omponent of the �eld. Magneti
 �elds indu
e s
alar,ve
tor and tensor perturbations whi
h are typi
ally of the same order. In this sense the tensor 
ontribution 
an beregarded as an order of magnitude estimate for the full 
ontribution.As it has already been found in Refs. [4, 6℄, the C`'s are proportional to`2C` / �
B
r �2 ln2� zinzeq� : (107)The �rst term is �
B
r �2 ' 10�10 �B=10�8Gauss�4, hen
e for a primordial magneti
 �eld of the order of B ' 10�9 to10�8 Gauss we would expe
t to dete
t its e�e
ts in the CMB anisotropy and polarization spe
trum. Here B = BkD =B�(�kD)n+3 is the maximum value of the B-�eld whi
h is always the �eld at the upper 
uto� s
ale 1=kD whi
h wealso denote by BkD .



16In Eq. (107) 
B stands for 
S or 
A and in the above expression for BkD , n stands for nA or nS dependingon whi
h 
ontribution we are 
onsidering. The se
ond term represents the logarithmi
 build up of gravity waves,ln2 (zin=zeq) ' 660 to 3100. Here the �rst value 
orresponds to magneti
 �eld generation at the ele
troweak phasetransition, Tin = 200 GeV and the se
ond value represents a possible in
ationary generation at Tin ' 1015 GeV. Fors
ale invariant spe
tra, nA = nS ' �3, the right hand side of Eq. (107) gives roughly the amplitude of the indu
edCMB perturbations.Taking into a

ount the pre-fa
tor 2(4�)4=(9p�), s
ale invariant magneti
 �elds produ
ed at some GUT s
ale,T ' 1015 GeV have to be of the order of B ' B ' 10�11 Gauss to 
ontribute a signal on the level of about 1% to theCMB temperature anisotropies and polarization.If the initial magneti
 �eld is not s
ale invariant, the s
ales kD and �0 suppress the results by fa
tors of 1=(kD�0)and `=(kD�0) whi
h are mu
h smaller than unity. Note that the referen
e s
ale � introdu
ed in Eqs. (8, 9), does notenter in the �nal results at all, sin
e it is of 
ourse arbitrary.As already dis
ussed, the damping s
ale kD is given by k�1D ' vAl
(Teq) ' vA � 0:35 Mp
, and vA is the Alfv�envelo
ity, v2A = hBi2=(4�(� + p)) for the magneti
 �eld averaged over a s
ale larger than the damping s
ale. Clearly,vA . 10�3 so that B does not indu
e density perturbations larger than 10�5. Therefore, the damping s
ale isof the order of 1 kp
 or less. The latter value is rea
hed for maximal magneti
 �elds whi
h are of the order ofhBi � 10�9Gauss. On the other hand a0(�0��de
) ' �0 is simply the angular diameter distan
e to the last s
atteringsurfa
e, whi
h has been very a

urately measured with the WMAP satellite [16℄, �0 = dA = 13:7� 0:5 Gp
. So thatkD�0 � 107 or even larger, depending on the magneti
 �eld amplitude.Our results di�er somewhat, but not in a very signi�
ant way from the results obtained in Ref. [6℄. Sin
e ourmagneti
 �eld spe
tra are either s
ale invariant or blue, the indu
ed spe
tra `2C` are also either s
ale-invariant orblue. They grow towards large `. It is therefore an advantage to 
hoose ` as large as possible. However, in our
al
ulations we have not taken into a

ount the de
ay of gravity waves whi
h enter the horizon before de
oupling.Our results are therfore 
orre
t only for ` < �0=�de
 � 60. To be on the safe side, we 
hoose ` = 50 in our graphi
s.In Fig. 1, we show `2C(XY )(A)` at ` = 50 for the di�erent quantities (temperature anisotropy, E and B polarizationand 
orrelators) as a fun
tion of nA with nS �xed to 2 and �2:99. We show the absolute value of the 
orrelator inunits of �
A
r �2 ln2� zinzeq� ' 10�10� BkD10�9Gauss�4 ;and 
A
S
2r ln2 � zinzeq� ' 10�10� BkD10�9Gauss�2� BkD10�9Gauss�2 :Note that the 
orrelators C(XX)A and C(�E)A are always negative and have to be subtra
ted from C(XY )(S) whi
h is of thesame order of magnitude or larger sin
e 
S � 
A and nS � nA. For the limiting 
ase, 
S ' 
A and nS ' nA, thepresen
e of an heli
al 
omponent in the magneti
 �eld spe
trum 
an in prin
iple 
an
el the e�e
t of the symmetri
part on the CMB. In that very parti
ular 
ase, the signature of the presen
e of a magneti
 �eld will appear onlythrough the parity odd 
orrelators.From Fig. 1 it is 
lear that only for nA;S . �2 and 
A ' 
S � 10�5, the e�e
t on the CMB will be of theorder of a per
ent or more. In Ref. [12℄ it has been shown that for nS > �2, magneti
 �elds with B� & 10�10Gaussover-produ
e gravity waves on small s
ales whi
h is in
ompatible with the nu
leosynthesis bound, for � � 1 Mp
.Here we require BkD . 10�8 Gauss so that 
B remains a small fra
tion of the radiation density throughout. ThenB� = BkD (�kD)�(n+3) � BkD for n > �2. Therefore, by keeping BkD suÆ
iently small, we automati
ally satisfy thebound derived in Ref. [12℄. The result is most interesting for the window of �3 < nS . nA . �2 and 
A ' 
S � 10�5,whi
h requires BkD ' BkD � 10�10Gauss. Espe
ially, if magneti
 �eld heli
ity is 
ausally produ
ed whi
h impliesnS = 2 and nA = 3, this e�e
t 
annot be observed in the CMB sin
e the parity violating terms are suppressed byabout 15 orders of magnitude (see lines in the lower right 
orner of the bottom panel of Fig. 1).In Fig. 2 we show the ratio C�B(A)`=C�E(A)` for nS = �3 as fun
tion of nA. Again, we are mainly interested in thepart of the graph with �3 < nA < �2, where this ratio raises from the order unity to about 105. Hen
e if a 
lose tomaximal heli
al magneti
 �eld, with a spe
trum not too far from s
ale invariant, �3 < nS < nA < �2 is produ
ed inthe early universe, it is more promising to sear
h for its parity violating terms than for the parity even 
ontributions.We 
an 
on
lude that heli
al magneti
 �elds with a spe
trum 
lose to the s
ale invariant value, �3 < nS ' nA . �2and 
lose to maximal amplitudes on small s
ales, BkD & 10�10 Gauss 
an lead to observable parity violating termsC�B and CEB in the CMB. Su
h magneti
 �elds might in prin
iple be produ
ed during some in
ationary epo
h wherethe photon is not minimally 
oupled or via its 
oupling to the dilaton (see [24, 25℄ for various proposal of magneti
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FIG. 1: On the top panel we show the amplitudes of the parity even 
orrelators, `2C(��)(A)` (solid, bla
k),`2C(EE)(A)` (dotted, red) and `2C(�E)(A)` (dashed, blue) as a fun
tion of the spe
tral index nA for ` = 50.The logarithm of the absolute value of `2C(XY )(A)` is shown in units of (
A=
r)2 ln2(zin=zeq). We do notplot `2C(BB)(A)` whi
h equals `2C(EE)(A)` within our approximation. The spikes at nA = �2 for `2C(EE)`and at nA = �3=2 are not real. They are artefa
ts due to the break-down of our approximations atthese values.On the bottom panel we show the 
orresponding parity odd 
orrelators, `2C(�B)(A)` (solid, bla
k), `2C(EB)(A)`(dashed, red) in units of (
A
S=
2r) ln2(zin=zeq) for nS = �2:99 and nS = 2. In this last 
ase, onlythe allowed range nA � nS = 2 is plotted. Again the spike at nA = 1 for nS = �2:99 and thepre
ipitous drop at nA = �1 in `2C(EB)(A)` , are due to the limitation of our approximation 
lose to thetransition indi
es.�eld produ
tion during an in
ationary phase). However, so far no 
on
rete proposal has led to nS;A ' �3, nor to the
reation of a heli
al term. As we have shown, the e�e
t is largely suppressed and 
learly unobservable for 
ausallyprodu
ed magneti
 �elds, e.g. , during the ele
troweak phase transition or even later.Nevertheless, our 
al
ulation also demonstrates the e�e
t of parity violating pro
esses during in
ation whi
h maylead to a non-vanishing heli
al 
omponent of gravity waves, H 6= 0, see Eq. (59). In this 
ase the above 
al
ulation
an be trivially repeated and will result in non-vanishing parity violating CMB 
orrelators, C�B 6= 0 and CEB 6= 0.We think that already this remark, together with our knowledge that at least at low energies, nature does violateparity, should be suÆ
ient motivation to derive experimental limits on these 
orrelators.



18

FIG. 2: We show the ratio of the 
orrelators, C(�B)` =C(�E)` (solid, bla
k), and C(EB)` =C(EE)` fornS = �3 as fun
tions of the spe
tral index nA for ` = 50. The logarithm of the absolute value isshown in units of 
A=
S � 1. The spikes visible at 
ertain values of the spe
tral index nA are mainlydue to our relatively 
rude approximations.A
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19APPENDIX A: THE SOURCE FOR GRAVITY WAVESIn this appendix we present some details on how to 
ompute the gravity waves sour
e fun
tions f(k) and g(k). The�rst step is to evaluate the two point 
orrelator of the magneti
 �eld stress-energy tensor (21): using Wi
k's theorem(22) and de�nition (1), after a longish but simple 
al
ulation we obtainh�ij(k)��lm(k0)i = 14 1(4�)2 Æ(k� k0) Z d3p ( S(p)S(jk� pj)[(Æil � p̂ip̂l)(Æjm � (\k� p)j(\k� p)m)+(Æim � p̂ip̂m)(Æjl � (\k� p)j(\k� p)l)℄�A(p)A(jk � pj)[�ilt�jmrp̂t(\k� p)r + �imf �jlg p̂f (\k � p)g ℄+iS(p)A(jk� pj)[�jmr(Æil � p̂ip̂l)(\k� p)r + �jlg(Æim � p̂ip̂m)(\k� p)g ℄+iA(p)S(jk� pj)[�ilt(Æjm �\(k� p)j\(k� p)m)p̂t + �imf (Æjl �\(k� p)j\(k� p)l)p̂f ℄ g+ � � � Æij + � � � Ælm : (A1)The isotropi
 tensor spe
trum in the 
ase of a magneti
 �eld spe
trum without heli
ity term is derived in [4℄. Herewe 
on
entrate on the sour
e terms whi
h 
ontain the heli
al part of the magneti
 �eld spe
trum.By a
ting with tensor proje
tor on (A1), we �nd expressions (33) and (34) for the symmetri
 and heli
al parts ofthe sour
e spe
trum. Taking into a

ount that the angle � = k̂ � (\k� p) = k�p
pk2�2kp
+p2 , we 
an rewrite the twoexpressions whi
h 
ontain A(k) in the formfA(k) = 14 1(4�)2 Z d3pA(p)A(jk� pj) 
 � (k � p
)pk2 � 2kp
 + p2 (A2)g(k) = 12 1(4�)2 Z d3p"S(p)A(jk� pj) (k � p
)(1 + 
2)pk2 � 2kp
 + p2 +A(p)S(jk� pj)�2
 � 
p2(1� 
2)k2 � 2kp
 + p2�# : (A3)The 
ontribution to f(k) from S alone is 
omputed in Ref. [4℄. There one �ndsfS(k) = 14 1(4�)2 Z d3pS(p)S(jk� pj)(1 + 
2)�1 + (k � p
)2k2 � 2kp
 + p2� : (A4)We 
an now substitute the power law Ansatz (6,7) for S and A in these expressions and try to 
al
ulate the integrals.The integration over 
 = k̂ � p̂ is elementary, usingZ d
 (k2 + p2 � 2kp
)�2 = � 1kp(�+ 2)(k2 + p2 � 2kp
)�+22Z d
 
m (k2 + p2 � 2kp
)�2 = � 
mkp(�+ 2)(k2 + p2 � 2kp
)�+22 + mkp(�+ 2) Z d
 
m�1 (k2 + p2 � 2kp
)�+22 :(A5)This last integration by parts has to be performed in the worst 
ases three times, redu
ing the power m of 
 from 3down to 0.Sin
e we are integrating 
 over the interval [�1; 1℄, we get a series of m+ 1 terms of the form(k + p)�+2n � jk � pj�+2n(k p)n ; (A6)with n = 1; 2; :::(m+1). To evaluate the integral over p, we 
an expand those terms using the binomial de
omposition(1 + x)� = 1 + �x + �(� � 1)x2 + � � �. Sin
e, in general, the value of the exponent � is not an integer, we needto trun
ate the series somewhere, whi
h is well justi�ed only if x � 1. To a
hieve this, we split the integral intotwo 
ontributions, R kD0 = R k0 + R kDk . In the �rst term p=k < 1, while in the se
ond k=p < 1, whi
h allows us toapproximate Eq. (A6) trun
ating the binomial series at the se
ond term,(k + p)� � jk � pj� ' � 2�k��1p+ 13�(�� 1)(�� 2)k��3p3 p < k2�p��1k + 13�(�� 1)(�� 2)p��3k3 p > k (A7)



20and (k + p)� + jk � pj� ' � 2k� + �(� � 1)k��2p2 p < k2p� + �(�� 1)p��2k2 p > k . (A8)We then perform the integration over p. For ea
h 
ontribution we keep only the terms whi
h, depending on the valueof the spe
tral index, may dominate the result. So, we �nally obtain, for k < kDf(k) ' �34�(2nS + 3) " (2�)2B2�2� �nS+32 �#2�(�k)2nS+3D + nSnS + 3(�k)2nS+3��� �312�(2nA + 3) " (2�)2B2�2� �nA+42 �#2�(�k)2nA+3D + nA � 1nA + 4(�k)2nA+3� (A9)' AS�2nS+3�k2nS+3D + nSnS + 3 k2nS+3��AA�2nA+3�k2nA+3D + nA � 1nA + 4 k2nA+3� (A10)g(k) ' 23� �4k(nS + nA + 2) " (2�)2B2�2� �nS+32 �# " (2�)2B2�2� �nA+42 �#�(�kD)nS+nA+2 + nA � 1nS + 3 (�k)nS+nA+2� (A11)' Ck� (�kD)nS+nA+2 "1 + nA � 1nS + 3 � kkD�nS+nA+2# ; (A12)where the 
oeÆ
ients are given by the magneti
 �eld amplitudes at s
ale �:AS ' �34�(2nS + 3) " (2�)2B2�2� �nS+32 �#2 (A13)AA ' �312�(2nA + 3) " (2�)2B2�2� �nA+42 �#2 (A14)C ' 23� �3(nS + nA + 2) " (2�)2B2�2� �nS+32 �# " (2�)2B2�2� �nA+42 �# : (A15)The �rst part of f(k), whi
h is the 
ontribution from the symmetri
 part of the magneti
 �eld power spe
trum, hasbeen taken from [4, 6℄. The singularities at nS ; nA = �3=2 respe
tively and at nS + nA = �2 are removable.APPENDIX B: USEFUL MATHEMATICAL RELATIONS1. Integrals of Bessel fun
tionsIn Se
tion V, we use approximate solutions for the three integralsZ x0xde
 dx j2(x)x j`(x0 � x)(x0 � x)2 ; Z x0xde
 dx j2(x)x j`(x0 � x)(x0 � x) ; Z x0xde
 dx j2(x)x j`(x0 � x) : (B1)These integrals are solvable only by numeri
al method. However, the aim of this paper is to give an approximateanalyti
 result. In this appendix we therefore derive and test analyti
 approximations to the above integrals. Toa
hieve this, we �rst modify them slightly, in order to make them solvable analyti
ally. Then, we adjust the resultobtained in this way by 
omparing it with the exa
t numeri
al integration.Let us 
on
entrate, as an example, on the �rst integral. We �rst perform a variable transform to y = x0 � x. Theintegration boundaries then be
ome 0 and x0 � xde
. Below, we derive an approximation forZ x00 j2(x0 � y)x0 � y j`(y)yn dySin
e Bessel fun
tions 
hange on a s
ale �y � 1, this approximation is good for the integrals in Eq. (B1) if xde
 < 1.After the integration over x in Eq.(B1) we have to perform an integration over k. For ` �xed, this integral is either



21dominated by the 
ontribution art k�0 = x0 = ` or at the upper 
uto�, kD . For the integrals whi
h are dominatedat x0 = k�0 � `, the inequality xde
 < 1 is equivalent to ` ' x0 ' 60xde
 . 60. In some 
ases, however, our integralover k is dominated at the upper 
uto� kD with �de
kD � 60 and of 
ourse also �0kD � 60. Sin
e for ` ' 60, thedominant 
ontribution to the integral 
omes from y . 60, our ina

ura
y of the boundary will not invalidate theapproximation also for this 
ase.The approximation in the upper boundary of the integral, x0 �xde
 ' x0 makes us miss the 
hara
teristi
 de
ay of
u
tuations on angular s
ales 
orresponding to ` & 60.To make the �rst integral in Eq. (B1) solvable analyti
ally, we now modify the powers of y and x0� y. Taking intoa

ount that the spheri
al Bessel Fun
tion j�(x) has its maximum value at x ' �, we make the attempt:Z x00 dx j2(x)x j`(x0 � x)(x0 � x)2 = �2 Z x00 dx J5=2(x)x3=2 J`+ 12 (x0 � x)(x0 � x)5=2' �2r 25 ` Z x00 dx J5=2(x0 � y)x0 � y J`+ 12 (y)y2 : (B2)' �5r 25 ` J`+3(x0)x20 : (B3)For the last equality, we have used 6.581.2 of [26℄ ,Z a0 dx xb�1(a� x)�1Jp(x)Jq(a� x) = 2baq 1Xm=0 (�1)m �(b+ p+m) �(b+m)m! �(b) �(p+m+ 1) (b+ p+ q + 2m) Jb+p+q+2m(a) ;(Re (b+ p) > 0; Re q > 0) (B4)and the re
urren
e relation J��1(x) + J�+1(x) = 2�x J� (9.1.27 of [19℄), keeping only the highest order terms in `. We
an now 
ompare this approximated analyti
 result with an exa
t numeri
al integration. Sin
e the analyti
 result isagain a Bessel fun
tion divided by a power law, it has a maximum at x0 ' `, and its envelope has a power law de
ayfor x0 > `. This two 
hara
teristi
s are very well reprodu
ed by the numeri
al result, whi
h however de
ays somewhatfaster; it turns out that a better approximation isZ x00 dx j2(x)x j`(x0 � x)(x0 � x)2 ' 13r32̀ J`+3(x0)x30 : (B5)To estimate the goodness of our approximation, let us now take into a

ount the integration over k, as in Eq. (65).What we are �nally interested in is (Eq. (73))Z xD0 dx0 x20 J 2̀+3(x0)x60 "1 + nA � 1nA + 4 � x0xD�2nA+3# : (B6)As already dis
ussed in the main text, this integral is always 
onvergent and dominated by the 
ontribution aroundx0 ' ` : we should therefore make sure that our approximation is good around that value. We have that for ` = 30,our approximation underestimates the numeri
al result by about fa
tor of two; for ` = 40, the error redu
es to 15%,and is always smaller for larger values of `.Fig. 3 shows the numeri
al result for the integral in (B5) (green, dotted line), together with its analyti
al approxi-mation (the right hand side of Eq. (B5), blue and long dashed) and a numeri
al evaluation of the same integral whenxde
 is not set to zero (red, solid). For small values of ` (in the left hand panel of Fig. 3, ` = 50), Eq. (B5) is a goodapproximation in the region x0 ' `. However, if ` > 60 setting xde
 ! 0 
auses a large overestimation of the result.In the right hand panel of Fig. 3 it is shown that, for ` = 100, the di�eren
e between the integral with lower bound0 and the one with lower bound xde
 is of more than a fa
tor of ten. Consequently, as already stated before, we 
anrely on all our approximations only for ` . 60.We pro
eed now to evaluate integral (B6). Sin
e xD = kD�0 & 106, for ` . 60, integral (B6) 
an be 
al
ulated inthe limit xD !1, using formula 6.574.2 of [26℄:Z 10 dx Jp(x)Jq(x)x�b = �(b)��p+q�b+12 �2b���p+q+b+12 ���p+q+b+12 ���p�q+b+12 � (B7)(Re (p+ q + 1) > Re b > 0) :
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FIG. 3: In both panels, as a fun
tion of x0: the green dotted line shows the numeri
al value of the integralin (B5), the blue, long dashed line shows the analyti
 approximation (right hand side of Eq. (B5)), andthe red, solid line shows the numeri
al value of integral (B5) if xde
 is not put to zero. All these fun
tionsare squared, and multiplied by x30: this gives us an indi
ation of the result, after the integration over x0, asstated in Eq. (B6). In the left panel ` = 50, in the right panel ` = 200. First of all, we note that it appears
learly that the value of the integrals is dominated at x0 ' `, and that the fun
tion goes to zero qui
kerthan x�30 , whi
h justi�es our approximation xD ! 1 and the use of formula B7. Se
ondly, we note thatfor ` = 50 and x0 � `, our approximation (blue, long-dashed) is good for both the integrals. However, if` = 200, the approximation overestimate the 
orre
t numeri
al result by about a fa
tor of ten.This approximation is used for example in Eqs. (76, 77).With the same pro
edure we 
an approximate the se
ond integral of Eq. (B1), for whi
h we �nd (` . 60)Z x0xde
 dx j2(x)x j`(x0 � x)(x0 � x) ' 13r32̀ J`+3(x0)x20 : (B8)This approximation underestimates the numeri
al result with an error of about 40% for ` = 30, whi
h redu
es to 20%at ` = 60. In this 
ase also, the integral over x0 is 
onvergent, and we 
an pro
eed as before.The situation is di�erent for the third integral of Eq. (B1). In this 
ase, the numeri
al result is approximated bythe following fun
tion (` . 60): Z x0xde
 dx j2(x)x j`(x0 � x) ' 13r25 J`+3(x0)px0 : (B9)It is 
lear that if we insert this fun
tion in an integral like (B6) we 
annot perform the limit xD ! 1 sin
e thisintegral is dominated at the upper 
uto�. Consequently, we need a good approximation for the behavior of theintegral for large values of x0 ! xD. In this 
ase, we no longer require our approximation to be a

urate at x0 ' `,but we 
on
entrate on its behavior for high values of x0, whi
h will dominate in the integral over x0. Fig. 4 showsthe approximation for ` = 30, whi
h overestimate the numeri
al result by an error within 1%.We also have to evaluate the integral over x20 dx0 of the square of (B9), whi
h we en
ounter in two di�erent 
ases.The �rst (see Se
tion VB) is of the kind R xD0 dx xpJ 2̀(x). For p < 0 this integral 
onverges and we may evaluate it inthe limit xD ! 1, in whi
h it is of the form (B4). For p > 0 and xD � `2, the integral 
an be approximated usingthe asymptoti
 expansion of J`(x) for large arguments [19℄, J`(x) � p2=(�x) 
os[x � (2` + 1)�=4℄. Approximatingthe os
illations by a fa
tor of 1=2, we obtainZ xD0 dx xpJ 2̀(x) ' Z xD`2 dx xpJ 2̀(x) ' ( xpDp� ; p > 01� ln �xD`2 � ; p = 0 . (B10)
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FIG. 4: We plot the value of integral (B9) squared and multiplied by x30 as fun
tion of x0, for ` = 30. Thegreen, dotted line represents again the numeri
al result (xde
 ! 0), and the blue, long dashed line is theanalyti
 approximation. In this 
ase the slope is positive, and hen
e the integral dx0=x0 of this fun
tion isdominated by the upper 
uto�.For the se
ond 
ase, R xD0 dx xpJ`(x)J`+1(x), whi
h we en
ounter in Se
tion VI, we use again the large argumentapproximation for the Bessel fun
tions, for x� `2,J`(x)J`+1(x) ' 2�x 
os�x� (2`+ 1)�4� 
os�x� (2`+ 3)�4� = 2�x 
os�x� (2`+ 1)�4� sin�x� (2`+ 1)�4�= 1�x sin�2x��`+ 12��� = (�1)`+1�x 
os(2x) ; (B11)so that for p > 0Z xD0 dx xpJ`(x)J`+1(x) ' (�1)`+1� Z xD`2 dx xp�1 
os (2x) ' (�1)`+12� �xp�1D sin(2xD)� `2p�2 sin(2`2)� : (B12)In the limits to whi
h we have restri
ted ourselves, we always have xD � `2. Consequently, the dominant 
ontributionin the last expression 
an be given either by the �rst term in the bra
ket, if p > 1, or by the se
ond term, if p < 1.Numeri
al 
he
ks show that the approximation is good for p > 1, but it is rather poor in the se
ond 
ase, p < 1. Sin
ewe shall not be very mu
h interested in this 
ase, we do not go any further in this work.When evaluating expression (B7), we often also use�(2x) = 22x�1p� �(x)��x+ 12��(x+ a)�(x+ b) � xa�b +O(xa�b�1) for x� 1 (B13)(see Eqs. (6.1.18) and (6.1.47) of [19℄).2. Re
urrent Relations for spheri
al Bessel Fun
tionsWe use several re
urren
e relations for spheri
al Bessel fun
tions in our derivations, most notably`+ 1x j`(x) + j 0̀(x) = j`�1(x) (B14)



24and x̀ j`(x) � j 0̀(x) = j`+1(x) : (B15)
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