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Abstract: We analyse CMB data in a manner which is as independent as possible

of the model of late-time cosmology. We encode the effects of late-time cosmology

into a single parameter which determines the distance to the last scattering surface.

We exclude low multipoles ℓ < 40 from the analysis. We consider the WMAP5

and ACBAR data. We obtain the cosmological parameters 100ωb = 2.13 ± 0.05,

ωc = 0.124± 0.007, ns = 0.93± 0.02 and θA = 0.593◦ ± 0.001◦ (68% C.L.). The last

number is the angular scale subtended by the sound horizon at decoupling. There is

a systematic shift in the parameters as more low ℓ data are omitted, towards smaller

values of ωb and ns and larger values of ωc. The scale θA remains stable and very

well determined.
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1. Introduction

The cosmic microwave background (CMB) is one of the most important cosmological

probes. The pattern of acoustic oscillations of the baryon-photon plasma is imprinted

on the CMB at the time of decoupling, and then rescaled (and on large scales modi-

fied) as the CMB photons propagate from the last scattering surface to the observer.

The CMB is thus sensitive to cosmological parameters in two ways, via the physics

at decoupling and via the evolution of the universe after that.

While the physics at decoupling –essentially atomic physics and general relativity

of a linearly perturbed Friedmann-Lemâıtre (FL) universe– is well understood, the

evolution at late times deviates from the predictions of linearly perturbed FL models

with radiation and matter. The difference may be due to an exotic matter component

with negative pressure such as vacuum energy, deviation of gravity from general

relativity [1–4], or a breakdown of the homogeneous and isotropic approximation

[5–10]. It is not known which of these possibilities is correct, and there are large

differences between the various models. It is therefore worthwhile to analyse the

CMB in a manner which is as independent of the details of late-time cosmology as
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possible. On the one hand, this clarifies the minimal constraints that all models of

late-time cosmology, whatever their details, have to satisfy in order to agree with

CMB observations. On the other hand, our analysis provides limits on the physical

parameters at decoupling that are independent of the details of what happens at

later times. This is particularly important for cosmological parameters such as the

density of baryons, density of dark matter and the spectral index, which are used

to constrain particle physics models of baryogenesis, supersymmetry and inflation,

which are independent of late-time cosmology.

Such a separation of constraints is possible because the physics after decoupling

affects the CMB in a rather limited manner (except at low multipoles), by simply

changing the angular scale and modifying the overall amplitude of the CMB pattern.

We encode the change in the angular scale in a single parameter related to the

angular diameter distance to the last scattering surface and treat the amplitude as a

nuisance parameter. We aim to be transparent about how the different cosmological

parameters enter the calculation and the assumptions that go into the analysis.

In section 2 we discuss how the physics at early and late times affects the CMB

and explain our assumptions. In section 3 we present the results of the analysis of

the WMAP 5-year data [11–13] and the ACBAR data [14] and give the constraints

on cosmological parameters. In section 4 we summarise our results. Some details are

collected in two appendices.

2. Parameter dependence of the CMB

2.1 Our assumptions

The pattern of CMB anisotropies can be summarised in terms of a few parameters.

It was noted in [15] that models with the same primordial perturbation spectra and

same values of ωb, ωc and the shift parameter R have an identical CMB spectrum

today, apart from low multipoles (ℓ . 30). The discussion in [15] was in the context

of a family of Friedmann-Lemâıtre (FL) models, but the statement is true more

generally. The shift parameter is defined as

R ≡ ω1/2
m (1 + z∗)H0h

−1DA(z∗)

=

(

Ωm

ΩK

)1/2

sinh

(

Ω
1/2
K

∫ z∗

0

dz′
H0

H(z′)

)

, (2.1)

where z∗ is the redshift of decoupling, DA(z) is the angular diameter distance be-

tween today and redshift z, H0 = 100hkm/s/Mpc is the Hubble parameter today,

and the second equation holds for all FL models. The density parameter ωb is the

normalized dimensionless physical density of baryonic matter, ωb = 8πGNρb/3/(100

km/s/Mpc)2, ωc is the normalized dimensionless physical density of cold dark mat-

ter defined the same way, ωm = ωb + ωc is the total physical matter density, and

– 2 –



Ωm = ωmh
−2 and ΩK are, respectively, the matter and the spatial curvature density

parameter today. With present observations which include polarization data, one

has to add a parameter to take into account collisions between the CMB photons

and baryonic matter after the cosmic medium becomes reionized. This is usually

expressed with the redshift of reionization zri or the optical depth τ .

The CMB data have been analysed in terms of the shift parameter R in various

FL models [11,16–21], and a similar approach has been followed for local void models

[9, 22]. The model-dependence of parameters such as R has been discussed, but

limits on them have always been derived within some specific models, and it has

not been clear which assumptions are important and what is the model-independent

information.

In this work, we analyse the CMB in a manner which is as model-independent

as possible, and we are explicit about the assumptions involved. In particular, we

do not restrict our study to models which are close to FL at late times, so our

constraints are also applicable to models where the effect of non-linear structures

on the expansion rate is important, or where we are located in a large spherically

symmetric density fluctuation such as a local void. (Note that the near-isotropy of

the CMB does not imply that the universe is close to FL, even coupled with the

Copernican principle [23].)

We assume that the physics up to and including decoupling is completely stan-

dard, i.e. linearly perturbed FL evolution according to normal four-dimensional

general relativity with Standard Model particle physics and dark matter (which we

assume to be cold during decoupling). As for physics after decoupling, we make

the minimal assumptions that it changes the small angle CMB spectrum only by

1) modifying the angular diameter distance to the last scattering surface and 2)

changing the overall amplitude. Here, small angles refers to scales which are well

inside the horizon at late times when the unknown physics can be important, say

conservatively at z <∼ 60. We discard low multipoles in our analysis, because typically

the unknown physics of dark energy, modified gravity or large deviations from FL

geometry affects the large angles in a model-dependent way, for example via the late

Integrated Sachs-Wolfe (ISW) effect. In typical perturbed FL models, the late ISW

effect is only significant at low multipoles (see appendix A), and the Rees-Sciama

effect, gravitational lensing and the Sunyaev-Zel’dovich effect do not have a signifi-

cant impact at the present observational accuracy [24–26], though their presence is

already suggested by the ACBAR data [14]. We assume that such effects remain

small in other models, and that any multipole-dependent effect of new physics on

the CMB spectrum is below the observational precision, except at low multipoles.

In perturbed FL models, reionization has a significant effect on all angular scales,

but at high multipoles it amounts to a simple rescaling of the amplitude, and is thus

degenerate with the amplitude of primordial perturbations (see appendix B), so we

can neglect modeling of reionization.
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We assume that the primordial perturbations are adiabatic, and have a power-

law spectrum. We only consider scalar perturbations, and assume that vector and

tensor contributions are small. (This division refers to the early universe; in the late

universe it is not necessarily meaningful, because we do not assume that the late

universe is close to FL.) Within our approach it would not be easy to include ten-

sor perturbations in the temperature anisotropy spectrum, because they contribute

mainly via the ISW effect and are relevant up to ℓ ≈ 100. However, the contribution

of tensors starts to decay already around ℓ ≈ 50 and is probably relatively small, so

their presence would not be expected to change our results significantly. (It would

be easy to take into account the tensor contribution to the polarization spectrum,

though, because it is mainly generated at the last scattering surface.) We also neglect

the effect of neutrino masses.

The idea behind these assumptions is that we can treat the CMB with a standard

Boltzmann code, and simply exclude low multipoles from the analysis. We have

modified the publicly available CAMB code and the corresponding Monte Carlo

Markov Chain program [27] to search for best-fit values of our parameters. As long

as the rise to the first peak is fully included in the analysis, discarding low multipoles

should not involve a significant loss of information, because there are more high

multipoles and the cosmic variance is larger on large scales. However, our results

in this respect are somewhat surprising, as we discuss in section 3. Also, it has

been argued that there are anomalies in the angular distribution on large scales [28]

(and a dipolar modulation at higher multipoles [29]), which could indicate that some

physics affecting the low multipoles is not understood, so they may be unreliable for

cosmological analysis; see also [30, 31].

Our assumptions do not hold for models with non-standard physics at or before

decoupling, such as new radiation degrees of freedom, early dark energy [32] or dark

matter which undergoes significant annihilation at early times [33]. In models where

we are located in a large spherically symmetric region, it is possible to obtain a large

CMB dipole [34], and there could be a large effect at higher multipoles as well. This

can only be checked with perturbation theory adapted to such models, which is now

being developed [35].

2.2 The physics of the CMB parameters

Let us outline the relation between the features in the CMB spectrum and the cosmo-

logical parameters, given our assumptions above. (See [26,36] for detailed discussion.)

We consider five parameters, namely the overall amplitude, the baryon density ωb,

the cold dark matter density ωc, the spectral index ns and the distance to the last

scattering surface DA(z∗).

The observed amplitude of CMB perturbations is determined by a combination

of the primordial power spectrum and late-time physics, such as damping due to

accelerating expansion and scattering of CMB photons from matter due to reion-
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ization. Without specifying a model for the late-time universe, it is not possible to

disentangle these effects. Because the overall normalization does not have a model-

independent interpretation, we treat it as a nuisance parameter, i.e., we marginalize

over it and do not quote limits for it.

The spectral index ns is related to the early universe physics, such as inflation,

which produces the primordial perturbations. Extending the analysis to more com-

plicated primordial spectra would be straightforward, though of course we would not

be sensitive to large-scale features.

The relative height and depth of the CMB peaks and troughs is set by the

physics of the baryon-photon oscillations, which depends on ωb and ωc. This pattern

also depends on the radiation density ωr = 8πGNρr/3/(100 km/s/Mpc)2, which is

however accurately determined by the CMB temperature. Note that the CMB is only

sensitive to the densities at the time of decoupling, not to their values today. As is

customary, we use the symbols ωb, ωc and ωr to refer to the densities at decoupling

scaled to today with the factor (1+z∗)
3 for baryons and dark matter and (1+z∗)

4 for

radiation, where ∗ indicates the time of decoupling. At decoupling, the distribution

of matter is still very smooth, so the densities at that time can be understood as

local or average values; the scaled numbers represent today’s average values. In a

statistically homogeneous and isotropic space, the mean energy density of baryons

and cold dark matter evolves like (1 + z)3 due to conservation of mass, and the

mean energy density of photons evolves like (1 + z)4 due to conservation of photon

number and the fact that the change of energy of the CMB photons by scattering

can be neglected [37]. FL models are of course a particular case of this. If dark

matter has significant pressure, or decays significantly [38], or if there is some extra

source of baryons, dark matter or photons, our ωb, ωc and ωr would not correspond to

the physical densities today. (Dark matter decay to radiation would also contribute

to the late ISW effect [39].) This is already true for neutrinos, which we treat as

massless, but which in fact do not contribute to the present-day radiation density,

since their mass today is larger than the temperature. This will also be the case if

the factor (1 + z)3 is not simply proportional to the volume, which can happen if

statistical homogeneity and isotropy is broken, such as in local void models where

shear can contribute significantly to the redshift.

Our final parameter is the angular diameter distance to the last scattering sur-

face. The angular diameter distance out to redshift z is defined as DA(z) = L/θ,

where L is the proper size of an object at redshift z and θ is its observed angular

size. The physical scale of the baryon-photon oscillations is set by the sound horizon

at decoupling rs(z∗) which depends on ωb and ωc [26,40]. With standard physics up

to decoupling, the sound speed of the photon-baryon plasma is

c2s =
1

3(1 + 3ρb/4ργ)
=

1

3
(

1 + 3ωb

(1+z)4ωγ

) ≡ 1

3[1 + r(1 + z)−1]
, (2.2)
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where we have introduced r ≡ 3ωb/4ωγ. For the sound horizon we obtain1

(1 + z∗)rs(z∗) =

∫ t∗

0

cs(t
′)

a(t′)
dt′

=
h

H0

√
3

∫

∞

1+z∗

dx

x
√

(x+ r)(xωr + ωm)

=
2h

H0

√
3rωm

log





√
1 + z∗ + r +

√

(1+z∗)rωr

ωm
+ r

√
1 + z∗

(

1 +
√

rωr

ωm

)



 . (2.3)

Note that h/H0 = 1/(100km/s/Mpc) ≈ 2998 Mpc is a fixed scale which does not

depend on the cosmological model. The photon energy density ωγ ≈ 2.48 × 10−5 is

known as well as the CMB temperature and we do not treat it as a free parameter.

Assuming massless neutrinos, the same is true for the radiation density [26], ωr =

ωγ

(

1 + 37
8

(

4
11

)4/3
)

≈ 4.17 × 10−5. Furthermore, for standard radiation content,

z∗ ≈ 1090 and it depends weakly on ωb and ωc (for an analytical approximation,

see [40]). For standard values of the parameters, the log in (2.3) is of order unity.

The sound horizon at decoupling therefore depends only on ωb and ωc. The angle

under which it is observed today is given by θA ≡ rs(z∗)/DA(z∗). With ωb and ωc

fixed, the pattern of CMB anisotropies is determined at decoupling (apart from low

multipoles), and its angular scale changes as the distance to the last scattering surface

grows and the multipole positions of the CMB peaks and troughs scale with DA(z∗).

Given our assumptions, the CMB (apart from low multipoles) has no sensitivity to

any physical parameters other than ωb, ωc, ns, DA and the overall amplitude, and

these five parameters are a priori independent. A given model can of course couple

them to each other, as well as to parameters which do not directly affect the CMB.

In particular, in linearly perturbed FL models the spatial curvature affects the

CMB only via the angular diameter distance (apart from the late ISW effect). It is

sometimes said that the spatial curvature can be determined from CMB observations

by using the sound horizon as a standard ruler (assuming that the universe can be

described by a FL model). However, as (2.1) shows, the effect of spatial curvature

on DA(z∗) is completely degenerate with the expansion history H(z). For example,

FL models with matter and significant spatial curvature are consistent with the

WMAP observations [41]. In that case, a prior on H0 is enough to exclude large

spatial curvature, but only because of the specific form of the expansion history.

The only way to really measure the spatial curvature, as opposed to doing parameter

estimation in the context of specific models, is to use independent observations of

the distance and expansion rate [42], such as from the ages of passively evolving

galaxies [43] and baryon acoustic oscillations [44]. Note also that the CMB (apart

1Here rs is the physical sound horizon at the time of decoupling. In the literature, rs often

denotes the comoving sound horizon.
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from low multipoles) is sensitive to the expansion history between decoupling and

today only via the angular diameter distance; in particular, the CMB contains no

model-independent information about H0.

In addition to R, another parameter defined as

ℓA ≡ π

θA
= π

DA(z∗)

rs(z∗)
(2.4)

has also been introduced to parametrise the distance to the last scattering surface

[45]. The parameter ℓA is related to the position of the first peak in multipole space

(for details, see [26,36,45,46]). The quantity ℓA has been called an independent shift

parameter in addition to R [18]. However, this is somewhat misleading, because R

and ℓA contain the same information as regards the shift in the angular scale of the

CMB anisotropy pattern due to the late-time evolution, the only difference is their

dependence on ωb and ωc. Of course, one can consider any combination of the four

parameters ωb, ωc, ns and R. For our purposes, it is useful to introduce the scale

parameter S, which is defined as the ratio of the angular diameter distance to the

prediction of the simplest cosmological model,

S ≡ DA(z∗)

DA,EdS(z∗)
=

H0(1 + z∗)DA(z∗)

2[1− (1 + z∗)−1/2]
≃ 1

2
H0(1 + z∗)DA(z∗) , (2.5)

where DA,EdS is the angular diameter distance in the Einstein-de Sitter (EdS) uni-

verse (the matter-dominated spatially flat FL model), (1 + z)DA,EdS = 2H−1
0 [1 −

(1 + z)−1/2]; the last approximation in (2.5) is accurate to 3%. Using (2.1), the scale

parameter S is related to R by S = hR/(2ω
1/2
m )[1 − (1 + z∗)

−1/2]−1 ≃ hR/(2ω
1/2
m ).

Unlike R and ℓA, the scale parameter S depends on the Hubble parameter, to which

the CMB has no direct sensitivity. (This arises because FL models predict the dis-

tance in units of H0.) Therefore, the value of S depends on how we fix the Hubble

parameter.

We can simply keep H0 free and quote limits for h−1S, and one can then substi-

tute the Hubble parameter given by e.g. local observations of H0. The mean value

is h−1S = 2.4 (see table 2), so for h = 0.6–0.7, the distance to the last scatter-

ing surface is a factor of 1.4–1.7 longer than in an EdS model with the observed

Hubble parameter. This is in accordance with the usual intuition that physics

in the late-time universe acts to increase the distance compared to EdS, for ex-

ample via accelerated expansion. We could instead keep the age of the universe

fixed, i.e. ask how large the distance is compared to the value in an EdS model

at the same time after the big bang. In an EdS model H0 = 2/(3t0), so we have

S = 2/(3t0100km/s/Mpc)×R/(2ω
1/2
m )[1−(1+z∗)

−1/2]−1, which for t0 = 13.4 Gyr [47]

gives S ≈ 1.2 for our mean values ωm = 0.145 and R = 1.77.

Finally, we can ask how long the distance is compared to an EdS model which

has the correct matter density. The Hubble parameter is then simply h = ω
1/2
m ,
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A

θ θ’

D D’A

L

Figure 1: The angle under which two fixed points on the sky are seen changes with the

angular diameter distance DA.

so S = R/2[1 − (1 + z∗)
−1/2]−1 ≃ R/2 ≈ 0.9. This means that in an EdS model

with the correct matter density, the predicted distance to the last scattering surface

is longer than observed. (In other words, the real matter density decays faster as

function of the distance to the last scattering surface than in the EdS reference

model.) Unless otherwise noted, we follow this last convention, and compare with

an EdS model which has the correct matter density, at the expense of the age of

the universe and the Hubble parameter. We give constraints for θA, ℓA, R, S, h−1S,

and DA(z∗) in section 3. For fixed ωb, ωc and ns, these quantities contain the same

information, only their correlation properties with the parameters ωb, ωc and ns are

different (see table 3).

2.3 The distance to the last scattering surface

Let us now study how the CMB spectrum depends on the angular diameter distance

to the last scattering surface DA(z∗). We consider two positions on the sky denoted

by n1 and n2 which have the temperature fluctuations ∆T (n1) and ∆T (n2) and

which are separated by proper distance L on the last scattering surface. For two

different angular diameter distances DA and D′

A to the last scattering surface, the

length L is seen under the angles θ = L/DA and θ′ = L/D′

A, see figure 1.

The two-point functions C and C′ which correlate n1 and n2 for an observer at

distance DA or D′

A, respectively, can be decomposed in terms of the two angles as

C(θ) ≡ 〈∆T (n1)∆T (n2)〉 =
1

4π

∑

ℓ

(2ℓ+ 1)CℓPℓ(cos θ)

=
1

4π

∑

ℓ

(2ℓ+ 1)C ′

ℓPℓ(cos θ
′) = C′(θ′) , (2.6)

where Pℓ is the Legendre polynomial of degree ℓ, and Cℓ and C ′

ℓ are the power

spectra corresponding to the angular diameter distances DA and D′

A respectively.

The equality C(θ) = C′(θ′) means that we consider only correlations on the last
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scattering surface (or very close to it) and neglect line-of-sight effects like, e.g. the late

ISW effect which can be different for the two photon paths. Using the orthogonality

of the Legendre polynomials,
∫ 1

−1
Pℓ̃(µ)Pℓ(µ)dµ = 2δℓ,ℓ̃/(2ℓ+1), we obtain the relation

Cℓ =
∑

ℓ̃

2ℓ̃+ 1

2
C ′

ℓ̃

∫ π

0

sin θdθPℓ̃[cos(θDA/D
′

A)]Pℓ(cos θ) . (2.7)

This cumbersome exact expression is only needed for low values of ℓ. At high ℓ we

can work in the flat sky approximation (see [26], section 5.4), where

Yℓm → 1

2π
exp(iℓ · x) and Pℓ(cos θ) → J0(|x|ℓ) .

Here x is a vector on the flat sky, ℓ is the variable of its 2-dimensional Fourier

transform, with ℓ = |ℓ|, and J0 is the Bessel function of order 0. Denoting r ≡ |x|,
the correlation function is

C(θ) = C(r) = 1

2π

∫

∞

0

dℓ ℓJ0(rℓ)Cℓ . (2.8)

The correlation functions corresponding to the two angular diameter distances are

related by C(r) = C′(r′), where r′ = rDA/D
′

A,

1

2π

∫

∞

0

dℓ ℓJ0(rℓ)Cℓ =
1

2π

∫

∞

0

dℓ ℓJ0(r
′ℓ)C ′

ℓ

=
1

2π

(

D′

A

DA

)2 ∫ ∞

0

dℓ ℓJ0(rℓ)C
′

D′

A
DA

ℓ
, (2.9)

where on the second line we have simply performed the change of variables ℓ →
ℓDA/D

′

A. Using the property
∫

∞

0
rdrJ0(rℓ)J0(rℓ

′) = ℓ−1δ(ℓ− ℓ′), we obtain

Cℓ =

(

D′

A

DA

)2

C ′

D′

A
DA

ℓ
. (2.10)

The relation (2.10) is valid independent of spatial curvature, since we do not

invoke three-dimensional Fourier transforms. We are simply using the fact that the

CMB anisotropies are functions on a sphere. This result agrees with [48] where it is

derived in a different way and contrasts with [22], where there is an extra power of

D′

A/DA. Let us denote the spectrum of a reference EdS Universe by CEdS
ℓ and the

measured CMB spectrum by Cℓ. Recalling the definition (2.5) of the scale parameter

S, we can assign Cℓ to an EdS universe with the same values of ωb, ωc and ns and

the angular diameter distance DA = SDA,EdS if we scale the angular power spectrum

by

Cℓ = S−2CEdS
S−1ℓ . (2.11)
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The basic assumption here is that the CMB fluctuations at decoupling are the same

for both models and the only difference is the distance to the last scattering surface.

If this is true, the relation (2.11) is exact in the flat sky limit. Without the flat sky

approximation it has to be replaced by (2.7) with DA/D
′

A = S. Note that despite

of the factor S−2 in (2.11), the shift parameter S is not strongly correlated with the

amplitude, it just shifts the spectrum in angular space. This is visible on the 2D-plots

shown in Fig. 4. We have tested the flat sky approximation numerically and have

found that for ℓ ≥ 20 the difference between (2.11) and the exact expression (2.7) is

smaller than 1% for 1.1 ≥ S ≥ 0.7, which includes the region which is of interest to

us (the mean value we obtain is S = 0.91± 0.01, see table 2).

To illustrate the dependence of the CMB spectra on the scale parameter S, we

show in appendix A the TT, TE and EE spectra for FL models with non-zero spatial

curvature or cosmological constant, compared with the EdS result scaled with S. As

shown in figures 5 to 7, the spectra for the scaled model and the model with spatial

curvature lie on top of each other for ℓ & 20, except for the case of large negative

spatial curvature with S ≈ 1.5, where there is some difference in the TT spectra until

ℓ ≈ 100. For the cosmological constant case, shown in figure 8, the approximation is

excellent for all of the spectra for ℓ & 20.

3. Results

3.1 Cosmological parameters and the multipole cut

We use the WMAP5 data and the ACBAR data in our analysis. However, disre-

garding ACBAR does not change the results much. We have performed a Markov

Chain Monte Carlo analysis with chain length N = 2 × 105. The results change by

significantly less than 1σ when going from N = 1.5× 105 to 2× 105, which indicates

that the chains have converged well [27]. As a convergence test, we have checked

that when the samples are split in two or three parts, the change of the relevant

cosmological parameters is a few percent of one standard deviation. We have also

checked that the Raftery and Lewis convergence diagnostic is satisfied [49].

In table 1 we show the effect of excluding a successively larger multipole range

up to ℓmin in the analysis of the ΛCDM model; ΩΛ is the vacuum energy density

today, as usual. We have set τ = 0 for consistency with the treatment of the scaled

model. From ℓmin = 2 to ℓmin = 40 the errors on ωb and ωc increase by 28%, while

the error on ns increases by 57%. The central values move only by 1%, 4% and 1%,

respectively, and the results are consistent within 1σ.

Nevertheless, there is a systematic trend that ωb and ns decrease and ωc increases

as ℓmin grows. Even at ℓmin = 100, where the shifts are maximized, they are less than

2σ in terms of the new error bars. In terms of the error bars of the model with

ℓmin = 2, the shift is of course larger: for ns it more than 5σ, and for ΩΛ more than
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ℓmin 2 20 40 60

100ωb 2.21+0.05
−0.05 2.19+0.05

−0.05 2.18+0.07
−0.07 2.15+0.08

−0.08

ωc 0.113+0.005
−0.005 0.115+0.006

−0.006 0.118+0.007
−0.007 0.120+0.008

−0.008

ns 0.95+0.01
−0.01 0.95+0.01

−0.01 0.94+0.02
−0.02 0.93+0.02

−0.02

ΩΛ 0.72+0.03
−0.03 0.71+0.04

−0.03 0.70+0.04
−0.04 0.68+0.06

−0.05

ℓmin 80 100 120 140

100ωb 2.09+0.10
−0.10 2.05+0.09

−0.09 2.11+0.13
−0.12 2.07+0.14

−0.14

ωc 0.127+0.012
−0.013 0.132+0.012

−0.012 0.126+0.013
−0.016 0.131+0.018

−0.017

ns 0.91+0.03
−0.04 0.89+0.04

−0.03 0.91+0.05
−0.04 0.90+0.05

−0.06

ΩΛ 0.62+0.09
−0.09 0.58+0.10

−0.09 0.63+0.11
−0.10 0.58+0.14

−0.14

Table 1: The change in the mean parameters when more low ℓ data are omitted, in the

ΛCDM model with τ = 0. We have used the WMAP5 and ACBAR data.

4σ. The feature that the error bars on ns increase more than those of ωb and ωc

may be related to the fact that as ℓmin grows, the pivot scale k = 0.05 Mpc−1 moves

closer to the edge of the data [50].

Part of this shift is due to the fact that reionization is neglected. We know

from the absence of the Gunn-Peterson trough in quasar spectra that the Universe

is reionized at redshifts z <∼ 6, see [51]. The slight decrease towards smaller scales

which is usually attributed to reionization is now achieved with a somewhat redder

spectrum. In order not to decrease the height of the acoustic peaks, this leads to a

higher value of ωc. A redder spectrum also enhances the amplitude difference between

the well measured first and second peaks. This can be compensated by a reduction

of ωb, since a larger ωb means a larger difference between the odd contraction and

even expansion peaks [26].

However, we have found that reionization is not the dominant effect, the system-

atic shift is also present if reionization is included in the analysis. We have checked

this by including τ as a model parameter. The results of table 1 remain valid for

also in this case. The problem is that for ℓmin ≥ 40 the value of τ is degenerate with

a renormalization of the amplitude (see discussion in Appendix B) and the best fit

value for τ fluctuates significantly from chain to chain. We therefore prefer to show

the results for τ = 0. Note that the change is larger than the increase in the error

bars. The shape of the one-dimensional probability distribution for the parameters

is not for the most part significantly distorted, and the two-dimensional distributions

do not show strong changes in the correlation properties as ℓmin increases. Therefore,

the error bars do accurately represent the statistical error even at high ℓmin. In other

words, the shift in the parameters is systematic, and is not reflected in the statistical

error estimate.

We conclude that the high ℓ data prefer different parameter values than the data

which include the low multipoles. In figure 2 we show the TT power spectra for the
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Figure 2: The increase in the large-scale power with increasing ℓmin in the best-fit ΛCDM

models with τ = 0. The lowest line corresponds to a cut at ℓmin = 2 the subsequent lines

have ℓmin = 40, 60, 80 and 100, respectively. At ℓmin = 120 the large scale power no longer

increases but it decreases somewhat. The WMAP and ACBAR data are superimposed.

The vertical axis is ℓ(ℓ+ 1)CTT /(2π) in (µK)2.

best-fit ΛCDM models with different ℓmin. There is a trend of increasing large-scale

power with higher ℓmin. In all cases, the overall amplitude is fixed well by the high ℓ

data, and the effect is due to the change in ωb, ωc and ns. We have checked that the

ISW effect is not the cause: there is a similar shift for both the ΛCDM model and

the scaled EdS model. Also, increasing ℓmin corresponds to decreasing ΩΛ and hence

a smaller contribution of the ISW effect to the low multipoles.

3.2 Model-independent parameter estimates

We fix our multipole cut at ℓmin = 40, which roughly corresponds to neglecting modes

which entered the horizon after z = 60. The dependence on the redshift is weak,

ℓmin ∝ (1 + z)1/2 for z ≫ 1. Choosing z = 30 instead would give ℓmin ≈ 30. The

cut at ℓmin = 40 is also motivated by the fact that for ℓ > 40 reionization is well

approximated by a simple rescaling of the amplitude, as well as by the multipole

dependence of the late ISW effect, see appendices A and B.

In table 2 we give the mean values for our primary parameters ωb, ωc, ns and S,

as well as some derived parameters. In addition to the systematic effect discussed

above, this table is our main result. As already mentioned, the overall amplitude is

treated as a nuisance parameter. For comparison, we give the corresponding results

for the ΛCDM model, with non-zero τ . We use ℓmin = 40 in both cases. The ΛCDM

values are in good agreement with the WMAP5 results [12] and have comparable
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Parameter Scaled ΛCDM ΛCDM

ℓmin = 40 ℓmin = 40 ℓmin = 2

mean mean mean

100ωb 2.13± 0.05 2.21± 0.07 2.24± 0.05

ωc 0.124± 0.007 0.113± 0.007 0.111± 0.005

ns 0.93± 0.02 0.96± 0.02 0.97± 0.01

S 0.91± 0.01 – –

ΩΛ – 0.72± 0.04 0.74± 0.03

τ – 0.09+0.04
−0.05 0.09± 0.02

ωm 0.145± 0.007 0.136± 0.007 0.133± 0.005

h−1S 2.40± 0.03 – –

R 1.77± 0.02 1.73± 0.02 1.72± 0.02

θA 0.593◦ ± 0.001◦ 0.594◦+0.002◦

−0.001◦ 0.593◦ ± 0.002◦

ℓA 303.7± 0.7 303.3± 0.8 303.2± 0.7

DA(z∗)/Mpc 12.7± 0.2 12.9± 0.2 13.0± 0.1

rs(z∗)/Mpc 0.132± 0.002 0.134± 0.002 0.134± 0.001

10−3zeq 3.5± 0.2 3.3± 0.2 3.2± 0.1

z∗ 1094± 1 1092± 1 1091± 1

Table 2: The mean values for the scaled model and the ΛCDM model. We have used

the WMAP5 and ACBAR data for ℓ ≥ ℓmin = 40.

error bars. For the scaled model, the errors in ωc and ns are slightly larger than

those of the ΛCDM model with ℓmin = 2. We attribute this to the fact that we start

at ℓmin = 40. Furthermore, our spectral index is somewhat redder, ns = 0.93 com-

pared to ns = 0.96. This shift is also clearly seen in the one-dimensional likelihood

functions for the scaled model and the ΛCDM model, shown in figure 3. However,

these parameter changes are within one standard deviation and are therefore not

statistically significant. It is impressive how accurately present CMB data determine

ℓA. The relative error is less than 0.3% for both the scaled model and ΛCDM. The

error in the other parameters related to the angular diameter distance, S, h−1S,R

and DA, as well as rs, is about 1%. The errors for ωb, ωc and ns are less than 3%,

6% and 2%, respectively.

In table 3 we give the covariance matrix between the different variables, and

in figure 4 we show selected two-dimensional likelihoods. We see that R and S are

strongly positively correlated with ωc and ωm. In contrast, DA is strongly anti-

correlated with ωc and ωm. This can be understood by writing DA = SDA,EdS and

noting that DA,EdS ∝ h−1 = ω
−1/2
m . The variable ℓA is nearly uncorrelated with ωm,

but it is quite correlated with ωb and correspondingly also with ns. Since most of

the statistical weight of the WMAP data come from the first and second peaks, ns

and ωb are strongly correlated even if the full WMAP data (with ℓmin = 2) are taken
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ωb ωc ns S ωm h−1S ℓA DA(z∗) rs(z∗) z∗

ωb 1.00 −0.31 0.84 −0.49 −0.23 −0.06 −0.56 0.02 0.14 −0.88

ωc −0.31 1.00 −0.51 0.96 1.00 −0.91 0.05 −0.94 −0.98 0.72

ns 0.84 −0.51 1.00 −0.65 −0.45 0.19 −0.51 0.26 0.38 −0.86

S −0.49 0.96 −0.65 1.00 0.94 −0.78 0.30 −0.82 −0.91 0.83

ωm −0.23 1.00 −0.45 0.94 1.00 −0.94 −0.004 −0.96 −1.00 0.66

h−1S −0.06 −0.91 0.19 −0.78 −0.94 1.00 0.32 1.00 0.96 −0.40

ℓA −0.56 0.05 −0.51 0.30 −0.004 0.32 1.00 0.27 0.06 0.43

DA(z∗) 0.02 −0.94 0.26 −0.82 −0.96 1.00 0.27 1.00 0.98 −0.47

rs(z∗) 0.14 −0.98 0.38 −0.91 −1.00 0.96 0.06 0.98 1.00 −0.58

z∗ −0.88 0.72 −0.86 0.83 0.66 −0.40 0.43 −0.47 −0.58 1.00

Table 3: The normalized covariance matrix for the scaled model. We have used the

WMAP5 and ACBAR data for ℓ ≥ ℓmin = 40. At this level of precision, the correlation

coefficients of R are the same as those of S, and those of θA are minus those of ℓA.

into account [11]. This correlation becomes stronger as some of the low ℓ data are

omitted.

The standard deviations for the scaled EdS model are somewhat smaller than

those of the ΛCDM model for the same ℓmin. However, this does not mean that the

fit is better, only that the well-fitting region is somewhat smaller. Error bars for a

model can be small simply because different parts of the data prefer different regions

of parameter space, so that the fit is good only in some small overlap region. In the

present case, the scaled model and the ΛCDM model are comparably good fits to

the data for ℓmin ≥ 20. In table 4 we show −2 logL, where L is the likelihood of the

best-fit, as a function of ℓmin. There are only differences of ≈ 1 in −2 logL, which is

the same order as the differences between different chains of the same model.
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Figure 3: One-dimensional likelihoods for the scaled model (black, solid) and the ΛCDM

model (red, dashed). We have used the WMAP5 and ACBAR data for ℓ ≥ ℓmin = 40.
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Figure 4: Two-dimensional likelihoods for the scaled model. We have used the WMAP5

and ACBAR data for ℓ ≥ ℓmin = 40.

3.3 Discussion

The CMB contains information about the distance to the last scattering surface, the

baryon density, the matter density and the primordial power spectrum (here taken to

be a power law), which can be extracted independently of the model used to describe

the late universe. In particular, the angular diameter distance to the last scattering

surface is a factor of S = 0.91± 0.01 smaller than in an EdS Universe with the same

mean matter density, ωm = 0.145± 0.006. With baryon density ωb = 0.0213± 0.001
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ℓmin nr. of points −2logL −2logL −2logL
N(ℓmin) scaled standard, τ = 0 standard, τ 6= 0

2 2591 2717.12 2715.78 2695.29

20 1385 1508.20 1507.41 1507.72

40 1345 1382.52 1381.24 1381.24

60 1305 1234.44 1233.23 1233.46

80 1265 1073.03 1072.01 1072.16

Table 4: The log of the likelihood L as function of ℓmin. In the second column we give

the number of Cℓ estimates (including the polarization data) except for the case ℓmin = 2

where a pixel-likelihood is added. For ℓmin ≥ 20, N(ℓmin) = 994+ 427− 2(ℓmin − 1), which

is the number of multipoles for the TT (WMAP5 and ACBAR data) and TE (WMAP5

data) spectra minus twice the number of cut multipoles. The only significant difference

between models appears in the first row with ℓmin = 2, where the ΛCDM model with τ 6= 0

is clearly favoured.

and spectral index ns = 0.93 ± 0.03, an EdS model scaled by this factor is a good

fit to the present CMB data, apart from the low multipoles. Of course such a model

is in complete disagreement with local measurements of the Hubble parameter and

supernova observations. If we want to agree with the local value H0 = (60–70)

km/s/Mpc, the observed distance is instead longer than in an EdS model by the

factor h−1S ≈ 1.4–1.7. From the CMB we cannot determine at which point between

last scattering and today the distance evolution diverges from the EdS case; from

supernova observations, we know that this happens between a redshift of order unity

and today. Any viable cosmological model has to explain this change in the distance

scale, whether the reason is dark energy, modified gravity or large deviations from

the FL geometry.

Constraints on R, ℓA and other parameters have been presented earlier in [11,

17–21], where the data have been analysed in the context of different models for

dark energy, also taking into account effects like neutrino masses which we do not

consider. Our mean value for R is larger (and ωb and ns are smaller) than in those

studies, because of the systematic shift due to cutting away the low multipoles. The

increase in the error bars is smaller than the change in the mean values, as they do

not take into account the systematic shift. The shift indicates that different parts of

the data prefer different parameter values, which frustrates the effort to give precise

model-independent error bars, because the only way to reduce model-dependence is

to exclude the part of the data which is most likely subject to unknown physical

effects. We think that cutting the multipoles below ℓmin = 40 strikes a good balance

between reducing model-dependence and not discarding data needlessly.

The cosmological parameter most robustly determined by the CMB in a model-

independent manner is the ratio ℓA = πDA(z∗)/rs(z∗), which does not undergo a
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systematic shift with increasing ℓmin, unlike ωb, ωc, ns, R or DA(z∗). It is interesting

that as low multipoles are cut, the spectral index becomes smaller, making the evi-

dence for violation of scale-invariance in the initial conditions stronger. For ℓmin ≥ 80,

values ns < 0.9 are within 1σ of the mean. As for the baryon density, the shift to-

wards smaller values is well within the constraint 1.9 ≤ 100ωb ≤ 2.4 (95% C.L.)

from Big Bang Nucleosynthesis [52]. Our value for ωc is more than 2σ away from the

ΛCDM value with no multipole cut, while the error bars increase only by 26%. This

model-dependence suggests caution about the value and the error bars of ωc which

enter into codes such as DarkSUSY [53].

In order to be independent of late-time cosmology, we cannot take into account

low ℓ results for the CMB anisotropies. In the final parameters quoted in table 2 we

have used the data for ℓ ≥ ℓmin = 40. At first sight one might hope that our analysis

could be significantly improved once the Planck data with precise Cℓ’s up to ℓ ≈ 2500

will be available. However, for ℓ & 1000 CMB lensing can no longer be neglected

for data with a precision better than about 4% for the anisotropies and 10% for

the polarisation [25, 26]. But lensing and other second order effects depend on the

details of the late-time cosmology. Hence our model-independent analysis has to be

restricted to the interval of roughly 40 ≤ ℓ ≤ 800. Higher ℓ data can only be used if

the error bars are sufficiently large. For ACBAR this is still marginally possible, but

with Planck systematic errors due to late-time effects will have to be added to the

high ℓ data. Increased precision in the multipole range 40 ≤ ℓ ≤ 800 also has to be

balanced against contamination by model-dependent secondary effects. We therefore

do not expect a substantial improvement of our results from future data.

4. Conclusion

We have analysed the CMB data in a way which is independent of the details of

late-time cosmology, i.e. the cosmology at redshifts z <∼ 60. The results we have

obtained are therefore valid for most models of late-time cosmology, whether they

include dark energy, modified gravity, a local void or backreaction.

We have presented model-independent limits on ωb, ωc, ns and the angular diam-

eter distance to the last scattering surface DA(z∗), or its ratio with the sound horizon

at last scattering, θA = rs(z∗)/DA(z∗). The present CMB data give an extraordinar-

ily precise measurement of θA, which every realistic model of the late universe must

agree with. We can summarize the final result by

100ωb = 2.13± 0.05 , ωc = 0.124± 0.007

ns = 0.93± 0.02 , θA = 0.593◦ ± 0.001◦ . (4.1)

Note that the values of ωc and ωb actually determine the matter and baryon density

at last scattering via the relation ρx(z∗) = (1 + z∗)
3(H0/h)

2ωx. The values of the

densities today may be different e.g. if dark matter decays at late times [38].
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In summary, every model which satisfies equations (4.1) will automatically be in

agreement with the present CMB data for ℓ ≥ 40. Only lower ℓ CMB data, large

scale structure, lensing and other observations can distinguish between models which

have the above values for ωb, ωc, ns and θA.

We have also found that there is a systematic shift in the cosmological parameters

as more low ℓ data are cut. As more data from low multipoles is removed, ωb and

ns decrease, while ωc becomes larger. These changes keep the power spectrum at

small scales fixed, but tend to increase the amplitude on large scales. These changes

are not reflected in the statistical error bars: the small angle data prefer different

parameter values than the full set of CMB data. This trend is visible to at least

ℓmin = 100. Whether this behaviour has any connection with the various directional

features at low multipoles [28–31], is not clear.
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A. The scale parameter approximation

In this appendix we illustrate the accuracy of the scale parameter approximation for

the high multipoles. We consider spectra for FL models with non-zero spatial cur-

vature or cosmological constant, compared with the Einstein-de Sitter result scaled

with the parameter S as discussed in section 2.3. We keep the matter densities

fixed to the WMAP5 best-fit values ωb = 0.023 and ωc = 0.11 [12]. Neglecting the

contribution of radiation, the scale parameter in these models is

S ≃
√
ωm

2

∫ z∗

0

dz
√

ωm(1 + z)3 + ωK(1 + z)2 + h2 − ωm − ωK

, (A.1)

where ωK ≡ ΩKh
2 and h2 − ωm − ωK = ΩΛh

2 ≡ ωΛ.

In figure 5 we show the TT spectrum for models with positive or negative spatial

curvature and the scaled model. The spectra lie on top of each other for ℓ & 20,

except for large negative spatial curvature. In figure 6 and figure 7 we show the TE

and EE spectra. The scaled curves are practically indistinguishable from the exact

ones at all multipoles, even for large negative spatial curvature. In figure 8, we show

the spectra for models with positive cosmological constant compared with the scaled

model. The scaling approximation is excellent for all of the spectra for ℓ & 20.
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Figure 5: The TT spectra for models with ΩΛ = 0,ΩK 6= 0. The solid curve corresponds

to the Einstein-de Sitter universe, the dotted curve corresponds to a model with ΩK as

specified in the panels, and the dashed curve shows the Einstein-de Sitter universe power

spectrum scaled with S. The vertical axis is ℓ(ℓ+ 1)CTT
ℓ /(2π) in (µK)2.
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Figure 6: As in figure 5, but for the TE spectra. The dotted curves are invisible since

they are completely overlaid by the dashed ones (scaled model).
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Figure 7: As in figure 5, but for the EE spectra. The dotted curves are invisible since

they are completely overlaid by the dashed ones (scaled model).
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Figure 8: As in figure 5, but for ΩΛ 6= 0,ΩK = 0. We consider two different values for

ΩΛ, corresponding to the two columns. The rows from top to bottom are the TT, EE and

TE spectra.

B. Reionization

In this appendix we study the effect of reionization on the angular power spectrum

of the CMB. If the baryons are reionized at redshift zri, the effect on scales which

are of the order of the horizon size at the time is complicated, and leads to addi-

tional polarization and a scale-dependent reduction of the amplitude of anisotropies.

However, on scales which are well inside the horizon, the rescattering of photons

simply reduces the amplitude of CMB temperature and polarization anisotropies by

roughly the same amount on all scales. This effect can therefore be absorbed in a

renormalization of the spectrum. In figure 9 we show the TT spectrum with and

without reionization for the best-fit ΛCDM model, as well as the relative difference

of the spectrum with and without reionization. For ℓ ≥ 40, renormalizing the spec-

trum with a constant reproduces the effect of reionization within about 1.5%. We

have done the same with the temperature–polarization cross-correlation and the po-

larization spectra. Also there renormalization is a very good approximation (better

than 0.5% on average) for ℓ ≥ 40, see figures 10 and 11. To obtain the spectra with

τ = 0.1, we have multiplied the spectra with τ = 0 by the factor 0.82.
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Figure 9: The TT power spectrum with (dashed, red) and without (solid, black) reioniza-

tion for optical depth τ = 0.1 for ℓ ≥ 2 (left upper panel) and ℓ ≥ 40 (right upper panel).

For the upper panels, the vertical axis is ℓ(ℓ + 1)CTT /(2π) in (µK)2. In the lower panel

we show the relative difference between the spectrum with and without reionization, when

the latter is simply rescaled by a constant. For low ℓ’s, the differences are substantial, up

to 25%, but for the values ℓ ≥ 40 we consider, the difference is less than 2%.
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Figure 10: The TE correlation spectrum with (dashed, red) and without (solid, black)

reionization for optical depth τ = 0.1 for ℓ ≥ 2 (left upper panel) and ℓ ≥ 40 (right upper

panel). The vertical axis is ℓ(ℓ + 1)CTT /(2π) in (µK)2. In the lower panel we show the

difference between the spectrum with and without reionization, when the latter is simply

rescaled by a constant. For the values ℓ ≥ 40 we consider, the difference is below 0.1(µK)2.
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Figure 11: As in figure 10, but for the EE power spectrum. For ℓ ≥ 40, the difference is

below 0.002(µK)2.

– 26 –



References

[1] E.V. Linder, The dynamics of quintessence, the quintessence of dynamics, Gen. Rel. Grav.

40 (2008) 339 [arXiv:0704.2064 [astro-ph]]
[2] Salvatore Capozziello and Mauro Francaviglia, Extended theories of gravity and their

cosmological and astrophysical applications, Gen. Rel. Grav. 40 (2008) 357 [arXiv:0706.1146

[astro-ph]]
[3] K. Koyama The cosmological constant and dark energy in braneworlds, Gen. Rel. Grav. 40

(2008) 421 [arXiv:0706.1557 [astro-ph]]
[4] R. Durrer and R. Maartens, Dark energy and dark gravity: theory overview, Gen. Rel. Grav.

40 (2008) 301 [arXiv:0711.0077 [astro-ph]]
[5] S. Räsänen, Accelerated expansion from structure formation, JCAP11(2006)003

[arXiv:astro-ph/0607626]
[6] T. Buchert, Dark Energy from Structure - A Status Report, Gen. Rel. Grav. 40 (2008) 467

[arXiv:0707.2153 [gr-qc]]
[7] K. Enqvist, Lemaitre-Tolman-Bondi model and accelerating expansion, Gen. Rel. Grav. 40

(2008) 451 [arXiv:0709.2044] [astro-ph]
[8] S. Räsänen, Evaluating backreaction with the peak model of structure formation,

JCAP04(2008)026 [arXiv:0801.2692 [astro-ph]]
[9] J.P. Zibin, A. Moss and D. Scott, Can we avoid dark energy?, Phys. Rev. Lett. 101 (2008)

251303 [arXiv:0809.3761 [astro-ph]]
[10] M.N. Celerier, K. Bolejko, A. Krasinski and C. Hellaby, A (giant) void is not mandatory to

explain away dark energy with a Lemaitre-Tolman model [arXiv:0906.0905 [astro-ph.CO]]
[11] E. Komatsu et al.[WMAP Collaboration], Five-Year Wilkinson Microwave Anisotropy Probe

(WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 180 (2009) 330

[arXiv:0803.0547 [astro-ph]]
[12] J. Dunkley et al. [WMAP Collaboration], Five-Year Wilkinson Microwave Anisotropy Probe

(WMAP) Observations: Likelihoods and Parameters from the WMAP data, Astrophys. J.

Suppl. 180 (2009) 306 [arXiv:0803.0586 [astro-ph]]
[13] G. Hinshaw et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP)

Observations: Data Processing, Sky Maps, & Basic Results, Astrophys. J. Suppl. 180 (2009)

225 [arXiv:0803.0732 [astro-ph]]
[14] C.L. Reichardt et al., High Resolution CMB Power Spectrum from the Complete ACBAR

Data Set, Astrophys. J. 694 (2009) 1200 [arXiv:0801.1491v3 [astro-ph]]
[15] G. Efstathiou and J.R. Bond, Cosmic Confusion: Degeneracies among Cosmological

Parameters Derived from Measurements of Microwave Background Anisotropies, Mon. Not.

Roy. Astron. Soc. 304 (1999) 75 [arXiv:astro-ph/9807103]
[16] A. Kosowsky, M. Milosavlijevic and R. Jimenez, Efficent cosmological parameter estimation

from microwave background anisotropies, Phys. Rev. D66 (2002) 063007

[arXiv:astro-ph/0206014]
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E. Gaztañaga, R. Miquel and E. Sánchez, First Cosmological Constraints on Dark Energy

from the Radial Baryon Acoustic Scale, Phys. Rev. Lett. 103 (2009) 091302 [arXiv:0808.1921

[astro-ph]]
[45] W. Hu, M. Fukugita, M. Zaldarriaga and M. Tegmark, CMB Observables and Their

Cosmological Implications, Astrophys. J. 549 (2001) 669 [arXiv:astro-ph/0006436]
[46] M. Doran and M. Lilley, The Location of CMB Peaks in a Universe with Dark Energy, Mon.

Not. Roy. Astron. Soc. 330 (2002) 965 [arXiv:astro-ph/0104486]
[47] L.M. Krauss and B. Chaboyer, Age Estimates of Globular Clusters in the Milky Way:

Constraints on Cosmology, Science 299 (2003) 65
[48] J. P. Zibin, A. Moss and D. Scott, The Evolution of the Cosmic Microwave Background,

Phys. Rev. D76 (2007) 123010 [arXiv:0706.4482v3 [astro-ph]]
[49] A.E. Raftery and S.M. Lewis How many iterations in the Gibbs sampler?, 1992 Bayesian

Statistics 4, pp. 763-773 Cambridge University Press, Cambridge

– 29 –



[50] H. Kurki-Suonio, V. Muhonen and J. Väliviita, Correlated Primordial Perturbations in Light

of CMB and LSS Data, Phys. Rev. D71 (2005) 063005 [arXiv:astro-ph/0412439]
[51] R.H. Becker et al., Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson

Trough in a z=6.28 Quasar, Astron. J. 22 (2001) 2850 [arXiv:astro-ph/0108097]

X. Fan et al., Observational constraints on Cosmic Reionization, Ann. Rev. Astron.

Astrophys. 44 (2006) 415 [arXiv:astro-ph/0602375]
[52] C. Amsler et al. [Particle Data Group], Review of particle physics, Phys. Lett. B667 (2008) 1
[53] P. Gondolo et al., DarkSUSY: Computing Supersymmetric Dark Matter Properties

Numerically, JCAP07(2004)008 [arXiv:astro-ph/0406204]

– 30 –



ar
X

iv
:1

00
3.

08
10

v2
  [

as
tr

o-
ph

.C
O

] 
 1

2 
A

ug
 2

01
0

Preprint typeset in JHEP style - HYPER VERSION CERN-PH-TH/2010-053

Model-independent cosmological constraints

from the CMB

Marc Vonlanthen

Université de Genève, Département de Physique Théorique
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Abstract: We analyse CMB data in a manner which is as model-independent as

possible. We encode the effects of late-time cosmology into a single parameter which

determines the distance to the last scattering surface. We exclude low multipoles

ℓ < 40 from the analysis. We consider the WMAP5 and ACBAR data. We obtain

the cosmological parameters 100ωb = 2.13±0.05, ωc = 0.124±0.007, ns = 0.93±0.02

and θA = 0.593◦±0.001◦ (68% C.L.). The last number is the angular scale subtended

by the sound horizon at decoupling. There is a systematic shift in the parameters as

more low ℓ data is omitted, towards smaller values of ωb and ns and larger values of

ωc. The scale θA remains stable and very well determined.
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1. Introduction

The cosmic microwave background (CMB) is one of the most important cosmological

probes. The pattern of acoustic oscillations of the baryon-photon plasma is imprinted

on the CMB at the time of decoupling, and then rescaled (and on large scales modi-

fied) as the CMB photons propagate from the last scattering surface to the observer.

The CMB is thus sensitive to cosmological parameters in two ways, via the physics

at decoupling and via the evolution of the universe after that.

While the physics at decoupling –essentially atomic physics and general relativity

of a linearly perturbed Friedmann-Lemâıtre (FL) universe– is well understood, the

evolution at late times deviates from the predictions of linearly perturbed FL models

with radiation and matter. The difference may be due to an exotic matter component

with negative pressure such as vacuum energy, deviation of gravity from general

relativity [1–4], or a breakdown of the homogeneous and isotropic approximation

[5–10]. It is not known which of these possibilities is correct, and there are large

differences between the various models. It is therefore worthwhile to analyse the

CMB in a manner which is as independent of the details of late-time cosmology as
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possible. On the one hand, this clarifies the minimal constraints that all models of

late-time cosmology, whatever their details, have to satisfy in order to agree with

CMB observations. On the other hand, our analysis provides limits on the physical

parameters at decoupling that are independent of the details of what happens at

later times. This is particularly important for cosmological parameters such as the

density of baryons, density of dark matter and the spectral index, which are used

to constrain particle physics models of baryogenesis, supersymmetry and inflation,

which are independent of late-time cosmology.

Such a separation of constraints is possible because the physics after decoupling

affects the CMB in a rather limited manner (except at low multipoles), by simply

changing the angular scale and modifying the overall amplitude of the CMB pattern.

We encode the change in the angular scale in a single parameter related to the

angular diameter distance to the last scattering surface and treat the amplitude as a

nuisance parameter. We aim to be transparent about how the different cosmological

parameters enter the calculation and the assumptions that go into the analysis.

In section 2 we discuss how the physics at early and late times affects the CMB

and explain our assumptions. In section 3 we present the results of the analysis of

the WMAP 5-year data [11–13] and the ACBAR data [14] and give the constraints

on cosmological parameters. In section 4 we summarise our results. Some details are

collected in two appendices

2. Parameter dependence of the CMB

2.1 Our assumptions

The pattern of CMB anisotropies can be summarised in terms of a few parameters.

It was noted in [15] that models with the same primordial perturbation spectra and

same values of ωb, ωc and the shift parameter R have an identical CMB spectrum

today, apart from low multipoles (ℓ . 30). The discussion in [15] was in the context

of a family of Friedmann-Lemâıtre (FL) models, but the statement is true more

generally. The shift parameter is defined as

R ≡ ω1/2
m (1 + z∗)H0h

−1DA(z∗)

=

(

Ωm

ΩK

)1/2

sinh

(

Ω
1/2
K

∫ z∗

0

dz′
H0

H(z′)

)

, (2.1)

where z∗ is the redshift of decoupling, DA(z) is the angular diameter distance between

today and redshift z, H0 = 100hkm/s/Mpc is the Hubble parameter today, and the

second line holds for all FL models. The density parameter ωb is the normalized di-

mensionless physical density of baryonic matter, ωb = 8πGNρb/3/(100 km/s/Mpc)2,

ωc is the normalized dimensionless physical density of cold dark matter defined the

same way, ωm = ωb + ωc is the total physical matter density, and Ωm = ωmh
−2
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and ΩK are, respectively, the matter and the spatial curvature density parameter

today. With present observations which include polarization data, one has to add

a parameter to take into account collisions between the CMB photons and baryonic

matter after the cosmic medium becomes reionized. This is usually expressed with

the redshift of reionization zri or the optical depth τ .

The CMB data has been analysed in terms of the shift parameter R in various FL

models [11, 16–21], and a similar approach has been followed for local void models

[9, 22]. The model-dependence of parameters such as R has been discussed, but

limits on them have always been derived within some specific models, and it has

not been clear which assumptions are important and what is the model-independent

information.

In this work, we analyse the CMB in a manner which is as model-independent

as possible, and we are explicit about the assumptions involved. In particular, we

do not restrict our study to models which are close to FL at late times, so our

constraints are also applicable to models where the effect of non-linear structures

on the expansion rate is important, or where we are located in a large spherically

symmetric density fluctuation such as a local void. (Note that the near-isotropy of

the CMB does not imply that the universe is close to FL, even coupled with the

Copernican principle [23].)

We assume that the physics up to and including decoupling is completely stan-

dard, i.e. linearly perturbed FL evolution according to normal four-dimensional

general relativity with Standard Model particle physics and dark matter (which we

assume to be cold during decoupling). As for physics after decoupling, we make

the minimal assumptions that it changes the small angle CMB spectrum only by

1) modifying the angular diameter distance to the last scattering surface and 2)

changing the overall amplitude. Here, small angles refers to scales which are well

inside the horizon at late times when the unknown physics can be important, say

conservatively at z <∼ 60. We discard low multipoles in our analysis, because typically

the unknown physics of dark energy, modified gravity or large deviations from FL

geometry affects the large angles in a model-dependent way, for example via the late

Integrated Sachs-Wolfe (ISW) effect. In typical perturbed FL models, the late ISW

effect is only significant at low multipoles (see appendix A), and the Rees-Sciama

effect, gravitational lensing and the Sunyaev-Zel’dovich effect do not have a signifi-

cant impact at the present observational accuracy [24–26], though their presence is

already suggested by the ACBAR data [14]. We assume that such effects remain

small in other models, and that any multipole-dependent effect of new physics on

the CMB spectrum is below the observational precision, except at low multipoles.

In perturbed FL models, reionization has a significant effect on all angular scales,

but at high multipoles it amounts to a simple rescaling of the amplitude, and is thus

degenerate with the amplitude of primordial perturbations (see appendix B), so we

can neglect modeling of reionization.
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We assume that the primordial perturbations are adiabatic, and have a power-

law spectrum. We only consider scalar perturbations, and assume that the vector

and tensor contributions are small. (This division refers to the early universe; in the

late universe it is not necessarily meaningful, because we do not assume that the late

universe is close to FL.) Within our approach it would not be easy to include ten-

sor perturbations in the temperature anisotropy spectrum, because they contribute

mainly via the ISW effect and are relevant up to ℓ ≈ 100. However, the contribution

of tensors starts to decay already around ℓ ≈ 50 and is probably relatively small, so

their presence would not be expected to change our results significantly. (It would

be easy to take into account the tensor contribution to the polarization spectrum,

though, because it is mainly generated at the last scattering surface.) We also neglect

the effect of neutrino masses.

The idea behind these assumptions is that we can treat the CMB with a standard

Boltzmann code, and simply exclude low multipoles from the analysis. We have

modified the publicly available CAMB code and the corresponding Monte Carlo

Markov Chain program [27] to search for best-fit values of our parameters. As long

as the rise to the first peak is fully included in the analysis, discarding low multipoles

should not involve a significant loss of information, because there are more high

multipoles and the cosmic variance is larger on large scales. However, our results

in this respect are somewhat surprising, as we discuss in section 3. Also, it has

been argued that there are anomalies in the angular distribution on large scales [28]

(and a dipolar modulation at higher multipoles [29]), which could indicate that some

physics affecting the low multipoles is not understood, so they may be unreliable for

cosmological analysis; see also [30, 31].

Our assumptions do not hold for models with non-standard physics at or before

decoupling, such as new radiation degrees of freedom, early dark energy [32] or dark

matter which undergoes significant annihilation at early times [33]. In models where

we are located in a large spherically symmetric region, it is possible to obtain a large

CMB dipole [34], and there could be a large effect at higher multipoles as well. This

can only be checked with perturbation theory adapted to such models, which is now

being developed [35].

2.2 The physics of the CMB parameters

Let us outline the relation between the features in the CMB spectrum and the cosmo-

logical parameters, given our assumptions above. (See [26,36] for detailed discussion.)

We consider five parameters, namely the overall amplitude, the baryon density ωb,

the cold dark matter density ωc, the spectral index ns and the distance to the last

scattering surface DA(z∗).

The observed amplitude of CMB perturbations is determined by a combination

of the primordial power spectrum and late-time physics, such as damping due to

accelerating expansion and scattering of CMB photons from matter due to reion-
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ization. Without specifying a model for the late-time universe, it is not possible to

disentangle these effects. Because the overall normalization does not have a model-

independent interpretation, we treat it as a nuisance parameter, and do not quote

limits for it.

The spectral index ns is related to the early universe physics, such as inflation,

which produces the primordial perturbations. Extending the analysis to more com-

plicated primordial spectra would be straightforward, though of course we would not

be sensitive to large-scale features.

The relative height and depth of the CMB peaks and troughs is set by the

physics of the baryon-photon oscillations, which depends on ωb and ωc. This pattern

also depends on the radiation density ωr = 8πGNρr/3/(100 km/s/Mpc)2, which is

however accurately determined by the CMB temperature. Note that the CMB is only

sensitive to the densities at the time of decoupling, not to their values today. As is

customary, we use the symbols ωb, ωc and ωr to refer to the densities at decoupling

scaled to today with the factor (1+z∗)
3 for baryons and dark matter and (1+z∗)

4 for

radiation, where ∗ indicates the time of decoupling. At decoupling, the distribution

of matter is still very smooth, so the densities at that time can be understood as

local or average values; the scaled numbers represent today’s average values. In a

statistically homogeneous and isotropic space, the mean energy density of baryons

and cold dark matter evolves like (1 + z)3 due to conservation of mass, and the

mean energy density of photons evolves like (1 + z)4 due to conservation of photon

number and the fact that the change of energy of the CMB photons by scattering

can be neglected [37]. FL models are of course a particular case of this. If dark

matter has significant pressure, or decays significantly [38], or if there is some extra

source of baryons, dark matter or photons, our ωb, ωc and ωr would not correspond to

the physical densities today. (Dark matter decay to radiation would also contribute

to the late ISW effect [39].) This is already true for neutrinos, which we treat as

massless, but which in fact do not contribute to the present-day radiation density,

since their mass today is larger than the temperature. This will also be the case if

the factor (1 + z)3 is not simply proportional to the volume, which can happen if

statistical homogeneity and isotropy is broken, such as in local void models where

shear can contribute significantly to the redshift.

Our final parameter is the angular diameter distance to the last scattering sur-

face. Angular diameter distance out to redshift z is defined as DA(z) = L/θ, where

L is the proper size of an object at redshift z and θ is its observed angular size.

The physical scale of the baryon-photon oscillations is set by the sound horizon at

decoupling rs(z∗) which depends on ωb and ωc [26,40]. With standard physics up to

decoupling, the sound speed of the photon-baryon plasma is

c2s =
1

3(1 + 3ρb/4ργ)
=

1

3
(

1 + 3ωb

(1+z)4ωγ

) ≡ 1

3[1 + r(1 + z)−1]
, (2.2)
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where we have introduced r ≡ 3ωb/4ωγ. For the sound horizon we obtain1

(1 + z∗)rs(z∗) =

∫ t∗

0

cs(t
′)

a(t′)
dt′

=
h

H0

√
3

∫

∞

1+z∗

dx

x
√

(x+ r)(xωr + ωm)

=
2h

H0

√
3rωm

log





√
1 + z∗ + r +

√

(1+z∗)rωr

ωm
+ r

√
1 + z∗

(

1 +
√

rωr

ωm

)



 . (2.3)

Note that h/H0 = 1/(100km/s/Mpc) ≈ 2998 Mpc is a fixed scale which does not

depend on the cosmological model. The photon number density ωγ = 2.48× 10−5 is

known as well as the CMB temperature and we do not treat it as a free parameter.

Assuming massless neutrinos, the same is true for the radiation density [26], ωr =

ωγ

(

1 + 37
8

(

4
11

)4/3
)

= 4.17×10−5. Furthermore, for standard radiation content, z∗ ≃
1090 is a function of ωb and ωc (for an analytical approximation, see [40]). For

standard values of the parameters, the log in (2.3) is of order unity. The sound

horizon at decoupling therefore depends only on ωb and ωc. The angle under which

it is observed today is given by θA ≡ rs(z∗)/DA(z∗). With ωb and ωc fixed, the pattern

of CMB anisotropies is determined at decoupling (apart from low multipoles), and

its angular scale changes as the distance to the last scattering surface grows and

the multipole positions of the CMB peaks and troughs scale with DA(z∗). Given

our assumptions, the CMB (apart from low multipoles) has no sensitivity to any

physical parameters other than ωb, ωc, ns, DA and the overall amplitude, and these

five parameters are a priori independent. A given model can of course couple them

to each other, as well as to parameters which do not directly affect the CMB.

In particular, in linearly perturbed FL models the spatial curvature affects the

CMB only via the angular diameter distance (apart from the late ISW effect). It is

sometimes said that the spatial curvature can be determined from CMB observations

by using the sound horizon as a standard ruler (assuming that the universe can be

described by a FL model). However, as (2.1) shows, the effect of spatial curvature

on DA(z∗) is completely degenerate with the expansion history H(z). For example,

FL models with matter and significant spatial curvature are consistent with the

WMAP observations [41]. In this case, a prior on H0 is enough to exclude large

spatial curvature, but only because of the specific form of the expansion history.

The only way to really measure the spatial curvature, as opposed to doing parameter

estimation in the context of specific models, is to use independent observations of

the distance and expansion rate [42], such as from the ages of passively evolving

galaxies [43] and baryon acoustic oscillations [44]. Note also that the CMB (apart

1Here rs is the physical sound horizon at the time of decoupling. In the literature rs often

denotes the comoving sound horizon.
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from low multipoles) is sensitive to the expansion history between decoupling and

today only via the angular diameter distance; in particular, the CMB contains no

model-independent information about H0.

In addition to R, another parameter defined as

ℓA ≡ π

θA
= π

DA(z∗)

rs(z∗)
(2.4)

has also been introduced to parametrise the distance to the last scattering surface

[45]. The parameter ℓA is related to the position of the first peak in multipole space

(for details, see [26,36,45,46]). The quantity ℓA has been called an independent shift

parameter in addition to R [18]. However, this is somewhat misleading, because R

and ℓA contain the same information as regards the shift in the angular scale of the

CMB anisotropy pattern due to the late-time evolution, the only difference is their

dependence on ωb and ωc. Of course, one can consider any combination of the four

parameters ωb, ωc, ns and R. For our purposes, it is useful to introduce the scale

parameter S, which is defined as the ratio of the angular diameter distance to the

prediction of the simplest cosmological model,

S ≡ DA(z∗)

DA,EdS(z∗)
=

H0(1 + z∗)DA(z∗)

2[1− (1 + z∗)−1/2]
≃ 1

2
H0(1 + z∗)DA(z∗) , (2.5)

where DA,EdS is the angular diameter distance in the Einstein-de Sitter (EdS) uni-

verse (the matter-dominated spatially flat FL model), (1 + z)DA,EdS = 2H−1
0 [1 −

(1 + z)−1/2]; the last approximation in (2.5) is accurate to 3%. Using (2.1), the scale

parameter S is related to R by S = hR/(2ω
1/2
m )[1 − (1 + z∗)

−1/2]−1 ≃ hR/(2ω
1/2
m ).

Unlike R and ℓA, the scale parameter S depends on the Hubble parameter, to which

the CMB has no direct sensitivity. (This arises because FL models predict the dis-

tance in units of H0.) Therefore, the value of S depends on how we fix the Hubble

parameter.

We can simply keep H0 free and quote limits for h−1S, and one can then substi-

tute the Hubble parameter given by e.g. local observations of H0. The mean value

is h−1S = 2.4 (see table 2), so for h = 0.6–0.7, the distance to the last scatter-

ing surface is a factor of 1.4–1.7 longer than in an EdS model with the observed

Hubble parameter. This is in accordance with the usual intuition that physics

in the late-time universe acts to increase the distance compared to EdS, for ex-

ample via accelerated expansion. We could instead keep the age of the universe

fixed, i.e. ask how large the distance is compared to the value in an EdS model

at the same time after the big bang. In an EdS model H0 = 2/(3t0), so we have

S = 2/(3t0100km/s/Mpc)×R/(2ω
1/2
m )[1−(1+z∗)

−1/2]−1, which for t0 = 13.4 Gyr [47]

gives S ≈ 1.2 for our mean values ωm = 0.145 and R = 1.77.

Finally, we can ask how long the distance is compared to an EdS model which

has the correct matter density. The Hubble parameter is then simply h = ω
1/2
m ,
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θ θ’

D D’A
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Figure 1: The angle under which two fixed points on the sky are seen changes with the

angular diameter distance DA.

so S = R/2[1 − (1 + z∗)
−1/2]−1 ≃ R/2 ≈ 0.9. This means that in an EdS model

with the correct matter density, the predicted distance to the last scattering surface

is longer than observed. (In other words, the real matter density decays faster as

function of the distance to the last scattering surface than in the EdS reference

model.) Unless otherwise noted, we follow this last convention, and compare with

an EdS model which has the correct matter density, at the expense of the age of

the universe and the Hubble parameter. We give constraints for θA, ℓA, R, S, h−1S,

and DA(z∗) in section 3. For fixed ωb, ωc and ns, these quantities contain the same

information, only their correlation properties with the parameters ωb, ωc and ns are

different (see table 3).

2.3 The distance to the last scattering surface

Let us now study how the CMB spectrum depends on the angular diameter distance

to the last scattering surface DA(z∗). We consider two positions in the sky denoted

by n1 and n2 which have the temperature fluctuations ∆T (n1) and ∆T (n2) and

which are separated by the proper distance L on the last scattering surface. For two

different angular diameter distances DA and D′

A to the last scattering surface, the

length L is seen under the angles θ = L/DA and θ′ = L/D′

A, see figure 1.

The two-point functions C and C′ which correlate n1 and n2 for an observer at

distance DA or D′

A, respectively, can be decomposed in terms of the two angles as

C(θ) ≡ 〈∆T (n1)∆T (n2)〉 =
1

4π

∑

ℓ

(2ℓ+ 1)CℓPℓ(cos θ)

=
1

4π

∑

ℓ

(2ℓ+ 1)C ′

ℓPℓ(cos θ
′) = C′(θ′) , (2.6)

where Pℓ is the Legendre polynomial of degree ℓ, and Cℓ and C ′

ℓ are the power

spectra corresponding to the angular diameter distances DA and D′

A respectively.

The equality C(θ) = C′(θ′) means that we consider only correlations on the last
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scattering surface (or very close to it) and neglect line-of-sight effects like, e.g. the late

ISW effect which can be different for the two photon paths. Using the orthogonality

of the Legendre polynomials,
∫ 1

−1
Pℓ̃(µ)Pℓ(µ)dµ = 2δℓ,ℓ̃/(2ℓ+1), we obtain the relation

Cℓ =
∑

ℓ̃

2ℓ̃+ 1

2
C ′

ℓ̃

∫ π

0

sin θdθPℓ̃[cos(θDA/D
′

A)]Pℓ(cos θ) . (2.7)

This cumbersome exact expression is only needed for low values of ℓ. At high ℓ we

can work in the flat sky approximation (see [26], section 5.4), where

Yℓm → 1

2π
exp(iℓ · x) and Pℓ(cos θ) → J0(|x|ℓ) .

Here x is a vector on the flat sky, ℓ is the variable of its 2-dimensional Fourier

transform, with ℓ = |ℓ|, and J0 is the Bessel function of order 0. Denoting r ≡ |x|,
the correlation function is

C(θ) = C(r) = 1

2π

∫

∞

0

dℓ ℓJ0(rℓ)Cℓ . (2.8)

The correlation functions corresponding to the two angular diameter distances are

related by C(r) = C′(r′), where r′ = rDA/D
′

A,

1

2π

∫

∞

0

dℓ ℓJ0(rℓ)Cℓ =
1

2π

∫

∞

0

dℓ ℓJ0(r
′ℓ)C ′

ℓ

=
1

2π

(

D′

A

DA

)2 ∫ ∞

0

dℓ ℓJ0(rℓ)C
′

D′

A
DA

ℓ
, (2.9)

where on the second line we have simply performed the change of variables ℓ →
ℓDA/D

′

A. Using the property
∫

∞

0
rdrJ0(rℓ)J0(rℓ

′) = ℓ−1δ(ℓ− ℓ′), we obtain

Cℓ =

(

D′

A

DA

)2

C ′

D′

A
DA

ℓ
. (2.10)

The relation (2.10) is valid independent of spatial curvature, since we do not

invoke three-dimensional Fourier transforms (contrary to [22], the result of which

we disagree by one power of D′

A/DA). We are simply using the fact that the CMB

anisotropies are functions on a sphere. Let us denote the spectrum of a reference EdS

Universe by CEdS
ℓ and the measured CMB spectrum by Cℓ. Recalling the definition

(2.5) of the scale parameter S, we can assign Cℓ to an EdS universe with the same

values of ωb, ωc and ns and the angular diameter distance DA = SDA,EdS if we scale

the angular power spectrum by

Cℓ = S−2CEdS
S−1ℓ . (2.11)

The basic assumption here is that the CMB fluctuations at decoupling are the same

for both models and the only difference is the distance to the last scattering surface.
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ℓmin 2 20 40 60

100ωb 2.21+0.05
−0.05 2.19+0.05

−0.05 2.18+0.07
−0.07 2.15+0.08

−0.08

ωc 0.113+0.005
−0.005 0.115+0.006

−0.006 0.118+0.007
−0.007 0.120+0.008

−0.008

ns 0.95+0.01
−0.01 0.95+0.01

−0.01 0.94+0.02
−0.02 0.93+0.02

−0.02

ΩΛ 0.72+0.03
−0.03 0.71+0.04

−0.03 0.70+0.04
−0.04 0.68+0.06

−0.05

ℓmin 80 100 120 140

100ωb 2.09+0.10
−0.10 2.05+0.09

−0.09 2.11+0.13
−0.12 2.07+0.14

−0.14

ωc 0.127+0.012
−0.013 0.132+0.012

−0.012 0.126+0.013
−0.016 0.131+0.018

−0.017

ns 0.91+0.03
−0.04 0.89+0.04

−0.03 0.91+0.05
−0.04 0.90+0.05

−0.06

ΩΛ 0.62+0.09
−0.09 0.58+0.10

−0.09 0.63+0.11
−0.10 0.58+0.14

−0.14

Table 1: The change in the mean parameters when more low ℓ data is omitted, in the

ΛCDM model with τ = 0. We have used the WMAP5 and ACBAR data.

If this is true, the relation (2.11) is exact in the flat sky limit. Without the flat sky

approximation it has to be replaced by (2.7) with DA/D
′

A = S. We have tested the

flat sky approximation numerically and have found that for ℓ ≥ 20 the difference

between (2.11) and the exact expression (2.7) is smaller than 1% for 1.1 ≥ S ≥ 0.7,

which includes the region which is of interest to us (the mean value we obtain is

S = 0.91± 0.01, see table 2).

To illustrate the dependence of the CMB spectra on the scale parameter S, we

show in appendix A the TT, TE and EE spectra for FL models with non-zero spatial

curvature or cosmological constant, compared with the EdS result scaled with S. As

shown in figures 5 to 7, the spectra for the scaled model and the model with spatial

curvature lie on top of each other for ℓ & 20, except for the case of large negative

spatial curvature with S ≃ 1.5, where there is some difference in the TT spectra until

ℓ ≈ 100. For the cosmological constant case, shown in figure 8, the approximation is

excellent for all of the spectra for ℓ & 20.

3. Results

3.1 Cosmological parameters and the multipole cut

We use the WMAP5 data and the ACBAR data in our analysis. However, disre-

garding ACBAR does not change the results much. We have performed a Markov

Chain Monte Carlo analysis with chain length N = 2 × 105. The results change by

significantly less than 1σ when going from N = 1.5× 105 to 2× 105, which indicates

that the chains have converged well [27]. As a convergence test, we have checked

that when the samples are split in two or three parts, the change of the relevant

cosmological parameters is a few percent of one standard deviation. We have also

checked that the Raftery and Lewis convergence diagnostic is satisfied [48].
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In table 1 we show the effect of excluding a successively larger multipole range

up to ℓmin in the analysis of the ΛCDM model; ΩΛ is the vacuum energy density

today, as usual. We have set τ = 0 for consistency with the treatment of the scaled

model. From ℓmin = 2 to ℓmin = 40 the errors on ωb and ωc increase by 28%, while

the error on ns increases by 57%. The central values move only by 1%, 4% and 1%,

respectively, and the results are consistent within 1σ.

Nevertheless, there is a systematic trend that ωb and ns decrease and ωc increases

as ℓmin grows. Even at ℓmin = 100, where the shifts are maximized, they are less than

2σ in terms of the new error bars. In terms of the error bars of the model with

ℓmin = 2, the shift is of course larger: for ns it more than 5σ, and for ΩΛ more than

4σ. The feature that the error bars on ns increase more than those of ωb and ωc may

be related to the fact that as ℓmin grows, the pivot scale k = 0.05 Mpc moves closer

to the edge of the data [49].

Part of this shift is due to the fact that reionization is neglected. We know

from the absence of the Gunn-Peterson trough in quasar spectra that the Universe

is reionized at redshifts z <∼ 6, see [50]. The slight decrease towards smaller scales

which is usually attributed to reionization is now achieved with a somewhat redder

spectrum. In order not to decrease the height of the acoustic peaks, this leads to a

higher value of ωc. A redder spectrum also enhances the amplitude difference between

the well measured first and second peaks. This can be compensated by a reduction

of ωb, since a larger ωb means a larger difference between the odd contraction and

the even expansion peaks [26].

However, reionization is not the dominant effect, and the systematic shift is also

present if reionization is included in the analysis. Note that the change is larger than

the increase in the error bars. The shape of the one-dimensional probability distri-

bution for the parameters is not for the most part significantly distorted, and the

two-dimensional distributions do not show strong changes in the correlation proper-

ties as ℓmin increases. Therefore, the error bars do accurately represent the statistical

error even at high ℓmin. In other words, the shift in the parameters is systematic,

and is not reflected in the statistical error estimate.

We conclude that the high ℓ data prefer different parameter values than the data

which includes the low multipoles. In figure 2 we show the TT power spectra for the

best-fit ΛCDM models with different ℓmin. There is a trend of increasing large-scale

power with higher ℓmin. In all cases, the overall amplitude is well-fixed by the high

ℓ data, the effect is due to the change in ωb, ωc and ns. The ISW effect is not the

cause, as there is a similar shift for both the ΛCDM model and the scaled EdS model.

Also, increasing ℓmin corresponds to decreasing ΩΛ and hence a smaller contribution

of the ISW effect to the low multipoles.

3.2 Model-independent parameter estimates

We fix our multipole cut at ℓmin = 40, which roughly corresponds to neglecting modes
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Figure 2: The increase in the large-scale power with increasing ℓmin in the best-fit ΛCDM

models with τ = 0. The lowest line corresponds to a cut at ℓmin = 2 the subsequent lines

have ℓmin = 40, 60, 80 and 100, respectively. At ℓmin = 120 the large scale power no longer

increases but it decreases somewhat. The WMAP and ACBAR data are superimposed.

The vertical axis is ℓ(ℓ+ 1)CTT /(2π) in (µK)2.

which entered the horizon after z = 60. The dependence on the redshift is weak,

ℓmin ∝ (1 + z)1/2 for z ≫ 1. Choosing z = 30 instead would give ℓmin ≈ 30. The

cut at ℓmin = 40 is also motivated by the fact that for ℓ > 40 reionization is well

approximated by a simple rescaling of the amplitude as well as by the multipole

dependence of the late ISW effect, see appendices A and B.

In table 2 we give the mean values for our primary parameters ωb, ωc, ns and S,

as well as some derived parameters. In addition to the systematic effect discussed

above, this table is our main result. As already mentioned, the overall amplitude is

treated as a nuisance parameter. For comparison, we give the corresponding results

for the ΛCDM model, with non-zero τ . We use ℓmin = 40 in both cases. The ΛCDM

values are in good agreement with the WMAP5 results [12] and have comparable

error bars. For the scaled model, the errors in ωc and ns are slightly larger than

those of the ΛCDM model with ℓmin = 2. We attribute this to the fact that we start

at ℓmin = 40. Furthermore, our spectral index is somewhat redder, ns = 0.93 com-

pared to ns = 0.96. This shift is also clearly seen in the one-dimensional likelihood

functions for the scaled model and the ΛCDM model, shown in figures 3. However,

these parameter changes are within one standard deviation and are therefore not sta-

tistically significant. It is impressive how accurately present CMB data determines

ℓA. The relative error is less than 0.3% for both the scaled model and ΛCDM. The

error in the other parameters related to the angular diameter distance, S, h−1S,R
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Parameter Scaled ΛCDM ΛCDM

ℓmin = 40 ℓmin = 40 ℓmin = 2

mean mean mean

100ωb 2.13± 0.05 2.21± 0.07 2.24± 0.05

ωc 0.124± 0.007 0.113± 0.007 0.111± 0.005

ns 0.93± 0.02 0.96± 0.02 0.97± 0.01

S 0.91± 0.01 – –

ΩΛ – 0.72± 0.04 0.74± 0.03

τ – 0.09+0.04
−0.05 0.09± 0.02

ωm 0.145± 0.007 0.136± 0.007 0.133± 0.005

h−1S 2.40± 0.03 – –

R 1.77± 0.02 1.73± 0.02 1.72± 0.02

θA 0.593◦ ± 0.001◦ 0.594◦+0.002◦

−0.001◦ 0.593◦ ± 0.002◦

ℓA 303.7± 0.7 303.3± 0.8 303.2± 0.7

DA(z∗)/Mpc 12.7± 0.2 12.9± 0.2 13.0± 0.1

rs(z∗)/Mpc 0.132± 0.002 0.134± 0.002 0.134± 0.001

10−3zeq 3.5± 0.2 3.3± 0.2 3.2± 0.1

z∗ 1094± 1 1092± 1 1091± 1

Table 2: The mean values for the scaled model and the ΛCDM model. We have used

the WMAP5 and ACBAR data for ℓ ≥ ℓmin = 40.

and DA, as well as rs, is about 1%. The errors for ωb, ωc and ns are less than 3%,

6% and 2%, respectively.

In table 3 we give the covariance matrix between the different variables, and

in figure 4 we show selected two-dimensional likelihoods. We see that R and S are

strongly positively correlated with ωc and ωm. In contrast, DA is strongly anti-

correlated with ωc and ωm. This can be understood by writing DA = SDA,EdS and

noting that DA,EdS ∝ h−1 = ω
−1/2
m . The variable ℓA is nearly uncorrelated with ωm,

but it is quite correlated with ωb and correspondingly also with ns. Since most of

the statistical weight of the WMAP data comes from the first and second peaks, ns

and ωb are strongly correlated even if the full WMAP data (with ℓmin = 2) is taken

into account [11]. This correlation becomes stronger as some of the low ℓ data is

omitted.

The standard deviations for the scaled EdS model are somewhat smaller than

those of the ΛCDM model for the same ℓmin. However, this does not mean that the

fit is better, but only that the well-fitting region is somewhat smaller. Error bars

for a model can be small simply because different parts of the data prefer different

regions of parameter space, so that the fit is good only in some small overlap region.

In the present case, the scaled model and the ΛCDM model are comparably good fits

to the data for ℓmin ≥ 20. In table 4 we show −2 logL, where L is the likelihood of
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ωb ωc ns S ωm h−1S ℓA DA(z∗) rs(z∗) z∗

ωb 1.00 −0.31 0.84 −0.49 −0.23 −0.06 −0.56 0.02 0.14 −0.88

ωc −0.31 1.00 −0.51 0.96 1.00 −0.91 0.05 −0.94 −0.98 0.72

ns 0.84 −0.51 1.00 −0.65 −0.45 0.19 −0.51 0.26 0.38 −0.86

S −0.49 0.96 −0.65 1.00 0.94 −0.78 0.30 −0.82 −0.91 0.83

ωm −0.23 1.00 −0.45 0.94 1.00 −0.94 −0.004 −0.96 −1.00 0.66

h−1S −0.06 −0.91 0.19 −0.78 −0.94 1.00 0.32 1.00 0.96 −0.40

ℓA −0.56 0.05 −0.51 0.30 −0.004 0.32 1.00 0.27 0.06 0.43

DA(z∗) 0.02 −0.94 0.26 −0.82 −0.96 1.00 0.27 1.00 0.98 −0.47

rs(z∗) 0.14 −0.98 0.38 −0.91 −1.00 0.96 0.06 0.98 1.00 −0.58

z∗ −0.88 0.72 −0.86 0.83 0.66 −0.40 0.43 −0.47 −0.58 1.00

Table 3: The normalized covariance matrix for the scaled model. We have used the

WMAP5 and ACBAR data for ℓ ≥ ℓmin = 40. At this level of precision, the correlation

coefficients of R are the same as those of S, and those of θA are minus those of ℓA.

Figure 3: One-dimensional likelihoods for the scaled model (black, solid) and the ΛCDM

model (red, dashed). We have used the WMAP5 and ACBAR data for ℓ ≥ ℓmin = 40.

the best-fit, as a function of ℓmin. There are only differences of ≈ 1 in −2 logL, which
is the same order as the differences between different chains of the same model.
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Figure 4: Two-dimensional likelihoods for the scaled model. We have used the WMAP5

and ACBAR data for ℓ ≥ ℓmin = 40.

3.3 Discussion

The CMB contains information about the distance to the last scattering surface, the

baryon density, the matter density and the primordial power spectrum (here taken to

be a power law), which can be extracted independently of the model used to describe

the late universe. In particular, the angular diameter distance to the last scattering

surface is a factor of S = 0.91± 0.01 smaller than in an EdS Universe with the same
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ℓmin nr. of points −2logL −2logL −2logL
N(ℓmin) scaled standard, τ = 0 standard, τ 6= 0

2 2591 2717.12 2715.78 2695.29

20 1385 1508.20 1507.41 1507.72

40 1345 1382.52 1381.24 1381.24

60 1305 1234.44 1233.23 1233.46

80 1265 1073.03 1072.01 1072.16

Table 4: The log of the likelihood L as function of ℓmin. In the second column we give

the number of Cℓ estimates (including the polarization data) except for the case ℓmin = 2

where a pixel-likelihood is added. For ℓmin ≥ 20, N(ℓmin) = 994+ 427− 2(ℓmin − 2), which

is the number of multipoles for the TT (WMAP5 and ACBAR data) and TE (WMAP5

data) spectra minus twice the number of cut multipoles. The only significant difference

between models appears in the first row with ℓmin = 2, where the ΛCDM model with τ 6= 0

is clearly favoured.

mean matter density, ωm = 0.145± 0.006. With baryon density ωb = 0.0213± 0.001

and spectral index ns = 0.93 ± 0.03, an EdS model scaled by this factor is a good

fit to the present CMB data, apart from the low multipoles. Of course such a model

is in complete disagreement with local measurements of the Hubble parameter and

supernova observations. If we want to agree with the local value H0 = (60–70)

km/s/Mpc, the observed distance is instead longer than in an EdS model by the

factor h−1S ≈ 1.4–1.7. From the CMB we cannot determine at which point between

last scattering and today the distance evolution diverges from the EdS case; from

supernova observations, we know that this happens between a redshift of order unity

and today. Any viable cosmological model has to explain this change in the distance

scale, whether the reason is dark energy, modified gravity or large deviations from

the FL geometry.

Constraints on R, ℓA and other parameters have been presented earlier in [11,

17–21], where the data has been analysed in the context of different models for

dark energy, also taking into account effects like neutrino masses which we do not

consider. Our mean value for R is larger (and ωb and ns are smaller) than in those

studies, because of the systematic shift due to cutting away the low multipoles. The

increase in the error bars is smaller than the change in the mean values, as they do

not take into account the systematic shift. The shift indicates that different parts of

the data prefer different parameter values, which frustrates the effort to give precise

model-independent error bars, because the only way to reduce model-dependence is

to exclude the part of the data which is most likely subject to unknown physical

effects. We think that cutting the multipoles below ℓmin = 40 strikes a good balance

between reducing model-dependence and not discarding data needlessly.

The cosmological parameter most robustly determined by the CMB in a model-
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independent manner is the ratio ℓA = πDA(z∗)/rs(z∗), which does not undergo a

systematic shift with increasing ℓmin, unlike ωb, ωc, ns, R or DA(z∗). It is interesting

that as low multipoles are cut, the spectral index becomes smaller, making the evi-

dence for violation of scale-invariance in the initial conditions stronger. For ℓmin ≥ 80,

values ns < 0.9 are within 1σ of the mean. As for the baryon density, the shift to-

wards smaller values is well within the constraint 1.9 ≤ 100ωb ≤ 2.4 (95% C.L.)

from Big Bang Nucleosynthesis [51]. Our value for ωc is more than 2σ away from the

ΛCDM value with no multipole cut, while the error bars increase only by 15%. This

model-dependence suggests caution about the value and the error bars of ωc which

enter into codes such as DarkSUSY [52].

In order to be independent of late-time cosmology, we cannot take into account

the low ℓ results for the CMB anisotropies. In the final parameters quoted in table 2

we have used the data for ℓ ≥ ℓmin = 40. At first sight one might hope that our

analysis could be significantly improved once the Planck data with precise Cℓ’s up

to ℓ ≈ 2500 will be available. However, for ℓ & 1000 CMB lensing can no longer be

neglected for data with a precision better than about 4% for the anisotropies and 10%

for the polarisation [25,26]. But lensing and other second order effects depend on the

details of the late-time cosmology. Hence our model-independent analysis has to be

restricted to the interval of roughly 40 ≤ ℓ ≤ 800. Higher ℓ data can only be used if

the error bars are sufficiently large. For ACBAR this is still marginally possible, but

with Planck systematic errors due to late-time effects will have to be added to the

high ℓ data. Increased precision in the multipole range 40 ≤ ℓ ≤ 800 also has to be

balanced against contamination by model-dependent secondary effects. We therefore

do not expect a substantial improvement of our results from future data.

4. Conclusion

We have analysed the CMB data in a way which is independent of the details of

late-time cosmology, i.e. the cosmology at redshifts z <∼ 60. The results we have

obtained are therefore valid for most models of late-time cosmology, whether they

include dark energy, modified gravity, a local void or backreaction.

We have presented model-independent limits on ωb, ωc, ns and the angular diam-

eter distance to the last scattering surface DA(z∗), or its ratio with the sound horizon

at last scattering, θA = rs(z∗)/DA(z∗). The present CMB data give an extraordinar-

ily precise measurement of θA, which every realistic model of the late universe must

agree with. We can summarize the final result by

100ωb = 2.13± 0.05 , ωc = 0.124± 0.007

ns = 0.93± 0.02 , θA = 0.593◦ ± 0.001◦ . (4.1)
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Note that the values of ωc and ωb actually determine the matter and baryon density

at last scattering via the relation ρx(z∗) = (1 + z∗)
3(H0/h)

2ωx. The values of the

densities today may be different e.g. if dark matter decays at late times [38].

In summary, every model which satisfies equations (4.1) will automatically be in

agreement with the present CMB data for ℓ ≥ 40. Only lower ℓ CMB data, large

scale structure, lensing and other observations can distinguish between models which

have the above values for ωb, ωc, ns and θA.

We have also found that there is a systematic shift in the cosmological parameters

as more low ℓ data is cut. As more data from low multipoles is removed, ωb and

ns decrease, while ωc becomes larger. These changes keep the power spectrum at

small scales fixed, but tend to increase the amplitude on large scales. These changes

are not reflected in the statistical error bars: the small angle data prefer different

parameter values than the full set of CMB data. This trend is visible to at least

ℓmin = 100. Whether this behaviour has any connection with the various directional

features at low multipoles, see Refs. [28–31], is not clear.
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A. The scale parameter approximation

In this appendix we illustrate the accuracy of the scale parameter approximation for

the high multipoles. We consider spectra for FL models with non-zero spatial cur-

vature or cosmological constant, compared with the Einstein-de Sitter result scaled

with the parameter S as discussed in section 2.3. We keep the matter densities

fixed to the WMAP5 best-fit values ωb = 0.023 and ωc = 0.11 [12]. Neglecting the

contribution of radiation, the scale parameter in these models is

S ≃
√
ωm

2

∫ z∗

0

dz
√

ωm(1 + z)3 + ωK(1 + z)2 + h2 − ωm − ωK

, (A.1)

where ωK ≡ ΩKh
2 and h2 − ωm − ωK = ΩΛh

2 ≡ ωΛ.

In figure 5 we show the TT spectrum for models with positive or negative spatial

curvature and the scaled model. The spectra lie on top of each other for ℓ & 20,

except for large negative spatial curvature. In figure 6 and figure 7 we show the TE

and EE spectra. The scaled curves are practically indistinguishable from the exact

ones at all multipoles, even for large negative spatial curvature. In figure 8, we show

the spectra for models with positive cosmological constant compared with the scaled

model. The scaling approximation is excellent for all of the spectra for ℓ & 20.

– 18 –



10 100 1000l
0

2000

4000

6000

8000

10 100 1000l
0

2000

4000

6000

8000

10 100 1000l
0

2000

4000

6000

8000

10 100 1000l
0

2000

4000

6000

8000

Ω

Ω

Ω

Ω

Κ =0.6

K

K

K=-0.6

=0.3

=-0.3

S=1.51

S=0.81

S=1.18

S=0.89

Figure 5: The TT spectra for models with ΩΛ = 0,ΩK 6= 0. The solid curve corresponds

to the Einstein-de Sitter universe, the dotted curve corresponds to a model with ΩK as

specified in the panels, and the dashed curve shows the Einstein-de Sitter universe power

spectrum scaled with S. The vertical axis is ℓ(ℓ+ 1)CTT
ℓ /(2π) in (µK)2.
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Figure 6: As in figure 5, but for the TE spectra. The dotted curves are invisible since

they are completely overlaid by the dashed ones (scaled model).
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Figure 7: As in figure 5, but for the EE spectra. The dotted curves are invisible since

they are completely overlaid by the dashed ones (scaled model).
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Figure 8: As in figure 5, but for ΩΛ 6= 0,ΩK = 0. We consider two different values for

ΩΛ, corresponding to the two columns. The rows from top to bottom are the TT, EE and

TE spectra.

B. Reionization

In this appendix we study the effect of reionization on the angular power spectrum

of the CMB. If the baryons are reionized at redshift zri, the effect on scales which are

of the order of the horizon size at the time is complicated, and leads to additional

polarization and a scale-dependent reduction of the amplitude of anisotropies. How-

ever, on scales which are well inside the horizon, the rescattering of photons simply

reduces the amplitude of CMB temperature and polarization anisotropies by roughly

the same amount on all scales. This effect can therefore be absorbed in a renormal-

ization of the spectrum. In figure 9 we show the TT spectrum with and without

reionization for the best-fit ΛCDM model, as well as the relative difference of the

spectrum with and without reionization. For ℓ ≥ 40, renormalizing the spectrum

with a constant reproduces the effect of reionization within about 1.5%. We have

done the same with the temperature–polarization cross-correlation and the polariza-

tion spectra. Also there renormalization is a very good approximation (better than

0.5% on average) for ℓ ≥ 40, see figures 10 and 11.
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Figure 9: The TT power spectrum with (dashed, red) and without (solid, black) reioniza-

tion for optical depth τ = 0.1 for ℓ ≥ 2 (left upper panel) and ℓ ≥ 40 (right upper panel).

For the upper panels, the vertical axis is ℓ(ℓ + 1)CTT /(2π) in (µK)2. In the lower panel

we show the relative difference between the spectrum with and without reionization, when

the latter is simply rescaled by a constant. For low ℓ’s, the differences are substantial, up

to 25%, but for the values ℓ ≥ 40 we consider, the difference is less than 2%.
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Figure 10: The TE correlation spectrum with (dashed, red) and without (solid, black)

reionization for optical depth τ = 0.1 for ℓ ≥ 2 (left upper panel) and ℓ ≥ 40 (right upper

panel). The vertical axis is ℓ(ℓ + 1)CTT /(2π) in (µK)2. In the lower panel we show the

difference between the spectrum with and without reionization, when the latter is simply

rescaled by a constant. For the values ℓ ≥ 40 we consider, the difference is below 0.1(µK)2.
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Figure 11: As in figure 10, but for the EE power spectrum. For ℓ ≥ 40, the difference is

below 0.002(µK)2.
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