
The Cosmi Mirowave Bakground and Helial Magneti Fields:the tensor modeChiara Caprini,1, � Ruth Durrer,2, y and Tina Kahniashvili3, z1Department of Astrophysis, Denys Wilkinson Building, Keble road, Oxford OX1 3RH, UK2D�epartement de Physique Th�eorique, Universit�e de Gen�eve,24 quai Ernest Ansermet, CH{1211 Gen�eve 4, Switzerland3Department of Physis and Astronomy, Rutgers NJ State University,136, Frelinghuysen RD., Pisataway, NJ, 08854-8019, USAandCenter for Plasma Astrophysis, Abastumani Astrophysial Observatory, 2A, Kazbegi ave., Tbilisi, 380060, Georgia(Dated: November 4, 2003)We study the e�et of a possible heliity omponent of a primordial magneti �eld on the tensorpart of the osmi mirowave bakground temperature anisotropies and polarization. We give an-alytial approximations for the tensor ontributions indued by heliity, disussing their amplitudeand spetral index in dependene of the power spetrum of the primordial magneti �eld. We �ndthat an helial magneti �eld reates a parity odd omponent of gravity waves induing parity oddpolarization signals. However, only if the magneti �eld is lose to sale invariant and if its heli-al part is lose to maximal, the e�et is suÆiently large to be observable. We also disuss theimpliations of ausality on the magneti �eld spetrum.PACS numbers: 98.70.V, 98.62.En, 98.80.CqI. INTRODUCTIONThe observed Universe is permeated with large sale oherent magneti �elds. It is still under debate whether thesemagneti �elds have been reated by harge separation proesses in the late Universe, or whether primordial seed�elds are needed. Reently, it has been proposed [1℄ that also `helial' magneti �elds, i.e. �elds with a non-vanishingomponent in the diretion of the urrent, B � (r�B) 6= 0, ould be produed e.g. during the eletroweak phasetransition (see also [2℄).Extended studies have already investigated e�ets of stohasti magneti �elds with vanishing heliity on theosmi mirowave bakground (CMB) (see [3{6℄ and others). In a seminal paper [7℄, Pogosian and ollaborators haveinvestigated the possibility that a helial magneti �eld an indue orrelations between the temperature anisotropyand the B mode CMB polarization.In this paper we want to go beyond that work. We determine all the e�ets on the CMB indued by a helialmagneti �eld. We shall atually show that, ontrary to the statement in Ref. [7℄, a helial omponent also introduespure CMB anisotropies and polarization. But of ourse its most remarkable e�et is the above mentioned orrelationof temperature anisotropy and B polarization. We shall show that also a orrelation between E and B polarizationis indued.In this paper we disuss only the tensor mode, gravitational waves, sine the alulations for this ase are simplest.Even if the resulting observational e�ets are small and may not be detetable, we �nd it interesting sine it isompletely new and ontains several surprising elements. Furthermore, a uid vortiity �eld or non parity invariantinitial spetrum of gravitational waves produed during ination ould indue very similar e�ets; in that sense ourresults are more generi than their derivation.In the next setion, we disuss the magneti �eld spetrum and de�ne its symmetri and helial ontributions.Then we ompute the tensor omponent of the magneti �eld energy momentum tensor whih ats as a soure forgravity waves. In Setion IV we determine the indued gravity wave spetrum whih also has a symmetri and ahelial ontribution. In Setion V we ompute the indued CMB temperature anisotropy and polarization spetra aswell as the above mentioned orrelations. Finally, we disuss our results and draw some onlusions. The paper isomplemented by an appendix where details of alulations and tests of some approximations an be found.�Eletroni address: aprini�astro.ox.a.ukyEletroni address: ruth.durrer�physis.unige.hzEletroni address: tinatin�amorgos.unige.h



2II. THE MAGNETIC FIELD SPECTRUMWe onsider a primordial stohasti magneti �eld reated before equality, during the radiation-dominated epoh (orearlier). During this period of the evolution of the Universe, the ondutivity of the primordial plasma on sales largerthan the Silk sale � > �S is very high, e�etively in�nite [8℄. Hene, the `frozen-in' ondition holds, E = �v �B,where v is the plasma ux veloity, E is the eletri �eld indued by plasma motions and B is the magneti �eld.Moreover, large sale magneti �elds always indue anisotropi stresses, so that their energy density B2=8� mustbe a small perturbation, in order not to break the isotropy of the Friedmann Robertson Walker bakground. Thisallows us to apply linear perturbation theory. Both, the magneti �eld energy and the plasma peuliar veloity aretreated as �rst order perturbations; onsequently, the energy density of the indued eletri �eld will be 3rd order inperturbations theory, and an be negleted. Also terms EiBj are of seond order and therefore negleted.At suÆiently large sales, it is possible to neglet the e�ets of bak reation of the uid on the evolution of themagneti �eld: the time dependene deouples from the spatial struture, and, due to ux onservation, the magneti�eld evolves like B(�;x) = B(�0;x)=a(�)2, where we use the normalization a(�0) = 1 and a subsript 0 denotes today.At smaller sales however, the interation between the uid and the magneti �eld beomes important, leading mainlyto two e�ets: on intermediated sale, the plasma undergoes Alfv�en osillations, and B2(k)! B2(k) os2(vAk�) (wherev2A = B2=(4�(� + p)) is the Alfv�en veloity, here B is the �eld averaged over a sale of order vA�); on very smallsales, the �eld is exponentially damped due to shear visosity [3, 4, 9, 10℄. As in Ref. [4℄, we will aount for thisdamping by introduing an ultraviolet uto� at wavenumber kD(�) in the spetrum of B (see also [6℄).Following Refs. [1, 7℄, we introdue an heliity omponent A(k) in the magneti �eld two point orrelation funtion:hBj(k)B�l (k0)i = (2�)32 Æ(k � k0)[PjlS(k) + i�jlmk̂mA(k)℄ ; (1)where S(k) and A(k) are respetively the symmetri and helial part of the magneti �eld power spetrum. Pij �Æij � k̂ik̂j is the usual transverse plane projetor satisfying the onditions PijPjk = Pik , Pij k̂j = 0, �ijl is the totallyantisymmetri tensor, and k̂i = ki=k. We use the Fourier transformation onventionBj(k) = Z d3x exp(ik � x)Bj(x); Bj(x) = 1(2�)3 Z d3k exp(�ik � x)Bj(k) : (2)For simpliity, as in Refs. [4, 6℄ and others, we shall assume that the magneti �eld is a Gaussian random �eld.Then all the statistial information is ontained in the two-point orrelation funtion and the higher moments an beobtained via Wik's theorem.As explained in Ref. [7℄, the magneti �eld heliity is determined by hB�(r�B)i. For a better physial understandingof the e�ets whih this new heliity term has on CMB anisotropies, it is useful to introdue the orthonormal `heliitybasis' (e+; e�; e3 = k̂) (see also [7, 11℄), wheree�(k) = � ip2(e1 � ie2) ; (3)and (e1; e2; e3 = k̂) form a right-handed orthonormal basis with e2 = k̂ � e1. Under the transformation k ! �kwe hoose e2 to hange sign while e1 remains invariant. The basis (e+; e�; k̂) has the following properties: e� � e� =�1, e� � e� = 0, and e�(k) = e�(�k), as well as ik̂ � e� = �e�. The omponents of a vetor with respet tothis basis will be indiated by a supersript �. For a �xed (k-independent) basis we will instead use the usual Latinletters as indies. An arbitrary transverse vetor v an be deomposed as v = v+e+ + v�e�. Here v+ is the positiveheliity omponent and v� is the negative heliity omponent.With the de�nition (1), and the reality ondition (B�(k))� = �B�(�k), we obtain the onnetion between thepower spetra S(k), A(k) and the magneti �eld omponents in the new basis:�hB+(k)B+(�k0) +B�(k)B�(�k0)i = (2�)3S(k)Æ(k� k0) ; (4)hB+(k)B+(�k0)�B�(k)B�(�k0)i = (2�)3A(k)Æ(k � k0) : (5)In other words, A(k) represents the di�erene of the expetation values of the positive and negative heliity �eldomponents. If A does not vanish, the left handed and right handed magneti �elds have di�erent strength.We assume that both the symmetri and helial terms of the magneti �eld power spetrum (1) an be approximatedby a simple power law [7℄: S(k) = � S0 knS ; for k < kD0 otherwise (6)



3andA(k) = � A0 knA ; for k < kD0 otherwise (7)where S0, A0 are the normalization onstants, and nS , nA the spetral indies of the symmetri and helial partsrespetively.With (6, 7), we an express the normalization onstants S0 and A0 in terms of the averaged magneti �eld energydensity B�2 � hB(x) � B(x)ij�, and the absolute value of the averaged heliity B�2 � �jhB(x) � (r � B(x))ijj�respetively, both smoothed over a sphere of omoving radius �. B� measures the amplitude of heliity on the givenomoving sale �.In order to alulate these quantities, we onvolve the magneti �eld and its heliity with a 3D-Gaussian �lterfuntion, so that Bi ! Bi � f�, where f̂�(k) = exp(��2k2=2). The mean-square values B2� and B2� are then givenby the Fourier transform of the produts of the orresponding spetra S(k) and kA(k) with the square of the �lterfuntion f̂�: B2� = 1(2�)3 Z d3k S(k)f̂�(k)2 = S0(2�)2 1�nS+3��nS + 32 � ; (8)B2� = �(2�)3 Z d3k kjA(k)jf̂�(k)2 = jA0j(2�)2 1�nA+3��nA + 42 � : (9)In order not to over-produe long range magneti �elds or heliity as k ! 0, we require for the spetral indiesnS > �3 and nA > �4 (for nA � �3 and nA � �4 the integrals (8) and (9) diverge at small k).Using (8), (9) and the de�nition of the magneti �eld spetrum (1), we an rewrite expressions (4) and (5) in theform (see also [7℄) �hB+(k)B+(�k0) +B�(k)B�(�k0)i = (2�)5 �3B2�� �nS+32 � (�k)nSÆ(k � k0) ; (10)hB+(k)B+(�k0)�B�(k)B�(�k0)i = (2�)5 �3B2�� �nA+42 � (�k)nAÆ(k� k0) ; (11)for k < kD and 0 for k > kD.Using that limk0!k jh(k̂ �B(k)) �B(�k0)ij � limk0!khB(k) �B(�k0)iwe an onlude that S(k) � jA(k)j : (12)Sine S(k) / hjBj2i, it is lear that S(k) � 0. The reality ondition requires A0 to be real, but it an be eitherpositive or negative. For Eq. (12) to be valid on very small values of k requiresnA � nS : (13)Applying Eq. (12) also lose to the upper uto� kD, we have in additionjA0j � S0knS�nAD : (14)In terms of the magneti �elds on sale � this gives roughlyB2� < B2�(kD�)nS�nA : (15)Usually the damping sale is muh smaller than the physial sale of interest, � so that �kD � 1. Therefore, ifnS � nA 6= 0, the helial ontribution is signi�antly suppressed on all sales � > �D = 1=kD. As we now show, thisis always the ase if the magneti �eld is ausally produed.Most mehanisms to produe magneti �elds with a helial omponent are ausal. By this we mean that allorrelations above a ertain sale, usually some fration of the Hubble sale at formation, have to vanish. If thisis the ase, ausality implies an additional interesting onstraint, whih we now derive. For this we assume thatthe orrelation funtions hBi(x)Bj(y)i and hBi(x)(r � B(y))j i have to vanish for jx � yj > R for some sale R.



4Hene they are funtions with ompat support, whih implies that their Fourier transforms, PijS(k) and �ijlk̂lA(k)are analyti funtions. Therefore, for suÆiently small values of k they an be approximated by power laws as inEqs. (6,7). Sine k̂j is not analyti but kk̂j is, this impliesnS � 2 and nA � 1 ; (16)where nS has to be an even integer while nA has to be an odd integer. But sine we need nA � nS , this leaves uswith nS � 2 , an even integer and (17)nA � 3 , an odd integer: (18)Causality together with the ondition (12) leads to an additional suppression of helial �elds on large sales. Alsoordinary ausal magneti �elds annot be white noise but are severely suppressed on large sale due to the non-analytipre-fator Pij in the power spetrum whih is a simple onsequene of the fat that magneti �elds are divergene freer � B = 0. This has already been disussed in Refs. [4, 12℄. The ausality onstraint need not to be satis�ed if themagneti �elds are generated before or during a period of ination where the ausal horizon diverges. For a detaileddisussion of ausality see [13℄.III. MAGNETIC SOURCE TERM FOR TENSOR METRIC PERTURBATIONSThe anisotropi stresses whih at as soure for metri perturbations are given by the magneti �eld stress tensor[14℄ �ij(k) = 1(2�)3 14� Z d3p [Bi(p)B�j (p� k)� 12Bl(p)B�l (p� k)Æij ℄ : (19)Here we are interested in the generation of gravitational waves, and onsequently we need to extrat the transverseand traeless part of �ij . The form of a general projetion to extrat any mode (salar, vetor or tensor) from ageneri tensorial perturbation an be found in [15℄. We make use of the tensor projetor Tijlm = PilPjm � 12PijPlm(see also [4℄). The tensor ontribution to �lm is given by�ij = (PilPjm � 12PijPlm)�lm : (20)Moreover, sine the magneti �eld is a stohasti variable, we need to alulate the two point orrelation tensor of�ij(k), whih takes the formh�ij(k)��lm(k0)i = 1(4�)2 1(2�)6 Z d3p Z d3q hBi(p)Bj(k� p)Bl(�q)Bm(q � k0)i+ � � � Æij + � � � Ælm ; (21)and we are not interested in terms proportional to Æij and Ælm , whih after being projeted out will not ontribute tothe �nal result for the tensor perturbation h�ij�lmi (see appendix A. in [6℄). Before applying the tensor projetion,we an simplify the right hand side of (21) using Wik's theorem, expressing the four point orrelators in terms of thetwo point ones, hBi(ki)Bj(kj)Bl(kl)Bm(km)i = hBi(ki)Bj(kj)ihBl(kl)Bm(km)i+ hBi(ki)Bl(kl)ihBj(kj)Bm(km)i+ hBi(ki)Bm(km)ihBj(kj)Bl(kl)i : (22)Sine the two point orrelation funtion given in Eq. (1) is not symmetri, we are not allowed to hange the orderof indies i; j; l;m inside an expetation value. With Eq. (1) we an then ompute the orrelation funtion (21)whih onsists of a purely symmetri part proportional to R d3pS(p)S(jk� pj) , a purely helial part proportional toR d3pA(p)A(jk� pj) , and mixed term, i R d3pS(p)A(jk� pj) (the full expressions are given in Appendix A, Eq. (A1)).The �rst two terms ontribute to the symmetri part of the two point orrelation funtion of the tensor soure, whilethe two latter terms give rise to a helial ontribution. To express them we now introdue the two point orrelationfuntion for the tensor soure, whih an be parameterized ash�ij(k)��lm(k0)i � 14 [Mijlmf(k) + iAijlmg(k)℄ Æ(k � k0) ; (23)



5where the tensors Mijlm and Aijlm are given byMijlm � PilPjm + PimPjl � PijPlm ; (24)Aijlm � k̂q2 (Pjm�ilq + Pil�jmq + Pim�jlq + Pjl�imq) : (25)Clearly, both Mijlm and Aijlm are symmetri in the �rst and seond pair of indies. Mijlm is also symmetri underthe exhange of ij with lm while Aijlm is anti-symmetri under this permutation. We shall often use simple propertieslike Mijij = 4 ; Miilm =Mijll = 0 (26)PqiMijlm = Mqjlm ; PqiAijlm = Aqjlm (27)MijlmMijlm = AijlmAijlm = 8 (28)AijlmMijlm = 0 ; Aijij = Aiijl = Aijll = 0 : (29)Aording to Eq. (20), we have now to at on h�ab(k)��d(k0)i with the tensor projetorPabdijlm(k̂; k̂0) = (PiaPjb � 12PijPab)(k̂)(PlPmd � 12PlmPd)(k̂0) : (30)In these alulations we don't need to are about the position (up or down) of Latin indies as they are alwaysontrated by a Kroneker Æ. The symmetri and antisymmetri parts of Eq. (23) are invariant under the appliationof the projetor (30), so that it is easy to separate the symmetri and helial parts of the soure spetrum, f(k) andg(k): Æ(k� k0)f(k) = 12Mabdh�ab(k)��d(k0)i (31)Æ(k� k0)g(k) = �i2 Aabdh�ab(k)��d(k0)i : (32)Moreover, by applying the tensor Mijlm to Eq. (A1) of Appendix A, we obtain (the �rst term of this has alreadybeen omputed in Refs. [4, 6, 12℄)f(k) = 14 1(4�)2 Z d3p [ S(p)S(jk� pj)(1 + 2)(1 + �2) + 4A(p)A(jk � pj)(�) ℄ ; (33)where  = k̂ � p̂ and � = k̂ � (\k� p). Note that the square of the helial part of the magneti �eld spetrum (1)ontributes to the symmetri part of the soure spetrum. This is not surprising, sine the produt of two quantitieswith odd parity has even parity. The antisymmetri part of the soure spetrum is obtained by ating with Aijlm onEq. (A1) of Appendix A. It is given by the mixed terms,g(k) = 1(4�)2 Z d3p S(p)A(jk � pj)(1 + 2)� : (34)We an also express the orrelator (23) in terms of the basis e�ij introdued in [11℄,e�ij = �r38(e1 � ie2)i � (e1 � ie2)j : (35)These form a basis of tensor perturbations, satisfying the transverse-traeless ondition Æije�ij = 0, k̂ie�ij = 0 ande�ije�ij = 3=2. Positive irularly polarized gravity waves are proportional to e+ij , while negative irularly polarizedgravity waves are given by the oeÆient of e�ij . In this basis �ij is expressed as�ij(k) � e+ij�+(k) + e�ij��(k) : (36)We an rewrite f(k) and g(k) in terms of the omponents �� asÆ(k� k0) f(k) � Æ(k� k0) j�(k)j2 = 32 h�+(k)�+�(k0) + ��(k)���(k0)i ; (37)Æ(k� k0) g(k) = �32 h�+(k)�+�(k0)���(k)���(k0)i : (38)



6Here we have used the form of M and A in this basis,Mijlm = 43 �e+ij 
 e�lm + e�ij 
 e+lm�Aijlm = 4i3 �e+ij 
 e�lm � e�ij 
 e+lm� ;and the simple properties of Mijlm and Aijlm mentioned above. Other useful relations areh��(k)�+�(k0) + �+(k)���(k0)i = 23 Æ(k� k0) f(k) (39)h�+(k)���(k0)���(k)�+�(k0)i = 23 Æ(k� k0) g(k) (40)h�+(k)���(k0)i = 13 Æ(k� k0) (f(k) + g(k)) : (41)Similarly, de�ning the usual linear polarization basiseTij = (e1 � e1 � e2 � e2)ije�ij = (e1 � e2 + e2 � e1)ij ; (42)and the omponents of � with respet to this basis,�ij = �T eTij +��e�ij ; (43)we obtain also h�T (k)�T�(k0) + ��(k)���(k0)i = Æ(k� k0) f(k) (44)h��(k)�T�(k0)��T (k)���(k0)i = iÆ(k� k0) g(k) : (45)With Eqs. (33, 34), we �ndf(k) + g(k) = 14 1(4�)2 Z d3p [S(p)(1 + 2) + 2A(p)℄ � [S(jk� pj)(1 + �2) + 2A(jk� pj)�℄ : (46)Let us introdue the tensor Qij(k) � 1(4�) [Pij(k̂)S(k) + i�ijq k̂qA(k)℄ (47)so that 2(2�)3 14� hBi(k)B�j (k0)i = Æ(k� k0)Qij(k) ; (48)with Qij(�k) = Q�ij(k) one then �ndsf(k) + g(k) = hPij(k̂)� i�ijq k̂qi hPlm(k̂) + i�lmq0 k̂q0i Z d3p Qij(p)Q�lm(k� p) : (49)Using Eqs. (6-9), (33) and (34), it is possible to alulate f(k) and g(k). The details of the alulations are givenin the Appendix A. The integrals annot be omputed analytially, but a good approximation gives, for k < kD (seealso [4, 6℄): f(k) ' AS �(�kD)2nS+3 + nSnS + 3(�k)2nS+3��AA�(�kD)2nA+3 + nA � 1nA + 4(�k)2nA+3� (50)g(k) ' C (�kD)nS+nA+2 (�k) "1 + nA � 1nS + 3 � kkD�nS+nA+2# ; (51)where AS , AA and C are positive onstants given in Eqs. (A13) to (A15) of Appendix A. They depend on thespetral indies nS and nA of the magneti �eld and on its amplitudes, whih are given in terms of B2�, B2�, and �.



7Note that the ontribution of magneti �eld heliity to the symmetri part of the soure, f(k), is negative. Butit is easy to hek that Eq. (12) insures that it never dominates, hene f � 0. For nS ; nA > �3=2, the two termsproportional to the upper uto� k2nS;A+3D dominate in f(k), whih onsequently depends only on the uto� frequenyand behaves like a white noise soure [4℄. For nS < �3=2 or also nA < �3=2, the dominating terms go like k2nS+3and k2nA+3 respetively. On the ontrary, the antisymmetri soure g(k) never shows a white noise behavior. FornS + nA > �2 the dominant term is proportional to k knS+nA+2D . For nS + nA < �2, g(k) does not depend on theupper uto�, but is proportional to knS+nA+3. The singularities in the pre-fators AS , AA and C whih appear atnS = �3 and nA = �4 are the usual logarithmi singularities of sale invariant spetra. But as mentioned in Setion IIthe helial ontribution must obey nA � nS > �3. The apparent singularities in the pre-fators at nS;A = �3=2 andat nS +nA = �2 are removable when multiplied with the k-dependent parts as in Eqs. (50) and (51). In the integralsover k whih we shall perform to alulate the C`'s we only take into aount the dominant terms.If the magneti �eld is ausal, we expet nS = 2 and nA = 3, so thatf(k) ' AS(kD�)7 �AA(kD�)9 (52)g(k) ' Ck�(kD�)7 : (53)Comparing the limit given in Eq. (14) with the expressions for AS and AA derived in the Appendix A, it is easy tosee that f always remains positive.The analysis of the evolution of a non-helial magneti �eld interating with the primordial plasma, and thederivation of the appropriate damping sale kD, has been disussed in Refs. [3℄ and [10℄, where the authors onsidereda magneti �eld with a tangled omponent superimposed on a homogeneous �eld. We assume that the latter an beobtained by smoothing our stohasti �eld on a sale whih is larger than the damping sale (for details, see [4, 12℄).The damping sale for the tensor mode is obtained taking into aount that the soure of gravitational radiationafter equality beomes sub-dominant so that the relevant tensor damping sale is the Alfv�en wave damping sale fromthe time of the reation of the magneti �eld up to equality [12℄. Sine we are interested here in the imprint of themagneti �eld on the CMB, we need not to are about the time evolution of the damping sale, the relevant sales forthe CMB tensor anisotropies being those whih are greater or equal to the horizon at equality. Therefore, the relevantuto� sale is given by the Alfv�en wave damping sale at equality k�1D ' vAl(Teq), where l(Teq) � 0:35Mp is theomoving di�usion length of photons at equality (here we have used that lphys (T ) ' 1022m(T=Tde)�3, from [10℄, aswell as zeq ' 3454 and zde = 1088 from the WMAP results [16℄). The Alfv�en speed is at most of order 10�3, so thatthe damping sale is on the order of kp or smaller.Even if onsidering an helial omponent in the magneti �eld, we set all the power to zero on sales smaller thank�1D . This is not really orret sine simulations show [17℄ that the spetrum simply deays like a power law withindex of the order of �4 on small sales, k > kD . However, as we shall see, for nS;A < �3=2 the indued C`'s aredominated by the ontribution at the largest sales, k�1D , for the kinks, nS;A � �4 part of the spetrum. Therefore,we do not loose muh by negleting the ontribution from the sales smaller than k�1D .IV. MAGNETIC FIELD INDUCED TENSOR METRIC PERTURBATIONSA stohasti magneti �eld an at as a soure for Einstein's equations and hene generate gravitational waves, seefor example [4, 6, 12℄. The tensor modes are the simplest ase of metri perturbations, and in the transverse andtraeless gauge they are fully desribed by the tensor hij(x; �), satisfyinghij = hji; hii = 0; hij k̂j = 0 : (54)The linear evolution equation for gravitational waves is�hij(k; �) + 2 _aa _hij(k; �) + k2hij(k; �) = 8�Ga2(�)�ij(k); (55)where �ij(k) is the soure tensor given in (20), and we have multiplied in the time dependene a�2(�), whih omesfrom the fat that the magneti �eld is frozen in the plasma. Therefore, �ij(k; �) is a oherent soure, in the sensethat eah mode undergoes the same time evolution [12℄. We neglet other possible anisotropi stresses of the plasma(ollisionless hot dark matter partiles or massless neutrinos have anisotropi stresses whih do soure gravitationalwaves, but this e�et is very small [18℄).We want to ompute the indued CMB anisotropies and polarization (see Setion V), whih an be expressed interms of the two-point orrelation spetrum h _hij(k) _hlm(k0)i, taking the form [4, 12℄:h _hij(k; �) _h�lm(k0; �)i = 14 [MijlmH(k; �) + iAijlmH(k; �)℄ Æ(k � k0) : (56)



8Here H(k; �)Æ(k � k0) = 1(2�)3 h _hij(k) _h�ij(k0)i is the usual isotropi part of the gravitational wave spetrum whih issoured by f(k), and H(k; �) desribes the helial part, soured by g(k).The perturbation tensor hij an also be expressed in terms of the basis e�ij de�ned in Eq. (35):hij(k; �) = h+(k; �)e+ij + h�(k; �)e�ij : (57)Just like for the anisotropi stress power spetra, we now �nd thatÆ(k� k0) H(k; �) � 32h _h+(k; �) _h+�(k0; �) + _h�(k; �) _h��(k0; �)i ; (58)Æ(k� k0) H(k; �) � �32h _h+(k; �) _h+�(k0; �)� _h�(k; �) _h��(k0; �)i : (59)In terms of hT and h�, de�ned like in Eq. (42), H parameterizes the orrelation between hT and h�,h _h�(k) _hT�(k0)� _hT (k) _h��(k0)i = iÆ(k� k0) H(k) : (60)The evolution equation for the omponents h�(k; �) is simply�h�(k; �) + 2 _aa _h�(k; �) + k2h�(k; �) = 8�Ga2(�)��(k) : (61)We need to determine the funtions _h�(k; �) (see Eq. (68) below). An approximate solution to the above di�erentialequation an be found in [4℄ or [12℄. The important point is that beause of the rapid fallo� of the magneti �eldsoure in the matter dominated era, perturbations reated after equality (�eq) are sub-dominant, so that one obtains,for the dominant ontribution at � > �eq:_h�(k; �) ' 16�GH20
r ln� zinzeq���(k) j2(k�)� ; (62)where 
r is the radiation density parameter today and zin,eq orrespond to the redshifts at the moment of reation ofthe magneti �eld and at matter radiation equality respetively. The funtion j2 is the spherial Bessel funtion [19℄.The term ln(zin=zeq) aounts for the logarithmi build up of gravity waves from zin to zeq. For the spetra (58) and(59) we then obtain H(k; �) ' � 16�GH20
r ln� zinzeq� j2(k�)� �2 f(k) ; (63)H(k; �) ' � 16�GH20
r ln� zinzeq� j2(k�)� �2 g(k) : (64)The gravity wave power spetra H=�r and H=�r are onstant on large sales, k� � 1 and deay and osillate insidethe horizon.Our �rst result is that a helial magneti �eld indued a parity odd gravity wave omponent. From Eq. (61) it islear, that suh a omponent is introdued whenever there are parity odd anisotropi stresses. It ould in priniple alsobe deteted diretly, via gravity wave bakground detetions experiments. We do not disuss this very hypothetialidea any further, but alulate the e�et of suh a omponent on CMB anisotropies and polarization.V. CMB FLUCTUATIONSMagneti �elds in the universe lead to all types of metri perturbations (salar, vetor and tensor, for more detailssee [5℄). In [6℄ it is shown that vetor and tensor perturbations from magneti �elds indue CMB anisotropies ofthe same order of magnitude. In this paper we estimate CMB utuations due to gravitational waves indued by astohasti magneti �eld, the spetrum of whih ontains an heliity omponent, A(k) 6= 0. Sine the CMB signatureof haoti magneti �elds with only an isotropi spetrum is given in detail in Refs. [4, 6℄, here we onentrate on thee�ets from the helial part of the magneti �eld spetrum, and we will disuss the orretions whih it indues tothe previous results.To ompute the CMB utuation power spetra we use the total angular momentum method introdued by Huand White [11℄. By ombining intrinsi angular struture with the spatial dependene of plane-waves, Hu and White



9obtained integral solutions for all kind of perturbations. The angular power spetrum of CMB utuations an thenbe expressed as [11℄ CX ;X 0` = 2� Z dk k2 +2Xm=�2 X(m)`(k; �0)2`+ 1 X 0�(m)`(k; �0)2`+ 1 ; (65)where X takes the values of �, temperature utuation, E, polarization with positive parity, and B, polarization withnegative parity, for eah perturbation mode. The index m indiates the spin, and for tensor modes m = �2. Sinewe only onsider tensor modes in this paper, we suppress the index 2 and just denote the two states by + and � inwhat follows. The desription given in Ref. [6℄ applies the total angular momentum method to parity even magneti�eld spetra: in this ase, aording to parity onservation the sum over � an be replaed by a fator 2. In our aseinstead, we always need to sum over both states.From the form of f(k), the parity even CMB utuation orrelators an be expressed as:CX ;X 0` = CX ;X 0(S)` � CX ;X 0(A)` ; (66)where CX ;X 0(A)` is the power spetrum indued by the purely helial part of the soure term, proportional toA(p)A(jk � pj). The ontribution of this helial part to the parity even CMB power spetra is always negative,but, as we shall see, the ondition (12) insures that CX ;X(A)` < CX ;X(S)` so that the power spetra do not beome negative.The new e�et is that the helial part of the magneti �eld now also indues parity odd CMB orrelators, C�B`and CEB` (see also [7℄). These are expressed in terms of the helial magneti soure g(k) whih is proportional to theonvolution of A(k) with S(k) (see Eq. (34)).We now derive the CMB utuations ��̀(�0; k), E�̀(�0; k), B�̀(�0; k) and then perform the integral (65). Ratherthan a numerial study, we present analytial approximations for our results. These are not very aurate, but allowa disussion of the dependene of the orrelators on nS and nA. We will also be able to determine the spetral indexof the CMB orrelators (dependene on `) as a funtion of nS and nA. At the present stage, we think this salinginformation is more interesting than aurate numerial results. These an than follow for spei�, interesting valuesof the spetral indies in future work. For a magneti �eld with no helial omponent, this program has been arriedout in Ref. [6℄, and we shall just refer to their results but not re-derive them here.Below, we shall always work in the approximation of `instant reombination'. Moreover, in our approximationswe didn't take into aount the deay of gravity waves for modes whih entered the horizon before deoupling. Ourresults therefore will be reasonable approximations (within a fator of two or so) only for ` . 60, where the tensorCMB signal is largest. Even though, this may seem poor auray, here we only want to obtain estimates of theorret order of magnitude of this anyway small e�et. This will enable use to judge for whih ases a more involvednumerial study is justi�ed. A. CMB temperature anisotropiesWithin the instant reombination approximation, gravitational waves simply ause CMB photons to propagatealong perturbed geodesis from the last sattering surfae to us. The indued CMB temperature anisotropies aregiven by [20℄ �(�0;k; n̂) ' Z �0�de d� exp(�i(�0 � �)k � n) _hij(k; �)n̂in̂j : (67)In the total angular momentum formalism this beomes��̀(k; �0)2`+ 1 = �43 Z �0�de d� _h�(k; �)j�̀[k(�0 � �)℄ ; (68)where j�̀ are the tensor temperature radial funtions of the two di�erent parities, both given by [11℄j�̀(x) =s38 (`+ 2)!(`� 2)! j`(x)x2 : (69)The somewhat unusual fator 4=3 omes from the fat that this formula takes into aount polarization, while Eq. (67)does not. A detailed derivation an be found in Ref. [11℄.



10Using the solution (62) for _h�(k; �), we obtain��̀(k; �0)2`+ 1 ' �s38 (`+ 2)!(`� 2)! � 8�
r ln� zinzeq����(k) Z x0xde dx j2(x)x j`(x0 � x)(x0 � x)2' �2�
r ln� zinzeq���(k)J`+3(x0)x30 `5=2 (70)where we have set x � k� and x0 � k�0. For the seond ' sign we have used the approximation (B5) given inAppendix B for the integral over x. This approximation is valid only for xde = k�de . 1.The general expression (65) for the temperature anisotropy power spetrum now givesC��` ' 163� � 1�
r ln� zinzeq��2 `5�30 Z kD�00 dx0 J 2̀+3(x0)x40 f �x0�0� : (71)A good approximation for the funtion f(k) is given in Appendix A, Eq. (A9). The �rst term of (A9) omes entirelyfrom the non-helial omponent B�, and has already been determined in Refs. ([4, 6℄); the seond term omes insteadfrom the helial omponent, and its inuene on the C` is new. We denote it by C��(A)`. Then, splitting the induedtemperature anisotropy power spetrum as C��` = C��(S)` � C��(A)` ; (72)we obtain (now x0 is renamed x)C��(A)` ' 4(4�)49 �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 �`5� 1�0kD�3 Z xD0 dx J 2̀+3(x)x4 "1 + nA � 1nA + 4 � xxD�2nA+3# ; (73)where we have set xD = kD�0. We have introdued the `heliity density parameter' 
A de�ned by
A � B2�8�� (kD�)nA+3 ' 1� Z kD0 dkk d�B(k)d log k ' B2kD8�� ; (74)and analogously we will use 
S � B2�8�� (kD�)nS+3 ' 1� Z kD0 dkk d�B(k)d log k ' B2kD8�� ; (75)where we have introdued B2kD = B2�(kD�)nA+3, the �eld strength at the uto� sale 1=kD, and orrespondingly forBkD . With these de�nitions the results will be expressed entirely in terms of physial quantities and the referenesale � does no longer enter.Remember also that (2�)4(B2��nA+3)2=�2 �nA+42 � = jA0j2, where jA0j is the normalization of the helial omponentof the magneti power spetrum (7). The integral (71) is dominated at x0 ' `. With x0=xde = �0=�de ' 60, thismeans that our approximation is valid for ` . 60.If nA > �3=2, the �rst term in the square braket in Eq. (73) dominates. Sine the integral onverges and ismaximal around k ' `=�0 � kD , we an replae it by the integral to in�nity and use Eq. (B7) of Appendix B. Thisgives `2C��(A)` ' 32(4�)327 �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � � `kD�0�3 (76)for nA > �3=2 :The temperature power spetrum has the well known behavior of C`'s indued by white noise gravity waves, C` / `.If nA < �3=2, the seond term in the square braket of Eq. (73) dominates, and we �nd`2C��(A)` ' 2(4�)49p� �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � � � 12 � nA��(1� nA) nA � 1nA + 4 � `kD�0�2nA+6 (77)for � 3 < nA < �3=2 :



11Like for the symmetri ontribution given in Refs. [4, 6℄, we get a sale-invariant spetrum for nA = �3. Theexpressions for `2C��(S)` are obtained from those given above upon replaing 
A by 
S , nA by nS and �2 �nA+42 � by�2 �nS+32 �. For �3 < nS < �3=2, one also has to replae the fator (nA � 1)=(nA + 4) by nS=(nS + 3). We do notrepeat these formulas here sine they an be found in Ref. [6℄ (up to some fators of order unity whih are of norelevane for this disussion).This is in priniple the �nal result for temperature anisotropies. Let us hek that C��(A)` is indeed never larger thanC��(S)` so that C��` = C��(S)` � C��(A)` � 0 :We �rst onsider nA � nS > �3=2. ThenC��(A)`C��(S)` = B4� �2(nS+32 ) (2nS + 3) (kD�)2(nA�nS)B4� �2(nA+42 ) (2nA + 3) = jA0j2S20 k2(nS�nA)D 2nS + 32nA + 3 � 1 : (78)In the �rst equality we have inserted the de�nitions of 
A and 
S and the last inequality omes from Eqs. (14)and (13). If instead nS � nA < �3=2, we �ndC��(A)`C��(S)` = N(nA; nS) jA0j2S20 k2(nS�nA)D � `kD�0�2(nA�nS) ; (79)where N(nA; nS) is a funtion of the spetral indies nS and nA. It is of order unity in the allowed range, �3 < nA �nS < �3=2. Now kD�0 � ` for all values of ` for whih our result applies. Hene againC��(A)`C��(S)` � 1 : (80)Finally, we onsider the ase �3 < nS < �3=2 < nA, so that we have to apply the result (76) for C��(A)` and (77)with the mentioned modi�ations for C��(S)`. A short alulation givesC��(A)`C��(S)` ' jA0j2S20 k2(nS�nA)D �kD�0` �2nS+3 � 1 ; (81)sine the �rst fator is less than one due to Eq. (14) and kD � `=�0 with nS < �3=2.Clearly, the helial omponent is maximal for nA ' nS , where we may have jA0j ' S0.B. The indued CMB polarizationTensor perturbations indue both E polarization with positive parity, and B polarization with negative parity.CMB polarization indued by gravity waves has been studied for example in Refs. [11, 21, 22℄, while the ontributionfrom a magneti �eld has been disussed in [6, 23℄. Our aim is to estimate the e�et on the polarization signal fromthe helial omponent of the magneti �eld. Like for the temperature anisotropies, we use the angular momentummethod developed in Ref. [11℄. 1. E type polarizationThe integral solution for E type polarization from gravity waves is given in [11℄. Again, we will work in the `instantreombination' approximation. The order of magnitude of our result is still reasonable for ` . 60, sine in this asealso we restrit ourselves to the evaluation of the super-horizon sales spetrum. In our approximation we haveE�̀(k; �0)2`+ 1 =r23 Z �0�de d� _h�(k; �)��̀[k(�0 � �)℄ ; (82)



12here ��̀(x) = 14 ��j`(x) + j00̀(x) + 2j`(x)x2 + 4j 0̀(x)x � ' 14 � `2x2 j` � 2j`(x)� for `� 1 (83)is the E-type polarization radial funtion for the tensor mode [11℄, and for the last equality we have used the reurrenerelations for spherial Bessel funtions (B14, B15).We now use our solution (62) to express _h�(k; �) in terms of ��(k). With this, Eq. (82) beomesE�̀(k; �0)2`+ 1 ' r32 � 1�
r ln� zinzeq����(k) Z x0xde dx j2(x)x ��2 + `2(x0 � x)2 � j`(x0 � x)' �12 � 1�
r ln� zinzeq�� J`+3(x0)px0 ��(k) (84)where again x � k� and x0 � k�0, and we have evaluated the time integral using approximation (B9). Here we havealso negleted a term of the order of (`2=x20)J`+3(x0), whih in priniple is of the same order in the above expression,but is always subdominant one we perform the integral over k. Sine the power spetra for the E polarization areparity even, only the parity even part of the �� auto-orrelator (Eq. (37)) ontributes to the expression for CEE`derivable from Eq. (65). Again we present here only the e�et oming from the helial part of the magneti �eld,using Eq. (A9) we �nd (x0 is renamed x)CEE(A)` ' 4(2�)49 �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � (kD�0)�3 Z xD0 dx x J 2̀+3(x)"1 + nA � 1nA + 4 � xxD�2nA+3# : (85)The orresponding equation for CEE(S)` an be found in Ref. [6℄. There, a somewhat di�erent approximation than ourshas been used for the time integral.For nA � �2, the integral over x is dominated by the upper uto�, xD = kD�0. Using the approximation (B10),we obtain `2CEE(A)` ' (4�)39 �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � � `kD�0�2 �8><>: 1 for nA > �3=2nA�1(nA+4)(2nA+4) for �2 < nA < �3=2� 32 ln �kD�0`2 � for nA = �2 (86)The result for CEE(S)` is obtained upon replaing nA by nS and 
A by 
S (more preisely the fator �2(nA+42 ) has tobe replaed by �2(nS+32 ) and the fator (nA�1)=(nA+4) by nS=(nS+3)). For �3 < nA < �2, using (B7), we obtain`2CEE(A)` ' 2(2�)49p� �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � �(�nA � 2)�(�nA � 32 ) nA � 1nA + 4 � `kD�0�2nA+6 for �3 < nA < �2 . (87)Again the E polarization power spetrum from the symmetri part of the magneti �eld spetrum is obtained uponreplaement of nA by nS and 
A by 
S . Similar evaluations like the ones presented in the previous paragraph showthat CEE` = CEE(S)` � CEE(A)` � 0 : (88)2. B type polarizationLike for E polarization, the integral solutions for B polarization in the ase of tensor perturbations are given in[11℄. In the approximation of instant reombination we haveB�̀(k; �0)2`+ 1 =r23 Z �0�de d� _h�(k; �)��̀[k(�0 � �)℄ ; (89)where ��̀(x) = �12 �j 0̀(x) + 2j`(x)x � ' �12 � x̀ j`(x)� j`+1(x)� for `� 1 : (90)



13With Eq. (62) we an write the above integral in terms of the tensor soures ��(k):B�̀(k; �0)2`+ 1 ' �p6�
r ln� zinzeq���(k) Z x0xde dx j2(x)x � `x0 � xj`(x0 � x)� j`+1(x0 � x)�' �12�
r ln� zinzeq� J`+4(x0)px0 ��(k) ; (91)where we have again used approximation (B9). Like for the E polarization, in this ase also it is the parity even partof the magneti soure, f(k), whih ontributes to the C`. Eq. (65) takes the formCBB(A)` ' 4(2�)49 �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � (kD�0)�3 Z xD0 dx x J 2̀+4(x)"1 + nA � 1nA + 4 � xxD�2nA+3# : (92)Note that within our approximation, for ` � 1, CBB(A)` ' CEE(A)` . This is also the ase for CBB(S)` and CEE(S)` , see [6℄.Evaluating the integral using expressions (B10) and (B7), for the di�erent ranges of the spetral index nA, we obtain`2CBB(A)` ' (4�)39 �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � � `kD�0�2 �8><>: 1 for nA > �3=2nA�1(nA+4)(2nA+4) for �2 < nA < �3=2� 32 ln �kD�0`2 � for nA = �2`2CBB(A)` ' 2(2�)49p� �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � �(�nA � 2)�(�nA � 3=2) � `kD�0�2nA+6 for nA < �2 : (93)Again, the ontributions from the symmetri part are obtained by replaing 
A by 
S and nA by nS , up to fatorsof order unity and we �nd CBB` = CBB(S)` � CBB(A)` � 0 : (94)Within our approximation, whih is better than a fator of 2, we have CBB` ' CEE` . From ordinary inationaryperturbations one expets CBB` ' 813CEE` for gravity waves, whih is omparable to our �ndings.3. Temperature and E polarization ross orrelationThe symmetri part of the soure term, f(k), an only indue parity even CMB orrelators. Besides the powerspetra for temperature anisotropies and E and B type polarizations analyzed in the previous subsetions, it an alsosoure the ross-orrelation between temperature anisotropy and E polarization. In order to evaluate this ontribution,we have to substitute into Eq. (65) the integral solutions for the tensor mode Eqs. (70) and (84), to obtain:C�E(A)` ' 4(2�)49 �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � (kD�0)�3 `5=2 Z xD0 dx J 2̀+3(x)x3=2 "1 + nA � 1nA + 4 � xxD�2nA+3# : (95)We an evaluate this integral using (B7), and we �nd,`2C�E(A)` ' 2(2�)49p� �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � �( 34 )�( 54 ) � `kD�0�3 ; for nA > �3=2 (96)and `2C�E(A)` ' 2(2�)49p� �
A
r ln � zinzeq ��2(2nA + 3)�2 �nA+42 � �(� 34 � nA)�(� 14 � nA) nA � 1nA + 4 � `kD�0�2nA+6 ; for �3 < nA < �3=2. (97)In this ase also, the ontribution from the symmetri part of the magneti �eld spetrum to the �-E orrelator isalways larger than this helial part.



14VI. CMB CORRELATORS CAUSED BY MAGNETIC FIELD HELICITYIf the soure (or the initial onditions) have no helial omponent, h�+(k)�+(k0)i = h��(k)��(k0)i, the aboveorrelators are the only non-vanishing ones. However, as soon as the tensor magneti soure spetrum has a helialontribution (see Eq. (38)) g(k) � �32h�+(k)�+�(k)���(k)���(k)i 6= 0 ;the parity odd CMB power spetra are non zero. This has been observed �rst in [7℄, where the vetor ontributionshave been alulated. Here we ompute the gravity wave ontributions. We need again to evaluate Eq. (65). Takinginto aount that the gravity waves omponents _h�(k) are diretly proportional to the soure omponents (Eq. (62)),and onsidering the parity of the radial funtions (Eqs. (69, 83, 90))j+̀(x) = j�̀(x); �+̀(x) = ��̀(x); �+̀(x) = ���̀(x); (98)it is lear that ross orrelations between temperature and B polarization C�B` , and between E and B polarizationCEB` , annot vanish, sine they are given by momentum integrals of g(k). Using the expression of the tensor integralsolutions ��̀ (70), E�̀ (84) and B�̀ (91), we an alulate the power spetra C�B` and CEB` .A. Temperature and B polarization ross orrelationFor temperature and B polarization ross orrelation we obtain after integrating over timeC�B` ' 2� � 1(�
r)2 ln2� zinzeq�� `5=2 Z kD0 dk k2 J`+3(x)J`+4(x)x 72 h�+(k)�+�(k)���(k)���(k)i : (99)The antisymmetri soure funtion g(k) is given in Eq. (51), and the integral over k an be alulated using (B7).Note that g(k) depends on both the spetral indies nA and nS , and we will have to evaluate the integral dividingthe two ases nA + nS 7 �2. We �nally arrive atC�B` ' �8(4�)49 
S
A ln2 � zinzeq �
2r(nA + nS + 2)�(nA+42 )�(nS+32 ) (kD�0)�4 `5=2 �� Z xD0 dx J`+3(x)J`+4(x)px "1 + nA � 1nS + 3 � xxD�nA+nS+2#`2C�B` ' 8>>><>>>: � 4p�=2(2�)4
S
A ln2 � zinzeq �
2r(nA+nS+2)�(nA+42 )�(nS+32 ) � `kD�0�4 for nS + nA > �2� 4(4�)4
S
A ln2 � zinzeq �9p�
2r(nA+nS+2)�(nA+42 )�(nS+32 ) ���nA2 �nS2 � 34����nA2 �nS2 � 14� nA�1nS+3 � `kD�0�nA+nS+6 for �6 < nS + nA < �2(100)Independently on the spetral indies, `2C�B` is always negative for positive A0.In this ase of temperature and B polarization ross orrelation, we have omputed the spetrum (100) also numer-ially, in order to test the reliability of our analytial estimation. The amplitude of the numerial result is bigger thanthe analyti one by a fator of two or less, so within the error we estimated for our approximations (see Appendix B).We expet this to be one of the worst approximations due to the relatively slow onvergene of R dxJ`+3(x)J`+4(x)=px.B. E and B polarization ross orrelationFollowing the same proedure as in the previous paragraph, we an evaluate the E and B polarization rossorrelation reated by the helial part of the magneti �eld. Using the formula (65), we get:CEB` ' �2(4�)49 
S
A ln2 � zinzeq �
2r(nA + nS + 2)�(nA+42 )�(nS+32 ) (kD�0)�4 �



15� Z xD0 dx x2J`+3(x)J`+4(x)"1 + nA � 1nS + 3 � xxD�nA+nS+2# : (101)In the ase nA+nS > �2, the integral in x = k�0 is divergent, and we need to evaluate it using approximation (B12),whih gives: `2CEB` ' 4(4�)39 
S
A ln2 � zinzeq �
2r(nA + nS + 2)�(nA+42 )�(nS+32 ) (�1)`kD�0 sin(2xD)� `kD�0�2 ; (102)for nS + nA > �2.It is not possible to assign a preise value to the variable xD = �0kD, beause of the unavoidable inertitude in theestimation of the magneti �eld damping sale, whih depends on the amplitude of the magneti �eld and is thereforesmeared out over a ertain range of sales. Therefore, we expet that the presene of the term sin(2xD) most probablyleads to a onsiderable suppression in the amplitude of the E | B ross orrelation term.For nA + nS < �2, the momentum integral in Eq. (101) is dominated by the seond term in the square brakets,and in order to perform the integration, we need to distinguish two di�erent ases: For �4 � nA + nS < �2, theexponent of x is still positive, so that we have to use the approximation given in Eq. (B12). A further distintion istherefore neessary, sine the dominant term in approximation (B12) depends on whether the exponent is above orbelow 1 as disussed in the Appendix.`2CEB` ' 4(4�)39 
S
A ln2 � zinzeq �
2r(nA + nS + 2)�(nA+42 )�(nS+32 ) nA � 1nS + 3 (�1)`kD�0 sin(2xD)� `kD�0�2 ; (103)for �3 < nA + nS < �2;`2CEB` ' 4(4�)39 
S
A ln2 � zinzeq �
2r(nA + nS + 2)�(nA+42 )�(nS+32 ) nA � 1nS + 3 (�1)`+1(kD�0)2 sin(2`2)� `2kD�0�nA+nS+4 ; (104)for �4 < nA + nS < �3:Both ontributions are suppressed by the presene of the two terms sin(2`2) and sin(2xD) sine, usually one averagesover band powers in ` (for the seond ase) and also xD is not a very sharp uto� but has a ertain width, as mentionedabove (for the �rst ase).If �6 < nA + nS < �4, the seond term in the integrand of Eq. (101) still dominates, but sine the exponent of xis now negative, the integral onverges and we an make use of approximation (B7).`2CEB` ' � (4�)49p� 
S
A ln2 � zinzeq �
2r(nA + nS + 2)�(nA+42 )�(nS+32 ) ��� nA2 � nS2 � 32���� nA2 � nS2 � 1� nA � 1nS + 3 � `kD�0�nA+nS+6 ; (105)for �6 < nA + nS < �4. (106)This result is not suppressed by osillations.VII. DISCUSSION AND CONCLUSIONSIn this paper we have omputed CMB anisotropies due to gravity waves indued by a primordial magneti �eld.We have mainly onentrated on the e�ets of a possible helial omponent of the �eld. Magneti �elds indue salar,vetor and tensor perturbations whih are typially of the same order. In this sense the tensor ontribution an beregarded as an order of magnitude estimate for the full ontribution.As it has already been found in Refs. [4, 6℄, the C`'s are proportional to`2C` / �
B
r �2 ln2� zinzeq� : (107)The �rst term is �
B
r �2 ' 10�10 �B=10�8Gauss�4, hene for a primordial magneti �eld of the order of B ' 10�9 to10�8 Gauss we would expet to detet its e�ets in the CMB anisotropy and polarization spetrum. Here B = BkD =B�(�kD)n+3 is the maximum value of the B-�eld whih is always the �eld at the upper uto� sale 1=kD whih wealso denote by BkD .



16In Eq. (107) 
B stands for 
S or 
A and in the above expression for BkD , n stands for nA or nS dependingon whih ontribution we are onsidering. The seond term represents the logarithmi build up of gravity waves,ln2 (zin=zeq) ' 660 to 3100. Here the �rst value orresponds to magneti �eld generation at the eletroweak phasetransition, Tin = 200 GeV and the seond value represents a possible inationary generation at Tin ' 1015 GeV. Forsale invariant spetra, nA = nS ' �3, the right hand side of Eq. (107) gives roughly the amplitude of the induedCMB perturbations.Taking into aount the pre-fator 2(4�)4=(9p�), sale invariant magneti �elds produed at some GUT sale,T ' 1015 GeV have to be of the order of B ' B ' 10�11 Gauss to ontribute a signal on the level of about 1% to theCMB temperature anisotropies and polarization.If the initial magneti �eld is not sale invariant, the sales kD and �0 suppress the results by fators of 1=(kD�0)and `=(kD�0) whih are muh smaller than unity. Note that the referene sale � introdued in Eqs. (8, 9), does notenter in the �nal results at all, sine it is of ourse arbitrary.As already disussed, the damping sale kD is given by k�1D ' vAl(Teq) ' vA � 0:35 Mp, and vA is the Alfv�enveloity, v2A = hBi2=(4�(� + p)) for the magneti �eld averaged over a sale larger than the damping sale. Clearly,vA . 10�3 so that B does not indue density perturbations larger than 10�5. Therefore, the damping sale isof the order of 1 kp or less. The latter value is reahed for maximal magneti �elds whih are of the order ofhBi � 10�9Gauss. On the other hand a0(�0��de) ' �0 is simply the angular diameter distane to the last satteringsurfae, whih has been very aurately measured with the WMAP satellite [16℄, �0 = dA = 13:7� 0:5 Gp. So thatkD�0 � 107 or even larger, depending on the magneti �eld amplitude.Our results di�er somewhat, but not in a very signi�ant way from the results obtained in Ref. [6℄. Sine ourmagneti �eld spetra are either sale invariant or blue, the indued spetra `2C` are also either sale-invariant orblue. They grow towards large `. It is therefore an advantage to hoose ` as large as possible. However, in ouralulations we have not taken into aount the deay of gravity waves whih enter the horizon before deoupling.Our results are therfore orret only for ` < �0=�de � 60. To be on the safe side, we hoose ` = 50 in our graphis.In Fig. 1, we show `2C(XY )(A)` at ` = 50 for the di�erent quantities (temperature anisotropy, E and B polarizationand orrelators) as a funtion of nA with nS �xed to 2 and �2:99. We show the absolute value of the orrelator inunits of �
A
r �2 ln2� zinzeq� ' 10�10� BkD10�9Gauss�4 ;and 
A
S
2r ln2 � zinzeq� ' 10�10� BkD10�9Gauss�2� BkD10�9Gauss�2 :Note that the orrelators C(XX)A and C(�E)A are always negative and have to be subtrated from C(XY )(S) whih is of thesame order of magnitude or larger sine 
S � 
A and nS � nA. For the limiting ase, 
S ' 
A and nS ' nA, thepresene of an helial omponent in the magneti �eld spetrum an in priniple anel the e�et of the symmetripart on the CMB. In that very partiular ase, the signature of the presene of a magneti �eld will appear onlythrough the parity odd orrelators.From Fig. 1 it is lear that only for nA;S . �2 and 
A ' 
S � 10�5, the e�et on the CMB will be of theorder of a perent or more. In Ref. [12℄ it has been shown that for nS > �2, magneti �elds with B� & 10�10Gaussover-produe gravity waves on small sales whih is inompatible with the nuleosynthesis bound, for � � 1 Mp.Here we require BkD . 10�8 Gauss so that 
B remains a small fration of the radiation density throughout. ThenB� = BkD (�kD)�(n+3) � BkD for n > �2. Therefore, by keeping BkD suÆiently small, we automatially satisfy thebound derived in Ref. [12℄. The result is most interesting for the window of �3 < nS . nA . �2 and 
A ' 
S � 10�5,whih requires BkD ' BkD � 10�10Gauss. Espeially, if magneti �eld heliity is ausally produed whih impliesnS = 2 and nA = 3, this e�et annot be observed in the CMB sine the parity violating terms are suppressed byabout 15 orders of magnitude (see lines in the lower right orner of the bottom panel of Fig. 1).In Fig. 2 we show the ratio C�B(A)`=C�E(A)` for nS = �3 as funtion of nA. Again, we are mainly interested in thepart of the graph with �3 < nA < �2, where this ratio raises from the order unity to about 105. Hene if a lose tomaximal helial magneti �eld, with a spetrum not too far from sale invariant, �3 < nS < nA < �2 is produed inthe early universe, it is more promising to searh for its parity violating terms than for the parity even ontributions.We an onlude that helial magneti �elds with a spetrum lose to the sale invariant value, �3 < nS ' nA . �2and lose to maximal amplitudes on small sales, BkD & 10�10 Gauss an lead to observable parity violating termsC�B and CEB in the CMB. Suh magneti �elds might in priniple be produed during some inationary epoh wherethe photon is not minimally oupled or via its oupling to the dilaton (see [24, 25℄ for various proposal of magneti
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FIG. 1: On the top panel we show the amplitudes of the parity even orrelators, `2C(��)(A)` (solid, blak),`2C(EE)(A)` (dotted, red) and `2C(�E)(A)` (dashed, blue) as a funtion of the spetral index nA for ` = 50.The logarithm of the absolute value of `2C(XY )(A)` is shown in units of (
A=
r)2 ln2(zin=zeq). We do notplot `2C(BB)(A)` whih equals `2C(EE)(A)` within our approximation. The spikes at nA = �2 for `2C(EE)`and at nA = �3=2 are not real. They are artefats due to the break-down of our approximations atthese values.On the bottom panel we show the orresponding parity odd orrelators, `2C(�B)(A)` (solid, blak), `2C(EB)(A)`(dashed, red) in units of (
A
S=
2r) ln2(zin=zeq) for nS = �2:99 and nS = 2. In this last ase, onlythe allowed range nA � nS = 2 is plotted. Again the spike at nA = 1 for nS = �2:99 and thepreipitous drop at nA = �1 in `2C(EB)(A)` , are due to the limitation of our approximation lose to thetransition indies.�eld prodution during an inationary phase). However, so far no onrete proposal has led to nS;A ' �3, nor to thereation of a helial term. As we have shown, the e�et is largely suppressed and learly unobservable for ausallyprodued magneti �elds, e.g. , during the eletroweak phase transition or even later.Nevertheless, our alulation also demonstrates the e�et of parity violating proesses during ination whih maylead to a non-vanishing helial omponent of gravity waves, H 6= 0, see Eq. (59). In this ase the above alulationan be trivially repeated and will result in non-vanishing parity violating CMB orrelators, C�B 6= 0 and CEB 6= 0.We think that already this remark, together with our knowledge that at least at low energies, nature does violateparity, should be suÆient motivation to derive experimental limits on these orrelators.
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FIG. 2: We show the ratio of the orrelators, C(�B)` =C(�E)` (solid, blak), and C(EB)` =C(EE)` fornS = �3 as funtions of the spetral index nA for ` = 50. The logarithm of the absolute value isshown in units of 
A=
S � 1. The spikes visible at ertain values of the spetral index nA are mainlydue to our relatively rude approximations.AknowledgmentsWe have bene�tted from disussions with Pedro Ferreira, Grigol Gogoberidze, Arthur Kosowsky, Andy Mak, BharatRatra and Tanmay Vahaspati. C.C. is grateful to Guillaume van Baalen and Thierry Baertshiger for assistane withthe numerial odes. C.C. and T.K. thank Geneva University for hospitality. We aknowledge �nanial support formthe TMR network CMBNET and from the Swiss National Siene Foundation.



19APPENDIX A: THE SOURCE FOR GRAVITY WAVESIn this appendix we present some details on how to ompute the gravity waves soure funtions f(k) and g(k). The�rst step is to evaluate the two point orrelator of the magneti �eld stress-energy tensor (21): using Wik's theorem(22) and de�nition (1), after a longish but simple alulation we obtainh�ij(k)��lm(k0)i = 14 1(4�)2 Æ(k� k0) Z d3p ( S(p)S(jk� pj)[(Æil � p̂ip̂l)(Æjm � (\k� p)j(\k� p)m)+(Æim � p̂ip̂m)(Æjl � (\k� p)j(\k� p)l)℄�A(p)A(jk � pj)[�ilt�jmrp̂t(\k� p)r + �imf �jlg p̂f (\k � p)g ℄+iS(p)A(jk� pj)[�jmr(Æil � p̂ip̂l)(\k� p)r + �jlg(Æim � p̂ip̂m)(\k� p)g ℄+iA(p)S(jk� pj)[�ilt(Æjm �\(k� p)j\(k� p)m)p̂t + �imf (Æjl �\(k� p)j\(k� p)l)p̂f ℄ g+ � � � Æij + � � � Ælm : (A1)The isotropi tensor spetrum in the ase of a magneti �eld spetrum without heliity term is derived in [4℄. Herewe onentrate on the soure terms whih ontain the helial part of the magneti �eld spetrum.By ating with tensor projetor on (A1), we �nd expressions (33) and (34) for the symmetri and helial parts ofthe soure spetrum. Taking into aount that the angle � = k̂ � (\k� p) = k�ppk2�2kp+p2 , we an rewrite the twoexpressions whih ontain A(k) in the formfA(k) = 14 1(4�)2 Z d3pA(p)A(jk� pj)  � (k � p)pk2 � 2kp + p2 (A2)g(k) = 12 1(4�)2 Z d3p"S(p)A(jk� pj) (k � p)(1 + 2)pk2 � 2kp + p2 +A(p)S(jk� pj)�2 � p2(1� 2)k2 � 2kp + p2�# : (A3)The ontribution to f(k) from S alone is omputed in Ref. [4℄. There one �ndsfS(k) = 14 1(4�)2 Z d3pS(p)S(jk� pj)(1 + 2)�1 + (k � p)2k2 � 2kp + p2� : (A4)We an now substitute the power law Ansatz (6,7) for S and A in these expressions and try to alulate the integrals.The integration over  = k̂ � p̂ is elementary, usingZ d (k2 + p2 � 2kp)�2 = � 1kp(�+ 2)(k2 + p2 � 2kp)�+22Z d m (k2 + p2 � 2kp)�2 = � mkp(�+ 2)(k2 + p2 � 2kp)�+22 + mkp(�+ 2) Z d m�1 (k2 + p2 � 2kp)�+22 :(A5)This last integration by parts has to be performed in the worst ases three times, reduing the power m of  from 3down to 0.Sine we are integrating  over the interval [�1; 1℄, we get a series of m+ 1 terms of the form(k + p)�+2n � jk � pj�+2n(k p)n ; (A6)with n = 1; 2; :::(m+1). To evaluate the integral over p, we an expand those terms using the binomial deomposition(1 + x)� = 1 + �x + �(� � 1)x2 + � � �. Sine, in general, the value of the exponent � is not an integer, we needto trunate the series somewhere, whih is well justi�ed only if x � 1. To ahieve this, we split the integral intotwo ontributions, R kD0 = R k0 + R kDk . In the �rst term p=k < 1, while in the seond k=p < 1, whih allows us toapproximate Eq. (A6) trunating the binomial series at the seond term,(k + p)� � jk � pj� ' � 2�k��1p+ 13�(�� 1)(�� 2)k��3p3 p < k2�p��1k + 13�(�� 1)(�� 2)p��3k3 p > k (A7)



20and (k + p)� + jk � pj� ' � 2k� + �(� � 1)k��2p2 p < k2p� + �(�� 1)p��2k2 p > k . (A8)We then perform the integration over p. For eah ontribution we keep only the terms whih, depending on the valueof the spetral index, may dominate the result. So, we �nally obtain, for k < kDf(k) ' �34�(2nS + 3) " (2�)2B2�2� �nS+32 �#2�(�k)2nS+3D + nSnS + 3(�k)2nS+3��� �312�(2nA + 3) " (2�)2B2�2� �nA+42 �#2�(�k)2nA+3D + nA � 1nA + 4(�k)2nA+3� (A9)' AS�2nS+3�k2nS+3D + nSnS + 3 k2nS+3��AA�2nA+3�k2nA+3D + nA � 1nA + 4 k2nA+3� (A10)g(k) ' 23� �4k(nS + nA + 2) " (2�)2B2�2� �nS+32 �# " (2�)2B2�2� �nA+42 �#�(�kD)nS+nA+2 + nA � 1nS + 3 (�k)nS+nA+2� (A11)' Ck� (�kD)nS+nA+2 "1 + nA � 1nS + 3 � kkD�nS+nA+2# ; (A12)where the oeÆients are given by the magneti �eld amplitudes at sale �:AS ' �34�(2nS + 3) " (2�)2B2�2� �nS+32 �#2 (A13)AA ' �312�(2nA + 3) " (2�)2B2�2� �nA+42 �#2 (A14)C ' 23� �3(nS + nA + 2) " (2�)2B2�2� �nS+32 �# " (2�)2B2�2� �nA+42 �# : (A15)The �rst part of f(k), whih is the ontribution from the symmetri part of the magneti �eld power spetrum, hasbeen taken from [4, 6℄. The singularities at nS ; nA = �3=2 respetively and at nS + nA = �2 are removable.APPENDIX B: USEFUL MATHEMATICAL RELATIONS1. Integrals of Bessel funtionsIn Setion V, we use approximate solutions for the three integralsZ x0xde dx j2(x)x j`(x0 � x)(x0 � x)2 ; Z x0xde dx j2(x)x j`(x0 � x)(x0 � x) ; Z x0xde dx j2(x)x j`(x0 � x) : (B1)These integrals are solvable only by numerial method. However, the aim of this paper is to give an approximateanalyti result. In this appendix we therefore derive and test analyti approximations to the above integrals. Toahieve this, we �rst modify them slightly, in order to make them solvable analytially. Then, we adjust the resultobtained in this way by omparing it with the exat numerial integration.Let us onentrate, as an example, on the �rst integral. We �rst perform a variable transform to y = x0 � x. Theintegration boundaries then beome 0 and x0 � xde. Below, we derive an approximation forZ x00 j2(x0 � y)x0 � y j`(y)yn dySine Bessel funtions hange on a sale �y � 1, this approximation is good for the integrals in Eq. (B1) if xde < 1.After the integration over x in Eq.(B1) we have to perform an integration over k. For ` �xed, this integral is either



21dominated by the ontribution art k�0 = x0 = ` or at the upper uto�, kD . For the integrals whih are dominatedat x0 = k�0 � `, the inequality xde < 1 is equivalent to ` ' x0 ' 60xde . 60. In some ases, however, our integralover k is dominated at the upper uto� kD with �dekD � 60 and of ourse also �0kD � 60. Sine for ` ' 60, thedominant ontribution to the integral omes from y . 60, our inauray of the boundary will not invalidate theapproximation also for this ase.The approximation in the upper boundary of the integral, x0 �xde ' x0 makes us miss the harateristi deay ofutuations on angular sales orresponding to ` & 60.To make the �rst integral in Eq. (B1) solvable analytially, we now modify the powers of y and x0� y. Taking intoaount that the spherial Bessel Funtion j�(x) has its maximum value at x ' �, we make the attempt:Z x00 dx j2(x)x j`(x0 � x)(x0 � x)2 = �2 Z x00 dx J5=2(x)x3=2 J`+ 12 (x0 � x)(x0 � x)5=2' �2r 25 ` Z x00 dx J5=2(x0 � y)x0 � y J`+ 12 (y)y2 : (B2)' �5r 25 ` J`+3(x0)x20 : (B3)For the last equality, we have used 6.581.2 of [26℄ ,Z a0 dx xb�1(a� x)�1Jp(x)Jq(a� x) = 2baq 1Xm=0 (�1)m �(b+ p+m) �(b+m)m! �(b) �(p+m+ 1) (b+ p+ q + 2m) Jb+p+q+2m(a) ;(Re (b+ p) > 0; Re q > 0) (B4)and the reurrene relation J��1(x) + J�+1(x) = 2�x J� (9.1.27 of [19℄), keeping only the highest order terms in `. Wean now ompare this approximated analyti result with an exat numerial integration. Sine the analyti result isagain a Bessel funtion divided by a power law, it has a maximum at x0 ' `, and its envelope has a power law deayfor x0 > `. This two harateristis are very well reprodued by the numerial result, whih however deays somewhatfaster; it turns out that a better approximation isZ x00 dx j2(x)x j`(x0 � x)(x0 � x)2 ' 13r32̀ J`+3(x0)x30 : (B5)To estimate the goodness of our approximation, let us now take into aount the integration over k, as in Eq. (65).What we are �nally interested in is (Eq. (73))Z xD0 dx0 x20 J 2̀+3(x0)x60 "1 + nA � 1nA + 4 � x0xD�2nA+3# : (B6)As already disussed in the main text, this integral is always onvergent and dominated by the ontribution aroundx0 ' ` : we should therefore make sure that our approximation is good around that value. We have that for ` = 30,our approximation underestimates the numerial result by about fator of two; for ` = 40, the error redues to 15%,and is always smaller for larger values of `.Fig. 3 shows the numerial result for the integral in (B5) (green, dotted line), together with its analytial approxi-mation (the right hand side of Eq. (B5), blue and long dashed) and a numerial evaluation of the same integral whenxde is not set to zero (red, solid). For small values of ` (in the left hand panel of Fig. 3, ` = 50), Eq. (B5) is a goodapproximation in the region x0 ' `. However, if ` > 60 setting xde ! 0 auses a large overestimation of the result.In the right hand panel of Fig. 3 it is shown that, for ` = 100, the di�erene between the integral with lower bound0 and the one with lower bound xde is of more than a fator of ten. Consequently, as already stated before, we anrely on all our approximations only for ` . 60.We proeed now to evaluate integral (B6). Sine xD = kD�0 & 106, for ` . 60, integral (B6) an be alulated inthe limit xD !1, using formula 6.574.2 of [26℄:Z 10 dx Jp(x)Jq(x)x�b = �(b)��p+q�b+12 �2b���p+q+b+12 ���p+q+b+12 ���p�q+b+12 � (B7)(Re (p+ q + 1) > Re b > 0) :
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FIG. 3: In both panels, as a funtion of x0: the green dotted line shows the numerial value of the integralin (B5), the blue, long dashed line shows the analyti approximation (right hand side of Eq. (B5)), andthe red, solid line shows the numerial value of integral (B5) if xde is not put to zero. All these funtionsare squared, and multiplied by x30: this gives us an indiation of the result, after the integration over x0, asstated in Eq. (B6). In the left panel ` = 50, in the right panel ` = 200. First of all, we note that it appearslearly that the value of the integrals is dominated at x0 ' `, and that the funtion goes to zero quikerthan x�30 , whih justi�es our approximation xD ! 1 and the use of formula B7. Seondly, we note thatfor ` = 50 and x0 � `, our approximation (blue, long-dashed) is good for both the integrals. However, if` = 200, the approximation overestimate the orret numerial result by about a fator of ten.This approximation is used for example in Eqs. (76, 77).With the same proedure we an approximate the seond integral of Eq. (B1), for whih we �nd (` . 60)Z x0xde dx j2(x)x j`(x0 � x)(x0 � x) ' 13r32̀ J`+3(x0)x20 : (B8)This approximation underestimates the numerial result with an error of about 40% for ` = 30, whih redues to 20%at ` = 60. In this ase also, the integral over x0 is onvergent, and we an proeed as before.The situation is di�erent for the third integral of Eq. (B1). In this ase, the numerial result is approximated bythe following funtion (` . 60): Z x0xde dx j2(x)x j`(x0 � x) ' 13r25 J`+3(x0)px0 : (B9)It is lear that if we insert this funtion in an integral like (B6) we annot perform the limit xD ! 1 sine thisintegral is dominated at the upper uto�. Consequently, we need a good approximation for the behavior of theintegral for large values of x0 ! xD. In this ase, we no longer require our approximation to be aurate at x0 ' `,but we onentrate on its behavior for high values of x0, whih will dominate in the integral over x0. Fig. 4 showsthe approximation for ` = 30, whih overestimate the numerial result by an error within 1%.We also have to evaluate the integral over x20 dx0 of the square of (B9), whih we enounter in two di�erent ases.The �rst (see Setion VB) is of the kind R xD0 dx xpJ 2̀(x). For p < 0 this integral onverges and we may evaluate it inthe limit xD ! 1, in whih it is of the form (B4). For p > 0 and xD � `2, the integral an be approximated usingthe asymptoti expansion of J`(x) for large arguments [19℄, J`(x) � p2=(�x) os[x � (2` + 1)�=4℄. Approximatingthe osillations by a fator of 1=2, we obtainZ xD0 dx xpJ 2̀(x) ' Z xD`2 dx xpJ 2̀(x) ' ( xpDp� ; p > 01� ln �xD`2 � ; p = 0 . (B10)
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FIG. 4: We plot the value of integral (B9) squared and multiplied by x30 as funtion of x0, for ` = 30. Thegreen, dotted line represents again the numerial result (xde ! 0), and the blue, long dashed line is theanalyti approximation. In this ase the slope is positive, and hene the integral dx0=x0 of this funtion isdominated by the upper uto�.For the seond ase, R xD0 dx xpJ`(x)J`+1(x), whih we enounter in Setion VI, we use again the large argumentapproximation for the Bessel funtions, for x� `2,J`(x)J`+1(x) ' 2�x os�x� (2`+ 1)�4� os�x� (2`+ 3)�4� = 2�x os�x� (2`+ 1)�4� sin�x� (2`+ 1)�4�= 1�x sin�2x��`+ 12��� = (�1)`+1�x os(2x) ; (B11)so that for p > 0Z xD0 dx xpJ`(x)J`+1(x) ' (�1)`+1� Z xD`2 dx xp�1 os (2x) ' (�1)`+12� �xp�1D sin(2xD)� `2p�2 sin(2`2)� : (B12)In the limits to whih we have restrited ourselves, we always have xD � `2. Consequently, the dominant ontributionin the last expression an be given either by the �rst term in the braket, if p > 1, or by the seond term, if p < 1.Numerial heks show that the approximation is good for p > 1, but it is rather poor in the seond ase, p < 1. Sinewe shall not be very muh interested in this ase, we do not go any further in this work.When evaluating expression (B7), we often also use�(2x) = 22x�1p� �(x)��x+ 12��(x+ a)�(x+ b) � xa�b +O(xa�b�1) for x� 1 (B13)(see Eqs. (6.1.18) and (6.1.47) of [19℄).2. Reurrent Relations for spherial Bessel FuntionsWe use several reurrene relations for spherial Bessel funtions in our derivations, most notably`+ 1x j`(x) + j 0̀(x) = j`�1(x) (B14)



24and x̀ j`(x) � j 0̀(x) = j`+1(x) : (B15)
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