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1. INTRODUCTIONIn a series of recent papers the viability of a new mechanism for producing large-scale inhomo-geneities in an initially homogeneous Universe has been investigated [1, 2, 3, 4, 5]. The new proposalis based on the same general idea as the cosmic string scenario, namely that the inhomogeneities of theUniverse might have been induced by topological defects which formed during a phase transition inthe early Universe. It is, however, assumed that textures (�3-defects) | instead of cosmic strings (�1-defects) | were the original seeds for structure formation. This alternative was partly motivated bysome serious di�culties encountered in the cosmic string picture. In particular, improved calculationshave shown that the scale of the string network appears to be too small to lead to the formation ofthe observed structures.At this early stage the texture scenario looks quite promising. One of the attractive features is theresulting power spectrum for the density perturbations [6, 7, 8], which has more power both on smalland large scales than the standard CDM model with biasing, but leads to the same predictions onintermediate scales. This seems to be exactly what is needed on observational grounds [10]. (See alsothe recent review [11] of the observational contraints for the power spectrum of primordial densityuctuations.) Similar results might be obtained in a scenario with global monopoles (�2{defects) [9].As for any other model of galaxy-formation the upper limits on the microwave background anisotropiesrepresent a crucial test for texture seeded structure formation. The predicted anisotropies are stillunder investigation. Preliminary results for CDM and dust show that small scale uctuations arestrongly suppressed, but on scales of 10 - 20 degrees peaks with amplitudes �T=T � (1� 5)10�5 arepredicted and about 5 to 10 such peaks are expected all over the sky [12]. In these calculations it is,however, assumed that recombination never took place, because it is expected that early formation ofcollapsed small objects would probably reionize matter at high red shifts (� 200). It may well be thatthe theoretical expectations will soon come into conict with new observations. Without reionizationthe texture model would already be in serious di�culties.The collapse of textures has �rst been studied in at space and in an expanding Friedman Universe.In this context the metric perturbations were evaluated in linearized approximation for an exactspherically symmetric at space texture solution [3]. As a �rst step this procedure is certainly justi�ed,given the fact that the only parameter entering the coupled �eld equations is the small number� � 8�(�=mP l)2, where � is the vacuum expectation value of the Higgs �eld and mP l is the Planckmass. For grand-uni�ed-theories typical values of � are of the order of 1016 GeV. Successful structureformation requires a value of � � 5 � 10�4 [6] which yields � of this order.The metric perturbations computed in Ref.[3], and also the gauge{invariant metric potentials givenin Ref.[5] diverge logarithmically at large distances andnor large times, implying that the linearizedapproximation is no longer valid in this region. This fact lead us to look for solutions of the coupledEinstein-� model equations and to calculate the interactions of the collapsing texture �eld with matterand radiation. We found two spherically symmetric collapse solutions [13], for which all dependenceson the time t and the radial coordinate r are given by functions of r=t (for suitable gauge choices).The coupled �eld equations reduce to two, respectively, three ordinary di�erential equations, whichcan easily be solved numerically. Our suspicion, that the two solutions might be connected by acomplicated coordinate transformation turned out to be true. Both forms are, however, useful forpractical applications.Independently Barriola an Vachaspati [14] derived the coupled �eld equations in another set of coor-dinates, which are also connected to our coordinate choice by a complicated transformation.The present paper contains a more complete discussion of our self-similar solution and we study in1



detail the interaction of the gravitational texture �eld with matter and radiation. In addition, we havedeveloped a code for numerical integration of the coupled partial di�erential equations that describethe spherically symmetric collapse of textures and some results of a parameter study will be presented.We hope that these are useful ingredients for more detailed investigations of the texture scenario.The paper is organized as follows: In section 2 we give the basic equations and in section 3 wepresent the ordinary di�erential equations for self-similar con�gurations for two very di�erent coordi-nate choices. Since both forms are useful we discuss in detail their equivalence. In addition, we givesome results of a parameter study of numerical solutions of the partial di�erential equations describ-ing spherically symmetric texture evolution. In section 4 the interaction of matter and radiation withthe collapsing textures is studied. We calculate the deection of light, the red shift for photons andderive an exact solution for the uid equations of CDM and dust in the self-similar texture �eld. Asimilar discussion is presented for the Liouville equation describing collisionless matter. In all casesthe validity of the linearized approximation can easily be controlled.2. BASIC EQUATIONSAs in all papers on the texture scenario for large-scale structure formation [3], we consider herea non-linear O(4)-� model in which the four component �eld ~� = (�a) (a = 1; ::; 4) varies on the3-sphere S3. This should be considered as a limiting case of the four component Higgs �eld describedby the actionS(~�) = Z (12r�~� � r�~� � �4 (~�2 � �2)2)p�g d4x: (0.1)In many circumstances it is a good approximation to replace the potential term in (0.1) by the con-straint ~� � ~� = �2. The dynamics is then determined, subject to this constraint, by the �rst termof (0.1) and is highly non-trivial. Mathematically, ~�(x) describes harmonic maps from the spacetimemanifold (with metric g and corresponding covariant derivative r�) into the vacuum manifold of (0.1),which is a 3-sphere. Such maps can be grouped into homotopy classes. In particular, the �eld con�gu-rations which have a well-de�ned limit at spacial in�nity, fall into classes of the third homotopy group,�3(S3) = Z, of the vacuum manifold. The integers of this group correspond to the winding number, de-�ned by the induced map from the compacti�ed three-dimensional space S3 into the vacuum manifold.In the �{model approximation we can still use the action (0.1) but � has now the meaning of aLagrange multiplier. The �eld equations are thenr�r�~�+ (r�~� � r�~�)~� = 0: (0.2)(We chose the units such that the vacuum expectation value � of the Higgs �eld is equal to one.) Theenergy-momentum tensor isT�� = r�~� � r�~�� 12g��r�~� � r�~�: (0.3)Our basic dynamical equations are (0.2) and Einsteins �eld equations with expression (0.3) for theenergy-momentum tensor. The only parameter, appearing in these coupled �eld equations, is thenumber � de�ned earlier.For later discussions, the following remark has to be kept in mind. The �eld equation (0.2) for the2



matter �eld implies, of course, r�T �� = 0, but the converse is not true, as can easily be seen.For �xed time, any �eld con�guration ~�(x) de�nes a closed three-form
 = 112�2 �abcd �a d�b ^ d�c ^ d�d; (0.4)which does not involve the metric g and has a purely topological meaning. Its integral is a homotopyinvariant. If the asymptotics is such that we can consider ~� as a map from the compacti�ed three-dimensional space into S3, then the integral of ! gives just the degree (winding number) of this mapand thus has to be an integer.We now look for spherically symmetric solutions of the coupled system. For ~� we make the hedgehogansatz~�(x) = 0BB@ sin�(r; t) � x̂cos�(r; t) 1CCA ; (0.5)where x̂ denotes the unit vector in direction of x. The metric is taken to be of the formg = e2a(r;t)dt2 � [e2b(r;t)dr2 + r2(d#2 + sin2 #d'2)]: (0.6)For our choice of the radial coordinate, the most general spherically symmetric ansatz would alsocontain a term grtdrdt 6= 0.In what follows, spacetime indices always refer to the orthonormal frame�0 = eadt; �1 = ebdr; �2 = rd#; �3 = r sin#d': (0.7)T �� has the general form
(T ��) = 0BBBBBBBBBB@

T 00 T 01 0 0T 10 T 11 0 00 0 T 22 00 0 0 T 33
1CCCCCCCCCCA ; T 22 = T 33; (0.8)

and the equation r�T �� = 0 imply the following two independent relations, which will turn out to bealso very useful for the discussion of density uctuations (see section 4.3)(T 00 + T 11)Dra+DrT 11 +DtT 01 + 2T 01Dtb� 2(T 22 � T 11)e�br = 0; (0.9)DtT 00 + (T 00 + T 11)Dtb+DrT 01 + 2T 01Dra+ 2e�br T 01 = 0; (0.10)where Dt = e�a@t, Dr = e�b@r.From these it is obvious that the matter equation (0.2) and the constraint equationsG00 = 8�G T00,G01 = 8�G T01 imply all other components of the Einstein �eld equations.Inserting (0.5) into the action (0.1) givesS(~�) = const Z [eb�ar2 _�2 � ea�br2�02 � 2ea+b sin2 �]drdt; (0.11)3



with _� = @�=@t, �0 = @�=@r, and the corresponding Euler-Lagrange equation is(eb�ar2 _�)� � (ea�br2�0)0 + ea+b sin 2� = 0: (0.12)For at space (a = b = 0) this reduces to��� �00 � 2r�0 + sin 2�r2 = 0: (0.13)This nonlinear partial di�erential equation has been studied extensively in Ref.[3], where an exact self-similar solution which describes the collapse of a texture is discussed. It was established that texturesrapidly become quite spherical as they collapse. (A simple scaling argument, as in the standard proofof Derrick's theorem, shows that eq.(0.13) has no static solutions.)The relevant components of the Einstein tensor and of the energy-momentum tensor areG00 = 1r2 � e�2b( 1r2 � 2b0r ); G11 = � 1r2 + e�2b( 1r2 + 2a0r ); (0.14)G01 = 2_br e�a�b; (0.15)T00 = 12[e�2a _�2 + e�2b�02 + 2r2 sin2 �]; T11 = 12[e�2a _�2 + e�2b�02 � 2r sin2 �]; (0.16)T01 = e�a�b _��0: (0.17)3. SOLUTIONS OF THE EINSTEIN �-MODEL EQUATIONSIn this section we investigate �rst in detail a self-similar solution of the coupled system and thenpresent results of a numerical study of the partial di�erential equations for �(r; t); a(r; t) and b(r; t).3.1. Self-similar solutionsGuided by the fact that a self-similar solution exists in at spacetime, we tried the following ansatz, which remarkably turns out to be compatible with the coupled �eld equations:�(r; t) = f(r=t); a(r; t) = A(r=t); b(r; t) = B(r=t): (0.18)Inserting this into (0.12) we �nd (x � r=t) :x2[eB�Ax2f 0]0 � [eA�Bx2f 0]0 + eA+B sin 2f = 0; (0.19)(where now 0 = d=dx) and the Einstein �eld equations reduce to1x2 � e�2B( 1x2 � 2B0x ) = �2 [(x2e�2A + e�2B)f 02 + 2x2 sin2 f ]; (0.20)and B0 = �2xf 02: (0.21)4



These equations imply, as noted earlier, in particular G00+G11 = 8�G(T00 + T11), which leads to thesimple relation(e2A)0 = x2(e2B)0: (0.22)In constructing numerical solutions we used as independent equations (0.19), (0.21) and the followingsimple consequence of (0.21) and (0.22)A0 = �2x3f 02e2B�2A: (0.23)For the numerical integration we need the behavior near x = 0. We note �rst that any A(0) 6= 0 canbe absorbed into a rede�nition of the time coordinate. Furthermore, f(0) = 0, otherwise ~� would besingular at the origin [see eq.(0.5)]. The di�erential equations then imply the following expansionf(x) = f 0(0)x+ �x3 +O(x5);A(x) = �x4 +O(x5);B(x) = x2 + �x4 +O(x5); (0.24)where� = f 0(0)60 [12 + (9�� 8)f 0(0)2];� = �8 f 0(0)2; = �4 f 0(0)2;� = �f 0(0)280 [12 + (9�� 8)f 0(0)2]: (0.25)Thus the expansion (0.24) contains only the parameter f 0(0). This slope at the origin is implicitelydetermined as follows. The di�erential equation (0.19) has a critical point at x = xc, wheree�2B(xc) = x2ce�2A(xc): (0.26)The second derivative f 00 remains only �nite at this position if f(xc) = �=2. From (0.22) and (0.26)we �nd A0(xc) = B0(xc) and the constraint equation (0.20) then impliesB(xc) = �12 ln(1� �); (0.27)which is positive for � < 1. Our computer program searches for xc and then determines the parameterf 0(0) such that f(xc) = �=2. Afterwards, it controls eq.(0.27).One of the interesting points will be a comparison of f with the at space solution. For A=B=0,eq.(0.19) reduces to(x2 � 1)(x2f 0)0 + sin 2f = 0; (0.28)5



for which the critical point is at x = 1. A solution with f(0) = 0 anf f(1) = �=2 was recentlydiscovered by Spergel and Turok [3]:f = 2arctan x (x > 0): (0.29)For x! 1 this solution approaches the value �, which means that ~� in (0.5) has the constant limit~�(0;�1) at spacial in�nity. Therefore, this solution can be lifted to the compacti�ed three-dimensionalspace and has winding number one.Before we present the numerical results of our curved space texture solution, we give also the basicequations for a second ansatz. Here, the metric is taken to beg = dt2 � dr2 � r2!2(r=t)d
2: (0.30)Instead of (0.22) we have now(x2 � 1)(x2!2f 0)0 + sin 2f = 0: (0.31)Combining the Einstein equations G00 = 8�G T00 and G11 = 8�G T11, we �nd the following �rst orderconstraint equation:(x!)02 � (!0x2)2 + �2 (x2 � 1)(!xf 0)2 = 1� � sin2 f: (0.32)Together with the second order equation (0.31) for f , this relation also implies the equation G01 =8�G T01 which reads(x!)00 = ��2 (x!)f 02: (0.33)From (0.31) we have again f(0) = n�=2, and thus f(0) = 0. Requiring that !(0) and !00(0) are �nite,we obtain !0(0) = 0 from (0.33) and then !(0) = 1 from the constraint equation (0.32). Again f 0(0)is the only free parameter and determines the expansion at x = 0:!(x) = 1 + �x2 + �x4 +O(x5);f(x) = x+ �x3 +O(x5); (0.34)with � = � �12f 0(0)2;� = �6�25 f 0(0)2[3 + (19�4 � 2)f 0(0)2]; = f 0(0);� = �15f 0(0)[3 + (�� 2)f 0(0)2]: (0.35)The critical point is always at x = 1 and we have f(1) = �=2. This condition determines the slopef 0(0).For reasons which will become clear in the next subsection, let us also discuss !{gauge in thevariable t=r = 1=x � u. In terms of u the evolution equations for f and ! are(1� u2)(!2f 0)0 + sin 2f = 0; (0.36)6



!00 = �(�=2)!f 02; (0.37)and the constraint yields(!0u� !)2 � !02 + (�=2)(1 � u2)f 02!2 + � sin2 f = 1 : (0.38)A prime denotes now the derivative with respect to our new variable u. This system does not exhibit acritical point at u = 0 so that in this case f(0) and !(0) are not �xed. Since in the linearized solutionf(0) = �, let us assume initial valuesf(0) = � + � ; ��=2 < � < �=2!(0) = !0 6= 0 :The point u = 0 describes spatial in�nity, (t; r !1) and the time of collapse, (t = 0; r > 0). To �ndthe collapsing solution numerically, we start, e.g., at u = �1 where (0.36) requires f(�1) = n�=2 andchoose f(�1) = �=2. An expansion of f and ! at u = �1 then yields:!(u) = !0 + !1(u+ 1) + !2(u+ 1)2 +O(u+ 1)3; (0.39)f(u) = �=2 + f1(u+ 1) + f2(u+ 1)2 +O(u+ 1)3 (0.40)with !1 = (1� �� !20)=2!0;!2 = (�=2)!0f21 ;f2 = f12 (1 + �=!20):The value of f1 = f 0(�1) is determined by the optimal shooting condition. To describe the collapseand unwinding of a texture we shoot to f(1) = �. The numerical result !(u) is presented in Fig. XXXAt this point we note also that the topological 3-form (0.4) is in both gauges given by
 = � 12�2 sin2 � @�@r dr ^ d# ^ d': (0.41)3.2 Equivalence of the two gaugesBefore we discuss the solutions of the coupled ordinary nonlinear di�erential equations, we showthat there exists a coordinate transformation connecting the self similar solutions in AB gauge (metric(0.6)) and in ! gauge (metric (0.30)). Let us denote in this subsection the coordinates in AB gaugewith capital letters, A=A(X), B=B(X), X=R/T and in ! gauge with small ones, ! = !(x), x = r=t.Inserting the ansatzR(r; t) = !(x) r; T (r; t) = !(x) t g(x) (0.42)in (0.6) and comparing with (0.30) we obtain the following relation for the partial derivativesT;t R;t= T;r R;r : (0.43)Using relations such as T;r= T;x x;r= (g!);x tx;r= (g!)0 (with 0 = @=@x) we can derive from (0.43)a di�erential equation for g(x),(g!)0(g!) = x2!0x3!0 � (x!)0 : (0.44)7



A solution g(x) of this equation determines the coordinate transformation X(x) = xg�1(x). With thefollowing relations between the metric functionsexp(�2B(X)) = (x!)02 � (x2!0)2exp(�A(X)) = exp(�B(X)) (g!)� x(g!)0(x!)0 ; (0.45)we obtain the �eld equations in AB gauge from the �eld equations in ! gauge (without solving thedi�erential equation (0.44) for g(x)).We can apply this, in particular, to the linearized approximation. To �rst order in � we �nd from(0.29) and (0.33) and the boundary condition ! t!�1! 1!(x) = 1 + � [arctan(x)x � 1]: (0.46)A solution of (0.44) is then(g!)�1 = 1 + � [ln(1 + x2)� x arctan(x)]; (0.47)which yields the linearized solution in AB gauge:B(X) = � X21 +X2 ; A(X) = � [ln(1 +X2)� X21 +X2 ] ; (0.48)where X = x+ 0(�).For !{gauge in terms of the variable u = 1=x which we shall call ~! in this subsection to avoid confusion,we obtain for g(u) the di�erential equation(g~!)0(g~!) = ~!0u3~!0 � u2~! � u~!0 (0.49)instead of (0.44), where here 0 denotes the derivative with respect to u. The linearized solution (e.g.from (0.37)) is~!(u) = 1� �[u(arctan u+ �=2) + 1] : (0.50)This solution is identical with ! only for t < 0. For t > 0 the two are related to each other by a gaugetransformation. Denoting the variables of ~!{gauge by (�; �) we easily �nd the following linearizedrelation:(�; �) = 8>><>>: (t; r) , for t < 0(t+ ��r; r + ��t) , for t > 0 :Let us now discuss in which part of parameter space our gauges are actually regular. As wefound numerically (see Fig. 3) and as can be inferred from the basic equations, A x!1! 1 and thus(AB){gauge becomes singular for x!1, or t! 0.It is a little less obvious that also !{gauge becomes singular at t = 0. Not the metric itself divergesbut the second fundamental form is not continous at t = 0. To see this, we �rst note that ! is an evenfunction of x. Thuslimt%0� d!dt = 1r limx!�1(x2!0) = �1r limx!1(x2!0) = � limt&0+ d!dt ;8



If the second fundamental form is to be continous at t = 0 all this limits thus have to vanish. Butfrom Fig. 2 we see directlylimx!1(x2!0) = �(d!du )u=0 6= 0This is also true in the linear approximation where one obtains by direct calculationlimt%0� d!dt = ��=2r and � limt&0+ d!dt = �=2r ;The only gauge discussed in this paper which is regular in a vicinity of t = 0 is ~!{gauge. Thisgauge is thus an extension of !{gauge to positive times. In linearized approximation it breaks downat ��t � r. For small values of � we can thus expect this gauge to be regular until t� r.When we want to discuss the behavior of matter and radiation in Section 4, we shall be mostinterested in the induced perturbations due to a collapsing texture. At very early times t� 0 we startwith a homogenous and isotropic distribution of matter and radiation and we want to calculate theresulting distribution long after texture collapse. To do this safely we need a gauge which is regularat t = 0 and we shall thus mostly work in ~!{gauge in the next section. (Although we shall call it!{gauge where there is no danger of confusion.)3.3 The numerical solutions for the two gaugesWe discuss �rst the results in the second gauge. In Fig. 1 we show the amplitude f of the ~�-�eld(eq.(0.18)) for various values for the coupling constant �. The smallest value � = 10�4 corresponds toa typical GUT scale, while the others are chosen in order to illustrate the role of gravity. In all cases, fis close to the at space solution (0.29). The asymptotic value f(1) always overshoots � (very slightlyfor � = 10�4), which means that the solution cannot be lifted to the compacti�ed three dimensionalspace. The metric coe�cient !(x) is plotted in Fig. 2 for the same values of �. Its monotonic decreasefrom !(0) = 1 to an asymptotic value !1 for j x j! 1 can be deduced rigorously from the basicequations. It is instructive to compare !1 with the result of the linearized theory (0.46) which isequal to 1� �. Even for unreasonably large � the di�erence is less than 10%. As a result, the energydensity of the ~�-�eld is also changed very little.In the �rst gauge the function f(x) is almost the same. Fig. 3 shows plots for the metric functions A(jx j), B(j x j). Their monotonic increase follows immediately from (0.21) and (0.23). The asymptoticdivergence of A is related to the relatively slow decrease of the energy-momentum tensor, which impliesa diverging total mass at large r.The physical interpretation of our solutions is as follows: For t < 0 and x = r=(�t) > 0 the solutiondescribes a shrinking texture which will collapse and unwind at t = 0. Clearly the event of collapseand unwinding at (r; j t j) � (1=�; 1=�) cannot be described within the �-model approximation sincein this regime the scalar �eld ~� leaves the 3-sphere and is "pulled over the potential barrier". A fulldescription of this process is very complicated. Nevertheless, from physical arguments we expect theunwinding process to be very short and very concentrated so that for r � 1=� ~� never leaves the3{sphere and thus the �-model approximation should be very reliable for all times including t = 0.We can approximate the solution after the collapse (t > 0) by appropriately patching together the�-model solutions in such a way that the winding number vanishes, as it was done for at spacetime9



[3]. The result is shown in Fig.xx. For comparison, we recall the analytic solution for � = 0, which isalso plotted in Fig. xx:f = 2 arctan(rt ) + � ; r < t= 2 arctan( tr ) + � ; r > t: (0.51)Note that the �rst derivative of this solution is discontinuous at r = t > 0: This unphysical featureis shared by our exact solution. For the reason we have just discussed, this should, however, not bedisturbing, because it reects the failure of the �-model in describing the unwinding process, (withinthe �-model the winding number is conserved !).3.4. Non self-similar solutionsWe have investigated also non-self similar spherically symmetric solutions in AB gauge. For thenumerical study it is convenient to write the coupled system of partial di�erential equations (corre-sponding to eq.(0.12) and the Einstein equations) in the form_� = ea�b�; (0.52)_� = (ea�br2�0)0r2 � ea+br2 sin(2�); (0.53)_b = �2 rea�b��0; (0.54)a0 = � 12r + e2b2r + �4 r[�2 + �02 � 2e2br2 sin2 �]; (0.55)b0 = + 12r � e2b2r + �4 r[�2 + �02 + 2e2br2 sin2 �]; (0.56)where: 0 = @=@r and � = @=@t. As in the self-similar case, the second order equation for �(r; t)(0.52,0.53) is still a consequence of the �eld equations (0.54-0.56). The requirement of regularity leadsto the following expansion at the origin:�(r; t) = r�0(0; t) + r22 �00(0; t) +O(r3);�(r; t) = �(0; t) + r�0(0; t) +O(r2);a(r; t) = r2�6�2(0; t) +O(r3);b(r; t) = r2 �12 [�2(0; t) + 3�02(0; t)] +O(r3): (0.57)The strategy for solving this hyperbolic, mixed initial-, boundary-value problem is the following: Wegive �(r; 0) and �(r; 0) on N spacial lattice points at t = 0. Having numerically computed the �rstand second derivative of � with respect to r, we solve the 2N coupled ordinary di�erential equations(0.55) and (0.56) and obtain a(r; 0) and b(r; 0). Next we propagate the system one time step �t, by10



solving the 3N evolution equations (0.52)-(0.54) for �, � and b, taking the boundary conditions atr = 0 and r = rmax into account. After a further di�erentiation of �(r;�t) with respect to r we obtaina(r;�t) from b, �, �0 and � by integrating eq. (0.55). Finally we check the constraint equation (0.56).Now we evolve �, � and b again with (0.52)-(0.54), compute the spacial derivative of � and integrate(0.55) to obtain a, b, � and � at 2�t, and so on.After each step we make sure that the relation �t=�r respects the hyperbolic characteristics ofthe system. We wrote two codes in order to perform the time steps, one of which implemented amodi�ed MacCormack predictor-corrector scheme [15, 16, 17]. For a short description of this methodwe also refer to Ref.[18]. The results of both methods coincide. The main numerical instabilities arisefrom the numerically computed derivatives of � with respect to r at the boundaries.4. INTERACTION WITH MATTER AND RADIATIONThe viability of the texture scenario depends on the interaction of the texture �eld with matterand radiation. This is the subject of the present section.4.1. Light deectionFirst, we discuss the light deection in the gravitational �eld of the collapsing texture and givesome details for the second gauge. The self-similarity is responsible for the fact, that it is possibleto derive a di�erential equation for null geodesics, which involves only the variable u as a function ofthe angle ' (we take # = �=2). Writing the metric in terms of v(r; t) = ln(t) and u(r; t) = t=r, theLagrangian reads (now � = @=@� , where � is the proper time)2L = e2vu2 [ _v2(u2 � 1)� ( _uu )2 + 2 _v _uu � !2(u) _'2] : (0.58)Since L depends on v only via the factor in front of the bracket, it is possible to obtain in addition tothe 'angular momentum conservation law' also an 'energy conservation' equation for null geodesics:_' = Le�2v u2 !�2 = L (!r)�2 ; (0.59)_v(u2 � 1) + _u=u = E e�2v u2 = E r�2 : (0.60)Using _u = (du=d' ) _' � u0 _' we immediately obtain the �rst order geodesic di�erential equation from(0.58-0.60):u0 2 = !2(u)[1 � u2 + k2!2(u)] : (0.61)The relation between the constant k2 = (E=L)2 and the impact parameters ro and to will be discussedin the next section. The total light deection angle � is given by� = Z 1�1 du!(u)p1� u2 + k2!2(u) � �: (0.62)For r ! 1, t ! �1 we obtain u ! �1, as will become clear from the geodesic equation for thefunction r = r(u), see eqn.(0.70) below. Using the fact that !(u) decreases with increasing u and theinequality 0 � u!;u =! � �=2 for all u, we can establish the following upper bound for �� < �(1 + �=2!0 � 1) �= � 32� ; (0.63)11



where !0 := !(u = 0). Let us also evaluate the integral (0.62) to �rst order in �. Using!(u) = 1 + �!1(u); !1(u) = �u (arctan u+ �=2)� 1; (0.64)we obtain the following expression for '(u):'(u) = Z u dup1 + k2 � u2 � � Z u (1 + 2k2 � u2)!1(u)p1 + k2 � u2 3 + O(�2):= Io + �I1. Both integrals can be performed explicitly. The �rst integral, when evaluated betweenthe limits u = �1 and u = +1, is equal to �, and thus only the second integral contributes to lightdeection After some manipulations, we �nd the following expression for the light deection:�'21 = � [ u2 � 1p1 + k2 � u2 (arctan(u) + �=2 + k21 + k2 up1 + k2 � u2+ 2p2 + k2 arctan(p2 + k2 uk +p1 + k2 � u2kp1 + k2 � u2 � u(2 + k2))]21 : (0.65)This equation describes the deviation of the trajectory from the zero'th order geodesic'o = arcsin(u)=p1 + k2; u = t=pr2o + (t� to)2. To �rst order in �, the total deection angle for nullgeodesics becomes�(1) = �� 2p2 + k2 = �� 2rop2r2o + t2o ; (0.66)where k = to=ro as we shall argue in the next section. For k !1, corresponding to ro = 0 the e�ectvanishes, whereas the �rst order light deection takes its maximal value at k = 0 (r0 !1 or to ! 0):�' = �p2� < � 3�=2, in agreement with the upper bound given in (0.63).4.2. Photon red shiftAs it was the case for the light deection, it is also possible to express the red shift in terms ofthe self similar coordinate u. In ! gauge, the relevant quantity _t (a dot denotes the derivative withrespect to the proper time) can be written with the help of (0.59) as_t(u) = t0t L ur(u)!(u)2 : (0.67)Eliminating t = ur from t0 2 � r2 = r2!2, we obtain the equation(u0 + u r0r )2 + (r0r )2 = !2(u) ; (0.68)which can be solved for r0=r, using the di�erential equation (0.61) for u0('):r0r = k !(u)2 � uu0u2 � 1 : (0.69)Integration of this equation yields r as a function of u:r(u)2r(uo)2 = u2o � 1u2 � 1 exp " 2k Z uuo !(u) du(u2 � 1)p1 + k2!2 � u2 # : (0.70)12



From equation (0.69) and t0=t = r0=r + u0=u we also obtain t0=t in terms of the self similar coordinateand thus_t(u) = L k!u�p1 + k2!2 � u2u r�1(u) ; (0.71)from which the red shift can be computed as�EE 21 = _t(2) � _t(1)_t(1) : (0.72)Let us now evaluate (0.71) to �rst order in �. Using (0.64) the geodesic equation (0.70) becomesr(u) = r(uo) uk �p1 + k2 � u2u2 � 1 [1 + � k I(u) + O(�2)] ; (0.73)with I(u) = Z u !1(u) dup1 + k2 � u2 3 :For � = 0 this reduces to the at geodesic equationr(t) = qr2o + (t� to)2 ; (0.74)if we identify the constant k with the parameter uok = uo = to=ro ; (0.75)where to is the time when the distance ro of the photon to the texture becomes minimal (t = 0 is thetime at which the texture collapses.). An elementary integration gives the following expression for thephoton red shift to �rst order in �:�EE 21 = �� [ (1� k(1� u2)u(uk �p1 + k2 � u2) ) u (arctan(u) + �=2)� kp2 + k2 arctan(p2 + k2 uk +p1 + k2 � u2kp1 + k2 � u2 � u(2 + k2) )]21 : (0.76)Since the e�ect is proportional to �, we can use the zero'th order part of equation (0.73) to eliminatep1 + k2 � u2 and then u = t=r(t) with r(t) from the zero'th order geodesic equation (0.74). Thisyields the result in terms of t:�EE 21 = �� [ to � tpr2o + (t� to)2 arcctg( �tpr2o + (t� to)2 )+ �top2r2o + t2o arcctg( to � 2tp2r2o + t2o )]21 ; (0.77)in agreement with [4]. The total redshift to �rst order in � becomes�EE = �� kp2 + k2 = �� top2r2o + t2o : (0.78)13



For to = 0 the fractional red and blue shifts compensate and the e�ect vanishes, whereas the photonis red shifted if it passes the texture knot before the collapse time and blue shifted if it passes after-wards, giving thus rise to a clear signature of hot-spot - cold-spot signal in the microwave backgroundwherever a texture has collapsed. The maximum values of the red shift (��) is obtained for r0 ! 0.For cosmological applications one has to take into account also the expansion of the Universe. If wedenote with RH the horizon size at the time of the collapse, t = 0, clearly photons for which j t0 j> RHor r0 > RH are not yet in causal contact with the texture and thus do not feel its gravitational �eld.We expect �E = 0 for such photons. The damping of the signal due to expansion and especially dueto photon di�usion as long as photons are coupled to matter is calcutated in [12].4.3. Density uctuationsIn this subsection we discuss the evolution of texture seeded density uctuations in the gravitational�eld of our self-similar solution. For the special case of CDM or dust it will turn out that we can solvethe highly nonlinear coupled equations exactly. First we set up the basic hydrodynamic equations foran ideal uid in both gauges. For the (A,B)-gauge these can be obtained directly from the form (0.9)and (0.10)for the energy-momentum balance. Relative to the orthonormal tetrad (0.8) the four-velocityfor a spherically symmetric ow has the componentsu0 = ; 1 = v; u2 = u3 = 0; (0.79)with  = (1� v2)�1=2. The non-vanishing components of the energy-momentum tensorT �� = (p+ �)u�u� � pg�� (0.80)are T 00 � � = 2(�+ pv2);T 01 � s = 2(�+ p)v;T 11 � � + p; � = 2(�+ p)v2;T 22 = T 33 = p: (0.81)Inserting these expressions in (0.9) and (0.10) givese�a _�+ e�a _b(�+ � + p) + e�bs0 + 2e�ba0s+ 2e�br s = 0; (0.82)e�ba0(�+ � + p) + e�b(� + p)0 + e�a _s+ 2e�a _b _s+ 2e�br � = 0: (0.83)These equations hold for any metric of the form (0.6). For the special case of the self-similar texture�eld we look for solutions of the matter variables �; p and v, which depend also only on x = r=t. Inthis case eqns.(0.82) and (0.83) reduce to (a prime denotes again the derivative with respect to x)�0 = eA�Bx (s0 + 2xs+ 2A0s)�B0(�+ � + p); (0.84)s0 = �2sB0 + eA�Bx �A0(�+ � + p) + (p+ �)0 + 2x�� : (0.85)14



Similarly, one �nds for the !-gauge the following equations with 0 = ddu�0 = us0 + 2(�1 + u!0! )s� 2!0! �� 2!0! p ; (0.86)s0 = �2!0! s+ u� 0 � 2(1� u!0! )� + up0: (0.87)From here on we consider only CDM or dust. In this case we havep = 0; � = �2; s = �v; � = �v2: (0.88)Eqns.(0.84), (0.85) reduce to�0 = eA�Bx �(�v)0 + 2x�v + 2A0�v��B0�(1 + v2); (0.89)(�v)0 = �2B0�v + eA�Bx "(�v2)0 + �(v2 + 1)A0 + 2�v2x # : (0.90)Multiplying (0.89) with v and substracting the result from (0.90) leads to the relation(1� v2)(A0eA � xvB0eB) = v0(xeB � veA): (0.91)Here we can eliminate A0 with the help of the �eld equation (0.22) and �ndx(1� v2)B0eB�A(xeB � veA) = v0(xeB � veA): (0.92)The appearance of a common factor on both sides implies that we have eitherv(x) = xeB�A (0.93)or v01� v2 = xB0eB�A: (0.94)Using again the �eld eqn.(0.22) we can write the last equation in the formv01� v2 = A0x eA�B : (0.95)The �rst alternative (0.93) is physically uninteresting (e.g. since it does not satisfy our boundarycondition v t!�1! 0). In !-gauge the equations for CDM or dust can be solved similarly and one �ndsinstead of (0.93) and (0.94),(0.95) the alternative: either v(u) = 1=u or v0 � 0. Only the solutionv � 0 is physically interesting. Then we have � = �, in which case (0.86) reduces to�0� + 2!0! = 0: (0.96)This implies �!2 = const, a result which we have already presented in Ref.[13]. The gauge transformof this solution satis�es (0.94), (0.95). 15



In the linearized approximation we �nd for � in � = �0(1 + �) for both gauges� = 2�[1 + u(arctan u+ �=2)]: (0.97)For the velocity �eld we havev � 0 (! � gauge);resp. v = ��( x1 + x2 + arctan 1x + �2 ) (A;B � gauge): (0.98)4.4 Collisionless particlesCollisionless particles are described by their 1{particle distribution function F which is de�ned onthe mass bundle, Pm = f(x; p) 2 TMjg(x)(p; p) = �m2g and obeys Liouville's equation, LXgF = 0[19, 20]. If we choose coordinates (x�; pi) on Pm with respect to some basis of vector �elds (e�) on M,we haveLXgF = p�e�(F )� !i �(p)p� @F@pi = 0 : (0.99)We are most interested in the cosmological situation, where at very early times t! �1 the distribu-tion function F is homogeneous and isotropic. At t = �1, F is thus only a function of p = ppipi,independent e.g. of pr and r. We want to calculate how the distribution function looks long after thetexture has collapsed, t � 0. Let us therefore discuss (0.99) in !{gauge, the gauge , u = t=r. Wechoose the tetrad(e�) = (@t; @r; 1r!@#; 1r! sin#@')and look for spherically symmetric solutions, F (t; r; pr ; p), wherep2 = (pr)2 + (p2)2 + (p3)2 = (pr)2 + (p?)2. In these variables (0.99) becomesp0@tF + pr@rF + (p?)2r [(1� u!0! ) @F@pr � !0! p0p @F@p ] = 0 : (0.100)For cold particles (i.e. particles which move nonrelativistically, p� p0 � m), using that ju!0=!j �O(�) also for large negative u, we may neglect the @rF and @prF terms and obtain@tF = p?r !0! @F@p? : (0.101)This equation is solved byF = Fo((pr)2 + (!p?)2) : (0.102)Since limt!�1 ! = 1, this solution has the correct initial conditions, limt!�1F = Fo(p). An inter-gration of (0.102) usingn = Z Fd�m and T �� = Z p�p�Fd�m with d�m = d3pp0yieldsn = !�2no ; T 0i = T 0i(o) = 0 ; T 00 = !�2T 00(o) :16



This con�rms our results for dust, (0.96). In !-gauge no velocities are induced. The densityenhancment is only due to the shrinking of 3{volume in the missing solid angle geometry.To obtain qualitative results for hot particles and radiation let us discuss (0.100) in �rst orderperturbation theory. We setF = Fo(p) + �� ; ! = 1 + �!1 :where !1 is given by (0.50). Up to �rst order we then havep0@t�+ pi@i� = !0r (p?)2p0p dFodp : (0.103)The general solution of this equation is of the form� = �hom + 1p dFodp Z tto S(t0; ~x0; ~p)dt0 ; (0.104)with S = !01 (p?)2r and ~x0 = ~x� ~pp0 (t� t0)and �hom(t; ~x; ~p) = �(to; ~x� ~pp0 (t� to); ~p)We are of course most interested in �(t = 1) with the boundary condition �(t = �1) = 0. Toestimate the integral in (0.104) we note that according to (0.50) !01(t = �1) = 0, !01(t = 1) = ��and !00 < 0 so that 0 � !01 � ��. If we then replace !01 by its mean value ��=2 in in the integral ofS and useZ t�1 (p?)2r(~x0) dt0 = (p� pr)p0we obtain the following approximation for the change in the distribution function due to the texture:�F (~x; ~p) � ���2 p0p (p� pr)dFodp : (0.105)From this result we can now calculate the induced net radial velocity density and the change in numberdensity, energy density and pressure:�� � ��[4� Z 10 (p(p0)2 + p3)Fodp] (0.106)�� � 2��3 [4� Z 10 p3Fodp] (0.107)vr � ���2 [4� Z 10 p2p0 (1� p(p0)2=3)Fodp] (0.108)�n � ��[4� Z 10 pFodp] : (0.109)For relativistic particles we can set p0 � p in the above integrals and obtain��=�o = �p=po � 2�� ; vr � ��no ; �n=no � �� :17



We thus see that hot particles do not accumulate around a texture to arbitrary high densities (as longas � � 1). The change in the energy momentum variables of hot particles is of the order of !0 andthus remains small for all times in contrary to cold particles or dust, where the density perturbationis proportional to !�2 � 1 and thus can become very large.The above results for ��=�o and �n=no tell us that each relativistic particle aquires an energy shifton the order of �� in the vicinity of a collapsing texture. This agrees with our exact result (0.78) onphoton redshift.AcknowledgementsWe would like to thank Zhi-hong Zhou for his help with the numerical calculations.Appendix AIn this appendix we briey discuss the light deection in the gravitational �eld of a collapsingtexture in the AB gauge. The Lagrangian is then2L = e2a _t2 � e2b _r2 � r2( _#2 + sin2� _'2); (A:1)where t = t(�), r = r(�) and � is the proper time (� = @=@�). Due to the symmetry we can restrictourself to the plane with # = �2 . Moreover, for photons we have 2L = 0, and the Euler-Lagrangeequation for ' leads to _' = Lr2 ; (A:2)which expresses the angular momentum conservation (L = const). We use @@� = Lr2 @@' (where 0 =@=@') and u = x�1 in order to eliminate the derivative with respect to the proper time. By suitablycombining the Euler-Lagrange equations for t and r as well as eq.(A.1) (with 2L = 0) one �nds thefollowing equation for uu00 + u02(dadu + dbdu ) + e�2bu+ (e�2b daduu2 � dbdue�2a) = 0 (A:3)(a, b are functions of u = t=r and u = u(')). After multiplying eq.(A.3) with e2a+2b we can easily �ndthe following �rst integral (which corresponds to eq.(0.61) in ! gauge)u02 = (k2e�2a�2b + e�2a � e�2bu2) (A:4)(k2 = (E=L)2 is an integration constant). Alternatively, this equation can be directly derived fromthe corresponding energy conservation equation as it was done in section 4.1 for ! gauge. The totallight deection angle � is given by� = Z u+u� dupk2e�2a�2b + e�2a � e�2bu2 � �; (A:5)where u� are the solutions of the transcendental equations u = �e(b�a)(u).References[1] R.L. Davies, Phys. Rev. D 35, 3705 (1987). 18
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Figure Captions� Amplitude f of the ~�-�eld in the second gauge (eq.(0.30)) for various values of the couplingconstant �. In the inteval 1 <j x j<1 f is plotted as a function of y = 2 � 1= j x j, in order toshow how much the asymptotic value overshoots �.� Metric coe�cient !(x) (eq.(0.30)) for various values of �. For � = 10�6 the curve would bealmost horizontal.� Metric functions A(j x j) and B(j x j) for the �rst gauge for � = 10�6. (eqs.(0.6) and (0.18)).
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