
Cosmic Microwave Background Anisotropies from Scaling Seeds: Generic Propertiesof the Correlation FunctionsR. Durrer and M. KunzD�epartement de Physique Th�eorique, Universit�e de Gen�eve, 24 quai Ernest Ansermet, CH-1211 Gen�eve 4, SwitzerlandIn this work we present a partially new method to analyze
uctuations which are induced by causal scaling seeds. Weshow that the power spectra due to this kind of seed pertur-bations are determined by �ve analytic functions, which wedetermine numerically for a special example. We put forwardthe view that, even if recent work disfavors the models withcosmic strings and global O(4) texture, causal scaling seedperturbations merit a more thorough and general analysis,which we initiate in this paper.
I. INTRODUCTIONAt present, two ideas to explain the origin of large scalestructure in the universe are primarily investigated:� Perturbations in the energy density of mattermay have emerged from quantum 
uctuations,which, during a phase of in
ationary expansion,are stretched beyond the Hubble scale and 'freezein' as classical 
uctuations in the energy densityof the cosmic 
uid [1]. These small initial 
uctua-tions then evolve according to linear cosmologicalperturbation theory.� A phase transition in the early universe may leadto topological defects which seed 
uctuations in thecosmic 
uid [2]. In this case, the 
uid 
uctua-tions vanish initially and evolve according to in-homogeneous cosmic perturbation equations. Thestress energy of the topological defects plays therole of the source term. In order for the gravita-tional �eld of the defects to be su�ciently strongto seed cosmic structure, we have to require � =4�G�2 � 10�5, where � denotes the energy scale ofthe phase transition. This yields � � 1016GeV, atypical GUT scale. Topological defects which nei-ther over-close the universe nor die out are eithercosmic strings or global defects.The anisotropies in the cosmic microwave background(CMB) provide an important tool to discriminate be-tween di�erent models. On very large angular scales bothclasses of models lead to a Harrison Zel'dovich spectrumof 
uctuations. For in
ationary models this can easilybe derived analytically. For defect models, the spectrawere originally found numerically [3{5]. Analytical argu-ments for this behavior are given in [6]. On intermediate

scales, in
ationary models predict a series of peaks due toacoustic oscillations in the baryon/photon 
uid prior torecombination [7]. Present observations seem to con�rmthese peaks even though the error bars are still consider-able [8].Recently, several investigations led to the conclusionthat cosmic strings [9,10] and globalO(N) defects [11{13]do not reproduce the acoustic peaks indicated by presentdata. This led [12] and [10] to the conclusion that modelsof cosmic structure formation with scaling causal defectsare ruled out.However, in a very simple parameterization of two fam-ilies of more general scaling causal seed models, we wereable to �t present data very well [13]. We are thus con-vinced that it is too early yet to completely abandonscaling causal seeds as a mechanism for structure forma-tion. In contrary, we think it is extremely useful to studythem in full generality, ignoring in a �rst step the phys-ical origin of the seeds. This purely phenomenologicalpoint of view is analogous to in
ationary models whereone sometimes manufactures the in
ationary potential toyield the required spectrum of initial perturbations.To determine the power spectrum of the radiation andmatter perturbations induced by seeds, we need to knowthe two point correlation functions of the seed energymomentum tensor. In this paper we present a simpleparameterization of these functions and point out an er-ror frequently made in the literature. We then exemplifyour �ndings with the large N limit of global scalar �elds[14,15].For simplicity, we work in a spatially 
at Friedmanuniverse. The metric is thus given byds2 = a(t)2(dt2 � �ijdxidxj) ;where t denotes conformal time.II. CORRELATION FUNCTIONS OF CAUSALSCALING SEEDSWe de�ne seeds to be any non-uniformly distributedform of energy, which contributes only a small fractionto the total energy density of the universe and whichinteracts with the cosmic 
uid only gravitationally.We parameterize the energy momentum tensor of theseed by T (seed)�� =M2��� ; (1)1



where M denotes a typical energy of the seed and ���is a random variable. We assume that ensemble averagesand and spatial averaging coincide, the usual ergodicityhypothesis. Furthermore, we assume the random process��� to be spatially homogeneous and isotropic, so thatthe two point correlation functionh���(x; t)���(x+ y; t0)i =1V Z ���(x; t)���(x+ y; t0)d3x � C����(y; t; t0) (2)is a function of the di�erence y only. Due to the ex-pansion of the universe, which breaks time translationsymmetry, we however expect C to depend on t and t0and not just on the di�erence t� t0. We consider causalseeds. Causality requiresC����(y; t; t0) = 0; if jyj > t+ t0 : (3)The two point function in position space thus has com-pact support which implies that its Fourier transform isanalytic.We de�ne a seed to be scaling, if the Fourier transform,bC����(k; t; t0) = hb���(k; t)b����(k; t0)i ; (4)contains no dimensional parameter other than t; t0 andk. 1 This implies that the Ricci curvature induced bythe seeds is a function of k and t only, multiplied by thedimensionless parameter � = 4�GM2. Since we de�neFourier transforms with the normalizationf̂(k) = 1pV Z d3xf(x) exp(ikx) ; (5)f(x) = pV(2�)3 Z d3kf̂(k) exp(�ikx) ; (6)and since ���(x; t) has the dimension of (length)�2, bChas the dimension of an inverse length. From scaling wetherefore conclude that for purely dimensional reasons,we can write the correlations functions in the formbC����(k; t; t0) = 1ptt0F����(ptt0 � k; t0=t) ; (7)where F���� is a dimensionless function of the four vari-ables zi � pt0tki and r � t0=t, which is analytic in zi.We also require the seed to decay inside the horizon,which implies1We neglect the transition from a radiation to a matter dom-inated universe, which actually breaks scaling, since the scaleteq, the time of equal matter and radiation density enters theproblem. In numerical examples, we have found that thistransition in general leads to somewhat di�erent decay lawsfor the correlation functions at large kt, but it will not alterour main conclusions

lim!kt!1 bC����(k; t; t0) = lim!kt!1 bC����(k; t; t0) = 0 : (8)Furthermore, since the seeds interact with the cosmic
uid only gravitationally, � satis�es covariant energy mo-mentum conservation,��� ;� = 0 : (9)With the help of these four equations, we can, for exam-ple, express the temporal components, �0� in terms ofthe spatial ones, �ij . The seed correlations are thus fullydetermined by the spatial correlation functions bCijlm.Statistical isotropy, scaling and symmetry in i; j and l;mas well as under the transformation i; j; k; t! l;m;�k; t0require the following form for the spatial correlation func-tions:bCijlm(k; t; t0) =1ptt0 [zizjzlzmF1(z2; r) +(zizl�jm + zizm�jl + zjzl�im + zjzm�il)F2(z2; r) +zizj�lmF3(z2; r)=r + zlzm�ijF3(z2; 1=r)r ++�ij�lmF4(z2; r) + (�il�jm + �im�jl)F5(z2; r)] ; (10)where the functions Fa are analytical functions of z2 �tt0k2, and for a 6= 3 they are invariant under the transfor-mation r ! 1=r, Fa(z2; r) = Fa(z2; 1=r). The positivityof the power spectra bCijij (k; t; t) = hj�ij j2i leads to aseries of positivity conditions for the functions Fa:0 � F5(z2; 1) ; (11)0 � F4(z2; 1) + 2F5(z2; 1) ; (12)0 � z2F2(z2; 1) + F5(z2; 1) ; (13)0 � z4F1(z2; 1) + 4z2F2(z2; 1) + 3F5(z2; 1) ; (14)0 � z4F1(z2; 1) + 2z2(F3(z2; 1) + 2F2(z2; 1))+F4(z2; 1) + 2F5(z2; 1) : (15)Since bCijlm is the Fourier transform of a real function,bCijlm(k; t; t0)� = bCijlm(�k; t; t0) ; (16)and thus the ansatz (10) implies that the functionsFa(z2; r) are real. Furthermore, decay inside the hori-zon (condition (8)) yieldslimz2r!1Fa(z2; r) = limz2=r!1Fa(z2; r) = 0 : (17)In addition, analyticity implies that the functions Fa donot diverge in the limit z ! 0, thuslimz!0Fa(z2; r) = Aa(r)with Aa(r) = Aa(1=r) for all a 6= 3 :2



As an example, we have worked out the functions F1to F5 in the large N limit of global scalar �eld seeds.A discussion of this simple model of scaling causal seedsands its relation to the texture model of structure forma-tion can be found in [14] and [15] . In Figs. 1 and 2 wepresent the functions F5(z2; r) and F2(z2; r).
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rFIG. 1. The function F5(z; r), linear (top) and jF5(z; r)jlogarithmic are shown. Because of their small amplitude, theoscillations are virtually invisible in the linear plot. To showthe symmetry r ! 1=r, the r-axis is chosen logarithmic inboth plots. (Note the di�erent orientation chosen for di�erentplots to optimize visibility.The symmetry under the transition r ! 1=r is clearlyvisible. Also the conditions that Fa ! 0 if either z !1 or r ! 0 or r ! 1 which follows from Eq. (17) isevidently satis�ed. For �xed z the functions oscillate witha frequency which grows with z. Since the amplitudedecays rapidly, these oscillations are only visible in thelog-plots. The correlations always decay like power laws,never exponentially.The equal time correlation functions, F1(z2; 1) toF5(z2; 1) are plotted in Fig. 3. In Fig. 4 we show Aa(r).All the functions, except F5 which is constrained byEq. (11) go through 0 (For F1 the passage through 0 is
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rFIG. 2. The same as Fig. 1 for the function F2(z; r).not visible since it occurs only at z ' 30). We have alsoveri�ed the positivity constraints Eq. (12) to Eq. (15).The asymptotic behavior of the functions can be obtainedanalytically. The same is true for the functions A1 to A5.As argued above, all the functions Ai except A3 are sym-metric under r ! 1=r. The techniques employed to cal-culate the functions Fi are analogous to those explainedin [15].III. SCALAR, VECTOR AND TENSORDECOMPOSITION AND CMB ANISOTROPIESThe energy momentum tensor of seeds is often splitinto scalar, vector and tensor perturbations, since thetime evolution of each of these components is indepen-dent. Furthermore, due to statistical isotropy, the scalar,vector and tensor modes are uncorrelated.A suitable parameterization of this decomposition is�ij = �ijfp � (kikj � k23 �ij)f� + 12(wikj + wjki) + �ij ;(18)3



FIG. 3. The functions jFi(z; 1)j are shown. The zeros arevisible as spikes in the log-plot. (Further below, at z � 30,also F1 passes through zero.)where fp; f� are arbitrary random functions of k; wis a transverse vector, w � k = 0; and �ij is a symmet-ric, traceless, transverse tensor, � ii = �ijkj = 0. Thevariables f: ;w and �ij represent the scalar, vector andtensor degrees of freedom of �ij . The functions F1 to F5determine the correlations: To work out the correlationfunctions we usefp = 13�ii = 13�ij�ij ; (19)f� = � 32k2 (k̂ik̂j � 13�ij)�ij = 32k2Sij�ij ; (20)wi = 2k (� li k̂m � k̂ik̂lk̂m)�lm = V lmi �lm ; (21)�ij = (PilPjm � (1=2)PijPlm)PmaP lb�ab= T abij �ab ; (22)where Pij = �ij � k̂ik̂j ; k̂i = ki=k (23)P ji is the projection operator onto the space orthogonalto k and Sij , V lmi and T abij are the projection operatorsto the scalar vector and tensor parts of �ij .Using these identities and our ansatz (10), one easilyveri�eshfp(t)w�i (t0)i = hf�(t)w�i (t0)i = 0 (24)hfp(t)��ij(t0)i = hf�(t)��ij(t0)i = 0 (25)hwi(t)�jl(t0)i = 0 (26)hfp(t)f�p (t0)i = 13ptt0 [2F5(z2; r) + 3F4(z2; r)+z2(F3(z2; r)=r + F3(z2; 1=r)r) +43z2F2(z2; r) + 13z4F1(z2; r)] (27)

FIG. 4. The functions jAi(r)j = jFi(0; r)j are shown. Asdiscussed in the text, all of them except A3 are symmetricalunder the transition r! 1=r.hf�(t)f��(t0)i = 1ptt0k4 [3F5 + 4z2F2 + z4F1] (28)hfp(t)f��(t0)i =�ptt0[ 13z2F1(z2; r) + 43F2(z2; r) + rF3(z2; 1=r)] (29)hwi(t)w�j (t0)i =4k4ptt0 [F5 + z2F2](k2�ij � kikj) (30)h�ij(t)��lm(t0)i =1ptt0F5[�il�jm + �im�jl � �ij�lm + k�2(�ijklkm +�lmkikj � �ilkjkm � �imklkj � �jlkikm � �jmklki) +k�4kikjklkm] : (31)It is interesting to note that although bCijlm is analytic,the correlation functions of the scalar vector and tensorcomponents, in general, are not. The reason for that isthat the projection operators S; V and T are not analytic.This is important. It implies, e.g., that the anisotropicstresses in general have a white noise and not a k4 spec-trum as erroneously concluded in [16{18]. The scalaranisotropic stress potential thus diverges on large scales,hjf�j2i / 1=(tk4) for kt� 1. A result which we also haveobtained in the large-N limit and in numerical simula-tions of O(N) models. The power spectrum of the scalaranisotropic stress potential f� is analytic if and only ifvector and tensor perturbations are absent, F5 = F2 = 0.In the generic situation, F5(z = 0; r = 1) = A5(1) 6= 0.
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2 We thus expect the following relation between scalarvector and tensor perturbations of the gravitational �eldon super-horizon scales, x � kt � 1: (The equations forthe scalar, vector and tensor gravitational potentials interms of f:, w and �ij can be found in [19] and [20].)hj��	j2i � 12�2tk4 A5(1) (32)hj�ij2i � 16�2tk2 A5(1) (33)hjhij j2i � 4�2t3A5(1) ; (34)where 	 and � are the Bardeen potentials, � is the vectorcontribution to the shear of the t =const. slices and hijare tensor perturbations of the metric.If it would be solely super horizon perturbations whichinduce the large scale CMB anisotropies, this could betranslated into a ratio between the scalar, vector andtensor contributions to the C`'s on large scales, ` <�50. However, since the main contribution to the CMBanisotropies is induced at horizon crossing, x = 1 (seebelow) the above relations cannot be translated directlyand we can just learn that one expects, in general, con-tributions of the same order of magnitude from scalar,vector and tensor perturbations.Finally, we want to discuss in some detail the CMBanisotropies induced from scalar perturbations. In thiscase, the gravitational perturbation equations (see e.g.[19,20]) imply � +	 = �2�f� : (35)Especially, if � has a white noise spectrum due to 'com-pensation' [21], this leads to a k�4 spectrum for 	 andfor the combination ��	 which enters in Eq. (36).This �nding is in contradiction with [16,17], which pre-dict a white noise spectrum for 	, but it is not in con-
ict with the Harrison Zel'dovich spectrum of CMB 
uc-tuations which has been obtained numerically in [3{5].This can be seen by the following simple argument: Sincetopological defects decay inside the horizon, the Bardeenpotentials on sub-horizon scales are dominated by thecontribution from dark matter and thus roughly con-stant. The integrated Sachs Wolfe term then contributesonly up to horizon scales. Therefore, using the fact thatfor defect models Dg and V are much smaller than theBardeen potentials on super-horizon scales (see [21]), weobtain2Even if the potential f� and thus also the Bardeen potential	 (see Eq. (35)) diverge for kt ! 0, the physically relevant(measurable) quantities like T (seed)�� and R�� stay perfectly�nite. This singularity can thus be interpreted as pure 'coor-dinate singularity'.

(�T=T )`(k)jSW � (��	)(k; xdec)j`(x0 � xdec)+ Z 1xdec(�0 �	0)(k; x)j`(x0 � x)dx ; (36)where x = kt and prime stands for derivative w.r.t. x.The lower boundary of the integrated term roughly can-cels the ordinary Sachs Wolfe contribution and the upperboundary leads, tohj(�T=T )`(k)j2ijSW ��2k3 [3F5(1) + 4F2(1) + F3(1)]j 2̀(x0) ; (37)a Harrison-Zel'dovich spectrum. The main ingredientsfor this result are the decay of the sources inside thehorizon as well as scaling, the rest follows for purely di-mensional reasons.IV. CONCLUSIONSIn this paper, we outline a procedure to investigatecausal scaling seed perturbations. We show, that thelarge number of seed correlations, which determine fullythe induced power spectra of dark matter and CMB pho-tons, can be cast in only �ve analytic functions with cer-tain well de�ned properties. We schematically estimatethe large scale CMB anisotropies induced. However, weare convinced that the relative amplitudes of large scaleCMB anisotropies and the acoustic peaks as well as thedark matter power spectrum depend on details of themodel and thus scaling causal seeds cannot be ruled outfrom studies of speci�c models. This �nding is also con-�rmed in [13].Our work is just the beginning of a program to becarried out which goes in di�erent directions and to whichwe invite researchers in the �eld to participate. Some ofthe questions which should be explored are the following:� Are there further general restrictions for the cor-relation functions which have not been mentionedhere?� Given the functions F1 to F5 what is the exact ex-pression for the C`'s and the dark matter powerspectrum? What are good approximations?� Are there simple conditions which the functions F1to F5 have to satisfy in order to lead to power spec-tra which are in agreement with data.� Are there physically plausible causal scaling seedmodels other than topological defects?Acknowledgment This work is partially sup-ported by the Swiss NSF. Numerical simulations have5
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