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AbstractAfter an introduction to the problem of cosmological structure formation, we develop gauge invari-ant cosmological perturbation theory. We derive the �rst order perturbation equations of Einstein'sequations and energy momentum \conservation". Furthermore, the perturbations of Liouville's equa-tion for collisionless particles and Boltzmann's equation for Compton scattering are worked out. Wefully discuss the propagation of photons in a perturbed Friedmann universe, calculating the Sachs{Wolfe e�ect and light deection. The perturbation equations are extended to accommodate alsoperturbations induced by seeds.With these general results we discuss some of the main aspects of the texture model for theformation of large scale structure in the Universe (galaxies, clusters, sheets, voids). In this model,perturbations in the dark matter are induced by texture seeds. The gravitational e�ects of a spher-ically symmetric collapsing texture on dark matter, baryonic matter and photons are calculated in�rst order perturbation theory. We study the characteristic signature of the microwave backgrounductuations induced in this scenario and compare it with the COBE observations.
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IntroductionWithin standard cosmology, the formation of large scale structure remains one of the biggest un-solved problems, despite of great e�orts. The most natural scenario, where structure forms bygrowth of adiabatic perturbations in a baryon dominated universe is clearly ruled out. Other exten-sively worked out scenarios like isocurvature baryons or baryons and collisionless matter (cold darkmatter or hot dark matter) face severe di�culties [Geller and Huchra, 1989, Maddox et al., 1990,Saunders et al., 1991, Gouda et al., 1991] (for a short review see [Peebles and Silk, 1990]).On the other hand, there is the interesting possibility to induce perturbations in the baryonic anddark matter by seeds. Seeds are an inhomogeneously distributed form of energy which contributesonly a small fraction of the total energy density of the universe. Thus, linear perturbation theorycan be used to calculate the induced uctuations and their time evolution. Gauge{invariant linearperturbation theory [Bardeen, 1980] is superior to gauge dependent methods, since it is not plaguedby gauge modes, and it leads in all known cases to the simplest systems of equations.Examples of seeds are primordial black holes, boson stars, a �rst generation of stars, cosmicstrings, global monopoles, or global texture. These last three are especially appealing since they canoriginate in a natural way from phase transitions in the early universe [Kibble, 1980]. If they indeedplay an important role in structure formation they would link the smallest microscopical scales neverprobed by particle accelerators (down to 10�16GeV �1) and the largest structures (up to 100Mpcand maybe more)! Another attractive feature of topological defects is that the gravitational e�ectsof each class of them (cosmic strings are �1 defects, monopoles are �2 defects and texture are �3defects) are quite insensitive to the detailed symmetry breaking mechanism and only depend on thesymmetry breaking scale �, which we cast in the dimensionless quantity � = 16�G�2. This quantitydetermines the amplitude but not the shape or the time evolution of the perturbations.Here, we mainly consider the �3 defect global texture which was �rst proposed by Turok [1989]as a seed for large scale structure. Several subsequent investigations of this scenario gave promisingresults: The spatial and angular correlation functions, the large scale velocity �elds and other sta-tistical quantities obtained by numerical simulations agree roughly with observations (see Pen et al.[1993], Gooding et al. [1992], Spergel et al. [1991] and references therein).My objective in this text is to fully develop gauge invariant linear perturbation theory to treatmodels with seeds. I then want to show in some detail, how all the linear perturbation theoryaspects of a scenario of large scale structure can be investigated with these tools. As an example,we discuss the texture scenario. I choose this scenario not because I think it is the solution of theproblem of cosmological structure formation. But it is the simplest worked out scenario, whereinitial uctuations are induced by topological defects of a symmetry breaking phase transition, andI believe that this class of models deserves thorough investigation as an alternative to models withinitial perturbations from ination.In the �rst chapter we set a frame for this review with a non{technical overview of the problemof cosmological structure formation. We also very briey discuss some of the presently consideredscenarios. A reader already familiar with the problem of structure formation may skip it. In thesecond chapter gauge{invariant cosmological perturbation theory [Hawking, 1966, Bardeen, 1980,Kodama and Sasaki, 1984, Durrer and Straumann, 1988, Mukhanov et al., 1992] is presented in a(hopefully) pedagogical fashion. Although, some familiarity with general relativity and basic conceptsof di�erential geometry are needed to follow the derivations in this chapter. We extensively discussscalar, vector and tensor perturbations for uids and for collisionless matter. Furthermore, generalformulae for the deection of light in a perturbed Friedmann universe are derived. This part is new.3



Finally, seeds as initial perturbations are introduced [Durrer, 1990]. Here it is assumed that non{gravitational interactions of the seeds with the surrounding matter are negligible. For topologicaldefects, this is certainly a good approximation soon after the phase transition.In Chapter 3, some simple but important applications of cosmological perturbation theory aredescribed. We �rst discuss the ideal uid [Bardeen, 1980, Kodama and Sasaki, 1984]. Then, a gaugeinvariant form of Boltzmann's equation for Compton scattering is derived. We study it in the limit ofmany collisions to obtain an approximation for the damping of cosmic microwave background (CMB)uctuations by photon di�usion in a reionized universe. We then list all mechanisms proposed toinduce anisotropies in the cosmic microwave background. Finally, two applications of light deectionare discussed: Lensing by global monopoles [Barriola and Vilenkin, 1989] and light deection due to apassing gravitational wave. This e�ect is new and might be an alternative way to detect gravitationalwaves of very far away sources.In Chapter 4 we review the concept of texture defects and present the exact at space solutionfound by Turok and Spergel [1990]. We then calculate the gravitational potentials induced by thissolution and apply the formalism developed in Chapter 2 to derive photon redshift, light deectionand perturbations of baryons and dark matter. All results can be obtained analytically and providea nice application of gauge invariant perturbation theory. They are, however, cosmologically relevantonly for scales substantially beyond horizon scale. Most of the results of this chapter were originallyderived by Durrer [1990] and Durrer et al. [1992a], but the calculation of light deection is new andthe work on collisionless particles is presented in a much simpler way and a physically more sensiblelimit is performed.We conclude with a chapter on textures in expanding space. Here we present a method tocalculate the induced cosmic microwave background uctuations by statistically distributing indi-vidual textures which are modeled spherically symmetric. The detailed numerical results of theseinvestigations will be published elsewhere [Durrer et al., 1993].In Appendix A the basics of 3+1 formalism of general relativity are outlined. In Appendix B, weprovide a glossary of the variables used in this review.
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Chapter 1The Problem of Large Scale StructureFormation1.1 The Standard Cosmological ModelWe begin with some facts on the standard model of cosmology. Extensive treatments of this subjectcan be found in the books by Tolman [1934], Bondi [1960], Sciama [1971], Peebles [1971], Weinberg[1971], Zel'dovich and Novikov [1983], B�orner [1988], Kolb and Turner [1990], Peebles [1993].The assumption that the universe is homogeneous and isotropic on very large scales, leads to avery special class of solutions to the gravitational �eld equations, the Friedmann{Lemâ�tre universes.Accepting furthermore the cosmological origin of quasars and/or the cosmic background radiation,one can reject the possibility of a so called bouncing solution and show that our universe necessarilystarted in a big bang [Ehlers and Rindler, 1989]. Due to homogeneity and isotropy, the energymomentum tensor is described by the total energy density � and pressure p which are functions oftime only. The metric is of the formds2 = a2(�dt2 + ijdxidxj) ;where  is a 3-d metric of constant curvature k. The simply connected 3{spaces corresponding to depend on the sign of the curvature: For k > 0, the three{space is a sphere, for k < 0 a pseudosphere and for k = 0 at, Euclidean space. (Note, however, that the metric  cannot decide on thetopological structure of 3{space. For k = 0, e.g., it may well be, that three space is topologicallyequivalent to R3=Z3, i.e., a torus with �nite volume. The often stated phrase that for k � 0 3{spaceis in�nite is thus wrong.)The time dependent function a is the scale factor and the physical time (proper time) � of anobserver at rest is given by d� = adt. The time coordinate t is called conformal time.Einstein's equations imply the Friedmann equation which determines the scale factor as a functionof the density:� _aa�2 + k = 8�3 G�a2 + �a2=3 : (1.1)Here G is Newton's gravitational constant, and � is the famous cosmological constant which hasbeen resurrected several times in the past [Weinberg, 1989].5



Important quantities in Friedmann cosmology are the Hubble parameter, H and the densityparameter 
, which are de�ned byH = _a=a2 and 
 = �=�c ; with �c = 3H2=(8�G). Here �c is the critical density, the density of a universe with k = � = 0. The present value of theHubble parameter, H0, is usually parameterized in the form H0 = h� 100km=s=Mpc. Observationslimit the value of H0 in the range0:4 � h � 1 and0:05 � 
0 � 2 :From estimates of the mass to light ratio one obtains a value for the amount of luminous matter,
lum � 0:007 and from velocity measurements one estimates the amount of 'clustered matter' to be
dyn � 0:1. These values result from many di�cult observations and are correspondingly uncertain[Kolb and Turner, 1990]. Unfortunately, the measurements which lead to them can not provideinformation about a dark, poorly clustered matter contribution and therefore do not yield an upperlimit for the density parameter. The upper bound comes from a comparison of lower limits to theage of the universe with the Hubble parameter.Using the energy \conservation" equation_� = �3 _aa(� + p) ; (1.2)one �nds that for p � 0, � grows at least like a�3 for a! 0 (i.e. approaching the big bang). Therefore,at an early enough epoch the density term in (1.1) always dominates over the curvature term andthe cosmological constant, and 
 becomes arbitrarily close to 1. In other words, the evolution of aFriedmann universe always \starts" very close to the unstable �xpoint 
 = 1.On the other hand, (1.1) shows, if the cosmological constant � once dominates the expansion ofthe universe, the curvature term k and the energy density � become less and less important. Theuniverse then expands approximately exponentially in terms of physical time �a(�) = a(�i) exp(q�=3 Z ��i d� 0) :This rapid expansion can only be stopped if some or all of the vacuum energy inherent in the cos-mological constant is radiated into particles. Such an intermediate phase of � dominated expansionis the basic idea of most scenarios of ination.Today, the cosmological constant is severely limited from observations:
� � j �8�GH20 j � O(1) :This is very much smaller than the values expected from particle physics, but might still be enoughto inuence the expansion of the universe and structure formation substantially [Holtzman, 1989].It can, e.g., lead to a 'loitering period' during which the universe is nearly non{expanding[Durrer and Kovner, 1990], and thus uctuations grow exponentially. Since such a small value for �requires an enormous �ne tuning, we set � = 0 in the following.For � = 0, one has 
 > 1 in a closed universe (3{sphere) and 
 < 1 in a negatively curved (open)universe. 6



Later, we also use the following consequences of (1.1) and (1.2) (setting w = p=� and c2s = _p= _�):�a=a = �12[(3w � 1)( _aa )2 + (3w + 1)k] (1.3)_w = 3( _a=a)(w � c2s)(1 + w) : (1.4)Like the standard model of particle physics, the standard model of cosmology has many impressivesuccesses. The most important ones are:� Uniform Hubble expansion (Detected by Wirtz [1918], Slipher [1920] and Hubble [1927]).� The prediction of Gamov [1946] and detection by Penzias and Wilson [1965] of the cosmicmicrowave background radiation, its 'perfect' black body spectrum [Mather et al., 1990] andits extraordinary uniformity (see Figs. 1 and 2).� The abundance of the light elements (H, 2H, 3H, 3He, 4He, 7Li) can be calculated,and the comparison with observational estimates predicts 0:02 � 
B � 0:1 which is consistentwith direct determinations of 
0. This calculations were originally performed by Alpher et al.[1948], Wagoner et al. [1967] and by many others later. A comprehensive review is Boesgaardand Steigman [1985]. For more recent developments, see e.g. Kurki{Suonio et al. [1988] andWalker et al. [1991].However, many questions are left open. Most of them can be cast in terms of very improbable initialconditions:� The question of the cosmological constant, �: Why is it so small? i.e., so much smaller thantypical vacuum energies arising from particle physics [Weinberg, 1989].� The atness / oldness / entropy problem: why is the universe so old, t� tpl, and stillO(
) = 1?Here, tpl is the Planck time, tpl = (�hG=c5)1=2 = 5:39 � 10�44sec .� The horizon problem: how can di�erent patches of the universe have been at the same tem-perature long before they ever where in causal contact?So far, the most successful approach to answer the second and third questions is based on thehypothesis of an inationary phase during which expansion is dominated by a 'uid' with neg-ative e�ective pressure, p � ��=3 (e.g. a cosmological term, for which p = ��) and physicaldistances thus grow faster than the size of the e�ective particle horizon, ( _a=a2)�1. I do not ex-plain how ination answers these questions, but refer the reader to some important publicationson the subject: [Guth, 1981, Albrecht and Steinhardt, 1982, Linde, 1983, Linde, 1984, Linde, 1990,La and Steinhardt, 1989, Olive, 1990].These open problems provide some of the very few and important hints to new fundamentalphysics beyond the standard models of cosmology and of particle physics.1.2 Structure FormationBesides the fundamental issues, related to the very early universe and unknown basic physics, thereis the important problem of structure formation which, to some extent, should be solvable withinthe standard model. This is the problem I want to address here:7



How did cosmological structures like galaxies, quasars, clusters, voids, sheets... form?From di�cult and expensive determinations of the three{dimensional distributions of optical andinfrared galaxies on scales up to 150h�1Mpc [De Lapparent et al., 1986, De Lapparent et al., 1988,Geller and Huchra, 1989, Broadhurst et al., 1990, Saunders et al., 1991, Loveday et al., 1992a],[Fisher et al., 1993], we know that galaxies are arranged in sheets which surround seemingly emptyvoids of sizes up to 50h�1Mpc. Observations also show that the distribution of clusters of galaxies[Bahcall and Soneira, 1983, Bahcall, 1989, West and van den Bergh, 1991] is inhomogeneous with�ncnc � 1 on scales up to 25 Mpc.In addition, it is important to observe that not all galaxies are young. There are quasars withredshift up to z � 5 and galaxies with z � 3. On the other hand, there are indications that thegalaxy luminosity function is still evolving considerably in the recent past, i.e., that galaxy formationstill continues [Loveday et al., 1992b].From a naive Newtonian point of view one might say: \Gravity is an unstable interaction. Oncethe slightest perturbations (e.g. thermal) are present they start growing and eventually form all theseobserved structures. The details of this process might be complicated but there seems to be no basicdi�culty."This is true in a static space where small density uctuations on large enough scales grow ex-ponentially. But, as we shall see in Chapter 2, in an expanding space, this growth is reduced to apower law:��� / ( a for pressureless matter, dustconst. for radiation, relativistic particles.In a radiation dominated universe, pressure prohibits any substantial growth of density perturba-tions. Once the universe is matter dominated ��=� grows proportionally to the scale factor, but thegravitational potential	 / Z (��=r)r2dr = Z ��rdrremains constant. This led Lifshitz [1946], who �rst investigated the general relativistic theory ofcosmological density uctuations, to the statement: \We can apparently conclude that gravitationalinstability is not the source of condensation of matter into separate nebulae". Only 20 years laterNovikov [1965] pointed out that Lifshitz was not quite right. But to some extent Lifshitz's pointremains valid: Gravity cannot be the whole story. Imagine an 
 = 1 universe which was matterdominated after z � 2� 104. Since density perturbations in cold matter evolve like 1=(z + 1), theyhave grown by less than 105. But today there are galaxies with masses of M � 1012M� � 1069mN .Statistical inhomogeneities of these N nucleons have an amplitude of 1=pN � 10�34, which wouldhave grown to less than 10�29 � 1 today. Therefore, there must have been some non{thermal initialuctuations present with an amplitude on the order of 10�5�10�4. We also know that the amplitudeof these initial perturbations did not exceed this amount because of the high degree of isotropy ofthe cosmic microwave background radiation (CMB). In fact, only recently CMB anisotropies havebeen found in the COBE experiment [Wright et al., 1992, Smoot et al., 1992]. They are on the level�TT � 10�5 or ��(rad)=�(rad) � 4� 10�58



on all angular scales larger than 10o and compatible with a scale invariant Harrison{Zel'dovichspectrum. On smaller angular scales other experiments led to limits, �T=T � a few�10�5 (seeFig. 2). We disregard the dipole anisotropy which is due to our motion with about 600km/s withrespect to the microwave background radiation.There are scenarios of cosmological structure formation which are not based on the gravitationalinstability picture. The most recent of them is based on explosions (of supernovae or super conductingcosmic strings) [Ostriker and Cowie, 1981] which are supposed to sweep away baryons, producingshock fronts in the form of sheets surrounding roughly spherical voids. Usually such scenarios faceenormous di�culties in producing the energy required to account for the large scale observations andto satisfy at the same time the limits for perturbations of the CMB on small angular scales. Noneof them has thus been worked out in detail. In fact, the explosion scenario also needs gravitationalinstability to amplify perturbations by a signi�cant factor [McKee and Ostriker, 1988]. In this paper,we concentrate on scenarios which rely on gravitational instability. The fact, that the anisotropiesmeasured by COBE just coincide with the amount of growth necessary to form structures today istaken as a hint that the gravitational instability picture may be correct.1.3 The General StrategyWe now want to outline in some generality the ingredients that go into a model of structure formationwhich is based on the gravitational instability picture.1.3.1 Initial uctuationsWe saw in the last section that small density uctuations in a Friedmann universe may have grown(by gravitational instability) by about a factor of 2�104 during the era of matter domination. There-fore, a complete scenario of structure formation must lead to initial matter density uctuations withamplitudes on the order of 10�4. Two possibilities to obtain these initial uctuations are primarilyinvestigated.A) Initial perturbations produced during ination: Here it is assumed that densityuctuations are generated during an inationary phase [Guth, 1981, Albrecht and Steinhardt, 1982,Linde, 1982, Linde, 1983, Linde, 1984, La and Steinhardt, 1989, Linde, 1990] from initial quantumuctuations of scalar �elds [Bunch and Davies, 1978, Hawking, 1982, Starobinsky, 1982],[Guth and Pi, 1982, Fischler et al., 1985]. Due to the nature of quantum uctuations, the distribu-tion of the amplitudes of these initial perturbations is usually Gaussian.There are several di�erent more or less convincing models of ination. One divides them into:Standard (or old) ination [Guth, 1981], new ination [Albrecht and Steinhardt, 1982, Linde, 1982],chaotic ination [Linde, 1983] and the most recently proposed possibilities of extended and hyper{extended ination [La and Steinhardt, 1989]. Reviews on the subject are found in Linde [1984],Linde [1990], Olive [1990] and Steinhardt [1993]. All these models of ination di�er substantially,but the mechanism to produce initial uctuations is basically the same:The scales l of interest (l � lH(to) � 3000h�1Mpc) are smaller than the e�ective particle horizon atthe beginning of the inationary phase. The scalar �eld that drives ination therefore experiencesquantum uctuations on all these scales. Their amplitude for a minimally coupled scalar �eld � in
9



de Sitter universe1 within a volume V can be calculated [Bunch and Davies, 1978]:(��)2k = V k32�2 j��kj2 = (H=2�)2 ;with ��k = V �1 Z �(x) exp(ik � x)d3x :In the course of ination, the interesting scales inate outside the horizon and quantum uctuations'freeze in' as classical uctuations of the scalar �eld. This leads to energy density perturbationsaccording to��� = ��dVd� ;where V denotes the potential of the scalar �eld. By causality, on scales larger than the e�ectiveparticle horizon, these perturbations cannot grow or decay by any physical mechanism. The spuriousgrowth of super{horizon size density perturbations in certain gauges like, e.g., synchronous gauge, isa pure coordinate e�ect!This mechanism yields density perturbations D� of a given size � which have constant amplitudeat the time they re{enter the horizon after ination is completed:D�(t = �) = A :A natural consequence is thus the well known scale invariant Harrison{Zel'dovich spectrum[Harrison, 1970, Zel'dovich, 1972]. Under certain conditions on, e.g., the potential of the scalar �eld(which may require �ne tuning of coupling constants), one can achieve that these uctuations havethe required amplitude of A � 10�4.Recently, the failure to account for the largest scale structure of the otherwise so successful colddark matter (CDM) model has caused some e�ort to �nd inationary models with spectra that di�ersubstantially from Harrison{Zel'dovich on large scales [Polarski and Starobinsky, 1992]. Althoughof principle interest, this work may turn out to be unimportant after the new COBE results haveshown such a striking consistency with a scale invariant spectrum.B) Seeds as initial perturbations, topological defects: Initial uctuations might have beentriggered by seeds, i.e., by an inhomogeneously distributed matter component which contributes onlya small fraction to the total energy density of the universe. Examples of seeds are a �rst generationof stars, primordial black holes, bosonic stars, cosmic strings, global monopoles and textures. Werestrict our discussion to the latter three, the so called topological defects, which can arise naturallyduring phase transitions in the early universe [Kibble, 1980].To understand how they form, consider a symmetry group G which is broken by a scalar �eld �to a subgroup H at a temperature Tc. The vacuum manifold of the cooler phase is then generallygiven by M0 = G=H. Since the order parameter �eld � (Higgs �eld) has a �nite correlation length� � lH (lH � horizon size) which is limited from above by the size of the horizon, the �eld varies inM0 if compared over distances larger than �. If the topology of M0 is non{trivial, the scalar �eldcan vary in such a way that there are points in spacetime where, by continuity reasons, � has toleave M0 and assume values of higher energy. This is the Kibble mechanism [Kibble, 1978].1Except for extended and hyper{extended ination, the universe during the inationary phase is a de Sitter universe,expansion is driven by a cosmological constant. 10



The set of points with higher energy forms a connected sub{manifold without boundary in fourdimensional spacetime. The dimensionality, d, of this sub{manifold is determined by the order, r, ofthe corresponding homotopy group �r(M0): d = 3 � r, for r � 3. The points of higher energy of� are often just called 'singularities' or 'defects'.For illustration, let us look at the simplest example, where M0 is not connected, �0(M0) 6= 0:At di�erent positions in space with distances larger than the correlation length �, the �eld can thenassume values which belong to disconnected parts of M0 and thus, by continuity, � has to leaveM0 somewhere in between. The sub{manifold of points of higher energy is three dimensional (inspacetime) and called a domain wall. Domain walls are disastrous for cosmology except if theyoriginate from late time phase transitions.A non{simply connected vacuum manifold, �1(M0) 6= 0, leads to the formation of two dimensionaldefects, cosmic strings. Domain walls and cosmic strings are either in�nite or closed.If M0 admits topologically non{trivial (i.e. not shrinkable to a point) continuous maps from thetwo sphere, � : S2 !M0 , then �2(M0) 6= 0, one dimensional defects, monopoles, form.Finally, continuous mappings from the three sphere determine �3. If �3(M0) 6= 0, zero dimen-sional textures appear which are events of non{zero potential energy. Using Derricks theorem[Derrick, 1964], one can argue that a scalar �eld con�guration with non{trivial �3 winding number(i.e. a texture knot) contracts and eventually unwinds, producing a point of higher energy for oneinstant of time. This type of defect is discussed in more detail in Chapters 4 and 5.Topological defects are very well known in solid state physics. Important examples are vorticesin a super conductor or the vorticity lines in a super uid. All four types of defects discussed abovecan also be found in liquid crystals see e.g. Chuang et al. [1991] and references therein.Depending on the nature of the broken symmetry, defects can either be local, if the symmetryis gauged, or global, from a global symmetry like, e.g., in the Peccei{Quinn mechanism. In thecase of local defects, gradients in the scalar �eld can be compensated by the gauge �eld and theenergy density of the defect is con�ned to the defect manifold which has a thickness given roughlyby the inverse symmetry breaking scale. On the other hand, the energy density of global defects isdominated by gradient energy, with a typical scale given by the horizon size at defect formation. Theextension of the induced energy density perturbation is thus about the horizon size at its formation.This leads to a Harrison{Zel'dovich initial spectrum. The di�erence to initial perturbations arisingfrom ination is that density uctuations induced by topological defects are not Gaussian distributed.Local monopoles would dominate the energy density of the universe by far (
M � 1011 !!) andmust be excluded. Local textures are not energetic enough to seed large scale structure. But globalmonopoles and global textures are quite promising candidates. Cosmic strings, both global or local,are interesting. One of the models which we introduce in the next section is based on local cosmicstrings.We will �nd in Chapter 4, that the properties of the scalar �eld � other than the inducedhomotopy groups, e.g., the speci�c form of the Higgs potential, are of no importance for the defectdynamics. But the probability of defect formation via the Kibble mechanism might well depend onM0. The symmetry breaking scale just determines the energy of the defects, i.e., the amplitude ofthe uctuations. From simulations of large scale structure formation one �nds that successful modelsrequires T 2cG � m2c=m2pl � 10�6, which corresponds to a typical GUT scale of � 1016GeV. This canalso be understood analytically: From the perturbation equations derived in Chapter 2, we shall seethat defect induced structure formation leads to initial perturbations with amplitudes A � 16�GT 2c .
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1.3.2 Linear perturbation theorySince the amplitudes of the initial uctuations are tiny, at early times their evolution can be calculatedwithin linear cosmological perturbation theory.Chapter 2 is devoted to a thorough discussion of this subject, we thus skip it here. The readerjust interested in the results is referred to Chapter 3 where some important consequences fromcosmological perturbation theory are discussed.1.3.3 N{body simulationsOn relatively small scales (up to about 20Mpc or so) perturbations become non{linear at late times.Structure formation must then be followed by non{linear numerical simulations, whose input is theperturbation spectrum resulting from linear perturbation theory. Since at the time when the non{linear regime takes over, the corresponding scales are much smaller than the horizon size, and sincethe gravitational �elds and velocities are small, Newtonian gravity is su�cient for these simulations.For a realistic calculation of the process of galaxy formation, the hydrodynamical evolution of baryonshas to be included. The di�erent heating and cooling processes and the production of radiation whichmight partially provide the X{ray background and might reionize the intergalactic medium have tobe accounted for. Furthermore, the onset of nuclear burning which produces the light in galaxieshas to be modeled, in order to obtain a mass to light ratio or the bias parameter (which may wellbe scale dependent).The inclusion of the heating and cooling processes of baryons into N{body simulations is a verycomplex computational task and the results published so far are still preliminary [Cen et al., 1990,Cen, 1992, Cen and Ostriker, 1992, Cen et al., 1991]. Only very recently, the �rst calculations tak-ing into account nuclear burning have been carried out [Ostriker, 1992]. High quality simulationswhich only contain collisionless particles have been performed to very good accuracy[Centrella and Melott, 1982, White, 1986, Davis et al., 1985/87], but unfortunately they leave openthe question how light traces mass and therefore, how these results are to be compared with obser-vations of galaxy clustering.I shall not discuss this important and di�cult part of structure formation in this review and referthe reader to the references given above.1.3.4 Comparison with observationsOf course the �nal goal of all the e�ort is to confront the results of a given model with observa-tions. The easiest and least uncertain part is to analyse the induced microwave background uc-tuations. They can be calculated reliably within linear perturbation theory. Observations of themicrowave background are also a measurement of the initial spectrum and it is very remarkable thatthe new COBE results are compatible with a Harrison{Zel'dovich spectrum [Wright et al., 1992,Smoot et al., 1992].On smaller scales (� � 6o), the CMB anisotropies depend crucially on the question whether theuniverse has been reionized at early times (z � 100) and therefore indirectly on the formation ofnon{linearities in the matter density perturbation (which would provide the ionizing radiation). Thedi�erent possibilities how the process of structure formation can induce anisotropies in the cosmicmicrowave background are discussed in detail in Chapter 3.On scales up to about 20Mpc, the up today most extensively used tool to compare models with12



observations is the galaxy galaxy correlation function, �GG(r),�GG(r) = 1hni2 Z n(~x)n(~x + r~e)d3xd
~e ;where n is the number density of galaxies. Usually, the amplitudes of initial uctuations in a givenscenario are normalized by J3(R = 10Mpc):J3(R) = Z �GG(r)WR(r)r2dr ;with an observational value of J3(10Mpc)=(10Mpc)3 � 0:27. Here WR(r) is a (Gaussian or top hat)window function windowing scales smaller than R. Since the new COBE results now provide theamplitude of uctuations on very large scales which are not inuenced by non{linearities, futurecalculations will clearly be normalized on these scales. Observations �x the amplitude and slope ofthe galaxy galaxy and cluster cluster correlation functions to be�GG(r) � ( rr0 )�1:8 ; (1.5)�CC(r) � ( rr0 )�1:8 : (1.6)For galaxies one �nds r0 � 5:4h�1Mpc [Peebles, 1988], whereas for clusters r0 depends on the\richness class" of the clusters considered. For rich clusters r0 � (20� 25)h�1Mpc[Bahcall and Soneira, 1983]. Recently, a smaller amplitude for the cluster cluster correlation functionhas been found from the APM survey, �CC = 4�GG and �CC = 2�CG [Dalten et al., 1991].A disadvantage of the correlation function is its insensitivity to lower dimensional structures likesheets and �laments2.There are various other statistical tests which one can perform and compare with the sparseobservations. I just mention a few:The Mach number, which gives the ratio between the average velocity and the velocity dispersion ona given length scale, M =< v >2 =�2 [Ostriker and Suto, 1990].The genus test, where one calculates the number of holes minus the number of islands in an iso{density contour [Gott et al., 1986].The 3{point or 4{point correlation functions, which determine the deviation from Gaussian statisticsof the distribution of perturbations on a given length scale [Peebles, 1980]. They can be cast in theskewness, < ��3 > = < ��2 >3=2 and the kurtosis < ��4 > = < ��2 >2.Additional more qualitative results are: - The earliest galaxies must have formed at z � 5 butthat there still must be substantial galaxy formation going on at z � 2� 1.- From observations [De Lapparent et al., 1986, De Lapparent et al., 1988],[Geller and Huchra, 1989] we can conclude that galaxies are arranged in sheetlike structures aroundseemingly empty voids.- Velocity observations have found large (� 100h�1Mpc) coherent velocity �elds withhvi � 500km=s.- A successful model should of course also obtain at rotation curves of galaxies which have beenobserved with increasing accuracy since the seventies [Rubin, 1983].2Recently the amplitudes of the correlation function have been criticized to depend crucially on the samplesize and thus to be physically meaningless. New analyses [Einasto et al., 1986, Pietronero, 1987, Davis et al., 1988,Coleman and Pietronero, 1992] have shown that r0 depends on the sample size, hinting that the distribution of galax-ies may be fractal up to the largest scales presently accessible in volume limited samples, Rmax � 30h�1Mpc. If thisobjection is justi�ed, the normalization procedure with the help of the correlation function is useless!13



1.4 ModelsThe most simple picture, a universe with 
h2 = 
Bh2 � 0:1 and adiabatic initial uctuationsis de�nitely ruled out by the limits of the microwave background uctuations [Gouda et al., 1989,Gouda et al., 1991]. This is a �rst, very important result in the discussion of di�erent models whichmight account for the formation of large scale structure.To give the reader a taste of the presently favored scenarios, we present here �ve cases. A sixthpossibility, the \texture scenario", will be discussed in Chapters 4 and 5. It is clear that a mixture ofthe hot dark matter (HDM) and cold dark matter (CDM) models presented here, as well as defectswith HDM or any of the proposed scenarios with addition of a cosmological constant might lead tomodels that �t the observations better. The ones presented here are partly chosen by reasons ofsimplicity. The �rst attempt to treat a class of models systematically is given by Holtzman [1989],where 94 di�erent combinations of (
�;
CDM ;
HDM ;
B) are investigated.In this section we give a short description of the models chosen, and compare them with someobservational phenomena. Our aim is only to give a sketchy overview of these models; readersinterested in more details are referred to the literature given in the text.1.4.1 The isocurvature baryon modelAs the most conservative alternative to the adiabatic baryon model, Peebles [1987] pursued thequestion, whether it is possible to construct a viable scenario of structure formation without theassumption of any exotic, i.e. up to now unobserved, form of energy, a universe with 
0 = 
B � 0:1,which is still marginally consistent with nucleosynthesis limits on 
B.In order not to overproduce CMB uctuations, one has to assume isocurvature initial perturba-tions, i.e. no perturbations in the geometry on cosmologically relevant scales (see Section 3.1). Fromthis one can conclude ��=� � 0 on scales which are larger than the size of the horizon. Since theuniverse is radiation dominated initially, �r � �B this yields j��r=�rj � j��B=�B j, i.e. isothermaluctuations.Isocurvature perturbations allow for relatively high initial values of ��B and therefore lead to earlystructure formation. Galaxies form at zg � 10. The even earlier formation of small objects reionizesthe universe. Small scale anisotropies in the CMB can then be damped by photon di�usion. Forphoton di�usion to be e�ective, reionization must take place before the universe becomes opticallythin. This provides a lower limit to a 'useful' reionization redshift (see Chapter 3):zi � zdec � 100(
Bh:03 )2=3 :Photon di�usion then damps uctuations on all scales smaller than the horizon scale at decoupling,lH(zdec) and correspondingly all angular scales with� � �dec � 6oq
(100=zdec) :The problems of this scenario are twofold: First, the quadrupole anisotropy of the CMB turns out tobe unacceptably large [Gouda et al., 1991]. A way out of this problem is a steep initial perturbationspectrum, but then it is di�cult to reproduce the large amplitudes of the galaxy correlations onlarge scales.(Although, for steep a enough spectrum, even quadrupole uctuations may be dampedby photon di�usion, see Section 3.2.3!)Secondly, observations hint that galaxy formation might peak around z � 2 or, at least, is stillgoing on around z � 1, whereas in the isocurvature baryon model the process of galaxy formation ismost probably over before z = 3. 14



1.4.2 Hot dark matterMassive neutrinos with Pmi � 200eV h2 they can provide the dark matter of the universe anddominate the total energy density with 1 = 
tot � 
� [Doroshkevich et al., 1980, Bond et al., 1980].Large scale structure then develops as follows:Initial uctuations from ination give rise to a scale invariant spectrum of Gaussian uctuations.These initial uctuations are constant until they 'reenter the horizon' (i.e. their scale becomes smallerthan the size of the horizon, l < lH). Thereafter they decay by free streaming if the universe is stillradiation dominated; if the universe is matter dominated (z � 2 � 104) they grow in proportion tothe scale factor [Bond and Szalay, 1983, Durrer, 1989a]. This leads to a short wavelength cuto� ofthe linear perturbation spectrum at lFS � 40(m�=30eV )�1h�1Mpc. The corresponding cuto� massis MFS � 1015(30eV=m�)2M�. The linear spectrum for HDM is given in Fig. 3.In this model, large objects with mass � MFS (large clusters) form �rst . They then frag-ment into galaxies. Gravitational interaction of collisionless particles generates sheets, pancakes[Zel'dovich, 1970], and galaxies are thought to lie on the intersections of these sheets. This leads toa �lamentary structure. Simulations of HDM show [Centrella and Melott, 1982, White et al., 1983]that in order to obtain the correct galaxy correlation function today, the large scale structure be-comes heavily overdeveloped (see Fig. 4). The other main problem is that galaxy formation startsonly very recently (z � 1). The model has serious di�culties to account for quasars with redshiftsz � 3 � 4. In addition to these grave objections, CMB uctuations turn out to be too large in thismodel. Since galaxy formation is only a secondary process, initial uctuations which determine theamplitudes of CMB anisotropies must be rather large.Because their thermal velocities are relatively high, massive neutrinos can only marginally providethe dark matter of galaxies but they cannot be bound to dwarf galaxies. If neutrinos are to constitutethe dark matter of a virialized object with velocity dispersion � and size r, their mass is limited frombelow by the requirement [Tremaine and Gunn, 1979]m� � 30eV (200km=s� )1=4( r10kpc )1=2 :Since also dwarf galaxies do contain substantial amounts of dark matter[Carignan and Freeman, 1988], this is another serious constraint for the HDM model.1.4.3 Cold dark matterIn this scenario one assumes the existence of a cold dark matter particle which at present dominatesthe universe with 1 = 
tot � 
CDM . Particle physics candidates for such a matter component arethe axion or the lightest super{symmetric particle. A more extended list can be found in Kolb andTurner [1990].Again it is assumed that an inationary phase leads to a scale invariant spectrum of Gaussianinitial uctuations. After the universe becomes matter dominated at zeq � 2� 104h2, perturbationssmaller than the horizon, l � leq � 10(
h2)�1. start growing. Damping due to free streaming isnegligible. Because of the logarithmic growth of matter uctuations in the radiation dominated era(see Section 3.1), the spectrum is slightly enhanced on smaller scales l < leq.According to this linear spectrum, sub{galactic objects form �rst. Once the perturbations becomenon{linear, these objects virialize and develop at rotation curves. Only very recently, big structuresbegin to form through tidal interactions and mergers [Davis et al., 1988].15



To obtain a mass distribution with 
dyn � 0:1 � 0:2 < 
 = 1, it is necessary that most of themass is in the form of a dark background which is substantially less clustered than the luminousmatter. This can be achieved with the idea of biasing: Luminous galaxies only form at high peaksof the density distribution. Since for a Gaussian distribution high peaks are more strongly clusteredthan average, this simple prescription has the desired e�ect [Kaiser, 1985, Bardeen et al., 1986].Usually one introduces a bias parameter b and requires that galaxies form only in peaks of heightb�, where � is the variance of the Gaussian distribution of density peaks. The best results areobtained for a bias parameter b � 1:5 � 2. Clearly, once the correct hydrodynamical treatmentof baryons is included in the numerical simulations, such a bias parameter (which otherwise is justan assumption of how light traces mass) could be calculated. First preliminary results of suchcalculations [Cen et al., 1990, Ostriker, 1992] indicate that the above assumption is probably quitereasonable. A problem of the biasing hypothesis is the prediction of many dwarf galaxies in the voidswhich have not been found despite extensive searches.The large scale structure obtained in this scenario looks at �rst sight rather realistic (see Fig. 5).It leads to the right galaxy galaxy correlation function up to 10Mpc. But the recently detected hugestructures like the great wall (see Geller and Huchra [1989]) are very unlikely in this model. Thissituation has been quanti�ed by comparing the angular correlation function from the deep IRASsurvey with the one predicted by CDM [Maddox et al., 1990]. There, a substantial excess of power(as compared to the CDM model) on large angular scales, � > 2o is found (see Fig. 6).Since galaxies form relatively late (at z � 2), it might also be di�cult to produce the very highredshift quasars (z � 5). But since their statistics are still so low, and since very little is known onthe ratio of normal galaxies to quasars at high redshift, this may not be a real problem.1.4.4 Cosmic stringsHere, initial uctuations are seeded by cosmic strings which form via the Kibble mechanism (seeSection 3) after a phase transition at Tc � 1015GeV [Vilenkin, 1980].Inter{commutation and gravitational radiation of cosmic string loops (see Vachaspati and Vilenkin[1984], Durrer [1989b]) determine the evolution of a network of (non{superconducting) cosmic strings.Numerical simulations support analytical arguments for a scaling law, �string / 1=(at)2 / �,for the energy density of a cosmic string network. In contrast to gauge monopoles or domainwalls, strings do not dominate the energy density of the universe and are cosmologically allowed[Albrecht and Turok, 1989].It is well known that a static straight cosmic string does not accrete matter, whereas a cosmicstring loop from far away acts like a point mass [Vilenkin, 1980]. High resolution simulations ofcosmic string networks [Bennett and Bouchet, 1990] have shown that the loops that chop o� thenetwork are too small (lloop � 0:01lH ) for e�cient accretion. But moving long strings produce largeaccretion wakes behind them which might provide the sheets and walls observed in the universe[Bertschinger, 1987, Perivolaropoulos et al., 1990]. In this scenario galaxies form via fragmentationand/or accretion onto loops.A relatively new idea is that chopping o� small loops could lead to wiggles on the long strings.Cosmic strings with such small scale wiggles give rise to strings with an e�ective tension which issmaller than its e�ective energy density. In contrast to the original cosmic strings, wiggly strings canaccrete matter even if they are static [Carter, 1990, Vilenkin, 1990, Vachaspati and Vilenkin, 1991].In order for the large scale structure not to be 'drowned', in these small scale structures, the scenarioworks best if the dark matter is hot, massive neutrinos (HDM), so that the small scale uctuations16



are damped by free streaming.The requirement for successful structure formation on one hand and the di�culty not to over-produce microwave background anisotropies [Stebbins, 1988] on the other hand tightly constrain thepossible value of the symmetry breaking scale� = G�2 � (1 � 2)� 10�6 :Recent work using new cosmic string simulations in which these estimates were redone to comparethe CMB anisotropies with the COBE measurements led to a similar value[Bennett and Bouchet, 1992, Perivolaropoulos, 1993].1.4.5 Global monopolesLike for cosmic strings also the energy density of global monopoles produced by the Kibble mech-anism obeys a scaling law. Therefore, they are candidates for a model of structure formation. Incontrast to local monopoles, the gradient energy of global monopoles introduces a long range in-teraction, so that monopole anti{monopole pairs annihilate, leaving always only a few per horizon[Barriola and Vilenkin, 1989, Bennett and Rhie, 1990].One assumes, like in the CDM model, that the matter content of the universe is dominated by colddark matter with 1 = 
 � 
CDM . The large scale structure induced by global monopoles seems tolook quite similar to the texture scenario. Galaxy formation starts relatively early, the galaxy correla-tion function and large scale velocity �eld are in agreement with observations. The CMB uctuationsare similar to those obtained for the texture scenario (see Chapter 5) [Bennett and Rhie, 1992].Recent investigations [Pen et al., 1993] claim that all models with global defects and CDM misssome large scale power on scales l � 20Mpc.
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Chapter 2Gauge Invariant Perturbation TheoryFor linear cosmological perturbation theory to apply, we must assume that the spacetime manifoldMwith metric g and energy momentum tensor T of \the real universe" is somehow close to a Friedmannuniverse, i.e., the manifold M with a Robertson{Walker metric �g and a homogeneous and isotropicenergy momentum tensor T . It is an interesting, non{trivial unsolved problem how to construct �gand T from the physical �elds g and T in practice. There are two main di�culties: Spatial averagingprocedures depend on the choice of a hyper{surface and do not commute with derivatives, so thatthe averaged �elds �g and T will in general not satisfy Einstein's equations. Furthermore, averagingis in practice impossible over super{horizon scales.We now assume that there exists an averaging procedure which leads to a Friedmann universewith spatially averaged tensor �elds Q, such that the deviations (T�� � T��)=maxf��gfjT ��jg and(g�� �g��)=maxf��gfg��g are small, and �g and T satisfy Friedmann's equations. Let us call such anaveraging procedure 'admissible'. There might also be another admissible averaging procedure (e.g.over a di�erent hyper{surface) leading to a slightly di�erent Friedmann background (�g2; T 2). In thiscase, the averaging procedures are isomorphic via an isomorphism � on M which is close to unity:�g2 = ���gT 2 = ��T ;where ��(Q) denotes the pushforward of the tensor �eld Q under �. The isomorphism � can berepresented as the in�nitesimal ow of a vector �eld X, � = �X� . Remember the de�nition ofthe ow: For the integral curve x(s) of X with starting point x, i.e., x(s = 0) = x we have�Xs (x) = x(s). In terms of the vector �eld X, the relation of the two averaging procedures is givenby �g2 = ���g = �g � �LX�g +O(�2) (2.1)T 2 = ��T = T � �LXT +O(�2) : (2.2)In the context of cosmological perturbation theory, the isomorphism � is called a gauge transforma-tion. And the choice of a background (�g; T ) corresponds to a choice of gauge. The above relation isof course true for all averaged tensor �elds Q and Q2. Separating Q into a background componentand a small perturbation, Q = Q + �Q(1) = Q2 + �Q(2) , we obtain the following relation:Q(2) = Q(1) + LXQ : (2.3)18



Since each vector �eld X generates a gauge transformation � = �X� , we can conclude that onlyperturbations of tensor �elds with LXQ = 0 for all vector �elds X, i.e., with vanishing (or constant)'background contribution' are gauge invariant. This simple result is sometimes referred to as the'Stewart Lemma' [Stewart and Walker, 1977].The gauge dependence of perturbations has caused many controversies in the literature, sinceit is often di�cult to extract the physical meaning of gauge dependent perturbations, especially onsuper{horizon scales. This has led to the development of gauge invariant perturbation theory whichwe are going to present in this chapter. The advantage of the gauge{invariant fromalism is that thevariables used have simple geometric and physical meanings and are not plagued by gauge modes.Although the derivation requires somewhat more work, the �nal system of perturbation variables isusually simple and well suited for numerical treatment. We shall also see, that on subhorizon scales,the gauge invariant matter perturbations variables approach the usual, gauge dependent ones, andone of the geometrical variables approaches the Newtonian potential, so that the Newtonian limitcan very easily be performed.There are two review articles on the subject [Kodama and Sasaki, 1984, Mukhanov et al., 1992].Our treatment will be in some way complementary. Collisionless particles, photon propagation andseeds (Sections 2.3, 2.4, 2.5) are not discussed in these reviews. On the other hand, we do notinvestigate perturbation theory of scalar �elds which is presented extensively in the other publica-tions, since it is needed to treat uctuations induced by ination. We want to discuss perturbationsinduced by topological defects. Here, the scalar �eld itself is a small perturbation on a matter orradiation dominated background. This issue will become more clear later.First we note that since all relativistic equations are covariant (i.e. can be written in the formQ = 0 for some tensor �eld Q), it is always possible to express the corresponding perturbationequations in terms of gauge invariant variables.2.1 Gauge Invariant Perturbation VariablesIn this section we introduce gauge invariant variables which describe the perturbations of the metricand the energy momentum tensor in a Friedmann background.There are two main approaches to �nd gauge invariant quantities: One possibility is to makefull use of the above statement that tensor �elds with vanishing background contribution are gaugeinvariant and use them to de�ne gauge invariant perturbation variables. Examples are the Weyltensor, the acceleration of the energy velocity �eld, anisotropic stresses, shear and vorticity of theenergy velocity �eld. This covariant approach was originally proposed by Hawking [1966] and laterextended by Ellis and Bruni [1989], Ellis et al. [1989], Hwang and Vishniac [1989], Bruni et al.[1992b], Dunsby [1992] and others.The other possibility is to arbitrarily parametrize the perturbations of the metric, the energymomentum tensor, the distribution function, a scalar �eld... and discuss the transformation proper-ties of these gauge dependent variables under gauge transformations. One can then combine theminto gauge invariant quantities. This way was initiated by Gerlach and Sengupta [1978] and Bardeen[1980] and later continued by Kodama and Sasaki [1984],Kasai and Tomita [1986], Durrer [1988],Durrer and Straumann [1988], Durrer [1989a], Durrer [1990], Mukhanov et al. [1992] and others.In this approach one usually performs a harmonic analysis and the gauge invariant perturbationvariables found in this way may be acausal (e.g., they may require inverse Laplacians over spatialhyper{surfaces).As in the second approach we divide the perturbations into scalar, vector and tensor contributions,19



but we do not perform the harmonic analysis. Our perturbation variables are thus space (and time)dependent functions and not just amplitudes of harmonics. In order to obtain unique solutions, werequire (for non{positive spatial curvature) all the perturbation variables to vanish at in�nity. Ipartly relate the two approaches by originally performing the second, but in many cases identifygauge invariant variables with tensor �elds which vanish in an unperturbed Friedmann universe. Itcould not be avoided to use a somewhat extensive vocubulary for all the variables used in this text.To help the reader not to get lost, I have included a glossary in Appendix B.Like in Chapter 1, the unperturbed line element is given byds2 = a2(�dt2 + ijdxidxj) ;where  is the metric of a three space with constant curvature k = �1 or 0 and overdot denotesderivatives w.r.t conformal time t. We �rst de�ne scalar perturbations of the lapse function �, theshift vector � and the 3-metric g of the slices of constant time1 by� = a(1 + A) (2.4)� = �Bji@i (2.5)g = a2[(1 + 2HL � (2=3)l24HT )ij + 2l2HT jij]dxidxj : (2.6)We denote 3{dimensional vector and tensor �elds by bold face letters; j and 4 denote the covariantderivative and Laplacian with respect to the metric . The variables A; B; HL; and HT are arbitraryfunctions of space and time. To keep them dimensionless, we have introduced a length l which, inapplications, will be chosen to be the typical scale of the perturbations so that, e.g., O(B) � O(lBji).By choosing the metric perturbations in the form (2.4{2.6), we restrict ourselves to scalar typeperturbations, but we do not perform a harmonic analysis. Vector perturbations of the geometry areof the form� = aBi@i (2.7)g = a2[ij + lHijj + lHjji]dxidxj ; (2.8)where Bi@i and Hi@i are divergencefree vector �elds which vanish at in�nity.Tensor perturbations are given byg = a2[ij + 2Hij ]dxidxj : (2.9)Here Hij is a traceless, divergencefree, symmetric tensor �eld on the slices of constant time.Writing the 4{dimensional metric in the formg�� = �g�� + a2h�� ; (2.10)the above de�nitions of the perturbation variables for scalar perturbations yieldh(S) = �2A(dt)2 + 2lB;i dtdxi + 2(HL � l234HT )ijdxidxj + 2l2HT jijdxidxj : (2.11)For vector and tensor perturbations one obtains correspondinglyh(V ) = 2Bidxidt + l(Hijj + Hjji)dxidxj and (2.12)h(T ) = 2Hijdxidxj : (2.13)1A short description of the 3+1 formalism of general relativity is given in Appendix A20



From (2.4), (2.5), (2.6), (2.7) and (2.8), one can calculate the 3{dimensional Riemann scalar andthe extrinsic curvature given by Kij = �ni;j. Palatini's identity (see Straumann [1985]) yields thegeneral formula�R(g + �g) = (�gji )jijj �4�gii :This leads to the following result for scalar perturbations�R = �4a�2(4+ 3k)R , R = HL � l234HT ; (2.14)K(aniso) = �[2 _al2(HT jij � 13ij4HT ) + a(l�jij � l3ij4�)]dxidxj , l� = l2 _HT � lB : (2.15)For vector perturbations one obtains�RV = 0 (2.16)KV (aniso) = �[ _a(Hijj + Hjji) + a2(�ijj + �jji)]dxidxj with �i = l _Hi �Bi : (2.17)K(aniso) is the traceless contribution to the extrinsic curvature of the slices of constant time or, whatamounts to the same thing, the shear of the normal to the slices.We now investigate the gauge transformation properties of the variables de�ned above. Weintroduce the vector �eld describing the gauge transformation byX = T@t + Li@i :Using simple identities like LX(df) = d(LXf) and (LX)ij = Xijj+Xjji, we obtain the Lie derivativeof the unperturbed metricLX�g = a2[�2( _aaT + _T )dt2 + 2( _Li � Tji)dxidt + (2 _aaTij + Lijj + Ljji)dxidxj] :For scalar type gauge transformations, Li is of the form Li = lLji for some scalar function L. Insertingthis above and comparing with the parametrization of the perturbed metric h(S), eq. (2.11), we �ndthe following transformation laws:A ! A + _aaT + _T (2.18)lB ! lB � T + l _L (2.19)HL ! HL + _aaT + (l=3)4L (2.20)l2HT ! l2HT + lL : (2.21)(2.22)This yields the transformation properties for R and �R! R+ _aaT ; � ! � + T : (2.23)21



The following scalar perturbation variables, the so called Bardeen potentials, are thus gauge invariant(see [Bardeen, 1980, Kodama and Sasaki, 1984] and [Durrer and Straumann, 1988]):� = R� ( _a=a)l� (2.24)	 = A� ( _a=a)l� � l _� : (2.25)We shall later see that 	 is a relativistic analog of the Newtonian potential.For vector type gauge transformations, where T = 0 and Li is a divergence free vector �eld onthe hyper{surfaces of constant time, one immediately sees that �i is gauge-invariant.Tensor perturbations are of course always gauge invariant (there are no tensor type gauge trans-formations).Gauge transformations remove two scalar and one vector degrees of freedom, so that geometricalperturbations are fully characterized by six degrees of freedom which we parametrize in the gaugeinvariant variables 	;�; �i and Hij.Some combinations of these quantities have simple geometric interpretations. From the StewartLemma, we know that the Weyl tensor, which vanishes in an unperturbed Friedmann universe, isgauge invariant. A somewhat lengthy calculation shows that the electric and magnetic componentsof the Weyl tensor, are given byEij � 1a2Ci0j0= 12[(��	)jij � 134(��	)ij + _�ij ] (2.26)Bij � �12a2 �ilmClmj0= �(ilm[�j)mjl � 13j)l�smjs] (2.27)where �lm = �(V )lm + _Hlm and (i..j) denotes symmetrization in i and jis the sum of vector and tensor contributions to the extrinsic curvature (this result is obtained inBruni et al. [1992b]).We now discuss perturbations of the energy momentum tensor. We de�ne the perturbed energydensity � and energy velocity �eld u as the timelike eigenvalue and eigenvector of the energy mo-mentum tensor (note that, apart from symmetry, we do not make any assumptions on the nature ofT �� ): T �� u� = ��u� ; u2 = �1 :We then de�ne the perturbations in the energy density and energy velocity �eld by� = �(1 + �) ; (2.28)u = u0@t + ui@i ; (2.29)u0 is �xed by the normalization condition, u0 = a�1(1�A). In the 3{space orthogonal to u we de�nethe stress tensor by��� � P ��P � �T�� ; (2.30)22



where P = u
 u + g is the projection onto the sub{space of TqM normal to u(q). One obtains�00 = �0i = � i0 = 0 :The perturbations of pressure and anisotropic stresses can be parametrized by� ji = �p[(1 + �L)� ji + � ji ] , with �ii = 0 : (2.31)Again, we decompose these perturbations into scalar, vector and tensor contributions. For scalarperturbations one can setu0 = (1�A) ; uiu0 = �lv;i and �ij = l2(�jijj � 134��ij) :As before, the Lie derivatives of the unperturbed quantities �� ; �u = a�1@t ; �� = �p@i 
 dxidetermine the transformation laws of the perturbation variables. One �ndsLX �� = T _�� = �3(1 + w) _aaT �� (2.32)LX �u = [X; �u] = �a�1[( _aaT + _T )@t � Li@i] (2.33) LX �� = LX �p@i 
 dxi = T _�p@i 
 dxi � 3c2sw (1 +w) _aaT �p@i 
 dxi ; (2.34)where we have used the background energy equation,_�� = �3(1 + w) _aa �� ;and the de�nitionsw = �p=�� ; c2s = _�p= _�� :From eqs. (2.32) { (2.34) we obtain the transformation laws� ! � � 3(1 + w) _aaTlv ! lv + l _L�L ! �L � 3c2sw (1 + w) _aaT� ! � :A �rst gauge invariant variable is therefore� = � ;the scalar potential for anisotropic stresses. The other gauge invariant combination which can beconstructed from matter variables alone is� = �L � (c2s=w)� : 23



De�ning an entropy ux S� of the perturbations in the sense of small deviations from thermalequilibrium [Straumann, 1985, Appendix B ], one �nds for the entropy production rate of theperturbation [Durrer and Straumann, 1988]S�;� = 3( _a=a2T )� ;where T denotes the temperature of the system. The variable � thus measures the entropy productionrate.We now split the covariant derivative of the velocity �eld in the usual way into acceleration,expansion, shear and vorticity:u�;� = a� 
 u� + P��� + ��� + !�� :Here a = ruu is the acceleration;P�� = g�� + u�u�denotes the projection onto the sub{space of tangent space normal to u, � = u�;� is the expansion,��� = 12P ��P �� (u�;� + u�;�)� P���is the shear of the vector �eld u and!�� = 12P ��P �� (u�;� � u�;�)is the vorticity. A short calculation shows !�� = 0, �0� = 0 and�ij = al Vjij with lV = lv � l2 _HT : (2.35)We choose V as gauge invariant scalar velocity variable. For the acceleration one obtains a0 = 0 andai � A;i = 	;i + _Vi + _aaVi ;which shows for the �rst time the analogy of 	 with the Newtonian potential.There are several di�erent useful choices of gauge invariant density perturbation variables:Ds = � + 3(1 + w)( _a=a)l� (2.36)Dg = � + 3(1 + w)R = Ds + 3(1 + w)� (2.37)D = Ds + 3(1 + w)( _a=a)lV : (2.38)For a physical interpretation of these variables note thatD;i = P �i �;� (2.39)(Ds)(ij) + 3(1 + w)	(ij) = P �i P �j �;�� (2.40)(Dg)(ij) + 3(1 + w)(	� �)(ij) = P �i P �j �;�� : (2.41)24



Here we have set S(ij) � Sjij � (1=3)4Sij for an arbitrary scalar quantity S.Therefore, D and Ds + 3(1 +w)	 are potentials for the �rst and second \spatial derivatives" of theenergy density.For vector perturbations onlyui = 1avi and �ij = l2(�ijj + � jij )survive. Vector type gauge transformations yield the transformation lawsvi ! vi + _Li�i ! �i :In addition to the anisotropic stress potential �i � �i , two interesting gauge invariant quantitiesare the shear and vorticity of the vector �eld u:ui;j + uj;i = a(Vijj + Vjji) ; with V i = vi � l _Hi ; (2.42)ui;j � uj;i = a(
ijj � 
jji) ; with 
i = vi �Bi : (2.43)For tensor perturbations the only variable �ij � �ij is of course gauge invariant.We now show that for perturbations which are small compared to the horizon distance, lH , in ageneric gauge the gauge invariant combinations V and D(:) approach the original v and �. Let uschoose our free length scale l to be the typical size of a given perturbation. From the above equationit is then clear that for l� lH = t, D � Ds.Noting that perturbations of the Einstein tensor are given by second derivatives of the metricperturbations (Palatini's identity, see e.g. Straumann [1985]), we obtain the following order ofmagnitude equation:O(�TT )O(8�GT��) = O(t�2 �gg + (lt)�1 �gg + l�2 �gg ) : (2.44)Using Friedmann's equationO(8�GT��) = O( _a=a)2 = O(1=t2) � O(1=l2H)this yieldsO(�TT ) = O(�gg + (lH=l)�gg + (lH=l)2 �gg ) : (2.45)On sub{horizon scales, lH � l the metric perturbations are thus generically much smaller than thematter perturbations and the di�erence between the gauge invariant quantities V , D(:), V i, jOmiand v, �, vi becomes negligible.2.2 The Basic EquationsIn this section we write down the perturbation equations resulting from Einstein's equation, andenergy momentum \conservation" in a form which will be convenient later. All these equations aremost easily derived using the 3+1 formalism of gravity (see Appendix A) as we shall demonstratefor a few examples. 25



The perturbations of Einstein's equations and energy momentum conservation can be expressedin terms of the gauge invariant variables de�ned above. (A simple derivation of the equations forscalar perturbations is given in Durrer and Straumann [1988].) To simplify the notation we nowdrop the bar over background density and pressure.A) Constraint equations4�Ga2�D = �(4+ 3k)� (2.46)4�Ga2(� + p)lV = (_a=a)	� _� : (2.47)B) Dynamical equations �8�Ga2pl24� = 4(� + 	) (2.48)8�Ga2p(� + (c2s=w)Dg � (2=3)l24�) = ( _a=a)f _	� [(1=a)(a2�_a )�]�g+f2a( _a=a2): + 3( _a=a2)2g[	� 1=a(a2�_a )�] : (2.49)Since vector and tensor type perturbations are not treated in Durrer and Straumann [1988] andDurrer [1990], we present an explicit derivation of the vector perturbation equations, making use ofthe 3+1 formalism of general relativity (see Appendix A and Durrer and Straumann [1988]). Forvector perturbations, the unit normal to the equal time slices is given byn = ��1(@t � �) = a�1(@t �Bi@i) :We now decompose the energy momentum tensor in the formT = �n
 n + n
 S + S 
 n + Twhere, as before, bold type vector and tensor �elds, S and T, are tangent to the equal time hyper{surfaces. Using the Gauss{Codazzi{Mainardi formulas to express the four dimensional curvature interms of the three dimensional and the second fundamental form, one can derive the following 3+1split of Einsteins equations (Appendix A4):R+ (trK)2 � tr(K2) = 16�G� (2.50)r �K �rtr(K) = 8�GS (2.51)@tK �L�K +Hess(�)���[Ricci � 2K �K + (trK)K] = �4�G�[2T + g(�� trT )] ; (2.52)where K = 12�(L�g � @tg) is the second fundamental form.For vector perturbations only the second constraint equation and the traceless part of the dy-namical equation contribute. From our de�niton of vector perturbations of the energy momentumtensor, one �ndsS = a(� + p)(vi �Bi)@i : 26



In what follows we use the notation X(V )ij for the symmetric, traceless tensor constructed from thevector �eld X, i.e., X(V )ij = 12 (Xijj + Xjji). We then haveg = a2(ij + 2lH(V )ij )dxidxjand with (2.17) the second fundamental form is given byK = �a[ _aa(ij + 2lH(V )ij ) + �(V )ij ]dxidxj :This leads tor �K = � 12a(4�i + � jijj )@i = � 12a (4+ 2k)�i@iThe constraint equation (2.51) thus results in�12(4+ 2k)�i = 8�G(� + p)a2
i : (2.53)Let us now proceed to the dynamical equation. Up to �rst order we obtain the following expres-sions for the terms in (2.52):L�K = �2 _aB(V )ij dxidxjK2 = [( _aa)2(ij + 2lH(V )ij ) + 2 _aa�(V )ij ]dxidxjRicci(g) = 2k(ij + 2lH(V )ij )dxidxj8�GT = 8�Ga2p(ij + 2lH(V )ij + l�(V )ij )dxidxj4�Gg(�� trT ) = 4�G(�� 3p)a2(ij + 2lH(V )ij )dxidxj@tK = �[�a(ij + 2lH(V )ij ) + _a(�(V )ij + 2l _H(V )ij ) + a _�(V )ij ]dxidxjThe result for Ricci(g) is again easily derived using Palatini's identity [Straumann, 1985].With the help of the background relation4�Ga2(�� p) = �aa + ( _aa)2 + 2k ;equation (2.52) then yields_�(V )ij + 2( _aa)�(V )ij = 8�Ga2pl�(V )ij :Since we require limr!1 �i = limr!1 �i = 0, the tensor �elds, �(V )ij and �(V )ij uniquely determinethe corresponding vector �elds:_�i + 2( _aa )�i = 8�Ga2pl�i ; (2.54)or (a2�i): = 8�Ga4pl�i : (2.55)In the absence of anisotropic stresses, vector anisotropies in the extrinsic curvature thus decay like1=a2. 27



In a similar way one �nds the tensor perturbation equation�Hij + 2 _aa _Hij + (2k �4)Hij = 8�Ga2p�ij : (2.56)This is a wave equation with source term. It describes the creation, propagation and damping ofgravitational waves in a Friedmann background .C) Conservation equationsThe energy and the momentum conservation equations of each independent type of matter (i.e.each matter component which does not interact other than gravitationally with the rest) yields thefollowing equations of motion for the scalar perturbation variables D� and V�, where the index �denotes the di�erent matter components (e.g. radiation, dark matter, baryons ...):_D� � 3w�( _a=a)D� = (4+ 3k)[(1 + w�)lV� + 2( _a=a)w�l2��]+3(1 + w�)4�Ga2(� + p)(lV � lV�) ; (2.57)l _V� + (_a=a)lV� = c2�1 + w�D� + w�1 + w��� + 	 + 2=3(4 + 3k) w�1 +w� l2�� : (2.58)The total perturbations are de�ned as the sums:�D = X� ��D� ; (� + p)V = X� (�� + p�)V� : (2.59)The adiabatic sound speed, c� and enthalpy, w� arec2� = _p�= _�� ; w� = p�=�� and w = P� p�P� �� � p=� ; c2s = _p= _�:The corresponding equations for interacting matter components are derived in[Kodama and Sasaki, 1984].We shall later also use equations (2.57) and (2.58) for a one component uid in terms of thedensity perturbation variable Dg and V . One easily �nds_Dg + 3(c2s � w)( _a=a)Dg � (1 + w)l4V + 3w( _a=a)� = 0 (2.60)l _V + (_a=a)(1 � 3c2s)lV = (	� 3c2s�) + c2s1 + wDg + w1 +w [� + 23(4+ 3k)l2�] (2.61)Again we derive the conservation equation for for vector perturbations in some detail. We startwith the spatial part of the 3+1 split ofT ��;� = 0 (see Appendix A.3):1� (@t �L�)S = �r(ln�)� + 2KS + (trK)S � 1�r � (�T ) : (2.62)All the terms in this equation are readily calculated. One obtains for each matter component(suppressing the index �)S = (� + p)a�1(vi �Bi)@i1�r(�T ) = r � T = 12a2 p(4l�i + 2kl�i)@i28



2KS = �2 _aa3 (� + p)(vi �Bi)@i(trK)S = �3 _aa3 (� + p)(vi �Bi)@iL�S = 0 (in �rst order)@tS = [� _aa�2(� + p)(vi �Bi) + a�1( _� + _p)(vi �Bi) + a�1(� + p)( _vi � _Bi)]@i= a�1(� + p)[ _vi � _Bi � (4 + 3c2s) _aa (vi �Bi)]@i :For the last equality sign, we made use of the background equation _� + _p = �3( _a=a)(1 + c2s)(� + p).Inserting all these results, eq. (2.62) becomes_
i + (1� 3c2s) _aa
i = � p2(� + p)(4+ 2k)l�i : (2.63)If there are no sources present, �i = 0 , and if c2s = w = constant, the amplitude of the vorticity isproportional to a3c2s�1 . In comparison to the expansion velocity, _a=a, the vorticity behaves likej
j= _aa / a0:5(9w�1) (2.64)(as long as curvature is negligible, i.e. for k � 1=t2). Especially, an initial vorticity in a radiationdominated universe (w = 1=3) grows relative to the expansion velocity in the course of expansion.In addition to Einstein's �eld equation and the conservation equations which are of course aconsequence of them, we have to add matter equations to fully describe the system. If the uiddescription is justi�ed, these can be given in the form� = �(D;V ) ; � = �(D;V ) :In Section 3.1 we discuss, for illustration, the simplest possibility, adiabatic perturbations of an idealuid, where we just set � = � = 0There are however situations where the description of matter as a uid is not su�cient. Onethen has to resort to the matter equations of more fundamental quantities, e.g. scalar �elds and/orgauge �elds.2.3 Collisonless MatterIn this section we discuss another approximate description of matter which can be used for weaklyinteracting particles like photons in a recombined universe or massive neutrinos which might consti-tute the dark matter. Here, the basic quantity is the one{particle distribution function f which liveson the mass bundle,Pm = f(p; x) 2 TMj g(x)(p; p) = �m2g :When collisions can be neglected, the matter equation is the one particle Liouville equation (for athorough treatment of the kinetic approach in general relativity see Stewart [1971] and references29



therein). Choosing coordinates (x�; pi) on Pm (where p = pi@i + p0(x�; pi)@0), Liouville's equationreads (p�@� � �i��p�p� @@pi )f = 0 :In an unperturbed Friedmann universe, this equation is equivalent to the requirement that thedistribution function, �f is a function of the redshift corrected momentum, v := aq�gijpipj alone.2.3.1 A gauge invariant variable for perturbations of the distribution functionWe want to split the distribution function f in a perturbed Friedmann universe into a backgroundcomponent and a perturbation. We cannot do this directly since the background distribution func-tion, �f is not de�ned on Pm but on the background mass bundle �Pm = f(p; x)j �g(x)(p; p) = �m2g .Therefore, to split f , we �rst have to choose an isomorphism � : Pm ! �Pm : (x; p) 7! (x; �p). Then wecan de�ne the perturbation according tof = ( �f + F ) � � :It is clear that the perturbation F in general depends on the isomorphism � which deviates in �rstorder from identity. Choosing two basis (e�) and (�e�) which are tetrads with respect to g and �g, wemay set for p = p�@� = ��e��(x; ��e�) = (x; ���e�) :On the other hand, every isomorphism � is of this form (i.e. �p(��e�) = ���e�) for suitably chosentetrads (e�) and (�e�). The tetrad e� can be de�ned bye� = �e� + R �� �e� ; (2.65)where the symmetrical part of R is determined by the orthogonality condition:R�� + R�� = �a2h(�e�; �e�) (g = �g + a2h) :To determine how F transforms under gauge transformations, we consider a vector �eld X whichde�nes a gauge transformation. The ow of X on M, �Xs , induces the ow T�Xs on TM. The naturallift, TX, of X to TM is de�ned by T�Xs = �TXs . A short calculation shows that for X = X�@�TX = (X�@�;X�;� p� @@p� )for a coordinate basis (x�; p = p�@�). For the full distribution function this leads to the transforma-tion law[f : Pm ! R] �! [(T�)�f : T�(Pm) ! R] : (2.66)In linearized form this yieldsf ! f + LTXf :We now want to use our split of f to obtain a transformation law for F . The �rst problem tonote here is that �f is not de�ned on all of TM but only on �Pm, and since TX is in general nottangent to �Pm, LTX �f is not well de�ned. But of course it is possible to extend the de�nition of �f to30



an open sub{set of TM containing �Pm. We thus do not have to bother about this technical point.We just keep in mind that the gauge transformation properties of F should not depend on such anextension.More important is that F also depends on the choice of the isomorphism �, the transformationproperties of which have also to be taken into account. We now choose two admissible splittings off given byf = �f1 � �1 + F1 = �f2 � �2 + F2 :Then, there exists a gauge transformation given by a vector �eld X, such that �f2 = �f1�LTX �f1, andtherefore�f1 � �1 + F1 = �f1 � �2 + F2 � LTX �f1 :The change of F under a gauge transformation is thus given byF2 � F1 = �f � �1 � �f � �2 + LTX �f � L(TX)kF1 ;where we have dropped the index 1 on �f .If �1;2 are speci�ed by the tetrads e(1;2)� which are related to the background tetrad �e� accordingto eq. (2.65) with matrices R(1;2)�� , we obtain�f � �1 � �f � �2 = @ �f@�� ��(R(2)�� �R(1)�� ) � �(TX)? �f ; (2.67)where we have introduced (TX)? = (R(2)�� �R(1)�� )�� @@�� :For p = p�@� = ��e� we �nd(TX)k = TX � (TX)? = X�@� + X�;� p� @@p� � (R(2)�� �R(1)�� )�� @@�� :It is easy to see that (TX)k(�g(p; p)) = 0 which shows that (TX)k is parallel to �Pm, i.e., (TX)k �fdoes not depend on the extension of �f which is necessary to make (TX) �f and (TX)? �f well de�ned.We now explicitly calculate (TX)k for X = T@t +Li@i and a tetrad (e�) which is adapted to thesplitting of spacetime into ft = const.g hyper{surfaces , �t:e0 = n ; �e0 = �n = a�1@t ; g(ei; n) = 0 :The triad (ei) is an orthogonal basis on the slices �t. We furthermore use the fact that there existcoordinates such that the metric of a space of constant curvature k is given byij = (1 + k4 r2)�2�ij � �2�ij :In this coordinates we can choose �ei = (a�)�1@i. According to our de�nition of the perturbed lapsefunction, shift vector and three metric, we then havee0 = ��1(@t � �) = (1�A)�e0 �Bi��eiei = (1�HL)�ei �H ji �ej ; 31



where the indices of the perturbation variables are, as usual raised and lowered with the metric and Hji is traceless, but may contain scalar, vector and tensor contributions. Using the gaugetransformation properties of these variables and the de�nition of (TX)? we obtain(TX)? = [( _a=a)T + _T ]�0 @@�0 � �(T ji � _Li)�0 @@�i+[( _a=a)� T� ji + 1=2(L jji + Ljji)]�i @@�j :Inserting the expression for TX we �nd(TX)k = T@t + Li@i + T;i pi @@p0 + Li;j pj @@pi + _Lip0 @@pi � ( _a=a)T�0 @@�0+�T 0i�0 @@�i � � _Li�o @@�i + 1=2(L jji + Ljji)]�i @@�j + ( _aaT�i @@�i :We now use that �f is only a function ofv = aqg(p;p) = asXi �i�i = a2�sXi pipi :Denoting the direction cosines of the momentum by �i we obtain (�i = pi=pPi pipi = �i=pPi �i�i),@ �f@pi = a2��id �fdv@ �f@�i = a�i d �fdv @ �f@t !pi = 2( _a=a)vd �fdv @ �f@xj!pi = (�;j =�)vd �fdvpj @ �f@pi = �j @ �f@�i = �j�ivd �fdv@ �f@p0 = @ �f@�0 = 0 :Furthermore,1=2((L jji + Ljji)�i�jvd �fdv = (Lj ;i �i�j + (�;j =�)Lj)vd �fdv :Thus, the terms containing Li in (TX)k �f cancel. Introducing q = �pv2 + m2a2 we �nally obtain(TX)k �f = [v( _a=a)T + q�iT;i ]d �fdv :This leads to the transformation lawF ! F d �fdv [v( _a=a) + q�i@i]T : (2.68)32



We �rst note that F is invariant under vector type gauge transformations. Comparing (2.68) withthe transformation properties of R and � given in (2.23) we �nd the following gauge invariantcombination:F = F � [vR+ ql�i@i�]d �fdv : (2.69)2.3.2 The perturbation of Liouville's equationChoosing an arbitrary basis of vector �elds (e�) and corresponding momentum coordinates, p = ��e�on TM, Liouville's equation is given byLXgf = ��e�(f)� !i�(p)�� @f@�i = 0 : (2.70)If we select, as above, a tetrad adapted to the slicing of M into slices �t of constant time,e0 = n = ��1(@t � �) ; ei 2 T�t ;we �nd (see Appendix A5)Xg = �0� (@t � �) + p�[!ij(p� �0� �)�j + (�0)2�ji� � ��1(�jij � cij)�0�j] @@�i ;where p = �iei is the component of p tangent to the slices and cij is de�ned by@t#i = cij#j :The (#i) are the basis of one forms dual to the vector �elds (ei) on �t. More details are found inAppendix A. We now rewrite Xgf in terms of the variablest; x, v = ap�i�i, �i = a�i=v = �i and q = a��0. For this we use the following easily establishedidentities:� = Bi@i = a�Biei� = a(1 + A) ; ��1 = a�1(1�A)cij = (_a=a)�ij + _HL�ij + _HiT j�jji = �jij = ei(�j) + �!i l(ej)�l = Bj;i +k�2 (Bixj �Bjxi �Blxl�ji ) :Since the background distribution function only depends on v, i.e., @@�i �f = a�i d �fdv , only the symmet-rical part of � jjj contributes to the Liouville equation in �rst order and the term !ij(�) gives nocontribution in this approximation. With the help of the splitting f = ( �f+F )�� and the backgroundLiouville equation for �f we �nally obtainq@tF + v�i@iF � vk�=2(xi � xj�j�i)@F@�i = [q2�iA;i�qv�i�j(Bjji � _Hji ) + v2HL]dfdv :33



For the gauge invariant tensor and vector contributions to F this yields, setting F (T ) � F (T ) andF (V ) � F (V )q@tF (T ) + v�i@iF (T ) � v�ijk�j�k @F (T )@�i = qv�i�j _Hij d �fdv (2.71)q@tF (V ) + v�i@iF (V ) � v�ijk�j�k @F (V )@�i = qv�i�j�(V )ijj d �fdv : (2.72)For scalar perturbations the situation is somewhat more complicated. Since the scalar contribu-tion F (S) to F is not gauge invariant we want to express the Liouville equation in terms of the gaugeinvariant combinationF (S) = F (S) � [vR+ ql�i�;i ]d �fdv :After carefully calculating @t[vR+ ql�i�;i ], @i[vR+ ql�i�;i ] and @@�i [vR + ql�i�;i ], we �nally obtainthe Liouville equation for scalar perturbations in a Friedmann universe [Durrer, 1990]:q@tF (S) + v�i@iF (S) � v�kij�i�j @F (S)@�k = (q2@i	� v2@i�)�id �fdv : (2.73)2.3.3 Momentum IntegralsTo connect this equation of motion to Einstein's �eld equations, we calculate the energy momentumtensor from f , which is given byT �� = ZPm(x) p�p�f�(p) ; (2.74)where � is an invariant measure on Pm(x) (for a general de�nition see Stewart [1971]). With respectto a tetrad p = ��e� , � looks like in special relativity�(p) = d�1 ^ d�2 ^ d�3j�0j = �v2a2q dvd
 ; (2.75)where we have used the de�nition of v and q, and d
 is the usual surface element on the 2-sphereintegrating over the momentum directions �. Let us, as an example, consider T 00 :T 00 = ��(1 + �) = �a2 Z p0p0v2q ( �f(v) + F )dvd
 :Expressing p0 and p0 in terms of v and q and separating into a background and �rst order contributionyields�� = 4��a4 Z v2q �fdv ; �� = 1�a4 Z v2qFdvd
 :Using this we obtain1��a4 Z v2qF (S)dvd
 = � � R��a4 Z v3qd �fdv dvd
 :After a partial integration, inserting dqdv = �2v=q and�p = 4��3a4 Z (v4=q) �fdv 34



we end up with1��a4 Z v2qF (S)dvd
 = � + 3(1 + w)R = Dg : (2.76)For the last equality sign, the de�nition of the gauge invariant density perturbation variable Dg isinserted.In a similar way all the other momentum integrals are obtained:l4V = �1a4(� + p) Z v3�i@iF (S)dvd
 (2.77)l2(�jij � 1=3ij4�) = �a4p Z v4q (�i�j � (1=3)�ij)F (S)dvd
 (2.78)� = 1a4p Z (v4�3q � c2sv2q� )F (S)dvd
 : (2.79)For the vector and tensor perturbations one �ndsV (V )i = �1a4(� + p) Z v3�iF (V )dvd
 (2.80)(l=2)(�(V )ijj ��(V )jji ) = �a4p Z v4q (�i�j � (1=3)�ij)F (V )dvd
 (2.81)�(T )ij = �a4p Z v4q (�i�j � (1=3)�ij)F (T )dvd
 : (2.82)These matter variables inserted in Einstein's equations (2.46) (2.48), (2.53) and (2.56) yield thegeometrical perturbations 	, �, �i and H(T )ij which enter in (2.73,2.72,2.71). In Section 5, we discusshow this closed system is altered in the presence of seeds.2.3.4 The ultrarelativistic limitHere we briey investigate the special case of extremely relativistic particles for which we can setm = 0. Since curvature only may play a role in the late, matter dominated stages of the universe, weneglect it here, k = 0; � = 1, so that q = v. (The generalization to k 6= 0 is straight forward.) In theextremely relativistic case all the integrals above contain the energy integral � R v3Fdvd
. Therefore,it makes sense to introduce the perturbation of the energy integrated distribution function, thebrightness:M� 4���a4 Z 10 Fv3dv ; (2.83)which is a function of the momentum directions �i only. De�ning� = 4���a4 Z 10 Fv3dv ;one �nds, using (2.69) and the gauge invariance of F (V ) and F (T )M(S) = �(S) + 4R+ 4l�i@i� (2.84)M(V ) = �(V ) (2.85)M(T ) = �(T ) : (2.86)35



In the case where M describes thermal radiation, we may interpret the perturbation in the distri-bution function as a perturbation of the temperature:f = �f  g(p; p)1=2T (x�; �) ! = �f � vaT (x�; �)� with T (x�; �) = �T (t) + �T (x�; �) : (2.87)Inserting this form of f one obtains F = �v d �fdv � �TT . The integral (2.83) then yields14M(S) = �T (S)T +R+ l�i�i14M(V ) = �T (V )T14M(T ) = �T (T )T :Therefore, (1=4)M can be interpreted as a gauge invariant variable for the temperature perturbation.2In terms of M the perturbation equations (2.73,2.72, 2.71) become (for k = 0)_M(S) + �i@iM(S) = 4�i@i(��	) (2.88)_M(V ) + �i@iM(V ) = �4�i�j�(V )ijj (2.89)_M(T ) + �i@iM(T ) = �4�i�j _Hij : (2.90)The evolution of the distribution of massless particles only depends on the Weyl part of the curvature.This is geometrically very reasonable since null geodesics are conformally invariant.By similar calculations like in the preceding paragraph, one �nds the perturbations of the energymomentum tensor for extremely relativistic particlesDg = 14� Z Md
 (2.91)l4V = �316� Z �i@iMd
 (2.92)l2(�jij � 1=3�ij4�) = 34� Z (�i�j � 13�ij)Md
 (2.93)� = 0 (2.94)V (V )i = 14� Z �iM(V )d
 (2.95)(l=2)(�(V )ijj ��(V )jji ) = 34� Z (�i�j � (1=3)�ij)M(V )d
 (2.96)�(T )ij = 34� Z (�i�j � (1=3)�ij)M(T )dvd
 : (2.97)2Note that even though F ,M and �T are scalar functions they do in general contain vector and tensor perturbations,since they depend not only on position but also on momentum or momentum direction. They may contain terms ofthe form �i�i or � ij�i�j where � is a divergence free vector �eld and � is a traceless, divergencefree tensor �eld. Theseare the type of contributions which we indicate with (V ) and (T ).36



We use Liouville's equation for massless particles for the numerical calculation of perturbations ofthe cosmic microwave background in Chapter 5. In Section 3.2 we use (2.88) to derive the Boltzmannequation for photons in an electron proton plasma.2.4 The Propagation of Photons in a Perturbed Friedmann Uni-verseOn their way from the last scattering surface into our antennas, the microwave photons travel througha perturbed Friedmann geometry. Thus, even if the photon temperature was completely uniformat the last scattering surface, we would receive it slightly perturbed [Sachs and Wolfe, 1967]. Inaddition, a photon traveling through a perturbed universe is in general deected. In this sectionwe calculate both these e�ects in �rst order perturbation theory. I present the calculation ratherexplicitly, since I haven't found a complete gauge invariant treatment of this problem anywhere inthe literature. For sake of simplicity we restrict ourselves to k = 0.As already mentioned, two metrics which are conformally equivalent,d~s2 = a2ds2 ;have the same lightlike geodesics, only the corresponding a�ne parameters are di�erent. We maythus discuss the propagation of light in a perturbed Minkowski geometry. This simpli�es thingsgreatly. We denote the a�ne parameters by ~� and � respectively and the tangent vectors to thegeodesic byn = dxd� and ~n = dxd~� ; n2 = ~n2 = 0 ;with unperturbed values n0 = 1 and n2 = 1. If the tangent vector of the perturbed geodesic is(1;n) + �n, the geodesic equation for the metricds2 = (��� + h��)dx�dx�yields to �rst order�n�jfi = ���� [h�0 + h�ini]fi + ���2 Z fi h��;�n�n�d� ; (2.98)where the integral is along the unperturbed photon trajectory and the unperturbed values for n� canbe inserted. Starting from this general relation, let us �rst discuss the photon redshift. The ratio ofthe energy of a photon measured by some observer at tf to the energy emitted at ti is given byEf=Ei = (~n � u)f(~n � u)i = (Tf=Ti)(n � u)f(n � u)i ; (2.99)where uf and ui are the four velocities of the observer and the emitter respectively and the factorTf=Ti is the usual redshift which relates n and ~n. We write Tf=Ti and not af=ai here, since alsothis redshift is slightly perturbed in general, and we want a to denote the unperturbed backgroundexpansion factor.Since this is a physical, intrinsically de�ned quantity it is independent of coordinates. It must thusbe possible to write it in terms of gauge invariant variables. We now calculate the gauge invariantexpression for Ef=Ei. The observer and emitter are comoving with the cosmic uid. We haveu = (1�A)@t � lv;i@i : 37



Furthermore, since the photon density �(r) / T 4 may itself be perturbedTf=Ti = (ai=af )(1 + �TfTf � �TiTi ) = ai=af (1 + (1=4)�(r) jfi ) ;where �(r) is the intrinsic density perturbation in the radiation. This term was neglected in the orig-inal analysis of Sachs and Wolfe, but since it is gauge dependent, doing so violates gauge invariance.We therefore have to include �(r) to obtain a gauge invariant expression. Inserting all this and (2.98)into (2.99) yieldsEf=Ei = (ai=af )[1 + njv;j jfi + Ajfi + (1=4)�(r)jfi � 1=2 Z fi _h��n�n�d�] : (2.100)With the help of equation (2.11) for the de�nition of h�� one �nds for scalar perturbations afterseveral integrations by part(Ef=Ei)(S) = (ai=af )f1 + [(1=4)D(r)s + lV (m)jj nj + 	]jfi � Z fi ( _�� _	)d�g (2.101)= (ai=af )f1 + [(1=4)D(r)g + lV (m)jj nj + 	� �]fi � Z fi ( _�� _	)d�g : (2.102)Here D(r)s ; D(r)g denote the gauge invariant density perturbation in the radiation �eld and V (m) is thepeculiar velocity of the matter component (the emitter and observer of radiation). From the secondof these equations one sees explicitly that the geometrical part of the perturbation of the photonredshift depends on the Weyl curvature only (specialize eq. (2.26) to purely scalar perturbations),i.e., is conformally invariant.For a discussion of the Sachs{Wolfe e�ect alone we neglect the intrinsic density perturbation of theradiation, i.e., we set D(r)g = 0, which now is a gauge invariant statement (but a bad approximationin many circumstances like, e.g. for adiabatic CDM perturbations). V (m) is a Doppler term due tothe relative motion of emitter and receiver. The 	� � { term accounts for the redshift due to thedi�erence of the gravitational �eld at the place of the emitter and receiver and the integral is a pathdependent contribution to the redshift.For vector perturbations �(r) and A vanish and eq. (2.100) leads to(Ef=Ei)(V ) = (ai=af )[1� V (m)j njjfi + Z fi _�jnjd�] : (2.103)Again we obtain a Doppler term and a gravitational contribution. For tensor perturbations, i.e.gravitational waves, only the gravitational part remains:(Ef=Ei)(T ) = (ai=af )[1� Z fi _Hljnlnjd�] : (2.104)Equations (2.101), (2.103) and (2.104) are the manifestly gauge invariant results for the Sachs{Wolfee�ect for scalar vector and tensor perturbations.In addition to redshift, photons in a perturbed Friedmann universe also experiences deection.We now calculate this e�ect.The direction of the light ray with respect to a comoving observer is given by the direction of thespacelike vectorn(3) = n+ (un)u 38



which lives on the sub{space of tangent space normal to u. Let us also de�ne the vector �eld njj(3),which coincides with n(3) initially (i.e. at ti) and is Fermi transported along u, i.e.runjj(3) = (njj(3)ruu)u : (2.105)Note, that we have to require Fermi transport and not parallel transport since u is in general nota geodesic and therefore (unjj(3)) = 0 is not conserved under parallel transport! (For an explanationof Fermi transport, see e.g. Straumann [1985]). njj(3) = (0;n) + �njj(3), where �njj(3) is determined bythe Fermi transport equation (2.105). Since the observer Fermi transports her frame of referencewith respect to which angles are measured, she would consider the light ray as not being deected ifnjj(3)(tf ) is parallel to n(3)(tf ). The di�erence between the direction of these two vectors is thus thelight deection:'e = 24n(3) � (njj(3) � n(3))(njj(3) � njj(3))njj(3)35 (tf ) : (2.106)Here e is a spacelike unit vector normal to u and normal to njj(3) which determines the direction of thedeection and ' is the deection angle. (Note that (2.106) is the general formula for light deectionin an arbitrary gravitational �eld. Up to this point we did not make any assumptions about thestrength of the �eld.) For a spherically symmetric problem, as we shall encounter when discussingthe collapsing texture, e is uniquely determined by the above conditions since the path of a lightray is con�ned to the plane normal to the angular momentum. In the general case, when angularmomentum is not conserved e still has one degree of freedom. We now calculate 'e perturbatively.Let us recall and de�ne the perturbed quantities:n = (1;n) + �n with n2 = 1u = (1; 0) + �u = (1 + 12h00;v)n(3) = (0;n) + �n(3) andnjj(3) = (0;n) + �njj(3) :The perturbation �n is given in (2.98). Furthermore, we obtain�n(3) = �u + �n� �u ; (2.107)with � = [nivi � �n0 + 12h00 + nihi0]The Fermi transport equation leads to�(njj(3))0 = ni(hi0 + vi) (2.108)�(njj(3))j = �12[hljnl)jfi + Z fi dt(hj0;l � hl0;j)nl : (2.109)39



So that (njj(3))2 = 1 and'e = �n(3) � (njj(3) � n(3))njj(3) = �u + �n� �u� �njj(3) � [hjininj + ni(�(njj(3))i + �ni � vi)]n :Inserting (2.107{2.109) into (2.106) we �nd'e0 = 0 (2.110)'ei = �i � (� � n)ni ; with (2.111)�j = [�nj � vj + 12hjknk]jfi + 12 Z fi (h0j;k � h0k;j)nkdt : (2.112)This quantitiy is observable and thus gauge invariant. For scalar perturbations one �nds (afterintegrations by parts)(�j)(S) = V;jjfi + Z fi (��	);jd� : (2.113)For spherically symmetric perturbations, where e is uniquely de�ned, we can write this result in theform ' = V;ieijfi + Z fi (��	);ieid� : (2.114)The �rst term here denotes the special relativistic spherical aberration. The second term representsthe gravitational light deection. Here again one sees that gravitational light deection, which ofcourse is conformally invariant, only depends on the Weyl part of the curvature. As an easy test weinsert the Schwarzschild weak �eld approximation: 	 = �� = �GMr . The unperturbed geodesic isgiven by x = (�;n� + ed), where d denotes the impact parameter of the photon. Inserting this into(2.114) yields Einstein's well known result' = 4GMd :For vector perturbations we obtain from (2.112)(�j)(V ) = 
jjfi � 12[Z fi (�j;k � �k;j)nkdt + Z fi �k;jnkd�] : (2.115)This result can be expressed in three dimensional notation as follows:'e = � � (� � n)n =�(
 ^ n) ^njfi + 12 Z fi (r ^ �) ^ndt� Z fi (r(� � n) ^ n) ^nd� :The �rst term is again a special relativistic "frame dragging" e�ect. The second term is the changeof frame due to the gravitational �eld along the path of the observer and the third term gives thegravitational light deection. This formula could be used to obtain in �rst order the light deectionin the vicinity of a rotating neutron star or a Kerr black hole. The special relativistic Thomasprecession is not recovered with this formula since it is of order v2.For tensor perturbations we �nd(�j)(T ) = �Hjknkjfi + Z fi Hlk;jnlnkd� ; 40



or, after an integration by parts,('ej)(T ) = �Hjknkjfi + Z fi (Hlk;j + _Hklnj)nlnkd� : (2.116)Only the gravitational e�ects remain. The �rst contribution comes from the di�erence of the metricbefore and after the passage of the gravitational wave. Usually this term is negligible. The secondterm accumulates along the path of the photon.
2.5 Gauge Invariant Perturbation Theory in the Presence of SeedsIn this section we add an inhomogeneous term to the perturbation equations. Perturbations canthen be generated even starting from an initially unperturbed spacetime. Seeds produce this in-homogeneous term in a natural way. By seeds we mean density perturbations originating from aninhomogeneously distributed form of energy whose mean density is much smaller than the densityof the Friedmann background. We assume that, once they are produced, these seeds do not interactwith the rest of the matter other than gravitationally.2.5.1 The energy momentum tensorSince the energy momentum tensor of the seeds, T ��(s) , has no homogeneous background contribution,it is gauge invariant by itself according to (2.3).T ��(s) can be calculated by solving the matter equations for the seeds in the Friedmann backgroundgeometry. (Since T ��(s) has no background component it satis�es the unperturbed matter and \con-servation" equations.) We again decompose T ��(s) into scalar, vector and tensor contributions. Theydecouple within linear perturbation theory and it is thus possible to write the equations for eachof these contributions separately. However, this decomposition is acausal. It requires T��(t;x) at agiven time t to be known for all positions x and not only within a causally connected region. Wejust ignore this problem now and, nevertheless, work with this decomposition. We parametrize thescalar (S) vector (V ) and tensor (T ) contributions to T ��(s) in the formT (sS)00 = a2�(s) = (M2=l2)f� (2.117)T (sS)i0 = a2lv(s)ji = (M2=l)fv ji (2.118)T (sS)ij = a2[(p(s) � (l2=3)4�(s))ij + l2�(s)jij ]= M2[(fp=l2 � (1=3)4f�)ij + f� jij] (2.119)T (sV )i0 = a2v(s)i = (M2=l2)w(v)i (2.120)T (sV )ij = a2l2 [�(s)ijj + �(s)jji ] = (M2=2l)(w(�)ijj + w(�)jji ) (2.121)T (sT )ij = a2�(s)ij = (M2=l2)� (�)ij : (2.122)41



As before, l is introduced merely to keep the functions f:, the vector �elds w: and the tensor �eld�� dimensionless. It may be chosen as a typical size of the seeds. M denotes a typical mass of theseeds. (It is of course possible to choose l = M�1.)If we are given the full energy momentum tensor T (s)�� which may contain scalar, vector and tensorcontributions, the scalar parts fv and f� are in general determined by the non{local identitiesT (s) jj0j = (M2=l)4fv ;(T (s)ij � 1=3ijklTkl)jij = 23M2(4+ 3k)4f� :On the other hand 4fv and 4(4+ 3k)f� are also determined in terms of f� and fp by the \conser-vation" equations:_f� � l4fv + (_a=a)(f� + 3fp) = 0 ; (2.123)�l _fv � 2( _a=a)lfv + fp + (2=3)l2(4+ 3k)f� = 0 : (2.124)Once fv is known it is easy to get wvi = l2=M2(T0i)� lfv;i. To obtain w�i we useT (s)jjij � T (sS)jjij = M2l (4+ 2k)w(�)i :Again w(�)i can also be obtained in terms of w(v)i with the help of the \conservation" euation:_w(v)i + 2( _aa )w(v)i � l2(4+ 2k)w(�)i = 0 : (2.125)2.5.2 Perturbation equationsThe energy momentum tensor of the seeds is determined by the unperturbed equations of motion.The gravitational interaction with the perturbations of other components does not contribute to �rstorder. We assume non{gravitational interactions with other components can be neglected. This iscertainly a good approximation soon after the phase transition and thus can only a�ect the initialconditions. (Situations where non{gravitational interactions must not be neglected are discussed byMagueijo [1992].) The geometrical perturbations can then be separated into a part induced by theseeds and a part caused by the perturbations in the remaining matter components:	 = 	s + 	m , � = �s + �m�i = �(s)i + �(m)iHij = H(s)ij + H(m)ij :Using Einstein's equations, we can calculate the geometry perturbations induced by the seeds:�(4+ 3k)�s = �(f�=l2 + 3( _a=a)fv=l) (2.126)( _a=a)	s � _�s = �fv=l (2.127)4(�s + 	s) = �2�4f� (2.128)42



( _a=a)f _	s � [(1=a)(a2�s_a )�]�g+f2a( _a=a2)� + 3( _a=a2)2g[	s � 1=a(a2�s_a )�] = 2�(fp=l2 � (2=3)4f�) (2.129)(4+ 2k)�(s)i = 2�w(v)i =l2 (2.130)2 _aa�(s)i + _�(s)i = �2�w(�)i =l (2.131)�H(s)ij + _aa _H(s)ij + (2k �4)H(s)ij = 2�� (�)ij =l2 : (2.132)We assume that � � 4�GM2 is much smaller than 1, so that linear perturbation analysis is justi�ed.As before, the part of the geometrical perturbations induced by the matter are determined by equa-tions (2.46) to (2.48). But in the conservation equations and in any matter equations the fullperturbations, 	, �, �i and Hij have to be inserted.We now discuss the example of a single uid with only scalar perturbations where � and �are given in terms of D and V . We assume that in addition to the seeds we have one perturbedmatter component which we indicate by a subscript m. Other components which contribute tothe background, but whose perturbations can be neglected, may also be present. The conservationequation (2.57) then reads_Dm � 3wm( _a=a)Dm = (4+ 3k)[(1 + wm)lVm + 2( _a=a)wml2�m]� 3(1 + wm)�fv=l : (2.133)The last term describes the inuence of the seeds.Solving this equation for (4+ 3k)lVm and inserting the result and its time derivative into (2.58)yields a second order equation for Dm. Using(4+ 3k)	 = 4�G�ma2(Dm � 2wml2(4+ 3k)�m) + �(f�=l2 + 3 _aafv=l � 2(4+ 3k)f�)and the conservation equation (2.124) we �nd�D � (4+ 3k)c2sD + (1 + 3c2s � 6w)( _a=a) _D � f3w(�a=a)� 9( _a=a)2(c2s � w) ++(1 + w)4�G�a2gD =(4+ 3k)w� + 2( _a=a)wl2(4+ 3k) _�+f2(�a=a)w � 6( _a=a)2(c2s �w) + (1 + w)8�Ga2p + 2=3(4+ 3k)wgl2(4+ 3k)�+(1 + w)�(f� + 3fp)=l2 ; (2.134)where we have dropped the subscript m.This equation describes the behavior of density perturbations in the presence of seeds in an arbitraryFriedmann background. We have not used Friedmann's equations to express �a=a in terms of wand _a=a, or � in terms of ( _a=a)2 so that (2.134) is valid also if there are unperturbed componentswhich contribute to the expansion but not to the perturbation. Note that within this gauge invarianttreatment the source term is, up to a factor (1+w), just the naively expected term 4�Ga2(�(s)+3p(s))for all types of uids. 43



We now simplify equation (2.134) in the case where � = � = 0 (adiabatic perturbations andno anisotropic stresses) and k = 0: If one chooses a realistic density parameter 0:2 � 
0 � 2, thecurvature term can always be neglected at early times, e.g., for redshifts z � 5. It is of the order(max(l; lH)=lk)2 as compared to the other contributions. (Here l and lk = k�1=2 denote the typicalsize of the perturbation and the radius of curvature, respectively.) Under these assumptions, eq.(2.134) becomes �D � c2s4D + (1 + 3c2s � 6w)( _a=a) _D�3[w(�a=a)� 3( _a=a)2(c2s � w) + (1 +w)(4�=3)G�a2]D = S ; (2.135)where S = (1 + w)�(f� + 3fp)=l2 .We Fourier transform (2.135) (and denote the Fourier transform of D with the same letter):�D + k2c2sD + (1 + 3c2s � 6w)( _a=a) _D�3[w(�a=a)� 3( _a=a)2(c2s � w) + (1 + w)(4�=3)G�a2]D = ~S : (2.136)~S = (1 + w)�( ~f� + 3 ~fp)=l2 is the Fourier transform of S.From the homogeneous solutions D1 and D2 of (2.136), we can �nd the perturbation induced byS with the Wronskian method:D = c1D1 + c2D2 ; (2.137)c1 = � Z ( ~SD2=W )dt , c2 = Z ( ~SD1=W )dt ; (2.138)where W = D1 _D2 � _D1D2 is the Wronskian determinant of the homogeneous solution.This leads to the following general behavior: If the time dependence of D1, D2 and ~S can beapproximated by power laws, D behaves like D / ~S as long as ~S 6= 0. If D1 and D2 are waveswith approximately constant amplitude and frequency !, D can be approximated by a wave withamplitude proportional to !�1 R ei!t ~Sdt. Thus, only typical frequencies of the source �nally survive.As a second example, we consider collisionless particles (again only scalar perturbations andk = 0 are considered). The source term on the r.h.s. of Liouville's equation (2.73) can be separatedas above into a part due to the collisionless component and a part induced by the seeds. Equation(2.73) then becomes(q@t + vk@k)F = d �fdv [(q=v)vk@k	m � (v=q)vk@k�m] + S ; (2.139)with S = d �fdv [(q=v)vk@k	s � (v=q)vk@k�s] : (2.140)In the same way, one obtains for massless particles@tM+ i@iM = 4i@i(�m �	m) + S ; (2.141)with corresponding source termS = 4i@i(�s �	s) : 44



With the integrals for the uid variables Dg, V , � and � given in Section 3 and Einstein's equations(2.46) to (2.48) for the geometrical perturbations 	m and �m induced by the collisionless component,this forms a closed system.
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Chapter 3Some Applications of CosmologicalPerturbation Theory3.1 Fluctuations of a Perfect FluidA perfect uid is free of anisotropic stresses, i.e. � = 0 ; �i = 0 ; �ij = 0 for scalar, vectorand tensor perturbations, respectively. For scalar perturbations the dynamical equation (2.48) thenrelates the Bardeen potentials:	 = �� :For vector perturbations we obtain from (2.54)a2�i = const. , i.e. �i = (a�=a)2��i :The vector contribution to the shear of the equal time hyper{sufaces of perfect uid perturbationsthus decays like 1=a2. For tensor perturbations eq. (2.56) yields�Hij + 2( _a=a) _Hij + (2k �4)Hij = 0 ;which describes a damped gravitational wave with damping scale _a=a = t�1.The often used notion of isocurvature uctuations is de�ned by 	 = � = 0 ( for scalar pertur-bations), �i = 0 (for vector perturbations) and Hij = 0 (for tensor perturbations) on super{horizonscales. Adiabatic uctuations require � = 0. In a coupled baryon/photon universe this reduces toD(B)g = (4=3)D(r)g . Note that uctuations from topological defects are always isocurvature, sincethey emerge in a causal way from an initially homogeneous and isotropic Friedmann universe.Let us now solve the perturbation equations for adiabatic perturbations of a one componentperfect uid with w = c2s =const. and negligible spatial curvature. This simpli�cation is a goodapproximation during some periods of time (e.g. in the radiation dominated epoch). The very simplebehavior of vector perturbations in this case is given by equation (2.64). For scalar perturbationsequations (2.57{2.58) reduce to_D � 3w( _a=a)D = (1 + w)l4V (3.1)l _V + (_a=a)lV = c2sw + 1D + 	 : (3.2)46



Taking the Laplacian of (3.2) (using (2.46) and � = �	) and inserting eq. (3.1) we obtain a secondorder equation for D�D + (_a=a)(1 � 3w) _D � [3w(�a=a) + (1 + w)4�G�a2 � c2s4]D = 0 : (3.3)For a spatially at universe with �1=3 < w = c2s =const., the scale factor obeys a power lawa = (�pCt)� ; with � = 23w + 1 and C = (8�G=3)�a2(�+1)=� = const.We now Fourier transform D, so that the Laplacian is replaced by a factor �k2. Equation (3.3) canthen be expressed as ordinary di�erential equation in the dimensionless variable � = kt. The regime� � 1 describes perturbations with wavelength substantially larger than the size of the horizon andthe regime � � 1 describes perturbations with wavelength much smaller than the size of the horizon.Denoting the Fourier transform of D again with D we �ndD00 + 2(� � 1)� D0 � (2� �)(� � 1)� �(� + 1)�2 D + wD = 0 :In terms of f = D���2 / �a3D, this equation becomesf 00 + 2� f 0 + [w + �(� + 1)�2 ]f = 0 : (3.4)For w = c2s 6= 0 this is the well known Bessel di�erential equation whose general solution isf = Aj�(cs�) + Bn�(cs�) � Z�(cs�) (3.5)(see Abramowitz and Stegun [1970]). For our perturbation variables D;	 and V this yieldsD = �2��Z�(cs�) (3.6)	 = �23�2���Z�(cs�) (3.7)V = 23�[�1��Z�(cs�)� cs1� � �2��Z��1(cs�)] ; (3.8)where we have used Z 0� = csZ��1 � (� + 1=�)Z� [Abramowitz and Stegun, 1970]. This solution wasoriginally obtained by Bardeen [1980]. The asymptotic behavior of Bessel functions yieldsZ� = C�� + E��(�+1) ; for cs� � 1andZ� = A� cos(cs� � ��) + B� sin(cs� � ��) ; for cs� � 1with �� = �(� + 1)=2. Therefore, the \growing" mode behaves like	 = 	0D = D0�2V = V0� 9>=>; for cs� � 1 (3.9)and 	 = 	0��(�+1) cos(cs� � ��)D = D0�1�� cos(cs� � ��)V = V0�1�� cos(cs� � ���1) 9>=>; for cs� � 1 : (3.10)47



On scales below the sound horizon, cs� � 1, density and velocity perturbations grow only if � < 1,i.e. for w > 1=3 (or w < �1=2) and they decay for �1=2 < w < 1=3. Radiation (w = 1=3) representsthe limiting case where the amplitude of density perturbations remains constant. Perturbations inthe gravitational �eld always decay for � � �1, i.e. for w � �2=3. On scales substantially larger thanthe sound horizon (cs� � 1) it might seem at �rst sight that density and velocity perturbations aregrowing. But one easily establishes that, e.g., the \growing" mode of the alternative gauge invariantdensity variable Dg = D�3(1+w)	�3(1+w)(�=�)V is constant. Therefore, in a coordinate systemwhere Dg represents the density uctuation (a slicing with R = 0), density perturbations do notgrow. This shows that the behavior of density perturbations on these scales crucially depends on thecoordinates and can not be inferred from the growth of the particular gauge invariant variable D.This leads us to de�ne the perturbation amplitude A on super{horizon scales as the amplitude of thelargest perturbation variable in a gauge where this quantity is a minimum. For scalar perturbationsthus A = minfgaugesg(maxfA;B;Hl;HT ; �; v; �L; �T g) :It is clear that this quantity is of the same order of magnitude as the largest gauge invariant variable.In our case thereforeA � j	j ;i.e., super{horizon perturbations do not grow in amplitude, as one would also expect for causalityreasons.Fortunately, this analysis, which shows that no perturbations with 0 < w � 1=3 grow, does nothold for dust (w = c2s = 0). In this case, equation (3.3) reduces to�D + (2=�) _D � (6=�2)D = 0 ;with the general solution D = At2 + Bt�3, yielding the growing mode solution	 = 	0D = D0�2 � = ktV = V0� :Again on super{horizon scales, � < 1 , the perturbation amplitude is given by 	0 and is thus constant,whereas on sub{horizon scales, � � 1, the largest gauge invariant variable is D = D0�2, i.e., densityperturbations do grow on sub{horizon scales.An additional important case is given by dust perturbations in a radiation dominated universewith �r � �m at times t � teq, where teq denotes the time when �r = �m, which happens at sometime, because �r decays faster (/ a�4) than �m / a�3. At t � teq the scale factor grows accordingto a / t but 4�G�ma2 � 4�G�ra2(t=teq) = (3=2) 1tteq . Equation (3.3) then yields�D + (1=t) _D � 32tteqD = 0 ;which is approximately solved byD = D0 log(t=teq) ; t� teq : (3.11)48



This fact, that even dust perturbations cannot grow substantially in a radiation dominated universe,is called the M�ez�aros e�ect [M�ez�aros, 1974].We can now draw the following conclusions: For adiabatic perturbations of a perfect uid, in auniverse where spatial curvature is negligible, the time evolution of D, � and V is given byD / ( a ; in a matter dominated background,log(t=t�) ; for kt� 1; in a radiation dominated background, (3.12)� = �	 = const. : (3.13)For pure radiation perturbations (p = (1=3)�; � = 0; � = 0) one obtainsD / ( const. ; for kt� 1exp(ik(x�p1=3t)) ; for kt� 1 ; (3.14)� = �	 / ( const. ; for kt� 11a2 exp(ik(x�p1=3t)) ; for kt� 1 : (3.15)On super{horizon scales, kt� 1 the total perturbation amplitude is given by j	j = j�j. Thus, evenif one special variable like, e.g., D is growing the perturbation amplitude A as de�ned above remainsconstant.We note the important result: The only substantial growth of linear perturbation is that ofsub{horizon sized, pressureless matter density perturbations in a matter dominated universe. ThenD / a and the gravitational potential is constant.3.2 The Perturbation of Boltzmann's Equation for Compton Scat-teringIn this section, we restrict ourselves to scalar type perturbations, i.e., vector and tensor �elds can bederived from scalar potentials. Furthermore, we set k = 0.Following Section 2.3, the perturbed photon distribution function is denoted by f = ( �f + F ) � �and lives on the one particle zero mass phase space, P0 = f(x; p) 2 TM : g(x)(p; p) = 0g. Choosingcoordinates (x�; pi) on P0, Boltzmann's equation for f readsp�@�f � �i��p�p� @f@pi = C[f ] ;where C[f ] is the collision integral depending on the cross section and angular dependence of theinteractions considered.In terms of the gauge invariant perturbation variable M (see section 2.3.4) the collisionlessBoltzmann equation is (2.88)_M+ �i@iM = 4�i@i(��	) ; (3.16)with (2.83)M � 4���a4 Z 10 Fv3dv= � + 4R+ 4l�i@i� : 49



To this we have to add the collision term which is given byC[M] = 4��a4 Z v3dvC[f ] = 4��a4 Z v3dvdf+dt � df�dt � d�(�)+dt � d�(�)�dt ;where f+ and f� denote the distribution of photons scattered into respectively out of the beam dueto Compton scattering.In the matter (baryon/electron) rest frame, which we indicate by a prime, we knowdf 0+dt0 (p; �) = �Tne4� Z f 0(p0; �0)!(�; �0)d
0 ;where ne denotes the electron number density, �T is the Thomson cross section, and ! is the nor-malized angular dependence of the Thomson cross section:!(�; �0) = 3=4[1 + (� � �0)2] = 1 + 34�ij�0ij with �ij = �i�j � 13�ij :In the baryon rest frame which moves with four velocity u, the photon energy is given byp0 = p�u� :We denote by p the photon energy with respect to a tetrad adapted to the slicing of spacetime intoft = constantg hyper{surfaces:p = p�n� ; with n = a�1[(1�A)@t + �i@i] ; see Chap. 2 .The lapse function and the shift vector of the slicing are given by � = a(1 +A) and � = �B;i@i . In�rst order,p0 = ap(1 + A)� ap�i�i ;and in zeroth order, clearly,pi = ap�i :Furthermore, the baryon four velocity has the form u0 = a�1(1�A) ; ui = u0vi up to �rst order.This yieldsp0 = p�u� = p(1 + �i(vi � �i)) :Using this identity and performing the integration over photon energies, we obtain�r d�+(�)dt0 = �r�Tne[1 + 4�i(vi � �i) + 14� Z �(�0)!(�; �0)d
0] :The distribution of photons scattered out of the beam, has the well known form(see e.g. Lifshitz and Pitajewski [1983])df�dt0 = �Tnef 0(p0; �) ;so that we �nally obtainC 0 = 4��ra4 Z dp(df+dt0 � df�dt0 )p3 = �Tne[�r � � + 4�i(vi � �i) + 316� �ij Z �(�0)�0ijd
0] ;50



where �r = (1=4�) R �(�)d
 is the photon energy density perturbation.Using the de�nitions of the gauge{invariant variables M and V , we can write C 0 in gauge{invariantform.C 0 = �Tne[D(r)g �M+ 4�il@iV + 12�ijM ij ] ; (3.17)with D(r)g = (1=4�) R Md
 = �r + 4R andM ij = 38� Z M(�0)�0ijd
0] :Since the term in square brackets of (3.17) is already �rst order we have C = dt0dt C 0 = aC 0. So thatthe Boltzmann equation becomes_M+ �i@iM = 4�i@i(��	) + a�Tne[D(r)g �M� 4�il@iV + 12�ijM ij] : (3.18)In the next two subsections we rewrite this equation for two special cases.Note that perturbations of the electron density, ne = �ne + �ne do not contribute in �rst orderfor a homogeneous and isotropic background distribution of photons. The only �rst order termwhich accounts for the perturbations of baryons and therefore acts as a source term for the photonperturbations is the Doppler term 4�i@iV which is due to the relative motion of baryons and photons.A comparison of the numerical integration of equation (3.18) with and without collision term (witha gravitational potential 	� � originating from a collapsing texture) is shown in Fig. 7. There onesees that the collision term has two e�ects:1) Damping of the perturbations by several orders of magnitude.2) Broadening of the signal to about 7o (FWHM) which corresponds to the horizon scale at thetime when Compton scattering 'freezes out', i.e. tT � t and the mean free path of photons becomeslarger than the size of the horizon. In general, there will always be the question whether the dampingterm, D(r)g �M, or the source term, 4�i@iV , in equation (3.18) wins. It seems that for standardCDM the source term is so strong, that no damping due to photon di�usion occurs [Efstathiou,private communication]. It is an interesting and partially unsolved problem, in which scenariosof structure formation, photon perturbations on small scales (� � 7o) are e�ectively damped byreionization. It seems plausible to me, that models with topological defects, where perturbations arehighly correlated, are a�ected more strongly than models with Gaussian perturbations.The collision term above also appears in the equation of motion of the baryons as a drag. TheThomson drag force is given byFj = a�Tne�r4� Z C[M]�jd
 = a�Tne�r3 (Mj + 4l@iV ) ; (3.19)with Mj = 34� Z �jMd
 :This yields the following baryon equation of motion in an ionized plasmal@j _V + (_a=a)l@iV = @i	� a�Tne�r3�b (Mj + 4l@iV ) ; (3.20)where we have added the drag force to eq. (2.58) with w = c2s = 0.51



We now want to discuss equations (3.18,3.20) in the limit of very many collisions. Clearly thephoton mean free path is given by tT = lT = (a�Tne)�1. In lowest order tT =t and lT =l these equationsreduce toD(r)g + 12�ijM ij + 4�il@iV = M (3.21)and 4l4V = @iMi = 3 _D(r)g ; (3.22)where we made use of (3.21) and (3.28) below, for the last equal sign. Eq. (3.22) is equivalent to(2.60) for radiation. Using also (2.60) for baryons, w = 0, we obtain_D(r)g = 43 l4V = 43 _D(m)g :This shows that entropy per baryon is conserved, � = 0. Inserting (3.21) in (3.18) we �nd up to �rstorder in tTM = D(r)g � 4l�i@iV + 12�ijM ij � tT [ _D(r)g � 4l�i@i _V + 12�ij _M ij+�j@jD(r)g � 4l�i�j@i@jV + 12�i�kj@iMkj � 4�j@j(��	)] : (3.23)Using (3.23) to calculate the drag force yieldsFi = (�r=3)[4l@iV � @iD(r)g + 4@i(��	)] :Inserting Fi in (3.20), we obtain(�b + (4=3)�r)l@i _V + �b( _a=a)l@iV = (�r=3)@iD(r)g + (�b + (4=3)�r)@i	� (4�r=3)@i� :This is equivalent to (2.61) for � = �b + �r, p = �r=3 and � = � = 0, if we useD(r)g = (4=3)D(m)g and Dg = �rD(r)g + �mD(m)g�m + �r :In this limit therefore, baryons and photons behave like a single uid with density � = �r + �m andpressure p = �r=3.From (2.60) and (2.61) we can derive a second order equation for Dg. To discuss the coupledmatter radiation uid we regard a plane wave D = D(t) exp(ik � x). We then obtain�D + c2sk2D + (1 + 3c2s � 6w)( _a=a) _D � 3[w(�a=a)� ( _a=a)(3(c2s �w)� (1=2)(1 + w))]D = 0 :For small wavelengths (which are required for the uid approximation to be valid), 1=tT � csk � 1=t,we may drop the term in square brackets. The ansatz D(t) = A(t) exp(�i R kcsdt) then eliminatesthe terms of order c2sk2. For the terms of order csk=t we obtain the equation2 _A=A + (1� 3c2s � 6w)( _a=a) + _cs=cs = 0 : (3.24)
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For the case c2s = w =const. , this equation is solved by A / (kt)1�� with � = 2=(3w + 1), i.e., theshort wave limit (3.10). In our situation we havew = �r3(�r + �m)c2s = _�r3( _�r + _�m) = (4=3)�r4�r + 3�m and_cs=cs = �3=2( _a=a) �m4�r + 3�m :Using all this, one �nds thatA = � �m + (4=3)�rcs(�r + �m)2a4�1=2 = � � + pcs�2a4�1=2solves (3.24) exactly, so that we �nally obtain the approximate solution for the, tightly coupledmatter radiation uidD(t) / � � + pcs�2a4�1=2 exp(�ik Z csdt) : (3.25)Note that this short wave approximation is only valid in the limit t � 1=(csk), thus the limit tothe matter dominated regime, cs ! 0 cannot be performed. In the limit to the radiation dominatedregime, c2s ! 1=3 and � / a�4 we recover the acoustic waves with constant amplitude which wehave already found in the last subsection. But also in this limit, we still need matter to ensuretT = 1=(a�Tne) � t. In the oppotite case, tT � t, radiation does not behave like an ideal uid butit becomes collisionless and has to be treated with Liouville's equation (3.16).In the paragraph 3.2.3 we evolve M up to order t2T and obtain the damping of M by photondi�usion.3.2.1 Spherically symmetric Boltzmann equationIn the spherically symmetric case M depends on the momentum direction � only via the variable� = (r � �)=r. Integrating out the independent angle ' and choosing the coordinates in photonmomentum space such that the third axis is parallel to r, one �nds12� Z 2�0 �ijd' = 8><>: 0 ; i 6= j�2 � 1=3 ; (i; j) = (3; 3)12 (1=3 � �2) ; (i; j) = (1; 1) or (2; 2) :We thus obtainZ 2�0 d'[�ijM ij] = 34(�2 � 1=3) Z 1�1(�02 � 1=3)Md�0 � 32(�2 � 13)M2 :For M(t; r; �) we further have�i@iM = �@rM+ 1� �2r @�M
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so that Boltzmann's equation becomes_M+ �@rM+ 1� �2r @�M = 4�@r(��	)+a�Tne[M �M� 4�@rV + (�2 � 1=3)32M2] : (3.26)This is the equation which we have integrated numerically, (in somewhat di�erent coordinates, seeChap. 4) for a ��	 from a spherically symmetric texture, to produce Fig. 7.3.2.2 Moment expansionAs long as collisions are e�cient, t > 1=(a�Tne) � tT , it is reasonable to truncate M at secondmomentsM = D(r)g + �iM i + 5�ijM ij : (3.27)With this ansatz, the integration over directions of the zeroth, �rst and second moments of (3.18)yields _D(r)g + 13@iM i = 0 ; (3.28)_M j + @jD(r)g + 2@iM ij = 4@j(��	)� a�Tne[M j + 4@jlV ] ; (3.29)_M ij + 115(@iM j + @jM i) = � 910a�TneM ij : (3.30)Taking the total divergence of (3.29) and (3.30), we obtain with the help of (3.28)�D(r)g � 134D(r)g � 23� = �434(��	) + a�Tne[ _D(r)g � 434lV ] (3.31)and _�� 254 _D(r)g = � 910a�Tne� ; (3.32)where we have set � = @i@jM ij .
3.2.3 Damping by photon di�usionIn this subsection we want to estimate the damping of CBR uctuations in an ionized plasma usingour gauge invariant approach, as it was done by Peebles [1980] within synchronous gauge. We againconsider eqs. (3.18) and (3.20), but since we are mainly interested in collisions which take place ontime scales tT � t, we neglect gravitational e�ects and the time dependence of the coe�cients. Wecan then look for solutions of the formV /M / exp(i(k � x� !t)) : 54



In (3.18) and (3.20) this yields (neglecting also the angular dependence of Compton scattering, i.e.,the term �ijM ij)M = D(r)g � 4ik�lV1� itT (! � k � �) (3.33)and tTk!lV = (�r=3�m)(4iklV +M) ; (3.34)with M = (3=4�) R �Md
. Integrating (3.18) over angles, one obtains _D(r)g + (1=3)@iM i = 0. Withour ansatz therefore k �M = 3!D(r)g . Using this after scalar multiplication of (3.34) with k, we �nd,setting R = 3�m=4�r,lV = (3=4)!D(r)gtTk2R! � ik2 :Inserting this result for V in (3.33) leads toM = D(r)g 1 + 3�!=k1�itT!R1� itT (! � k�) ;where we have set � = k � �=k. This is exactly the same result as in Peebles [1980], where thiscalculation is performed in synchronous gauge. Like in there (x92), one obtains in lowest order !tTthe dispersion relation! = !0 � i with !0 = k=[3(1 + R)]1=2 and  = (k2tT =6)R2 + 45(R + 1)(R + 1)2 : (3.35)In the matter dominated regime, R� 1, therefore � k2tT =6 : (3.36)We now consider a texture which collapses in a matter dominated universe (a / t2) at timetc = t0=(1 + zc)1=2. The total damping, exp(�f), which this perturbation experiences is given by theintegralf � Z tendtc (t)dt : (3.37)The end time tend is the time, when the mean free path, tT equals tc, the size of the perturbation.We de�ne zdec as the redshift when photons and baryons decouple due to free streaming. This isabout the time when the mean free path has grown up to the size of the horizon: tT (zdec) � t(zdec).To obtain exponential damping (tc < tend), we thus need zc > zdec. In this case damping is e�ectiveuntil 1 + zend = (1 + zdec)3=4(1 + zc)1=4 ;and we obtainf � 2�1 + zdec1 + zc �3=2 "� 1 + zc1 + zdec�15=8 � 1# ; (3.38)55



where we have set k2 = (2�=tc)2. In terms of angles this yieldsf(�) � 2(�=�d)3[(�d=�)15=4 � 1] ; � < �dwhere �d = 1=p1 + zdec � 60.If the plasma ionizes at a redshift zi, zdec < zi < zc, after the texture has already collapsed,damping is only e�ective after zi, if zend < zi. Instead of formula (3.38), we then obtainf � 2�1 + zdec1 + zc �3=2 "� 1 + zc1 + zdec�15=8 � �1 + zc1 + zi�15=8# : (3.39)This damping factor can again be converted in an angular damping factor in the above, obvious way.The CBR signal of textures is thus exponentially damped only ifzi > zdec � 100(0:05=h50
B)2=3 ;and in this case only textures with 1 + zdec < 1 + zc < (1 + zi)2=(1 + zdec) are a�ected. So, if zi � 50,there is little exponential damping, even if h50 = 2 and 
B = 0:1, but if zi = 200, all textures whichcollapse at redshifts zi � zc are damped by a factor 10 or more.In this approximation, we have neglected the the amount of damping which still may occur afterzend and the induced uctuations due to the source term / lV in (3.18). A more accurate numericaltreatment where just equation (3.18) is solved is shown in Fig. 7.Astonishingly, even perturbations on large scales up to the quadrupole may be damped by photondi�usion if the spectrum is steep enough (Peebles, private communication): We assume perturbationsof a given size l are uncorrelated and have an average amplitude A. On a larger scale L = Nl, theystatistically induce perturbations with typical amplitude AN�3=2 = A(l=L)3=2. (A cube of size L3contains N3 cubes of size l. The statistical residual of N3 perturbations with amplitude A is thusAN�3=2.)This simple argument has two interesting conclusions:i) The e�ective spectrum jD(k)j2 of Gaussian distributed uctuations cannot decrease faster thanjD(k)j2 / k3 towards large scales.ii) In the limiting case, jD(k)j2 / k3, all the power in large scales is induced due to the statisticalresiduals of small scale perturbations. Therefore if small scale perturbations are damped so arelarge scale perturbations up to the size of the horizon.It is clear that this mechanism crucially depends on the assumption of uncorrelated perturbations.It is thus not e�ective for uctuations induced by topological defects. It also does not work for aHarrison{Zel'dovich spectrum, jD(k)j2 / k.
3.3 Perturbations of the Microwave BackgroundThe redshift of photons propagating in a perturbed Friedmann geometry is given by (for scalarperturbations) (2.102):�EE = [14D(r)g � Vjnj + 	� �]jfi � Z fi ( _	� _�)d� : (3.40)56



The �rst of these terms is due to intrinsic uctuations on the surface of last scattering, the second termis the usual, special relativistic Doppler shift, the third and the last terms are gravitational redshiftcontributions, the Sachs|Wolfe e�ect [Sachs and Wolfe, 1967]: The third term is the di�erence ofthe potential at the emitter and receiver and the last term is due to the time dependence of thegravitational potential along the path of the photon.Since perturbations of the cosmic microwave background (CMB) are probably the most reliableobservational tool for investigating the initial perturbation spectrum, and since they are calculablewithin linear perturbation analysis, we present them here in some detail. There are seven di�erentphysical mechanisms which perturb the microwave background on di�erent scales. The �rst four ofthem are given by equation (3.40):� Intrinsic inhomogeneities on the last scattering surface,�TT = 14Dr ;� relative motions of emitter and observer,�TT = �V � njfi ;� the di�erence of the gravitational potential at the position of emitter and observer(Sachs{Wolfe I),�TT = (	� �)jfi ;� and the time dependence of the gravitational �eld along the path of the photon(Sachs{Wolfe II),�TT = Z fi ( _	� _�)d� :� In an intergalactic ionized plasma, uctuations are damped by photon di�usion (Section 3.2.3).As long as the mean free path of photons is considerably smaller than the size of the horizon,lT = 1=(�Tne) � lH , this damping increases exponentially with the damping rate  / lT =l2and is thus very e�ective for inhomogeneities with sizes smaller or of the order of the Thompsonmean free path, l � lT(�TT )f = (�TT )i exp(� Z fi dt) :Clearly, damping by photon di�usion can only be e�cient as long as lT < lH . At z � 100,lT � lH (for 
 = 1 and 
Bh = 0:05) and angular scales which are larger than the horizon scaleat z � 100, which corresponds to about 6o, are usually not a�ected (for an exception of thisrule, see the note at the end of the last section).
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� On the other hand, the passage of photons through a cloud of ionized gas at a temperatureTe di�erent from the photon temperature T induces deviations in the black body spectrum,which can be cast in the so called Compton y parameter. This is the Sunyaev{Zel'dovich e�ect[Sunyaev and Zel'dovich, 1973/80]. In the Rayleigh{Jeans regime the change of the spectrumcorresponds to a temperature shift according to�TT � �2y , with y = Z fi (Te � Tme )ne�Td� :� Since the Bardeen potentials of linear dust perturbations are constant, they do not give rise to apath dependent contribution to the photon redshift. But once a dust perturbation has becomenon{linear and is virialized so that its density �D � const. , the corresponding gravitationalpotential 	 grows like a2. Usually, the gravitational potential of such a dust cloud is still verysmall, so that the redshift of photons passing through it can be calculated in linear perturbationtheory. Equation (3.40) then yields�TT = �2(�i=a2i )(a2f � a2i ) � 4	 �z1 + z ;where �z denotes the redshift di�erence of the two ends of the structure and z is the averageredshift of the perturbation. Typically not only 	 but also �z is very small. This non{linearcontribution to �T=T is called the Rees{Sciama e�ect [Rees and Sciama, 1968].From these seven e�ects, for a long time only the Doppler term, point two, was detected. It leadsto the famous dipole anisotropy with amplitude (�T=T )dipole � 2 � 10�3 which shows that we aremoving with a relative velocity of about 600km=s with respect to the microwave background. Now,the COBE team con�rmed that also the spectrum of the dipole anisotropy is the derivative of ablackbody spectrum with T = 2:731K to an accuracy better than 1% [Mather et al., 1993].Recently, also the Sunyaev{Zel`dovich e�ect has been con�rmed[McHardy et al., 1990, Birkinshaw et al., 1991], and with the COBE satellite [Wright et al., 1992,Smoot et al., 1992], the sum of intrinsic uctuations and the Sachs{Wolfe e�ect (points one, threeand four) have been measured. With these recent observations, the cosmic microwave backgroundhas started to become a very successful tool for investigating cosmological perturbations on the linearlevel.3.4 Light DeectionWe now want to present some applications of the e�ect of light deection in a perturbed Friedmannuniverse. The general formulae are derived in Section 2.4.3.4.1 MonopolesAs a �rst example, we discuss light deection and lensing in the �eld of a global monopole, see alsoBarriola and Vilenkin [1989]. We discuss the simple, static hedgehog solution of a three componentscalar �eld with �2 = �2, i.e., a non{linear sigma model on S2:�i = �xi=r : 58



This is an in�nite action and in�nite energy solution and should thus not be taken seriously at largedistances. In a cosmological context, when monopoles form via the Kibble mechanism during asymmetry breaking phase transition, the hedgehog solution may be approximately valid on distancessmall compared to the distance to the next monopole or antimonopole, which is about horizondistance. This is also the scale where the approximation of a static, i.e., non{expanding background,which we adopt here, breaks down.The energy momentum tensor of the hedgehog solution is readily calculated:T00 = �2=r2Tij = ��2xixj=r4Setting �2 = M2 we obtain, using the de�nitions (2.117) to (2.119),f� = l2=r2 (3.41)fv = 0 (3.42)fp = �(1=3)f� (3.43)f� = �(1=2) log(r=l) : (3.44)It is interesting to note that the quantity f� + 3fp which enters as source term in the evolutionequation for density perturbations (2.134) vanishes, which shows that static global monopoles do notproduce an attractive gravitational force, much like cosmic strings.Setting � = 8�G�2, we �nd from (2.126) and (2.128)� = �� log(r=l) ; 	 = 0 : (3.45)The second of these equations again shows that the analog to the Newtonian potential vanishes forglobal monopoles, like it does for cosmic strings (exercise for the reader). The divergence of � atlarge distances reects the in�nite energy of our solution which needs a physical cuto� (at most atthe distance to the next monopole).We consider a photon passing the monopole at t = 0, say with an impact parameter b. Itsunperturbed trajectory is then given by x = �n + be. According to (2.114), neglecting sphericalaberration, we obtain' = + Z fi (��	);ieid� = �� Z fi b�2 + b2 d� = �� arctan(�=b) � ��� = �8�2G�2 : (3.46)This result was originally obtained (by completely di�erent means) by Barriola and Vilenkin [1989].We want to investigate the situation of gravitational lensing. First, we treat the special case,where source (S), monopole (M) and observer (O) are perfectly aligned at distances SM = s andMO = d from each other. If emitted at a small angle � = b=s, a photon will reach the observer atan angle � = b=d, if the deection angle j'j = � + � = b(s + d)=sd. This leads to an Einstein ringwith opening angle� = b=d = j'js=(s + d) = 8�2G�2s=(s + d) : (3.47)If observer and source are slightly misaligned by an angle less than j'j, the ring is reduced to twopoints with the same angular separation.For monopoles produced at a typical GUT scale, � � 1016GeV , the deection angle is j'j � 10arcsec and thus observable. Since the density of global monopoles is about one per horizon citeBR,59



roughly 10 monopoles present at a redshift z = 4 would be visible for us today. The probability thatone of them is within less than 10 arcsec of a quasar with redshift z > 4, so that the lensing eventdiscussed above could occur, is very small indeed.3.4.2 Light deection due to gravitational wavesWe discuss formula (2.116) for light deection due to a passing gravitational wave pulse for whichthe di�erence of the gravitational �eld before and after the passage of the wave is negligible:'ej = Z fi (Hlk;j + _Hlknj)nknld� : (3.48)We consider a plane wave,Hkl = <(�kl exp(i(k � x� !t)) with �klkl = 0 :For a photon with unperturbed trajectory x = xo + �n ; t = �, we obtain'ej = ( <[ie(ik � xo)�lmnlnm kj�!nj! � k � n [e(i(k � n�!)�f ) � e(i(k � n�!)�i)]] for k 6= !n0 for k = !n :Setting n = (p=!)k + qn? with n2? = 1 and p2 + q2 = 1, we have �lmnlnm = q2�?, where �? =�ijni?nj?. Inserting this above, we �nd for the deection angle an equation of the form' = �? p2q2p1� p cos(� + !(p� 1)t) : (3.49)Here �? is determined by the amplitude of the gravitational wave and q ; p2 = 1� q2 is determinedby the intersection angle of the photon with the gravitational wave as explained above.This e�ect for a gravitational wave from two coalescing black holes would be quite remarkable:Since for this (most prominent) event �? can be as large as � 0:1(Rs=r), the rays of sources behindthe black hole with impact parameters up to b < 104RS would be deected by a measurable amount:' � 200(104RS=b) :Setting the the source at distance dLS from the coalescing black holes and at distance dS from us,we observe a deviation angle� = 'dLS=dS :The best source candidates would thus be quasars for which dLS=dS is of order unity for all coalescingblack holes with, say z < 1. In the vicinity of the black holes (r � 10RS), linear perturbation theory isof course not applicable and also the 'monopole' component of the gravitational �eld is not negligible.But in the wide range 107RS > b > 10RS (for radio sources) and 104RS > b > 10RS (for opticalsources) our calculation is valid and leads to an e�ect that is in principle detectable.A thorough investigation of the possibility of detecting gravitational waves of coalescing blackholes out to cosmological distances by this e�ect may be worth while.
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Chapter 4Textures in Flat Space4.1 The �{Model Approximation for Texture DynamicsGlobal texture occurs in every symmetry breaking phase transition where a global symmetry groupG is broken to a sub{group H, such that �3(G=H) 6= 1.In the cooler, broken symmetry phase the Higgs �eld remains most of the time in the vacuummanifold M � G=H, where the e�ective potential assumes its minimum value. It only leaves M ifthe gradients, i.e., the kinetic energy of the massless Goldstone modes, become comparable to thesymmetry breaking scale �. In order to discuss the dynamics of the massless modes at temperaturesT � Tc � �, it is thus su�cient to neglect the potential and, instead, �x the Higgs �eld in M with aLagrange multiplier.For illustration, and since we believe that the results remains valid at least qualitatively also forother symmetry groups, we discuss the simplest version, an SU(2) symmetry which is completelybroken by a C2 valued scalar �eld �. In this case, clearly M � SU(2) � S3. Here Sn denotes then{sphere and � means topological equivalence.The Higgs �eld � is described by the zero temperature LagrangianL = 12�;��;� � �(� � �� �2)2 ; (4.1)with corresponding �eld equation2� + 4��(� � �� �2) = 0 : (4.2)As argued above, on energy scales well below the symmetry breaking scale � we may �x �2 = �2 bythe Lagrangian multiplier �(� ��� �2). Instead of the usual equations of motion, we then obtain thescale invariant equation2�� ��2(� � 2�)� = 0 ; (4.3)i.e., � describes a harmonic map from spacetime to S3. If � is asymptotically parallel, �(r) !r!1 �0,we can regard it (at �xed time) as a map from compacti�ed three dimensional space (� S3) into S3.The degree (winding number) of this map is called the texture winding number. It is given by theintegral of the closed three{form! = 112�2 �abcd�ad�b ^ d�c ^ d�d ; 61



(! is nothing else than the pullback of the volume form on S3). This integral over some region of space(e.g. a horizon volume) is of course well de�ned also if � is not parallel at in�nity and is often referredto as fractional texture winding number. Numerical simulations show that a texture starts collapsingas soon as the fractional winding inside the horizon exceeds about 0.5 [Leese and Prokopec, 1991,Borill et al., 1991].In our case even an exact spherically symmetric solution to equation (4.3) is known: A sphericallysymmetric ansatz for � is�(r; t) = �(r̂ sin�; cos�) ; (4.4)where r̂ denotes the unit vector in direction of r and � is an angular variable depending on r and tonly. In at space the �eld equations for � yield�@2t � + @2r� + 2r@r� = sin 2�r2 : (4.5)We now look for solutions which depend only on the self similarity variable y = (t� tc)=r, wheretc is an arbitrary time constant. In terms of y, equation (4.5) becomes(y2 � 1)�00 = sin 2� ;with the exact solutions � = 2 arctan(�y)� n� which were found by Turok and Spergel [1990]. Todescribe a collapsing texture which has winding number 1 for t < tc and winding number 0 for t > tc,we patch together these solutions in the following way:�(y) = ( 2 arctan y + � ; �1 � y � 12 arctan(1=y) + � ; 1 � y � 1 : (4.6)It is straight forward to calculate the integral of the density ! given above for this example and oneof course obtainsZR3 !(t) = ( 1; if t < tc0; if t > tc :The kink of � at y = 1 reects the singularity of the �{model approach at the unwinding eventt � tc = r = 0. There the gradient energy of the solution (4.6) diverges, i.e., becomes bigger thanthe symmetry breaking scale �. Therefore, the Higgs �eld leaves the vacuum manifold, unwinds andthe kinetic energy can be radiated away in massless Goldstone modes. To remove the singularity atr = 0; t = tc, we would have to evolve the innermost region of the texture (r � ��1) with the true�eld equation (4.2) during the collapse (tc � ��1 � t � tc + ��1). It is well known [Derrick, 1964,Derrick's theorem], that a �{model like (4.3) cannot have static �nite energy solutions, but it isnot proven that there is no static in�nite energy solution. It is easy to see that (4.6) representsan in�nite energy solution. We shall see that the in�nite energy of the solution will require some'renormalization' or, equivalently, a physical cuto�.Remark: It seems quite natural that this scale invariant problem admits scale invariant solutions.But this is by no means guarantied. It is well known, e.g., that Yang Mills theories in general do notadmit non{trivial spherically symmetric solutions. But also other �{type models do not admit them.As an example we have studied SO(3) broken to SO(2) by a vector �eld (the Heisenberg model).The vacuum manifold in this example is S2 with �3(S2) = Z (the Hopf �bration). A sphericallysymmetric ansatz for a texture con�guration in this model is the Hopf map:H : R3 ! S2 : r! n = R(�(r); r̂)no ; (4.7)62



where R(�; e) denotes a rotation around e with angle �, r̂ is the unit vector in direction of r and nois an arbitrary but �xed unit vector. For the mapping (4.7) to be well de�ned, we must require theboundary conditions�(r = 0) = 0 ; �(r = 1) = N2� : (4.8)N is the Hopf invariant, or the �3 winding number of H. The �{model equations for n are2n� (n � 2n)n = 0: (4.9)With the ansatz (4.7) above, this gives rise to the following two equations for �:2� � 2 sin �r2 = 0 (4.10)�(@t�)2 + (@r�)2 � 2(1 � cos �)r2 = 0 ; (4.11)which have no common non{trivial solutions.4.2 Gravitational E�ects of Textures in Flat SpaceAs long as � = 16�G�2 is much smaller than 1, the gravitational �eld of a texture is weak and we cancalculate it in �rst order perturbation theory. We apply the gauge invariant formalism developed inChapter 2.The energy momentum tensor,T�� = �;� �;� �1=2g���;� �;� ; (4.12)of solution (4.6) is readily calculated with the resultT00 = 2�2r2 1 + 3y2(1 + y2)2 (4.13)T0i = �4�2r2 y(1 + y2)2 r̂i (4.14)Tij = 2�2r2 1� y2(1 + y2)2 �ij : (4.15)Clearly (4.6) represents a solution with in�nite action and in�nite energy,E(R) = 4� Z R0 T00r2dr / R ; for R >> t� tc ;diverges linearly.Since this texture solution is spherically symmetric, it only gives rise to scalar perturbations. Wenow set M2 = 4�2 and l = tc, the 'radius' of the texture (for an expanding universe, tc is the horizonscale at texture collapse). We then �ndf� = l22r2 1 + 3y2(1 + y2)2 (4.16)63



fv = l2r y1 + y2 (4.17)fp = l22r2 1� y2(12 + y2)2 (4.18)f� = 0 : (4.19)From (4.16) to (4.19) and the equations for the gauge invariant Bardeen potentials of scalar seedperturbations (2.126, 2.127, 2.128), we obtain in at space ( _a = 0 ; a = 1)�4�s = �2 1 + 3y2r2(1 + y2)2_�s = ��2 yr(1 + y2)4(�s + 	s) = 0 ;with the solution�s = � �4 ln((1 + y2)r2=t2c) (4.20)	s = �4 ln(1 + y2y2 ) : (4.21)	s is only determined up to a function of time, which we have chosen to ensure 	s ! 0, for t! �1.	s = 14� ln(r2 + (t� tc)2(t� tc)2 ) : (4.22)Of course, physical observables do not depend on this choice.It might seem unphysical that the potentials �s and 	s do not vanish at in�nity r ! 1, incontrary, they diverge. This reects again the in�nite energy of our solution. Noting this divergence,one might fear that linear perturbation theory breaks down at large distances from the texture, butwe �nd that the relevant geometrical quantities, like e.g. the 3{dimensional Riemann scalar on thesurfaces of constant time,�3R = 4a�24R � 4a�24� = �2�a2 r2 + 3(t� tc)2(r2 + (t� tc)2)2 ; (4.23)do vanish at in�nity. So that, far away from the collapsing texture and at early and late times,the solution does approach at space. The validity of linear perturbation theory for textures is alsocon�rmed in Durrer et al. [1991], where we �nd an exact solution for a texture coupled to gravityand show that, for � < 0:1 say, it deviates only very little from the at space solution used here.We now calculate the behavior of baryons and collisionless particles (dark matter or photons)and photons in this geometry.
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4.2.1 Baryons around a collapsing textureLet us briey discuss the behavior of cosmic dust (baryons) in the �eld of a texture. Equation (2.134)for a at dust universe (c2s = w = 0 ; _a = 0) yieldsd2Ddy2 + 4�G��t2cD = S ; (4.24)with S = 2� 1(1 + y2)2 :The term 4�G��t2cD is the coupling of the perturbation to its own gravitational �eld. It leads toexponential growth of perturbations which is a feature of the non{expanding universe only. But ourapproximation, neglecting expansion, means that all times involved are much smaller than Hubbletime. This coincides with 4�G��t2c � 1. Within our approximation, it is thus consistent to neglectthe self gravitating term in (4.24). Direct integration then yields the solutionD = �[yarctg(y) + c1y + c2]= �(t=r)[arctg(t=r) + �=2] + � ; (4.25)where we have chosen the integration constants c1 and c2 such that D converges to 0 for large negativetimes, D(t = �1) = 0, and D converges to a constant for large radii, D(t; r = 1) = �. Since Dis only a function of the self similarity variable t=r, we cannot consistently choose both boundaryconditions to be 0. For late times, t=r � 1, D grows linearly with time:D = ��(t=r) ;Near the time of collapse, jt=rj � 1, D is of the order of �, D(t = 0; r) = �. A given time t� aftertexture collapse which is small compared to the Hubble time, D has the following pro�le: For largeradii D � � and roughly at r = t� bends into D � ��t�=r and diverges for r ! 0. This divergenceleads to early formation of non{linear structure on small scales. At time t� perturbations on scalesof the order of r � rnl = ��t� have become non{linear.The total mass accumulated around a texture diverges like the mass of the texture itself (see [4]).But in the real, expanding universe one has to cut it of at roughly the Hubble radius at the timewhen the texture collapses, lH .In this simple approximation, we end up with the following picture: Due to textures forming at atime t in the universe, objects of mass M � 2�MH(t), form at separations on the order of p�1=3lH(t).Where MH denotes the horizon mass at the time when the texture collapses and p is the probabilitythat a four component vector �eld which is distributed in a completely uncorrelated manner overa 2-sphere winds around a 3-sphere (i.e. the probability of texture formation at the horizon). InGooding et al. [1991], �Aminneborg [1992] this probability has been found numerically to be about1=25.From matter conservation, (2.133) for w = 0 we obtain4V = �=r[arctg(t=r) + �=2]� (�=2) tr2 + t2and thereforevi = �@iV = � �2 rir [arctg(t=r) + �=2]: (4.26)65



The total change in a particle's velocity as the texture collapses is thus independent of the particlesdistance from it and is given by�vj = vj(1)� vj(�1) = �(��=2)rjr : (4.27)A result which was found by Turok and Spergel [1990] and Durrer [1990].A numerical calculation for the distribution of texture in an expanding Friedmann universe, wherethe growth of density perturbations is given according to (2.135) with w = c2s = 0, is presented inGooding et al. [1991].4.2.2 Collisionless particles in the gravitational �eld of a textureLet us now calculate the perturbations in the distribution function of collisionless particles inducedby a collapsing texture. Like for dust, we neglect self gravity. We start with the gauge invariantperturbation equation for Liouville's equation in a Friedmann universe with k = 0 (2.139):q@tF + vk@kF = d �fdv [(q2=v)vk@k	s � vvk@k�s] � S ; (4.28)where 	s and �s are the metric perturbations due to the texture.Making use of spherical symmetry and inserting the results (4.22) and (4.20) for 	 and � yieldsq@tF + v�@rF + v(1 � �2)r @�F = S (4.29)with S = (�=2)d �fdv � (q2 + v2) �r(1 + y2) :The solution of (4.29) is easily found with the help of the physical coordinates� = t� (q=v)�r ; b = rq1� �2 and t : (4.30)It is straight forward to see that � is just the time of closest encounter of the given particle with thetexture, the impact time, and b is the impact parameter. In these coordinates eq. (4.29) reduces toq@tF(t; �; b) = S(t; �; b) and thusF(t; �; b) = 1q Z tto S(t; �; b)dt (4.31)A short calculation gives1q Z t2t1 Sdt = �2 d �fdv �v2 ln[q2(b2 + t2) + v2(t� �)2]��qvpv2�2 + (q2 + v2)b2 arctan q2t + v2(t� �)qpv2�2 + (q2 + v2)b2!)�����21 : (4.32)66



We are interested in the total change of the distribution function due to the collapsing texture, i.e.in the limit t1 ! �1 and t2 ! 1. The logarithmic term in eq. (4.32), let us call it L, diverges inthis limit and the di�erence,lim t1 ! �1t2 !1 ![L(t2)� L(t1)] ;crucially depends on how we perform the limit. It can take any value from �1 to 1. This is due tothe fact that we are dealing with an in�nite energy solution, and we certainly have to 'renormalize'our results. If we would change the energy momentum tensor in a way that the texture would be'born' some time in the �nite past, or if we would compensate it in a consistent way, as we do it in theexpanding universe, this problem would disappear. A physically intuitive procedure is to introducea cuto� at some time t2 = �t1 � b; j� j. With such a cuto� the logarithmic term cancels, and weobtainF(t; �; b; v) = � �2 d �fdv �qvpv2�2 + (q2 + v2)b2 arctan q2t + v2(t� �)qpv2�2 + (q2 + v2)b2!�����21 :We then can remove the cuto� and obtain the change of the distribution function long after thecorresponding particles have passed the textureF(t; �; b; v) = ���2  d �fdv! �qvpv2�2 + (q2 + v2)b2 : (4.33)Introducing our old variablesr2 = (t� �)2v2=q2 + b2� = (t� �) vqr ;we �ndF(t; r; �; v) = ���2  d �fdv! q(vt� q�r)p(vt� q�r)2 + r2(1� �2)(q2 + v2) : (4.34)This result can be inserted in equations (2.76) to (2.78) to obtain the induced perturbations of theenergy momentum tensor. Here we just perform the non{relativistic and extremely relativistic limits.Non{relativistic limit:In the non{relativistic case we have v � q. The gravitational �eld of the texture is strong only forr � jtj. We can therefore expand (4.34) in the small quantity vt=(qr). The �rst order approximationyieldsF(t; r; �; v) = (��=2)d �fdvq2[� + (vt=qr)(�2 � 1) +O(vt=qr)2] ; (4.35)This leads toV = 2�� Z Fv3�dvd� = ���2 (4.36)D = 2�� Z Fv2qdvd� = ��t=r ; (4.37)67



the well known late time (t� r) results of the preceding subsection.Extremely relativistic limit:In this case we have v = q and thereforeF(t; r; �; v) = ���2 �fdv v(t� �r)p(t� �r)2 + 2r2(1� �2) : (4.38)Integrating Fv3 over v and dividing by �=4� yields the fractional perturbation of the brightnessintroduced in Chapter 2,M(t; r; �) = 2�� t� �rp(t� �r)2 + 2r2(1� �2) : (4.39)Since M describes the uctuations in the energy density radiated in a given direction �, thetemperature uctuation is given by �T=T = �M=4 (see also the more explicit discussion of thispoint below eqn (2.83)). This coincides exactly with eq. (4.43) for photon redshift in the nextparagraph.In a at, eternal universe the signal from a texture collapsing at t = 0, as seen from an observerat time to and distance ro would thus be�TT (�) = ��2 to � ro cos �q(to � ro cos �)2 + 2r2o sin2 � : (4.40)A similar calculation using a speci�c gauge is presented in Durrer et al. [1992a]. Unlike in theexpanding universe (see next chapter), there is no horizon present in this calculations. Photons thatpass the texture long before or after collapse, jtoj � ro are still inuenced by it and yield even amaximum temperature shift,�TT = ��2 � :In the expanding universe of �nite age we expect, because of the �nite size of the event horizon,�T=T to achieve a maximum for ro � to � tc and to vanish for to � tc � ro. The comparison of theat space result (4.40) and the e�ect of a compensated texture in the expanding universe is shownin Fig. 8.4.2.3 Redshift of photons in the texture metricLet us �rst determine the energy shift which a photon experiences by passing a texture. Without lossof generality, we set tc = 0 in this paragraph. If we neglect the distinctive dipole term and intrinsicdensity perturbations, equation (2.101) leads to�EE ����fi = Z fi ( _�� _	)d� + 	jfi : (4.41)Denoting the impact parameter of the photon trajectory by b and the time when the photon passesthe texture (the impact time) by � , we get r2 = b2 + (t� �)2 . Eq. (4.41) then yields after the same\renormalization procedure which led to (4.33)�EE ����fi = ��2(�2 + 2b2)1=2 [arctg( 2t� �p�2 + 2b2 )]fi : (4.42)68



For tf ; �ti � �; b, we obtain�EE ����fi � (��=2) �(�2 + 2b2)1=2 : (4.43)This result was �rst found by di�erent methods by Turok and Spergel [1990]. Photons which passthe texture before it collapses, � < 0, are redshifted, and photons passing it after collapse, � > 0,are blueshifted. This produces a very distinctive hot spot | cold spot signal in the microwave skywherever a texture has collapsed.Of course our result is not strictly correct in the expanding universe, since we have neglectedexpansion in the calculation of 	s and �s. But the main contribution to the energy shift comesfrom times jtj � j� j + b. Therefore, our approximation is reasonable also for the expanding case, ifj� j � lH and b � lH , where lH denotes the horizon distance at the time of collapse, t = 0. On theother hand, by causality the texture cannot have a big e�ect on photon trajectories with j� j > lH orb > lH . A �rst approximation to the situation in the expanding universe is thus�EE ����fi = ( ��2 �p�2+2b2) ; for j� j < lH and b < lH0 ; for j� j > lH or b > lH : (4.44)
4.2.4 Light DeectionTo obtain the light deection in the gravitational �eld of a spherically symmetric texture, we consider(as above) a photon passing the texture at impact time � at a distance b (impact parameter). Thetrajectory of this photon is then given by x(�) = (� + �; �n + be). Making use of eq. (2.114),neglecting spherical abberation due to the relative motion of emitter and observer, we �nd' = Z fi (��	);ieid�� � Z 1�1 bb2 + 2�2 + 2�� + �2d�= �� bp2b2 + �2 : (4.45)For � = 0, the deection angle assumes the maximum value, 'max = ��=p2. For b = 0 or � ! 1,light deection vanishes. This result was �rst obtained by di�erent methods in [Durrer et al., 1992a].In contrast to global monopoles and strings, the deection angle is not independent of the impactparameter b of the photon trajectory (except for photons which pass the texture exactly at collapsetime, � = 0). This leads to a qualitative di�erence to the lensing caused by global monopoles andcosmic strings [Barriola and Vilenkin, 1989, Vilenkin, 1984]: If a light source and an observer atdistances L, respectively D behind, respectively in front of the texture are perfectly aligned with thetexture, the observer sees an Einstein ring with a time dependent opening angle�(t) = s2� ��LL + D�2 � 2� tD � 1�2 : (4.46)69



This ring opens up at time t = D � ��LD=(L + D), reaches a maximum opening angle �max =p2��L=(L + D) at t = D and shrinks back to a point at t = D + ��LD=(L + D). It exists over atime span �t = 2�� DLD+L . For realistic values of � � 10�4 the maximum opening angle can becomeabout 10.If source and observer are not perfectly aligned, but deviate by an angle  < 'max from alignmentthe ring reduces to two points which �rst move apart and then together again within the time �tand with a maximum separation angle �max. Unfortunately, even if textures exist, since late timetextures are so rare, the probability of observing this e�ect is rather small. There is typically onetexture which has collapsed after z = 4 and for which the photons that have passed it close to thetime of collapse are visible for us now (see Durrer and Spergel [1991]). The probability that thereis a quasar behind it with angular separation less than �max � 10�3 is even smaller than for globalmonopoles (see Section 3.4.1).
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Chapter 5Textures in Expanding SpaceWe now want to discuss the e�ect of collapsing textures in a spatially at, expanding FriedmannUniverse. To be speci�c, we assume a universe which is dominated by cold dark matter (CDM)which contributes about 95% of the total matter density of the universe. The remaining 5% arebaryonic. In the next section we write down the system of equations which describes a sphericallysymmetric collapsing texture in this background and the perturbations it induces in the dark matter,baryons and photons. We have solved this equations numerically. We then indicate how the singletexture events can be distributed in space and time to obtain a full sky map of the cosmic microwavebackground. We report briey on the results of this numerically obtained microwave sky and compareit with the COBE data. (A more extensive presentation of this numerical work, which was done incollaboration with A. Howard and Z.{H. Zhou will be presented elsewhere [Durrer et al., 1993].)Numerical simulations and analytical estimates have already shown that the texture scenarioleads to early formation of small objects which are likely to reionize the universe as early as z � 100(see Sect. 4 and Durrer [1990], Spergel et al. [1991] and Gooding et al. [1991]). Photons and baryonsthen are coupled again via Compton scattering of electrons (see Section 3.2.3). They remain sountil the electrons are too diluted to scatter e�ectively. This decoupling time is determined by thedistance into the past, at which the optical depth becomes unity:�(tdec) = Z tdect0 dta�Tne = 1 :In a at universe, 
 = 1 one obtains 1 + zdec � 100 � 0:05
bh50��2=3 , where 
b denotes the densityparameter of baryons, and h50 is Hubble's constant in units of 50km=s=Mpc. This last scatteringsurface is of course not as instantaneous as the recombination shell. The decoupling due to dilutionis a rather gradual process, and the thickness of the last scattering surface is approximately equal tothe horizon scale at zdec � tdec.Due to reionization, perturbations smaller than tdec but larger than the mean free path of thephotons are exponentially damped by photon di�usion. A rough estimate of this e�ect is given inSection 3.2.3. Results of a numerical calculation of this damping are shown in Fig. 7.
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5.1 FormalismIn this section, we present the equations for calculating the response of matter and radiation to thecollapse of a single spherically symmetric texture. The background metric is given byds2 = a2(�dt2 + dx2) :The spherically symmetric ansatz for an S3 texture unwinding at a given time t = tc is, like inthe preceding chapter� = �2(sin� sin � cos'; sin� sin � sin'; sin� cos �; cos�) ; (5.1)where � ; ' are the usual polar angles, and �(r; t) has the properties�(r = 0; t < tc) = 0�(r = 0; t > tc) = ��(r = 1; t) = � :In expanding space, the evolution equation (4.5) is replaced by@2t � + 2( _a=a)@t�� @2r�� 2r@r� = �sin 2�r2 : (5.2)We parametrize the energy momentum tensor of the spherically symmetric texture �eld,T�� = @�� � @��� 12g��@�� � @�� ; (5.3)in terms of scalar seed perturbationsT00 = �4�f�=l2 ; T0i = � �4�fv;i=l ;Tij = �4� [(fp=l2 � 134f�)�ij + f�;ij ] ;where � = 16�G�2. Inserting ansatz (5.1) in (5.3), one �ndsf�=l2 = 1=8[(@t�)2 + (@r�)2 + 2 sin2 �r2 ] ; (5.4)fp=l2 = 1=8[(@t�)2 � 13(@r�)2 � 2 sin2 �3r2 ] ; (5.5)fv=l = 14 Z 1r (@t�)(@r�)dr ; (5.6)4f� = 14[(@r�)2 � sin2 �r2 ] + 34 Z r1[(@r�)2 � sin2 �r2 ]drr : (5.7)The variables f�=l2 and fp=l2 denote the energy density and isotropic pressure of the texture �eld,fv is the potential of the velocity �eld and f� is the potential for anisotropic stresses. Sphericallysymmetric perturbations are of course always of scalar type. Due to the adoption of sphericalsymmetry, we loose, e.g., all information about gravitational waves produced during the collapse.72



In addition to the texture, we want to describe dark matter, baryons and radiation. Since darkmatter has zero pressure, we just need a variable describing its density perturbation.By �d we denote the density of dark matter and D is its gauge invariant density perturbation,as de�ned in Chapter 2. The evolution of the dark matter uctuations is governed by (2.135) forc2s = w = 0:�D + (_a=a) _D � 4�G�da2D = �(f� + 3fp)=l2 ; (5.8)To describe the baryon{ photon system we need two additional variables: The potential for thebaryon velocity V and the perturbation of the energy integrated photon distribution function M. Attimes t � tdec, the collisionless Boltzmann equation for the photons and the equation of motion for thebaryons must be modi�ed to take into account scattering. The dominant e�ect is non{relativisticCompton scattering by free electrons. Let us denote the collision integral which is calculated inSection 3.2.1 by C(M; V ). As in Chapter 3, � is the direction of the photon momentum. One �nds(3.17)C = a�Tne[D(r)g �M+ 4�i@iV + 12�ijM ij ] ; (5.9)with M ij = 32� Z M(�)�ijd
] ; �ij � �i�j � (1=3)�ij(We do not have to worry about the position of spatial indices of perturbation variables, they areraised and lowered with the Euclidean metric �ij since k = 0 in this chapter.)The drag force due to Thomson drag of photons on the matter is given by (3.19)Fi = � �r4� Z C�id
 = a�Tne�r3 (Mi + 4l@iV ) ;with Mi = (3=4�) R �iMd
. Including this drag force into the equation of motion for the baryons,(2.58) for w = c2s = 0, one obtains (3.20)l@i _V + (_a=a)l@iV = @i	� a�Tne�r3�b (4l@iV + Mi) orl4 _V + (_a=a)l4V = 4	 + a�Tne�r�b ( _M � 43 l4V ) : (5.10)For the last equation we have used the zeroth moment of Boltzmann's equation, the continuityequation,_M + (1=3)@iM i = 0 :In our numerical computations, we have made the simplifying assumption ne = 0 for z > zi andne = nB for z < zi for some ionization redshift zi � 200.The evolution of the photons is given by the perturbation of Boltzmann's equation, (3.26)._M+ �@rM+ 1� �2r @�M =4�@r(��	) + a�Tne[M �M� 4�@rV + 3(�2 � 1=3)M2] (5.11)where M2(r; t) = 12 Z 1�1M(�0)(�02 � 1=3)d�0 ; (5.12)73



where � is the direction cosine of the photon momentum in the direction of r.As in Chapter 4, the photon evolution equation is more transparent in characteristic coordinates,(t; �; b), where b = rp1� �2 is the impact parameter, and � = t� r� is the impact time. In thesevariables (5.12) simpli�es:@tM(t; �; b) = 4�@r(��	) + C(t; �; b) ; (5.13)where C(t; �; b) is the collision integral above, expressed in terms of the new variables.In order to write down the perturbed Einstein equations, we have in principle to calculate theenergy momentum tensor of radiation from M. But since we are only interested in late times wheredensity perturbations can grow, �d > �r, we may neglect the contribution of radiation to the densityperturbation. The potential � is then determined by the texture and dark matter perturbationsalone:4� = ��(f�=l2 + 3( _a=a)fv=l)� 4�Ga2�dD : (5.14)On the other hand, since dark matter does not give rise to anisotropic stresses, we have to takeinto account the contribution of radiation to the latter. To calculate the anisotropic stresses of thephotons we recall the de�nition of the amplitude of anisotropic stresses, �:�T ji � 13�T ll �ji = p[�;j;i � 134��ji ] :The anisotropic contributions to the energy momentum perturbations of the photons are given by�T ji � 13�T ll �ji = �r4� Z (�i�j � 13�ji )Md
 :Using these equations and spherical symmetry, one �nds�00 ��0=r = 94 Z 1�1(�2 � 13)Md� = 92M2(r; t) : (5.15)This anisotropy and the anisotropy of the texture �eld contribute to the sum of the two Bardeenpotentials4(	 + �) = �24(�f� + (4=3)�Ga2�r�) : (5.16)Let us choose initial conditions that are physically plausible. If the phase transition that producedtexture occurred in an initially uniform universe, causality requires that there are no geometryuctuations well outside the horizon [Veeraraghavan and Stebbins, 1990]. This implies that initially,at ti � tc, we must require 	 = � = 0. We want to compensate as much as possible of the initialtexture uctuations with an initial dark matter perturbation. Hence, we use as initial conditions forthe density �eld,D(r; t = ti) = � �4�Ga2�d (f�=l2 + 3( _a=a)fv=l) : (5.17)This initial condition implies that metric uctuations are induced by the di�erences between thetexture equation of state, and the equation of state of the background matter. This choice yields� = 0 at t = ti, but not 	 = 0. Due to its equation of state the dark matter cannot compensate74



anisotropic stresses of the texture. We thus must compensate them by an initial photon perturbation.For 	 to vanish, we have to require according to (5.16)� = � 3�4�Ga2�r f� :This does not lead to a unique initial condition for M, but if we, in addition, require the zeroth and�rst moments of M to vanish (which otherwise would interfere with eq. (5.17)) it is reasonable toset M(r; �; t = ti) = � 15�8�Ga2�r (�2 � 13)(4f� � 3r f 0�) : (5.18)Together with initial conditions for the texture �eld �(r; t = ti), the requirements (5.17) and (5.18)and the evolution equations (5.2) to (5.16) determine the system which we have solved numerically.Figure 9 shows the microwave background uctuations induced by the collapse of the texture asa function of � for small impact parameter in the expanding universe for di�erent times. At t > tcit is interesting to see the blueshift at � � t of the photons which have fallen into the dark matterpotential but have not yet climbed out of it again. (During their way out of the dark matter potentialthis blueshift will of course be exactly compensated. This is also visible in the �gure.) Figure 10shows the microwave background uctuations induced by texture collapse as a function of impactparameter. Note that the temperature uctuations are induced only for photons that pass withinthe event horizon of the texture.5.2 Textures and the Microwave SkyIn the previous section, we described how the collapse of a single texture produces uctuations inthe photon temperature. In this section, we sum the contributions of many textures and describehow to construct microwave maps of the night sky.Since COBE observations cover the entire celestial sphere, we construct a numerical grid consist-ing of 1 square degree patches. These patches are arranged so that they cover equal areas and eachpatch has roughly the same shape.Since the texture uctuations are in the linear regime, we assume that the contributions of eachtexture to the uctuations at each point in the sky can be added independently. We randomlythrow down textures everywhere within the event horizon using the texture density distribution[Spergel et al., 1991],dndt = 125 1t4 : (5.19)We then follow the collapse of each texture and sum their contributions. We include only texturesthat collapse after recombination. Textures that collapse earlier do not contribute signi�cantly tomicrowave uctuations on scales accessible to COBE.In order to simulate the COBE observations, the map of the night sky is smoothed with a Gaussianbeam with a FWHM of 7�, the angular resolution of the DMR detector on COBE [Smoot et al., 1991].After computing and removing the intrinsic dipole contribution (10�5 � 10�4) and any monopoleuctuations, we then compute the microwave quadrupole, the r.m.s. pixel-pixel uctuations andother statistics of the microwave sky. 75



5.3 ResultsHere we present our results for the not reionized universe (zi < zdec). We just compare the numericalresults with the COBE observations on � � 10o. In the texture scenario, these large angular scalesare not a�ected by reionization.The amplitude of the microwave background uctuations depends upon the scale of symme-try breaking associated with the texture. If the symmetry breaking scale is normalized so thatthe scenario can reproduce the amplitude of the galaxy-galaxy correlation function, we have to setthe value of the dimensionless parameter � = 16�G�2 to � � 5:7 � 10�4b�1, where b, the biasfactor, is the ratio of the mass-mass correlation function to the galaxy-galaxy correlation function[Gooding et al., 1991]. Note that the de�nition of � in this work is 2=� times the de�nition usedin Gooding et al. [1991]. Comparison of the predictions of the texture model with observations ofclusters [Bartlett et al., 1993] suggest that b � 2, a value compatible with hydrodynamical simula-tions of texture-seeded galaxy formation [Cen et al., 1991]. We normalize the microwave backgrounductuations to this value and present our results in units of �0, where �0 = �=2:8 � 10�4.We numerically performed 100 realizations of the model. For illustration, a 'COBE map' producedfrom a typical simulation is shown in Fig. 11. Averaging over all realizations, we �nd an r.m.s. valuefor the quadrupole moment ofQ = (1:4� 1:2) � 10�5�0 :Since only a handful of textures are the source of most of the large scale uctuations, the quadrupolevaries signi�cantly from realization to realization.To compare with the COBE result, we have smoothed our calculations over an angular scale of10 degrees. The average pixel-to-pixel uctuations of the smoothed simulations are(�T=T )rms(10o) = (3:8 � 2:6) � 10�5�0The distribution of temperature uctuations are only mildly non{Gaussian, the skewness of thedistribution is �4�2 and the kurtosis of the distribution is 32�29. The errors quoted are statistical1� deviations of one hundred realizations. One example for the pixel distribution of the uctuationsis shown in Fig. 12.The results from the COBE di�erential microwave background radiometers [DMR] place strongconstraints on CMB uctuations on scales larger than 10o. In this experiment[Wright et al., 1992, Smoot et al., 1992] a value of Q � (0:6 � 0:2) � 10�5 has been found for themicrowave quadrupole and(�T=T )rms(� = 10o) = (1:1 � 0:18) � 10�5is the result for the uctuations at a scale of 10 degrees. The overall spectrum is compatible with aHarrison{Zel'dovich spectrum:(�T=T )(�) � 10�5(�=10o)�(0:1�0:5)=2 :Our simulations with bias factor b = 2 are compatible with these results within one sigma. The(�T=T ) of the simulations is somewhat large but the scatter is considerable.We feel that the adoption of spherical symmetry may lead to underestimates of (�T=T ) sincecontributions due to gravitational waves and random uctuations in the scalar �eld which do notgive rise to texture (i.e., topological winding number) have been neglected in this approach. If, e.g.,76



(�T=T )(� = 10o) is enhanced by a factor of 2 by these contributions, the COBE measurement isabout 2:5� below the average texture result.The conclusions from these simulations can thus be put as follows: The CMB anisotropies fromspherically symmetric texture collapse are slightly high but agree within 1� with the COBE mea-surements. This is encouraging. But in the results given above only statistical uctuations, (i.e.,cosmic variance) have been taken into account. Due to the uncertainties in modeling the typ-ical texture and the approximations inherent in modeling the texture as spherically symmetric,these estimates of the microwave background uctuations are uncertain by at least a factor of � 2(systematic error), probably underestimating the true induced uctuations. A full 3d simulation,which takes into account also gravitational waves and non{topological uctuations of the scalar�eld, is necessary to �nally decide on the scenario. Such simulations have now been performed[Bennett and Rhie, 1992, Pen et al., 1993]. They obtain results which are higher than those obtainedin the spherically symmetric approach by a factor 1.5 to 2.Smaller scales, � � 1o lead to somewhat larger uctuations and much smaller standard deviations(since many textures contribute to them):(�T=T )rms(2o) = (4� 0:8) � 10�5�0If the new measurements which require (�T=T )(1o) < 1:4� 10�5 [Gaier et al., 1992] are con�rmed,we need reionization to damp small scale uctuations in the texture scenario.A rough estimate of the e�ects of reionization can be obtained by just smoothing each texturewith a smoothing scale of about the horizon size at zdec,zdec = 100� 0:05h50
B�2=3 :This corresponds to an angular scale of�smooth = t(zdec)=t0 = (1 + z)�1=2 � 5:7o : (5.20)If the formation of objects leads to reionization prior to zdec, this would suppress microwave back-ground uctuations on scales � � �dec � 6o, but would not e�ect the uctuations on larger scaleswhich are discussed above.5.4 ConclusionsThe texture scenario of large scale structure formation has many attractive features. Its galaxygalaxy correlation function and the large scale velocity �elds agree better with observations thanin the standard cold dark matter model [Gooding et al., 1992]. Also a couple of other statisticalparameters (Mach number, skewness, kurtosis) are in satisfactory agreement with observations. Newsimulations which used the COBE quadrupole to normalize the uctuations [Pen et al., 1993] hintthat, in contrary to earlier results, the scenario may have severe di�culties to reproduce the verylarge scale galaxy clustering observed in the infrared [Fisher et al., 1993], just like the standard CDMmodel. Due to the steep dark matter potential produced with texture, small scale structure can formvery early. This may lead to early reionization of the universe. Calculations of the microwavebackground anisotropies show that reionization is necessary to reconcile with CMB anisotropies onsmall scales (up to about 5o). Due to the unique signature and relatively large amplitude, the CMBanisotropies produced by textures are one of the most hopeful criterion for con�rming or ruling outthis scenario. 77



Another interesting observational test, lensing of background quasars by a foreground texture, isvery improbable.This scenario certainly deserves further work. Especially the investigation of the question ifreionization as early as z � 200� 100 is possible and a careful analysis of CMB anisotropies for thereionized model on angular scales around 1o are important tasks.
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Appendix AThe 3 + 1 FormalismSince we have made use of 3 + 1 split of general relativity in deriving the linear cosmological per-turbation equations in this review, we want to derive the necessary tools in this appendix. A math-ematically rigorous overview is given in Choquet{Bruhat and York [1980] and Fischer and Marsden[1979]. But explicit calculations are missing there, we shall thus be rather detailed. In this appendixwe mainly follow the exposition in Durrer and Straumann [1988].A.1 GeneralitiesWe assume that spacetime (M; g) admits a slicing by slices �t, i.e., there is a di�eomorphism� : M ! � � I, I � R, such that the manifolds �t = ��1(� � ftg) are spacelike and the curves��1(fxg � I) are timelike. These curves are what we call preferred timelike curves. They de�ne avector �eld @t, which can be decomposed into normal and parallel components relative to the slicing(Figure 13):@t = �n + � : (A1)Here n is a unit normal �eld and � is tangent to the slices �t. The function � is the lapse functionand � is the shift vector �eld.A coordinate system fxig on � induces natural coordinates on M: ��1(m; t) has coordinates(t; xi) if m 2 � has coordinates xi. The preferred timelike curves have constant spatial coordinates.Let us set � = �i@i (@i = @@xi ). From g(n; @i) = 0 and (A1) we �ndg(@t; @t) = ��2 + �i�i ; g(@t; @i) = �i :In "comoving coordinates" thusg = �(�2 � �i�i)dt2 + 2�idxidt + gijdxidxj (A2)or g = ��2dt2 + gij(dxi + �idt)(dxj + �jdt) : (A3)This shows that the forms dt and dxi + �idt are orthogonal.The tangent and cotangent spaces of M have two natural decompositions. One is de�ned by theslicingTp(M) = Hp � Vp ; (A4)79



where the "horizontal" space Hp consists of the vectors tangent to the slice through p and the"vertical" sub{space is the 1-dimensional space spanned by (@t)p (preferred direction). The dualdecomposition of (A4) isT �p (M) = H�p � V �p ; (A5)with H�p = f! 2 T �p (M) : h!; @ti = 0g and V �p = f! 2 T �p (M) : h!;Hpi = 0g, which is spanned by(dt)p.The metric de�nes - through the normal �eld n - yet another decompositionTp(M) = Hp �H?p ; (A6)where H?p is spanned by n, and duallyT �p (M) = (V �p )? � V �p ; (A7)Equation (A1) reects the fact that in general the two directions Vp and H?p do not agree. Dually thisimplies that H�p and (V �p )? do not coincide. We have for !? 2 (V �p )? the following decompositionrelative to (A5)!? = hor(!?) + h!?;�idt : (A8)The decompositions (A4) to (A7) induce two types of decompositions of arbitrary tensor �elds on M.We call a tensor �eld horizontal if it vanishes, whenever at least one argument is @t or dt. Relativeto a comoving coordinate system such a tensor has the formS = Si1���irj1���js@i1 
 � � � 
 @ir 
 dxj1 
 � � � 
 dxjs :This shows that horizontal tensor �elds can naturally be identi�ed with families of tensor �elds on�t, or with time-dependent tensor �elds on � ("absolute" space). We denote them with boldfaceletters (except @i and dxi).As an often occurring example of a decomposition, we consider a horizontal p-form ! and itsexterior derivative d!. We haved! = d! + dt ^ @t! ;where d! is again horizontal. In comoving coordinates d involves only the dxi (d = dxi ^ @i) and@t! is the partial time derivative. d! and @t! are horizontal and can be interpreted as t-dependentforms on �. In this interpretation d! is just the exterior derivative of !. Similarly, other di�erentialoperators (covariant derivative, Lie derivative, etc) can be decomposed. We use two types of bases ofvector �elds and 1-forms which are adapted to (A4) and (A5), respectively (A6) and (A7). Obviously,the dual pair f@�g and fdx�g for comoving coordinates fx�g are adapted to (A4) and (A5). On theother hand, equations (A1) and (A3) show that the dual pairf@i; ng and fdxi + �idt; �dtg (A9)is adapted to (A6) and (A7).Instead of f@ig we also use an orthonormal horizontal basis feig (g(ei; ej) = �ij), together withthe dual basis f#ig instead of fdxig. Then we have the following two dual pairs, which are constantlyused: fei; @tg ; f#i; dtg (adapted to slicing), (A10)fei; e0 = ng f��g (adapted to (A6) and (A7)) , (A11)80



where the orthonormal tetrad f��g is given by�0 = �dt ; �i = #i + �idt ; (A12)with �i here de�ned by � = �iei . We note also the relatione0 = n = 1� (@t � �iei) :A.2 The connection and curvature formsWe now calculate the connection and curvature forms in the orthonormal basis introduced above.A.2.1 The connection formsFrom the �rst structure equation ,d�� + !�� ^ �� = 0 ;and the de�nition of the second fundamental form:Kij = �ni;j ; (A13)where n denotes the normal �eld of the slicing, one �nds immediately the Gauss' formulas : (remem-ber n = e0)!ik(ej) = !ik(ej) (A14)!0i(ej) = �Kij : (A15)We de�ne@t#i = cij#j : (A16)Then we can calculate the following quantities :!0i(e0) = ��1�ji ; (A17)!ij(e0) = ���1!ij(�) + 12� (�ijj � �jji � cij + cji) ; (A18)Kij = 12� (�ijj + �jji � cij � cji) ; (A19)and thus,K = 12� [L�g � @tg] ; (A20)where the vertical bar j denotes covariant derivation with respect to g . Using the general relation@t(det g) = tr(@tg) det g ; 81



we �nd from (A20)@tvol(g) = (div� � �trK)vol(g) : (A21)Let's derive (A17), (A18) and (A19) briey .d�0 = d(�dt) = d� ^ dt = �ji#i ^ dt = ��1�ji�i ^ �0 :This together with the �rst structure equation results in (A17). (A18) and (A19) are obtained asfollows: From the �rst structure equation and (A15) we concludeielie0d�i = �ielie0(!i0 ^ �0 + !ij ^ �j)= �(Kil + !il(e0)) :We calculate the left hand side of this equation:iej ie0d�i = iej ie0d(#i + �idt)= iej ie0(d#i + dt ^ @t�i + d�i ^ dt)= ��1iej (i�(!il ^ #l) + @t#i � d�i)= ��1[!ij(�)� !ik(ej)�k � d�i(ej) + @t#i(ej)]= ��1[!ij(�)� �ijj + cij ] :The symmetric and antisymmetric contribution of the last identity yield the formulas (A19) and(A18) for Kij and !ij(e0), respectively.A.2.2 The curvature formsWe now want to calculate the 3 + 1 split of Rij , R0j and G00. From the second structure equation,
�� = d!�� + !�� ^ !�� ;and equations (A14) to (A19) one �nds immediately
ij(ek; el) = 
ij(ek; el) + KikKjl �KilKjk (Gauss) (A22)
0j(ek; el) = Kjkjl �Kjljk (Mainardi) : (A23)We need also the normal components of 
0j . By the second structure equation we know
i0 = �d(Kij�j) + d(��1�ji�0) + !il ^ (Klj�j + ��1�jl�0) :A straight forward calculation leads to
i0 = ��1�jij(�j ^ �0)� dKij ^ �j + Kij(!jl ^ �l �Kjl�l ^ �0) + !ijKjl ^ �l ;which yields (A23) and the normal components of 
i0 :
i0(ej ; e0) = ��1�jijj + dKij(e0)�Kis!sj(e0) + K2ij � !is(e0)Ksj : (A24)From equations (A22) to (A24) we can calculate the Ricci tensor with the result:R�� = 
��(e�; e�) ; 82



R00 = 1�4� + ��1(@ttr(K)� L�tr(Kij)) + trK2 : (A25)With help of (A23) one �ndsR0i = (trK)ji �K ji jj : (A26)For the spatial components we obtainRij = 
0i(e0; ej) + 
ki(ek; ej) :Using (A24) and (A22) for the curvature forms leads toRij = Rij + tr(K)Kij � 2K2ij ���1�jij ���1(@tKij �L�Kij) +Kis!sj(e0) +Kjs!si(e0) :(A27)With help of (A18), (A19) and (A20) one can bring (A27) into the formhor(Ricci(g)) = Ricci(g) + tr(K)K � 2K2 � ��1(@tK � L�K)� ��1Hess(�) : (A28)Using (A25) and (A27) we �ndG00 = 1=2(R00 +PiRii)= 1=2[R + (tr(K))2 � tr(K2)] : (A29)A.3 The 3 + 1 split of hydrodynamicsCalculations similar to those in the last section lead quite rapidly to a 3 + 1 split of hydrodynamics.Let us decompose the energy-momentum tensor into horizontal and vertical components:T = �e0 
 e0 + e0 
 S + S 
 e0 + T : (A30)For an ideal uid withT = (� + p)u
 u + pg# (A31)we �nd, setting as in special relativity u = (e0 + v),  = (1� v2)�1=2,� = 2(� + pv2) ; (A32)S = (� + p)2v ; (A33)T = (� + p)2v 
 v + pg# : (A34)Now we compute r � T for an arbitrary T . Fromre0(�e0 
 e0) = Le0(�)e0 
 e0 + �!i0(e0)ei 
 e0 + �e0 
 !i0(e0)eiand rek(�e0 
 e0) = Lek(�)e0 
 e0 + �!i0(ek)ei 
 e0 + �e0 
 !i0(ek)eiwe obtainr � (�e0 
 e0) = Le0(�)e0 + �!i0(e0)ei + �!i0(ei)e0 :83



In the same manner one �nds the other contributions with the result:(r � T )0 = Le0(�) + �!i0(ei) + !0j(e0)Sj + Skjk + !0j(e0)Sj + !0j(ei)T ijInserting the expressions for the connection forms given in Section A1, leads to the following formof the energy equation:1� (@t �L�)� = �r � S � 2r(ln�) � S + �tr(K) + tr(K � T ) : (A35)Similarely one �nds(r � T )i = !i0(e0)� + Le0(Si) + [!i0(ej) + !ij(e0)]Sj + !j0(ej)Si + !0j(e0)T ji + T ijjjand from this we obtain the momentum conservation1� (@t �L�)S = �r(ln�)� + 2K � S + tr(K)S � ��1r�(�T ) : (A36)This equation is used to derive the vector perturbation equation (2.63) in Chapter 2.A.4 The 3 + 1 split of Einsteins �eld equationsHere we discuss the often used 3 + 1 split of the gravitational �eld equations. The calculation of thecurvature forms relative to the basis (A12) is presented in Section A2. The reader will note thatCartan's calculus leads rather quickly to the required results.We use the notation introduced in the previous section (A30) for the various projections of theenergy-momentum tensor T into normal and horizontal components. From equations (A26), (A28)and (A29) for the Einstein and Ricci tensors, Einsteins �eld equations can be written in the form(recall that boldface letters always refer to the slices �t):R+ (trK)2 � trK2 = 16�G� ; (A37)r �K �r�tr(K) = 8�GS ; (A38)@tK = L�K �Hess(�) + �[Ric(g)� 2K �K + (trK)K � 8�G(T � 12g(�� trT ))] : (A39)In addition to (A37), (A38) and (A39) we have the following relation (Section A2, equation (A20))between g and the second fundamental form K:@tg = �2�K +L�g : (A40)Note that this decomposition into constraint equations (A37), (A38) and dynamical equations (A39),(A40) involves only horizontal quantities and those provides the 3 + 1 split of the gravitational �eldequations.In Chapter 2 we also use the following consequence of (A39) and (A37)@ttr(K) = �4� +L�tr(K) + �[tr(K2) + 1=2(� + trT )] : (A41)Note that @t and tr do not commute. With (A40) one shows easilytr(@tK �L�K) = @ttr(K)�L�tr(K) + 2�tr(K2) : (A42)To derive the perturbation equations for vector perturbations we mainly use (A38) and (A39).84



A.5 The 3 + 1 split of the Liouville operator for a geodesic sprayIn this section we derive a useful form of the Liouville operator for a geodesic spray for an arbitrary3 + 1 split.We start with some generalities. The metric g of the spacetime manifold M de�nes a naturaldi�eomorphism between the tangent bundle TM and the cotangent bundle T �M, which can beused to pull back the natural symplectic form on T �M. In terms of natural bundle coordinates thedi�eomorphism is given by (x�; p�) 7! (x�; p� = g��p�) and those the induced symplectic 2-form onTM is! = dx� ^ d(g��p�) : (A43)The Lagrangian L = 12g��p�p� on TM de�nes a Hamiltonian vector �eld Xg on TM, determinedby iXg! = dL :In terms of natural bundle coordinates the geodesic spray Xg is given byXg = p�@� � ����p�p� @@p� ; (A44)where ���� are the Christo�el symbols for (M; g). (For further details see [Stewart, 1971].)The one-particle phase space for particles of mass m, i.e., the sub{bundle fp 2 TM : g(p; p) =�m2g, is invariant under the geodesic ow and we denote the restriction of Xg to the one-particlephase space also by Xg.Let f be a distribution function on the one-particle phase space. The Vlasov and Boltzmannequations for f involve the Lie derivative LXgf . If we consider the spatial components pi, relativeto an orthonormal tetrad fe�g as independent variables of f , then the Liouville operator LXg canbe written asLXgf = p�e�(f)� !i�(p)p� @f@pi ; (A45)where !�� are the connection forms relative to the dual basis f��g.We derive now a more explicit expression of (A45) for an arbitrary 3 + 1 slicing. In order todo this, we need the connection forms relative to the basis f��g calculated in Section A2 . Theycan be expressed in terms of �;�;!ij; cij. Using equations (A17), (A15), (A18) and (A14) we �nd(p = piei, p0 = pp2 + m2):!i�(p)p� @@pi = !i0(p)p0 @@pi + !ij(p)pj @@pi= [!i0(e0)p0 + !i0(p)]p0 @@pi + [!ij(e0)p0 + !ij(p)]pj @@pi= (p0)2��1�ji @@pi �Kijp0pj @@pi + !ij(p)pj @@pi + !ij(e0)p0pj @@pi= (p0)2��1�ji @@pi + !ij(p� ��1�p0)pj @@pi � p0� (� jij � c ij )pj @@pi :Here Kij are the components of the second fundamental form of �t, for which we also use equation(A19) of Section A2.This leads to the following useful 3 + 1 split of the Liouville operator:LXgf = [p0� @t +Lp� p0� �]f � [!ij(p� p0� �)pj + (p0)2(ln�)ji � p0Hijpj] @f@pi ; (A46)85



where we have introduced the horizontal tensor �eldHij = ��1(�ij � cij) : (A47)Equation (A46) is used in Section 2.3.A.6 GlossaryIn this appendix we provide a glossary of the variables used in the text. For most terms we give ashort explanation and refer to the equation or section where this variable is �rst used. Usually it isde�ned there. If not, this should be a very common variable found, e.g., in most basic text books ongeneral relativity (like the Christo�el symbols, the Riemann tensor and so on).A Perturbation of the 00 component of the metric, respectively the lapse function (2.4),(2.11),Appendix A.B Scalar perturbation of the 0i component of the metric, respectively the shift vector (2.5),(2.11).Bi Vector perturbation of the 0i component of the metric, respectively the shift vector (2.7),(2.12).Bij Magnetic part of the Weyl tensor (2.27).C���� = R���� � (1=2)(g��R�� �+g��R�� � g��R�� � g��R��) + R6 (g��g�� � g��g��),Weyl tensor (2.26,27).D(�) Gauge invariant density perturbation variable for the matter component � (2.38).D(�)g Gauge invariant density perturbation variable for the matter component � (2.37).D(�)s Gauge invariant density perturbation variable for the matter component � (2.36).Eij Electrical part of the Weyl tensor (2.26).F Gauge dependent perturbation variable for the distribution function, paragraph (2.3.1).F (S) Gauge invariant perturbation variable for scalar perturbations of the distribution function(2.69).F (T ) Gauge invariant perturbation variable for tensor perturbations of the distribution function,paragraph (2.3.2).F (V ) Gauge invariant perturbation variable for vector perturbations of the distribution function,paragraph (2.3.2).G Newtons constant, G = 6:6720 � 10�8cm3g�1sec�2.G�� = R�� � (1=2)g��R, Einstein tensor.HL Trace perturbation of the spatial part of the metric.HT Anisotropic scalar perturbation of the spatial part of the metric (2.6,11).Hi Anisotropic vector perturbation of the spatial part of the metric (2.8,12).86



Hij Anisotropic tensor perturbation of the spatial part of the metric (2.9,13).Kij Second fundamental form, Section 2.1, Appendix A.Li Spatial components of the vector �eld X parametrizing a gauge transformation, Section 2.1,2.3.LX Lie derivative w.r.t the vector �eld X, Section 2.3.M Mass used to parametrize the energy momentum tensor of seed perturbations, Section 2.5.M Gauge invariant perturbation variable for the energy integrated photon distribution (2.83).M Spacetime manifold, Appendix A, Section 2.3Mi = 34� R d
�iM The �rst moment of M (3.19).Mij = 38� R d
�ijM The second moment of M (3.17).P �� = u�u� + ��� The projection operator onto the 3{space orthogonal to u (2.30).Pm The mass bundle, Section 2.3R The Ricci scalar.R = 3�m=4�r Parameter used in paragraph 3.2.3.R Perturbation of the scalar curvature on the slices of constant time (2.14).R�� = R� ��� The Ricci tensor.R� ��� The Riemann tensorT Temperature of the cosmic background radiation.T Temporal component of the vector �eld X parametrizing a gauge transformation, Section 2.1,2.3.TM Tangent space to spacetime, Section 2.3.TX Tangent vector �eld associated to the vector �eld X, Section 2.3.1T (sS)�� Scalar contribution to the energy momentum tensor of the seeds (2.117,118,119).T (sT )�� Tensor contribution to the energy momentum tensor of the seeds (2.122).T (sV )�� Vector contribution to the energy momentum tensor of the seeds (2.120,121).V Gauge invariant variable for scalar perturbations of the velocity �eld (2.35).Vi Gauge invariant variable for vector perturbations of the velocity �eld (2.42).X Vector �eld parametrizing a gauge transformation, Section 2.1, 2.3.@� = @@x� Partial derivative (vector �eld) 87



a Cosmic scale factor, Section 1.1.b Impact parameter, Section 3.4, 4.2.2.c Speed of light, usually set equal to 1 in this text.cs = p _p= _� , (c� = p _p�= _��) Adiabatic sound speed (of matter component �), Section 1.1.e� Tetrad vector �eld, Section 2.3, Appendix A.f Distribution function of phase space, Section 2.3.f� Gauge invariant scalar potential parametrizing anisotropic stresses of seeds (2.119).f� Gauge invariant perturbation variable parametrizing the energy density of seeds (2.117).fp Gauge invariant perturbation variable parametrizing the pressure of seeds (2.119).fv Gauge invariant perturbation variable parametrizing the scalar velocity potential of seeds(2.118).g�� Metric of spacetime, Chapter 2.h Used to parametrize Hubble's constant H0 = h� 100 kmsecMpc , Section 1.1.h�� Metric perturbation (2.10).�h Planck's constant, �h = 1:0546 � 10�27cm2gsec�1, usually set equal to 1 in this text.k Spatial curvature of a Friedmann universe (1.1).k Comoving wave number, Section 3.2, paragraph 3.4.2.kB Boltzmann's constant, kB = 1:3807 � 10�16erg=K, usually set equal to 1 in this text.l Length introduced to keep perturbation variables dimensionless, in applications it may be setequal to a typical scale of perturbations, Section 2.1.lH = t Comoving size of the horizon, Section 1.3.q Redshift corrected energy, paragraph 2.3.1.t Conformal time, Section 1.1.tT Conformal Thomson mean free path, Section 3.2.u Energy velocity �eld, Section 2.1v Scalar velocity potential Section 2.1.v Redshift corrected momentum, paragraph 2.3.1.vi Vector peculiar velocity �eld, Section 2.1. 88



w Enthalpy, Section 1.1.w(�)i Gauge invariant vector potential parametrizing anisotropic stresses of seeds (2.121).w(v)i Gauge invariant vector contribution to the energy ow of seeds (2.120).z Cosmological redshift.� Gauge invariant entropy perturbation variable, Section 2.1.���� Christo�el symbols, Section 2.3.� Laplacian.� Cosmological constant (1.1).� Gauge invariant scalar potential for anisotropic stresses, Section 2.1.�i Gauge invariant vector potential for anisotropic stresses, Section 2.1.�ij Gauge invariant tensor contribution to anisotropic stresses, Section 2.1.� Three dimensional spatial hypersurface, Appendix A.� Gauge invariant scalar potential for geometry perturbations (2.24).	 Gauge invariant scalar potential for geometry perturbations (2.25).
i Gauge invariant perturbation variable for the uid vorticity (2.43).
�� Curvature 2{form, Appendix A.� Lapse function (2.4), Appendix A.� Shift vector (2.5), Appendix A.ij Metric of a three space of constant curvature, Section 1.1.� Gauge dependent density perturbation (2.28).�i Spatial unit vector (e.g. denoting photon directions), Section 2.3.� = 4�GM2 Smallness parameter for the amplitude of seed perturbations, paragraph 2.5.2.�ijk Three dimensional totally antisymmetric tensor (2.27).�ij = �i�j � ij , Section 3.2.� Symmetry breaking scale (4.1).�� Orthonormal tetrad of 1{forms, Appendix A.#i Orthonormal triad of 1{forms on the hypersurfaces of constant time, Appendix A.� Isomorphism between the perturbed and unperturbed mass bundles, Section 2.3.89



� Gauge dependent perturbation variable for the energy integrated photon distribution para-graph (2.3.4).� Parameter in the scalar �eld potential (4.1).� = (1 + kr2=4)�1 Conformal factor for the metric of a 3 space of constant curvature, Section 2.3.� Cosine between the photon direction and the radial direction, paragraph 3.2.1.�� Orthonormal momentum components Section 2.3.�ij Anisotropic stresses (2.31).�L Gauge dependent pressure perturbation variable (2.31).�(�), ��(�) Background energy density of component �.� Scalar potential for the shear of the equal time hypersurfaces, extrinsic curvature (2.15).�i Vector potential for the shear of the equal time hypersurfaces, extrinsic curvature (2.17).�T Thomson cross section, �T = 6:6524 � 10�25cm2.� Physical time, Section 1.1.� Impact time (4.30)� Optical depth, Section 5.1.��� Stress tensor (2.30).� Scalar �eld, Chapter 4.� Variable parametrizing spherically symmetric scalar �eld con�gurations (4.4).! Winding number density of the scalar �eld, Section 4.1.! �� Connection forms, Appendix 1.!ij Vorticity of a velocity �eld Section 2.1.
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FIGURE CAPTIONSFig. 1: The spectrum of the cosmic microwave background radiation as measures by COBE(Figure from Mather et al. [1990]).Fig. 2: Limits on the CMB anisotropy on di�erent angular scales. The COBE result is the onlypositive detection. All other marks represent 95% con�dence upper limits.Fig. 3: The linear perturbation spectrum of hot dark matter, for one (2) or three (1) types ofmassive neutrinos. The uctuations are heavily damped on scales smaller than �FS � mP l=m2�(Figure from Durrer [1989]).Fig. 4: Simulations of structure formation with HDM (top right and bottom pictures) comparedwith the corresponding picture from the CfA survey (top left). Triangles are high density regionsidenti�ed as galaxies. One sees that the simulations lead to highly over developed large scale structure(Figure from White [1986]).Fig. 5: CDM simulations (a) and (b) compared with the CfA survey (c). No striking inconsistenciesare visible at �rst sight (Figure from Kolb and Turner [1990]).Fig. 6: The angular galaxy galaxy correlation function as measured by the IRAS survey (blackdots) compared with the predictions from CDM models with h = 0:4 (black line) and h = 0:5 (dottedline). The open circles and squares are results from an older analysis of the Lick catalogue (Figurefrom Maddox et al. [1990]).Fig. 7 The CMB anisotropy (in units of 10�3) from a spherically symmetric texture collapsing atz = 30 (left) and z = 200 (right) respectively as a function of angular separation from the center ofthe texture. This �gure is calculated for a universe which reionizes at z = 200. It shows how signalsfrom small scale textures are substantially damped and broadened by photon di�usion.Fig. 8: The hot spot|cold spot signal of a spherically symmetric collapsing texture in units of99



� � 2:8�10�4 . The horizontal variable � = t�r cos � denotes the 'impact time' of a photon arrivingat a distance r from the texture at time t traveling with an angle � with respect to the radial direction.The hot spot{cold spot is shown for photons with �xed impact parameter b = r sin � � 0:1tc (tc is thetime of texture collapse). The signal from the expanding universe at t = tc, line (1), and t = 1:5tc, line(2), is compared with the at space result (dashed curve). The second peak appearing at t = 1:5tcis due to the dark matter potential.Fig. 9 As Fig. 8 but for di�erent times with time steps �t � 0:25tc. One sees an outgoing wakeof blue shift at � � t. This is caused by photons which have fallen into the dark matter potentialbut have not yet climbed out of it again. This blueshift will of course be completely compensatedby the redshift these photons will acquire during their way out of the dark matter potential.Fig. 10 The CMB perturbation in units of � � 2:8 � 10�4 as a function of the impact parameterb for �xed � � 0:5tc = 10. The signal disappears at an impact parameter b � 1:5tc (tc = 20 in theunits chosen).Fig. 11 A simulated COBE map as it might look in a scenario with texture + CDM. The colorscheme goes from�4�10�4 (dark blue) to 1�10�4 (deep red). Monopole and dipole contributions aresubtracted in this map. A description of how the map is produced (in collaboration with D.N. Spergeland A. Howard) is given in the text.Fig. 12 The statistical distribution of microwave anisotropies in the texture scenario. The numberof pixels showing a given anisotropy are counted for one realization of the CMB sky. The distributionis slightly non{Gaussian with skewness � �1 and curtosis � 3.Fig. 13 A 3 + 1 slicing of spacetime M. The family of immersions of � into M is denoted byit; it(m) = ��1(m; t).
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