
Cosmic microwave background anisotropies and extra dimensions in string cosmologyA. Melchiorri1, F. Vernizzi1, R. Durrer1 and G. Veneziano21D�epartement de Physique Th�eorique, Universit�e de Gen�eve, 24 quai Ernest Ansermet, CH-1211 Gen�eve 4, Switzerland2CERN Theory Division, CH-1211, Gen�eve 23, SwitzerlandA recently proposed mechanism for large-scale structure in string cosmology {based on masslessaxionic seeds{ is further analyzed and extended to the acoustic-peak region. Existence, structure,and height of the peaks turn out to depend crucially on the overall evolution of extra dimensionsduring the pre-big bang phase: conversely, precise cosmic microwave background anisotropy datain the acoustic-peak region will provide a window on string-theory's extra dimensions before theireventual compacti�cation.PACS Numbers : 98.80.Cq, 98.80.EsOne of the most stringent tests of inationary cosmol-ogy will come when new precise satellite data on cos-mic microwave background (CMB) anisotropies down tosmall angular scales will become available during the nextyears [1]. Hopefully, these data will allow not only tocheck whether the generic paradigm of ination is valid,but also to make a strong selection among the multitudeof models of ination which are presently on the market.Models di�er, in particular, on the presence or absenceof a sizeable tensor component (to be detected by polar-ization experiments), on the possible non-Gaussianity ofthe uctuations (to be tested through higher-order cor-relations) and, �nally, on the height, and position of theso-called acoustic peaks in the multipole coe�cients C`in the region ` > 100.The pre-big bang (PBB) scenario [2], a particularmodel of ination inspired by the duality properties ofstring theory, was thought for sometime to be unable toprovide a quasi-scale-invariant (Harrison-Zeldovich, HZ)spectrum of perturbations. Indeed, �rst-order tensor andscalar perturbations were found to be characterized byextremely `blue' spectra [2]. The large tilt, together witha natural normalization imposed by the string cut-o� atthe shortest ampli�ed scales (� 1mm), makes their con-tribution to large-scale structure completely negligible.It was later realized [3], however, that the spectral tiltof the supersymmetric partner of the dilaton, the univer-sal axion of string theory (not to be confused with thePeccei-Quinn axion!), �, can have a whole range of values,depending on the overall behaviour of the six compacti-�ed internal dimensions. It is most useful to express theresult in terms of the axion energy spectrum during theradiation era [4,5]. Let us de�ne the tilt � by:
�(k; �) � ��1c d��(k; �)=d log k / (k=k1)� ; (1)where, as usual, �c is the critical energy density, and k1,related to the string scale, represents the end-point of thespectrum. Assuming, as an example, separate isotropicbehaviour for the three external and the six internal di-mensions, one �nds:� = 3 + 3r2 � 2p3 + 6r21 + 3r2 ; (2)

where r � 12 ( _V6 V3)=(V6 _V3) is a measure of the relativeevolution of the internal and external volumes.Eq. (2) allows for a range of values for the tilt �. Forstatic internal dimensions (r = 0) one �nds a negativetilt, a `red' spectrum with � = 3�2p3 � �:46; for staticexternal dimensions (r =1) one �nds a `blue' spectrumwith � = 1 while, �nally, for a globally isotropic evolution(modulo T-duality), i.e. for r = �1, one obtains a at HZspectrum, � = 0 [4]. As we shall show in this paper, CMBanisotropy data prefer a slightly blue spectrum with � �0:4 leading to r � 2:2 so that the internal dimensionscontract somewhat faster than the external dimensionsexpand. We note also that the pure power-law behaviourin (2) is only valid if PBB evolution is not itself composedof various phases: it is conceivable, e.g., that some ofthe internal dimensions may `freeze' sometime during thePBB phase, in which case � will undergo a (negative)jump at some characteristic scale k� related to the freeze-out time. We will come to this possibility below.The results of [3{5] reopened the possibility that PBBcosmology may contain a natural mechanism for gener-ating large-scale anisotropy via the 'seed' mechanism [6].This possibility, which belongs to the generic class ofisocurvature perturbations, is analyzed in [7] for mass-less axions, to which we shall limit our attention in thisletter, and in [8] for very light axions. Isocurvature per-turbations from scalar �elds have also been discussed inRef. [9], but there the scalar �eld perturbations just de-termine the initial conditions. In our model the axionpays the role of a 'seed' like in scenarios with topologicaldefects. The power spectrum of the seed is however notdetermined by causality, but the spectral index can vary(within the above limits). This reects the fact that theaxion �eld is generated during an inationary phase.In the above papers a strong correlation between thetilt (the value of ns � 1 in standard notations) and nor-malization of the C`'s was noticed. A range of valuesaround ns = 1:2 (slightly blue spectra) appeared to befavored by a simultaneous �t to the tilt and normaliza-tion on the large angular scales observed by COBE [10]to which the analysis in [7] was actually con�ned. In thispaper we extent this study down to the small angularscales which have been explored observationally with lim-1



ited precision so far [11] but which will become preciselydetermined during the next decade. We also supplementthe analytic study of [7] with numerical calculations.As in previous work [7,8] we suppose that the contri-bution of the axions to the cosmic uid can be neglectedand that they interact with it only gravitationally. Theythen play the role of 'seeds' which generate uctuationsin the cosmic uid [6].The evolution of axion perturbations is determined bythe well-known axion-free background of string cosmol-ogy. One �nds [7]� +�k2 � �aAaA� = 0 ; (3)where we have introduced the `canonical' axion �eld  =aA�. The function aA = ae�=2 is the axion pump �eld, adenotes the scale factor in the string frame, and � is thedilaton, which is supposed to be frozen after the pre-bigbang/post-big bang transition. Dots denote derivationw.r.t. conformal time �. The initial condition for Eq. (3)is obtained from the pre-big bang solution and is thenevolved numerically with aA = a during the post bigbang. The pre-big bang initial conditions require [7]�(k; �) = c(k)apk'(k; �); '(k; �) = sin k�; � � �eq : (4)The deterministic variable ' is a solution of Eq. (3), andc(k) is a stochastic Gaussian �eld with power spectrumhjc(k)j2i = (k=k1)�2j�j�1 = (k=k1)��4 ; (5)where we have related the tilt � introduced before to theparameter j�j used in [7]. In order not to over-produceaxions, we have to require j�j � 3=2 i.e. � � 0. The lim-iting value � = 0 corresponds precisely to a HZ spectrumof CMB anisotropies on large scales [7].The energy momentum tensor of the axionic seeds isgiven by T �� = @��@�� � 12��� (@��)2 : (6)Like � also the energy momentum tensor is a stochas-tic variable which is however not Gaussian. (The non-Gaussianity of the model has to be computed and com-pared with observations. But this is not the topic of thepresent work.)For a universe with a given cosmic uid, the linearperturbation equations in Fourier space are of the formDX = S ; (7)whereX is a long vector containing all the uid perturba-tion variables which depends on the wave number k andconformal time �. S is a source vector which vanishes inthe absence of seeds. S consists of linear combinationsof the seed energy momentum tensor and D is a linear

ordinary di�erential operator. More concretely, we con-sider a universe consisting of cold dark matter, baryons,photons and three types of massless neutrino with a totaldensity parameter 
 = 1, with or without a cosmologi-cal constant (
� = 0:7 or 0:0). We choose the baryonicdensity parameter 
B = 0:05 and the value of the Hub-ble parameter H0 = 100hkm/sMpc with h = 0:5. Moredetails on the linear system of di�erential equations (7)can be found in Ref. [13] and references therein.Since S is a stochastic variable, so will be the solutionX(�0) of Eq. (7). We want to determine power spectraor, more generally, quadratic expectation values of theform (with sums over repeated indices understood)hXiX�j i = Z �0�in Gil(�)G�jm(�0)hS l(�)S�m(�0)id�d�0 ; (8)where G is a Green's function for D.We therefore have to compute the unequal time cor-relators, hS l(�)S�m(�0)i, of the seed energy momentumtensor. This problem can, in general, be solved by aneigenvector expansion method [12]. If the source evolu-tion is linear, the problem becomes particularly simple.In this 'coherent' case, we haveSj(�) = fji(�; �in)S i(�in)with a deterministic transfer function fij . By a sim-ple change of variables we can diagonalize the hermi-tian, positive initial equal time correlation matrix, sothat hS l(�in)S�m(�in)i = �l�lm. Inserting this in Eq. (8)we obtain exactly the same result as by replacing thestochastic variable Sj by the deterministic source termS(det)j given byS(det)j (�)S(det)�i (�0) = exp(�ji)qhjSj(�)j2ihjS i(�)j2i ;where the phase �ji has to be determined case by case.For our problem, the evolution of the pseudo-scalar�eld � is linear, but the source, the energy momentumtensor of �, is quadratic in the �eld. The same sit-uation is met for the large-N approximation of globalO(N) models. There one �nds that the full incoher-ent result is not very di�erent from the perfectly co-herent approximation [13]. We hence are con�dent thatwe obtain relatively accurate results (to about 15%) inthe perfectly coherent approximation which we apply inour numerical calculation. A more thorough discussionof the accuracy of the coherent approximation will begiven in a forthcoming paper [14]. Within the coher-ent approximation, we just need to determine the equaltime correlators of the axion energy momentum tensor,hT��(k; �)T ���(k0; �)i, which are fourth order in �.We then split the perturbations into scalar, vector, andtensor parts which completely decouple within linear per-turbation theory.We determine the CMB anisotropies by numericallysolving Eq. (3), and inserting the resulting source func-tions in a Boltzmann solver.2



As discussed in [7], the amplitude of the CMBanisotropies depends on the small scale cuto�, k1, of theaxion spectrum and the ratio between the string scaleMsand the Planck mass MP in the way`(`+ 1)C` ' (Ms=MP )4(`=k1�dec)2� : (9)The simplest assumption, k1=a1 � Ms ' 10�2MP '1017GeV only leads to the correct normalization if � �<0:1. Otherwise the tilt factor (k1�dec)�2� � 10�60� en-tirely suppresses uctuations on large scales. The hugefactor k1�dec comes from extrapolating the spectrum over30 orders of magnitude. If the tilt is larger than � � 0:1,as suggested by the data (see below), we need either aslightly scale dependent tilt or some cuto� in the smallscale uctuations at later times. These possibilities areboth physically plausible. The �rst one is realized if thecompacti�ed dimensions evolve more rapidly at the be-ginning of the dilaton-driven inationary phase than to-wards its end. In other words the parameter r and � inEq.(2), instead of being constant, will be a (slowly) de-creasing function of time. One could thus have a ratherblue spectrum at large scales, as necessary in order tohave pronounced peaks, and a much atter spectrumat small scales which helps avoiding normalization prob-lems. We explore these questions in more detail in theforthcoming paper [14].
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FIG. 1. The CMB anisotropy power spectrum for uctua-tions induced from axionic seeds with a tilt � = 0:1. We showthe scalar (dot-dashed), vector (dashed) and tensor (dotted)contributions separately as well as their sum (solid).In Fig. 1 we show the scalar, vector and tensor contri-butions to the resulting CMB anisotropies for an axionspectrum with tilt � = 0:1. The 'hump' at ` � 40 is dueto the isocurvature nature of the perturbations. Theyare also the main reason why the acoustic peaks are verylow. The result is remarkably similar to the large-N casestudied in Ref. [13]. The main di�erence here is that,like for usual inationary models, we dispose of a spec-tral index which is basically free. By choosing slightlybluer spectra, we enhance the power on smaller scales.
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FIG. 2. The CMB anisotropy power spectrum for uctu-ations induced by axionic seeds. We show the sum of thescalar, vector and tensor contributions for 5 di�erent tilts,with 
� = 0 (solid) and 
� = 0:7 (long dashed). The tilt israising from bottom to top, � = 0:1; 0:2; 0:3; 0:4; 0:5.� = 0.1 0.2 0.3 0.4 0.5�2 for � = 0 302 214 119 66 82�2 for � = 0:7 249 152 111 70 119TABLE I. The value of �2 (with 15% theoretical er-rors) from all the CMB anisotropy experiments compiled inRefs. [11] are presented for all the models. We compare withN = 60 data points. Clearly, � � 0:4 with � = 0 or 0:7 is areasonable �t to the data.In Fig. 2 we compare the results from di�erent tiltswith and without cosmological constant. The CMBpower spectra obtained can have considerable acousticpeaks at ` � 250 to 300. Increasing the tilt � raisesthe acoustic peaks and moves them slightly to smallerscales. As found in Ref. [7], the power spectrum of thescalar component is always blue. The tensor and vectorcomponents counterbalance the increase of the tilt, main-taining a nearly scale invariant spectrum on large scales.The models can be discriminated from the common in-ationary spectra by their isocurvature hump and by theposition of the �rst peak. We have compared our resultswith the latest experiments [11]. All the models agreequite well with the large scale experiments, while on de-gree and sub-degree scales, models with 0:3 �< � �< 0:5are favored by the data as can be seen from the �2 anal-ysis presented in Table I. For comparison, the �2 of astandard �-CDM model, with theoretical errors given bycosmic variance, is 120. However, we have to be awarethat the �2-test with present observations is a very roughindication of the goodness of a model, since the C`s donot obey a Gaussian distribution [15]. This is especiallyserious for experiments with low sky coverage!In Fig. 3, the theoretical dark matter power spec-3



tra are compared with the data as compiled by Pea-cock and Dodds [16]. Models without a cosmologi-cal constant disagree in shape and amplitude with thedata. The root mean square mass uctuation withina ball of radius 8h�1Mpc for these models is �8 =0:36; 0:56; 0:88; 1:36; 2:05 for the tilts from � = 0:1 to� = 0:5 respectively. Models with a cosmological con-stant are in reasonable agreement with the shape of thespectrum (see Fig. 3). The values of �8 for these mod-els are 0:21; 0:38; 0:53; 0:82; 1:25 respectively. We esti-mate a (normalization) error of up to � 30% in thesenumbers, due to the perfectly coherent approximation.Analysis of the abundance of galaxy clusters suggest�8 � 0:5(1 � 
�)�0:5 [17]. Since we can choose a blue,tilted spectrum in our model, we have more power onsmall scales and are able to �t large scale structure datamuch better than defect models for which the spectralindex is �xed by causality.
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FIG. 3. The linear dark matter power spectrum for uc-tuations induced by axionic seeds is compared with data forsame values of the tilt as in Fig. 2. The spectra for the 
� 6= 0models (dashed lines) are shown with a bias factor of b = 1:2.The value of the tilt raises from bottom to top as in Fig. 2.In this letter we have presented preliminary results forthe CMB anisotropies and linear matter power spectrain a pre-big bang scenario with axionic seeds. Due tothe isocurvature nature of the perturbations, a positivetilt 0:3 �< � �< 0:5 is required to �t the measured CMBanisotropy. Including a cosmological constant of 
� �0:7, as suggested by the recent supernovae results [18],the matter power spectrum is also in good agreementwith measurements.If improved data con�rms the need of a signi�cant tilt,� > 0:1, the most simple scenario (k1=a1 = Ms and� = const.) will be ruled out. This shows that CMBanisotropies may contain information about the evolu-tion of extra dimensions! But clearly, also in this casethe model remains highly predictive. It is easily distin-guished from the more standard adiabatic models by its'isocurvature hump' at ` < 100 and the position of the

�rst acoustic peak at ` � 300. These values depend onlyslightly on the tilt (see Fig. 2). Furthermore the ratiosbetween the scalar, vector and tensor contributions areentirely �xed by the model.We are grateful to Ram Brustein for helpful commentsand to Nicola Vittorio for his Boltzmann code. This workis supported by the Swiss NSF.
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