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Chapter 1IntrodutionIn this review I would like to show the importane and the power of measurementsof anisotropies in the osmi mirowave bakground (CMB).CMB anisotropies are so useful mainly beause they are small: For a given model,they an be alulated within linear perturbation theory, to very good approxima-tion. They are inuened only little by the non-linear proesses of galaxy formation.This allows us to ompute them very preisely (to about 1%, whih is high prei-sion for present osmologial standards). For given initial utuations, the resultdepends only on the osmologial parameters. If we an measure CMB anisotropiesto a preision of, say 1%, this allows us therefore to determine osmologial parame-ters to about 1%. An unpreedented possibility! Consider that at present, after thework of two generations, e.g. the Hubble parameter is known only to about 25%,the baryon density is known to about 10% and the unertainties in the dark matterdensity, the osmologial onstant and the spae urvature are even larger.This somewhat too optimisti onlusion has however three aveats whih wewant to mention before entering the subjet of this review.1. Initial onditions: The result depends on the model for the initial utu-ations. The simplest inationary senarios whih lead to adiabati perturba-tions, ontain in general three to four free parameters, like the ratio of tensor tosalar perturbations (r) and the spetral index of the salar and tensor pertur-bations (nS and nT ), so a few more parameters need to be �tted additionallyto the data.More generi initial onditions allow for at least four additional isourvaturemodes with arbitrary (anti-)orrelations. The initial onditions are then givenby a 5� 5 positive semi-de�nite matrix, and, in priniple, several spetral in-dies [1, 2℄. In most of this review we shall ignore this possibility and assumethat initial perturbations are purely adiabati. Even if isourvature onstribu-tions annot be exluded, this most simple model is in good agreement withthe present data.If the perturbations are generated by ative soures like, e.g., topologial de-



fets, then the modeling is far more ompliated, and the analysis is too dif-ferent to be inluded in this review.2. Degeneray: Even though we an measure over 1000 independent modes(C`'s) of the CMB anisotropy spetrum, there are ertain ombinations of theosmologial parameters that lead to degeneraies in the CMB spetrum. Theresult is, e.g., very sensitive to the sum 
matter+
�, but not to the di�erene(\osmi onfusion").3. Cosmi variane: Sine the utuations are reated by random proesses,we an only alulate expetation values. Yet we have only one universe totake measurements (\osmi variane"). For small{sale utuations we anin general assume that the expetation value over ensembles of universes is thesame as a spatial average (a kind of ergodi hypothesis), but for large saleswe an't esape large statistial errors.1.1 Friedmann-Lemâ�tre universesFriedmann-Lemâ�tre universes are homogeneous and isotropi solutions of Einstein'sequations. The hyper-surfaes of onstant time are homogeneous and isotropi, i.e.,spaes of onstant urvature with metri a2(�)ijdxidxj, where ij is the metri ofa spae with onstant urvature �. This metri an be expressed in the formijdxidxj = dr2 + �2(r) �d#2 + sin2#d'2� (1.1)�2(r) = 8<: r2 ; � = 0sin2 r ; � = 1sinh2 r ; � = �1; (1.2)where we have resaled a(�) suh that � = �1 or 0. (With this normalization thesale fator a has the dimension of a length and � and r are dimensionless for � 6= 0.)The four-dimensional metri is then of the formg��dx�dx� = �a2(�)d�2 + a2(�)ijdxidxj: (1.3)Here � is alled the onformal time.Einstein's equations redue to ordinary di�erential equations for the funtiona(�) (with _� d=d�):� _aa�2 + � = 8�G3 a2� + 13�a2 (1.4)� _aa�� = �4�G3 a2 (� + 3p) + 13�a2 = ��aa�� � _aa�2 ; (1.5)3



where � = �T 00 , p = T ii (no sum!) and all other omponents of the energy momen-tum tensor have to vanish by the requirement of isotropy and homogeneity. � is theosmologial onstant.Energy momentum \onservation" (whih is also a onsequene of (1.4) and (1.5)due to the ontrated Bianhi identity) reads_� = �3� _aa� (�+ p): (1.6)After these preliminaries (whih we suppose to be known to the audiene) letus answer the following question: Given an objet with omoving diameter �1 at aredshift z(�) = (a0=a) � 1. Under whih angle #(�; z) do we see this objet todayand how does this angle depend on 
� and 
�?We de�ne 
m =  8�G�a23 � _aa�2 !�=�0
� = �a23 � _aa�2 ������=�0 (1.7)
� = ��� _aa�2 ������=�0 ;where the index 0 indiates the value of a given variable today. Friedmann's equation(1.4) then requires 1 = 
m + 
� + 
�: (1.8)Bak to our problem: Without loss of generality we set r = 0 at our position
Figure 1.1: The two ends of the objet emit a ash simultaneously from A and B at z1whih reahes us today.and thus r = r1 = �0� �1 at the position of the ashes, A and B at redshift z1. If �denotes the omoving ar length between A and B we have � = �(r1)# = �(�0��1)#,i.e. # = ��(�0 � �1) : (1.9)1or physial size a(�)� = d 4



It remains to alulate (�0 � �1)(z1).Note that in the ase � = 0 we an still normalize the sale fator a as we want,and it is onvenient to hoose a0 = 1, so that omoving sales today beome physialsales. However, for � 6= 0, we have already normalized a suh that � = �1 and� = sin r or sinh r. We have in priniple no normalization onstant left.From the Friedmann equation we have_a2 = 8�G3 a4�+ 13�a4 � �a2: (1.10)We assume that � is a ombination of \dust" (old, non{relativisti matter) withpd = 0 and radiation with prad = 1=3�rad.From (1.6) we �nd that �rad / a�4 and �d / a�3. Therefore, withH0 = � _aa2 � (�0),we de�ne 8�G3 a4� = H20 �a40
rad + 
daa30� (1.11)13�a4 = H20
�a4 (1.12)��a2 = H20
�a2a20 : (1.13)The Friedmann equation then impliesdad� = H0a20�
rad + aa0
d + a4a40
� + a2a20
�� 12 (1.14)so that�0 � �1 = 1H0a0 Z z10 dz[
rad(z + 1)4 + 
d(z + 1)3 + 
� + 
�(z + 1)2℄ 12 : (1.15)Here we have introdued the osmologial redshift z + 1 = a0=a. (In priniple weould of ourse also add other matter omponents like, e.g. \quintessene" [9℄, whihwould lead to a somewhat di�erent form of the integral (1.15), but for de�niteness,we remain with dust, radiation and a osmologial onstant.)In general, this integral has to be solved numerially. It determines the angle#(�; z1) under whih an objet with omoving size � at z1 is seen.On the other hand, the angular diameter distane to an objet of physial size dseen under angle # is given by �0 � �1 = r1 = ��1 � da1#�. If we are able to measurethe redshift and the omoving angular diameter distane of a ertain lass of objetsomparing with Eq. (1.15) allows in priniple to determine the parameters 
m, 
�,
� and H0.We have ��H20a20 = 
� ) H0a0 = 1pj
�j for 
� 6= 0.Observationally we know 10�5 < 
rad � 10�4 as well as 0:1 � 
d <� 1, j
�j <� 1and j
�j <� 1. 5



Figure 1.2: The funtion �(�0 � �1) as a funtion of the redshift z for di�erent valuesof the osmologial parameters 
� (left, with 
�=0) and 
� (right, with 
�=0), namely�0:8 [dotted℄, �0:3 [short{dashed℄, 0 [solid℄, 0:3 [dot{dashed℄, 0:8 [long{dashed℄.If we are interested in small redshifts, z1 <� 10, we may safely neglet 
rad. Inthis region, Eq. (1.15) is very sensitive to 
� and provides an exellent mean toonstrain the osmologial onstant.At high redshift, z1 >� 1000, negleting radiation is no longer a good approxima-tion.We shall later need the opening angle of the horizon distane,#H(z1) = �1�(�0 � �1) ; (1.16)�1 = 1H0a0 Z 1z1 dz[
rad(z + 1)4 + 
d(z + 1)3 + 
� + 
�(z + 1)2℄ 12 : (1.17)(Clearly this integral diverges if 
rad = 
d = 0. This is exatly what happens duringan inationary period and leads there to the solution of the horizon problem.)The value of the radiation density is well known. For photons plus three sortsof massless neutrinos we have�rad = 7:94� 10�34(T0=2:737K)4g=m3 :This gives 
radh2 = 4:2 � 10�5(T0=2:737K)4 ; (1.18)H0 = 100h kmsMp : (1.19)Negleting 
rad, for 
� = 0 and small urvature, 0 < j
�j � 
d at high enoughredshift, z1 � 10, one has �0 � �1 ' 2pj
�j=
d = 2=(H0a0p
d). This yields6



Figure 1.3: #H(z1) (in degrees) for di�erent values of the osmologial parameters 
�and 
� the line styles are as in Fig. 1.2.#(�; z1) ' p
dH0a0�=2 = 12p
dH0�phys=(z1+1), where �phys = a1� is the physialsale orresponding to omoving size �.1.2 Reombination and the osmi mirowave bak-ground (CMB)During its expansion, the universe ools adiabatially. At early times, it is domi-nated by a thermal radiation bakground with � = C=a4 = ge�aSBT 4,2 and we �ndthat T / a�1. Here geff = nb+7=8nF is the e�etive number of degrees of freedom,bosons ounting as 1 and fermions ounting as 7=8 (see e.g. [10℄). At temperaturesbelow 0:5MeV only neutrinos and photons are still relativisti leading to the densityparameter given in Eq. (1.18). ( Neutrinos have a somewhat lower temperature thanphotons, T� = (4=11)1=3T , sine they have already dropped out of thermal equilib-rium at T ' 1MeV, before e� annihilation whih therefore reheats the photons butnot the neutrinos, see e.g. [10, 11℄.)The photons obey a Plank distribution,f(�) = 1e�=T � 1 : (1.20)At a temperature of about T � 4000K � 0:4eV, the number density of photonswith energies above the hydrogen ionization energy drops below the baryon density2We will use units with ~ =  = kB = 1 throughout this report. The Stefan{Boltzmann onstantis then given by aSB = �2k4B=(60~32) = �2=60. 7



of the universe, and the protons begin to (re-)ombine to neutral hydrogen. (Heliumhas already reombined earlier.) Photons and baryons are tightly oupled before (re-)ombination by non{relativisti Thomson sattering of eletrons. During reombi-nation the free eletron density drops sharply and the mean free path of the photonsgrows larger than the Hubble sale. At the temperature Tde � 3000K (orrespond-ing to the redshift zde ' 1100 and the physial time tde = a0�de ' 105years)photons beome free and the universe beomes transparent.After reombination, the photon distribution evolves aording to Liouville'sequation (geodesi spray):p���f � �i��p�p� �f�pi � LXgf = 0; (1.21)where i = 1; 2; 3. Sine the photons are massless, jpj2 = P3i=1 pipi = (p0)2 . Herep0 is the 0-omponent of the momentum 4-vetor in onformal time. Isotropy of thedistribution implies that f depends on pi only via jpj = p0, and so�f�pi = �p0�pi �f�p0 = pip0 �f�p0 : (1.22)In a Friedmann universe (also if � 6= 0!) we �nd for p�p� = a2 (�(p0)2 + p2) = 0[exerise!℄ pi�if � �i��p�p�pi 1p0 �f�p0 = �2(p0)2� _aa2� �f�p0 : (1.23)Inserting this result into (1.21) leads to��f � 2p0� _aa� �f�p0 = 0; (1.24)whih is satis�ed by an arbitrary funtion f = f(p0a2). Hene the distributionof free{streaming photons hanges just by redshifting the physial energy � = ap0or the physial momentum p = ajpj = �. Therefore, setting T / a�1 even afterreombination, the blakbody shape of the photon distribution remains unhanged.Note however that after reombination the photons are no longer in thermalequilibrium and the T in the Plank distribution is not a temperature in the thermo-dynamial sense but merely a parameter in the photon distribution funtion.The blakbody spetrum of these osmi photons whih are alled the \os-mi mirowave bakground" (CMB) is extremely well veri�ed observationally (seeFig. 1.4). The limits on deviations are often parameterized in terms of three param-eters: The hemial potential �, the Compton y parameter (whih quanti�es a wellde�ned hange in the spetrum arising from interations with a non{relativisti ele-tron gas at a di�erent temperature, see e.g. [11℄) and Y� (desribing a ontaminationby free-free emission).The present limits on these parameters are (at 95% CL, [7℄)j�j < 9 � 10�5; jyj < 1:2 � 10�5; jY� j < 1:9 � 10�5: (1.25)8



Figure 1.4: Spetrum of the osmi bakground radiation. The graph on the left showsthe measurements of the FIRAS experiment on COBE (the vertial bars), overlaid by ablakbody spetrum at a temperature of 2.73 K. The error bars are 20 times magni�ed!The image on the right shows a larger number of measurements. The FIRAS data isrepresented by the fat line around the peak of the spetrum (from Peebles [11℄).The CMB Photons have not only a very thermal spetrum, but they are alsodistributed very isotropially, apart from a dipole whih is (most probably) simplydue to our motion relative to the surfae of last sattering:An observer moving with veloity v relative to a soure emitting a photon withproper momentum p = ��n sees this photon redshifted with frequeny�0 = � (1� nv) ; (1.26)where  = 1p1�v2 is the relativisti -fator. For an isotropi emission of photonsoming from all diretions n this leads to a dipole anisotropy in �rst order in v.This dipole anisotropy, whih is of the order of��TT �dipole ' 10�3has already been disovered in the 70ties [12, 13℄. Interpreting it as due to ourmotion with respet to the last sattering surfae implies a veloity for the solar-system bary-enter of v = 371� 0:5 km=s at 68% CL ([7℄).The COBE3 DMR experiment (Di�erential Mirowave Radiometer) has foundutuations of vuut*��TT �2+ � 10�5 (1.27)on all angular sales � � 7Æ [8℄. On smaller angular sales many experiments havefound utuations (we shall desribe the experimental results in more detail later),but all of them are <� 10�4.3Cosmi Bakground Explorer, NASA satellite launhed 1990.9



As we shall see later, the CMB utuations on large sales provide a measurefor the deviation of the geometry from the Friedmann-Lemâ�tre one. The geometryperturbations are thus small and we may alulate their e�ets by linear perturbationtheory. On smaller sales, �T=T reets the utuations in the energy density inthe baryon/radiation plasma prior to reombination. Their amplitude is just aboutright to allow the formation of the presently observed non{linear strutures (likegalaxies, lusters, et.) out of small initial utuations by gravitational instability.These �ndings strongly support the hypothesis whih we assume here, namelythat the large sale struture (i.e. galaxy distribution) observed in the universeformed by gravitational instability from relatively small (� 10�4�10�5) initial u-tuations. As we shall see, suh initial utuations leave an interesting \�ngerprint"on the osmi mirowave bakground.
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Chapter 2Perturbation TheoryThe tool for the analysis of CMB anisotropies is osmologial perturbation theory.We spend therefore some time on this subjet, espeially on the fundamental level.One all the variables are de�ned, we will be rather brief in the derivation of thebasi perturbation equations. First of all, beause these derivations are in generalnot very illuminating and seondly beause nowadays all of you an obtain themvery easily by setting g�� = �g�� + "a2h�� (2.1)(�g�� being the unperturbed Friedmann metri) and asking Mathematia or Mapleto alulate the Einstein Tensor using the ondition "2 = 0. We onventionally set(absorbing the \smallness" parameter " into h��)g�� = �g�� + a2h�� ; �g00 = �a2; �gij = a2ij jh�� j � 1T �� = T �� + ��� ; T 00 = ���; T ij = �pÆij j��� j=��� 1: (2.2)2.1 Gauge transformation, gauge invarianeThe �rst fundamental problem we want to disuss is the problem of 'hoie of gauge'in osmologial perturbation theory:For linear perturbation theory to apply, the spaetime manifoldM with metrig and the energy momentum tensor T of the real, observable universe must be insome sense lose to a Friedmann universe, i.e., the manifoldM with a Robertson{Walker metri �g and a homogeneous and isotropi energy momentum tensor T .It is an interesting, non{trivial unsolved problem how to onstrut �g and T fromthe physial �elds g and T in pratie. There are two main diÆulties: Spatialaveraging proedures depend on the hoie of a hyper{surfae of onstant time anddo not ommute with derivatives, so that averaged �elds �g and T will in generalnot satisfy Einstein's equations. Seondly, averaging is in pratie impossible oversuper{horizon sales. 11



Even though we annot give a onstrutive presription, we now assume thatthere exists an averaging proedure whih leads to a Friedmann universe with spa-tially averaged tensor �elds Q, suh that the deviations (T���T ��)=maxf��gfjT��jgand (g���g��)=maxf��gfg��g are small, and �g and T satisfy Friedmann's equations.Let us all suh an averaging proedure 'admissible'. There may be many di�er-ent admissible averaging proedures (e.g. over a di�erent hyper{surfae) leading toslightly di�erent Friedmann bakgrounds. But sine jg � �gj is small of order �, thedi�erene of the two Friedmann bakgrounds must also be small of order � and wean regard it as part of the perturbation.We onsider now a �xed admissible Friedmann bakground (�g; �T ) as hosen.Sine the theory is invariant under di�eomorphisms (oordinate transformations),the perturbations are not unique. For an arbitrary di�eomorphism � and its pullbak��, the two metris g and ��(g) desribe the same geometry. Sine we have hosenthe bakground metri �g we only allow di�eomorphisms whih leave �g invarianti.e. whih deviate only in �rst order form the identity. Suh an 'in�nitesimal'isomorphism an be represented as the in�nitesimal ow of a vetor �eld X, � = �X� .Remember the de�nition of the ow: For the integral urve x(s) of X with startingpoint x, i.e., x(s = 0) = x we have �Xs (x) = x(s). In terms of the vetor �eld X,to �rst order in �, its pullbak is then of the form�� = id+ �LX(LX denotes the Lie derivative in diretion X). The transformation g ! ��(g) isequivalent to �g + �a2h ! �g + �(a2h + LX�g), i.e. under an 'in�nitesimal oordinatetransformation' the metri perturbation h transforms ash! h + a�2LX�g : (2.3)In the ontext of osmologial perturbation theory, in�nitesimal oordinate transfor-mations are alled 'gauge transformations'. The perturbation of a arbitrary tensor�eld Q = �Q+ �Q(1) obeys the gauge transformation lawQ(1) ! Q(1) + LX �Q : (2.4)Sine every vetor �eld X generates a gauge transformation � = �X� , we anonlude that only perturbations of tensor �elds with LXQ = 0 for all vetor �eldsX, i.e., with vanishing (or onstant) 'bakground ontribution' are gauge invariant.This simple result is sometimes referred to as the 'Stewart-Walker Lemma' [3℄.The gauge dependene of perturbations has aused many ontroversies in the lit-erature, sine it is often diÆult to extrat the physial meaning of gauge dependentperturbations, espeially on super{horizon sales. This has led to the developmentof gauge invariant perturbation theory whih we are going to use throughout thisreview. The advantage of the gauge{invariant formalism is that the variables usedhave simple geometri and physial meanings and are not plagued by gauge modes.12



Although the derivation requires somewhat more work, the �nal system of pertur-bation equations is usually simple and well suited for numerial treatment. Weshall also see, that on sub-horizon sales, the gauge invariant matter perturbationsvariables approah the usual, gauge dependent ones. Sine one of the gauge invari-ant geometrial perturbation variables orresponds to the Newtonian potential, theNewtonian limit an be performed easily.First we note that sine all relativisti equations are ovariant (i.e. an be writtenin the form Q = 0 for some tensor �eld Q), it is always possible to express theorresponding perturbation equations in terms of gauge invariant variables [4, 5, 6℄.2.2 Gauge invariant perturbation variablesSine the f� = onstg hyper-surfaes are homogeneous and isotropi, it is sensibleto perform a harmoni analysis: A (spatial) tensor �eld Q on these hyper-surfaesan be deomposed into omponents whih transform irreduibly under translationsand rotations. All suh omponents evolve independently. For a salar quantity fin the ase � = 0 this is nothing else than its Fourier deomposition:f(x; �) = Z d3kf̂(k)eikx: (2.5)(The exponentials Yk(x) = eikx are the unitary irreduible representations of theEulidean translation group.) For � = 1 suh a deomposition also exists, but thevalues k are disrete, k2 = `(` + 2) and for � = �1, they are bounded from below,k2 > 1. Of ourse, the funtions Yk are di�erent for � 6= 0.They are always the omplete orthogonal set of eigenfuntions of the Laplaian,�Y (S) = �k2Y (S): (2.6)In addition, a tensorial variable (at �xed position x) an be deomposed intoirreduible omponents under the rotation group SO(3).For a vetor �eld, this is its deomposition into a gradient and a rotation,Vi = ri'+Bi; (2.7)where Biji = 0; (2.8)where we used Xji to denote the three{dimensional ovariant derivative of X. ' isthe spin 0 and B is the spin 1 omponent of V.For a symmetri tensor �eld we haveHij = HLij + �rirj � 13�ij�HT + 12 �H(V )ijj +H(V )jji �+H(T )ij ; (2.9)13



where H(V )jii = H(T )ii = H(T )jijj = 0: (2.10)Here HL and HT are spin 0 omponents, H(V )i is a spin 1 omponent and H(T )ij is aspin 2 omponent.We shall not need higher tensors (or spinors). As a basis for vetor and tensormodes we use the vetor and tensor type eigenfuntions to the Laplaian,�Y (V )j = �k2Y (V )j (2.11)and�Y (T )ji = �k2Y (T )ji ; (2.12)where Y (V )j is a transverse vetor, Y (V )jjj = 0 and Y (T )ji is a symmetri transversetraeless tensor, Y (T )jj = Y (T )jiji = 0.Aording to Eqs. (2.7) and (2.9) we an onstrut salar type vetors and tensorsand vetor type tensors. To this goal we de�neY (S)j � �k�1Y (S)jj (2.13)Y (S)ij � k�2Y (S)jij + 13ijY (S) (2.14)Y (V )ij � � 12k (Y (V )ijj + Y (V )jji ) : (2.15)In the following we shall extensively use this deomposition and write down theperturbation equations for a given mode k.The deomposition of a vetor �eld is then of the formBi = BY (S)i +B(V )Y (V )i : (2.16)The deomposition of a tensor �eld is given by (ompare 2.9)Hij = HLY (S)ij +HTY (S)ij +H(V )Y (V )ij +H(T )Y (T )ij ; (2.17)where B, B(V )i , HL, HT , H(V )i and H(T )ij are funtions of � and k2.2.1 Metri perturbationsPerturbations of the metri are of the formg�� = �g�� + a2h��: (2.18)We parameterize them ash��dx�dx� = �2Ad�2 � 2Bid�dxi + 2Hijdxidxj; (2.19)14



and we deompose the perturbation variables Bi and Hij aording to (2.16) and(2.17).Let us onsider the behavior of h�� under gauge transformations. We set thevetor �eld de�ning the gauge transformation toX = T�� + Li�i: (2.20)Using simple identities from di�erential geometry like LX(df) = d(LXf) and(LX)ij = Xijj +Xjji, we obtainLX�g = a2 ��2� _aaT + _T� d�2 + 2� _Li � T;i� d�dxi+�2 _aaTij + Lijj + Ljji� dxidxj� : (2.21)Comparing this with (2.19) and using (2.3) we obtain the following behavior ofour perturbation variables under gauge transformations (deomposing Li = LY (S)i +L(V )Y (V )i ): A ! A+ _aaT + _T (2.22)B ! B � _L� kT (2.23)B(V ) ! B(V ) � _L(V ) (2.24)HL ! HL + _aaT + k3L (2.25)HT ! HT � kL (2.26)H(V ) ! H(V ) � kL(V ) (2.27)H(T ) ! H(T ): (2.28)Two salar and one vetor variable an be brought to disappear by gauge transfor-mations.One often hooses kL = HT and T = B + _L, so that the variables HT and Bvanish. In this gauge (longitudinal gauge), salar perturbations of the metri are ofthe form (HT = B = 0): h(S)�� = �2	d�2 + 2�ijdxidxj: (2.29)	 and � are the so alled Bardeen potentials. In general they are de�ned by	 = A� _aak�1� � k�1 _� (2.30)� = HL + 13HT � _aak�1� (2.31)with � = k�1 _HT � B. A short alulation using Eqs. (2.22) to (2.26) shows thatthey are gauge invariant. 15



For vetor perturbations it is onvenient to set kL(V ) = H(V ) so that H(V )vanishes and we have h(V )�� dx�dx� = 2�(V )Y (V )i d�dxi: (2.32)We shall all this gauge the \vetor gauge". In general �(V ) = k�1 _H(V ) � B(V ) isgauge invariant1.Clearly there are no tensorial (spin 2) gauge transformation and hene H(T )ij isgauge invariant.2.2.2 Perturbations of the energy momentum tensorLet T �� = T ��+��� be the full energy momentum tensor. We de�ne its energy density� and its energy ow 4-vetor u as the time-like eigenvalue and eigenvetor of T �� :T �� u� = ��u�; u2 = �1: (2.33)We then de�ne their perturbations by� = �� (1 + Æ) ; u = u0�t + ui�i: (2.34)u0 is �xed by the normalization ondition,u0 = 1a(1� A): (2.35)We further set ui = 1avi = vY (S)i + v(V )Y (V )i: (2.36)We de�ne P �� � u�u� + Æ�� , the projetion tensor onto the part of tangent spaenormal to u and set the stress tensor��� = P ��P ��T ��: (2.37)In the unperturbed ase we have � 00 = 0; � ij = �pÆij. Inluding perturbations, to�rst order we still obtain � 00 = � 0i = � i0 = 0: (2.38)But � ij ontains in general perturbations. We set� ij = �p �(1 + �L) Æij +�ij� ; with �ii = 0: (2.39)We deompose �ij as�ij = �(S)Y (S) ij +�(V )Y (V ) ij +�(T )Y (T ) ij : (2.40)We shall not derive the gauge transformation properties in detail, but just statesome results whih an be obtained as an exerise (see also [5℄):1Y (V )ij �(V ) is the shear of the hyper-surfaes of onstant time.16



� Of the variables de�ned above only the �(S;V;T ) are gauge invariant; they de-sribe the anisotropi stress tensor, ��� = ��� � 1=3��� Æ�� . They are gauge in-variant due to the Stewart{Walker lemma, sine �� = 0. For perfet uids��� = 0.� A seond gauge invariant variable is� = �L � 2sw Æ; (2.41)where 2s � _p= _� is the adiabati sound speed and w � p=� is the enthalpy. Onean show that � is proportional to the divergene of the entropy ux of theperturbations. Adiabati perturbations are haraterized by � = 0.� Gauge invariant density and veloity perturbations an be found by ombiningÆ, v and v(V )i with metri perturbations.We shall use V � v � 1k _HT = v(long) (2.42)Dg � Æ + 3(1 + w)�HL + 13HT� = Æ(long) + 3(1 + w)� (2.43)D � Æ(long) + 3(1 + w)� _aa� Vk (2.44)V (V ) � v(V ) � 1k _H(V ) = v(ve) (2.45)
 � v(V ) � B(V ) = v(ve) � B(V ) (2.46)
� V (V ) = �(V ): (2.47)Here v(long); Æ(long) and v(ve)i are the veloity (and density) perturbations in thelongitudinal and vetor gauge respetively and �(V ) is the metri perturbation invetor gauge (see Eq. (2.32)). These variables an be interpreted niely in terms ofgradients of the energy density and the shear and vortiity of the veloity �eld [14℄.But we just want to show that on sales muh smaller than the Hubble sale,k� � 1, the metri perturbations are muh smaller than Æ and v and we an thus\forget them" (whih will be important when omparing experimental results withalulations in this formalism):The perturbations of the Einstein tensor are given by seond derivatives of themetri perturbations. Einstein's equations yield the following order of magnitudeestimate: O�ÆTT � O (8�GT )| {z }O( _aa)2=O(��2) = O� 1�2h+ k�h+ k2h� (2.48)O�ÆTT � = O �h+ k�h+ (k�)2h� : (2.49)17



For k� � 1 this gives O(Æ; v) = O � ÆTT � � O(h). On sub-horizon sales the di�er-ene between Æ, Æ(long), Dg and D is negligible as well as the di�erene between vand V or v(V ), V (V ) and 
(V ).Later we shall also need other perturbation variables like the perturbation of thephoton brightness (energy{integrated photon distribution funtion), but we shallintrodue them as we get there and disuss some appliations �rst.2.3 Basi perturbation equationsAs already announed, we do not derive Einstein's equations but just write downthose whih we shall need later:2.3.1 Constraint equations4�Ga2�D = (k2 � 3�)� (00)4�Ga2(� + p)V = k �� _aa�	� _�� (0i) ) (salar) (2.50)8�Ga2(� + p)
 = 12 �2�� k2� �(V ) (0i) (vetor) (2.51)2.3.2 Dynamial equations�k2 (� + 	) = 8�Ga2p�(S) (salar) (2.52)k� _�(V ) + 2� _aa� �(V )� = 8�Ga2p�(V ) (vetor) (2.53)�H(T ) + 2� _aa� _H(T ) + �2�+ k2�H(T ) = 8�Ga2p�(T )ij (tensor) (2.54)There is a seond dynamial salar eqn., whih is however ompliated and notneeded, sine we may instead use one of the onservation eqns. below. Note that forperfet uids, where �ij � 0, we have � = �	, �(V ) / 1=a2 and H obeys a dampedwave equation. The damping term an be negleted on small sales (over short timeperiods) when ��2 <� 2� + k2, and Hij represents propagating gravitational waves.For vanishing urvature, these are just the sub-horizon sales, k� >� 1. For � < 0,waves osillate with a somewhat smaller frequeny, ! = p2�+ k2, while for � > 0the frequeny is somewhat larger.
18



2.3.3 Conservation equationsThe onservation equations, T ��;� = 0 lead to the following perturbation equations._Dg + 3 (2s � w) � _aa�Dg + (1 + w)kV + 3w � _aa�� = 0_V + � _aa� (1� 32s)V = k (	� 32s�) + 2sk1+wDg+ wk1+w ��� 23 �1� 3�k2 ��� 9>=>; (salar) (2.55)_
i + �1� 32s�� _aa�
i = p2(�+ p) �k � 2�k ��(V )i (vetor) (2.56)

19



Chapter 3Simple appliationsWe �rst disuss some simple appliations whih will be important for the CMB. Weould of ourse also write (2.55) in terms of D, but we shall just work with therelation D = Dg + 3(1 + w)��� + � _aa� k�1V � : (3.1)3.1 The pure dust uid at � = 0;� = 0We assume the dust to have w = 2s = p = 0 and � = � = 0. The equations (2.55),(2.52) and (2.50) then redue to_Dg = �kV (energy onservation eqn:) (3.2)_V + � _aa�V = k	 (gravitational aeleration eqn:) (3.3)� = �	 (3.4)�k2	 = 4�Ga2��Dg + 3�	+ � _aa� k�1V �� (Poisson eqn:): (3.5)In a pure dust universe � / a�3 ) ( _a=a)2 / a�1, whih is solved by a / �2.The Einstein equations then give immediately 4�G�a2 = 3=2( _a=a)2 = 6=�2. Settingk� = x and 0 = d=dx, the system (3.2-3.5) then beomesD0g = �V (3.6)V 0 + 2xV = 	 (3.7)6x2 �Dg + 3�	+ 2xV�� = �	: (3.8)We use (3.8) to eliminate 	 and (3.6) to eliminate Dg, leading to�18 + x2�V 00 + �72x + 4x� V 0 � �72x2 + 4�V = 0: (3.9)20



The general solution of Eq. (3.9) isV = V0x+ V1x4 (3.10)with arbitrary onstants V0 and V1. Sine the perturbations are supposed to be smallinitially, they annot diverge for x! 0, and we have therefore to hoose V1 = 0 (thegrowing mode). Another way to argue is as follows: If the mode V1 has to be smallalready at some early initial time �in, it will be even muh smaller at later timesand may hene be negleted. The perturbation variables are then given byV = V0x (3.11)Dg = �15V0 � 12V0x2 (3.12)	 = 3V0: (3.13)The onstany of the gravitational potential 	 in a matter dominated universeand the growth of the density perturbations like the sale fator a led Lifshitz to on-lude 1946 [15℄ that pure gravitational instability annot be the ause for strutureformation: If we start from tiny thermal utuations of the order of 10�35, they anonly grow to about 10�30 through this proess during the matter dominated regime.Or, to put it di�erently, if we do not want to modify the proess of struture for-mation, we need initial utuations of the order of at least 10�5. One possibility toreate suh utuations is due to quantum partile prodution in the lassial grav-itational �eld during ination. The rapid expansion of the universe during inationquikly transforms mirosopi sales at whih quantum utuations are importantinto osmologial sales where these utuations are then \frozen in" as lassialperturbations in the energy density and the geometry.We distinguish two regimes:i) super-horizon, x� 1 where we haveDg = �15V0 (3.14)	 = 3V0 (3.15)V = V0x (3.16)and ii) sub-horizon, x� 1 where the solution is dominated by the termsV = V0x (3.17)Dg = �12V0x2 (3.18)	 = 3V0 = onst (3.19)Note that for dust D = Dg + 3	 + 6xV = �12V0x2 :In the variable D the onstant term has disappeared and we have D� 	 on superhorizon sales, x� 1. 21



3.2 The pure radiation uid, � = 0;� = 0In this limit we set w = 2s = 1=3 and � = 0. We onlude from � / a�4 that a / �and � = �	, and the perturbation equations beome (with the same notation asabove): D0g = �43V (3.20)V 0 = 2	 + 14Dg (3.21)�2x2	 = 3Dg + 12	 + 12x V (3.22)The general solution of this system isDg = D2 "os� xp3�� 2p3x sin� xp3�#+D1 "sin� xp3�+ 2p3x os� xp3�# (3.23)V = �34D0g (3.24)	 = �3Dg � (12=x)V12 + 2x2 : (3.25)Again, regularity at x = 0 requires D1 = 0.In the super-horizon, x� 1 regime we obtain	 = 	0; Dg = D0 � 23V0x2; V = V0x (3.26)with D0 = �6	0 = �D2 (3.27)V0 = 12	0 = � 112D0: (3.28)On sub-horizon, x� 1 sales we �nd osillating solutions with onstant amplitudewith a frequeny of 1=p3:V = V2 sin� xp3� (3.29)Dg = D2 os� xp3� ; 	 = �32x�2Dg (3.30)D2 = 4V2p3 : (3.31)22



Note that also for radiation perturbationsD = �23V0x2 � 	is small on super horizon sales, x � 1. The perturbation amplitude is givenby the largest gauge invariant perturbation variable. We onlude therefore thatperturbations outside the Hubble horizon are frozen to �rst order. One they enterthe horizon they start to ollapse, but pressure resists the gravitational fore and theradiation uid starts to osillate. The perturbations of the gravitational potentialosillate and deay like 1=a2 inside the horizon.3.3 Adiabati and isourvature initial onditionsfor a matter & radiation uidIn this setion we want to investigate a system with a matter and a radiation om-ponent that are oupled only by gravity. The matter omponent ats therefore asdark matter, sine it does not interat diretly with the radiation.Sine the matter and radiation perturbations behave in the same way on super-horizon sales,D(r)g = A+Bx2; D(m)g = A0 +B0x2; V (r) / V (m) / x; (3.32)we may require a onstant relation between matter and radiation perturbations. Aswe have seen in the previous setion, inside the horizon (x > 1) radiation perturba-tions start to osillate while matter perturbations keep following a power law. Onsub-horizon sales a onstant ratio an thus no longer be maintained. There are twointeresting possibilities:3.3.1 Adiabati initial onditionsAdiabatiity requires that matter and radiation perturbations are initially in perfetthermal equilibrium. This implies that their veloity �elds agree (see below, setionon Boltzmann eqn.!) V (r) = V (m); (3.33)so that the energy ux in the two uids is oupled initially.Let us investigate the radiation solution in the matter dominated era, whenthe orresponding sale is already sub-horizon. Sine 	 is dominated by the matterontribution, we have 	 ' onst = 	0. We neglet the (deaying) ontribution fromthe sub-dominant radiation to 	. Energy{momentum onservation for radiationthen gives D(r)0g = �43V (r) (3.34)V (r)0 = 2	 + 14D(r)g : (3.35)23



Now 	 is just a onstant given by the matter perturbations, and it ats like aonstant soure term. The full solution of this system is thenD(r)g = A os� xp3�� 4p3B sin� xp3�� 8	 �os� xp3�� 1� (3.36)V (r) = B os� xp3�+ p34 A sin� xp3�� 2p3	 sin� xp3� : (3.37)Our adiabati initial onditions requirelimx!0 V (r)x = V0 = limx!0 V (m)x <1: (3.38)Therefore B = 0 and A = 4V0 � 8	. Using in addition 	 = 3V0 (see (3.19)) weobtain D(r)g = �443 	 os� xp3�+ 8	 (3.39)V (r) = 1p3	 sin� xp3� (3.40)D(m)g = �	(5 + 16x2) (3.41)V (m) = 13	x (3.42)	 = 3V0: (3.43)On super-horizon sales, x� 1 we haveD(r)g ' �203 	 and V (r) ' 13x	 ; (3.44)note that D(r)g = (4=3)D(m)g and V (r) = V (m) for adiabati initial onditions.3.3.2 Isourvature initial onditionsHere we want to solve the system (2.50) and (2.55) for dark matter and radiationunder the ondition that the metri perturbations vanish initially, i.e., 	 = 0,	 = �32 � _aa�2 k�2 �Dg + 3(1 + w)	 + 3(1 + w)� _aa� k�1V � = 0: (3.45)In priniple, we have four evolution and one onstraint equations. We thereforehave four onstants to adjust. Condition (3.45), however, requires an entire funtionto vanish. This may be impossible. Let us nevertheless try:24



If 	 = 0 the solutions of the radiation dominated equations are simplyD(r)g = A os� xp3�+B sin� xp3� (3.46)V (r) = p34 A sin� xp3�� p34 B os� xp3� : (3.47)For the matter perturbations we �ndV (m) = �V0a ; a / x�; 1 � � � 2 (3.48)D(m)g = C(m) � V0� � 1 xa if � 6= 1 (3.49)D(m)g = C(m) � V0 log(x) if � = 1 (3.50)Here � is the exponent of the sale fator a / ��, hene � = 1 in the radiation eraand � = 2 in the matter era.	 = 0 implies withDg = 1� ��rD(r)g + �mD(m)g � and (3.51)V = 1� + p �(�r + pr)V (r) + �mV (m)� (3.52)that 0 = �r�mD(r)g +D(m)g + � _aa� k�1 �4�r�m V (r) + 3V (m)� : (3.53)Sine V (m) / 1=a it an ompensate, for small values of x, the term / os(x=p3)of V (r), whih behaves like 1=a as well, due to the pre-fator �r=�m. This term analso be ompensated in D(r)g by the term V0x=a of D(m)g . In the purely radiationdominated universe, the log-dependene of D(m)g renders this ompensation imper-fet. However, there is no way to ompensate C(m) or the term proportional to A.We therefore have to hoose A = C(m) = 0 anda �r�m p33 B = V0; B = �ma�rp3V0: (3.54)(The ompensation of the smaller terms in D(r)g and D(m)g is only omplete if � ' 2.)With s = 1=p3 we �ndD(r)g ' �ma�rsV0 sin (sx) (isourvature) (3.55)D(r)g ' 	�8� 443 os (sx)� (adiabati) : (3.56)25



The CMB anisotropies, whih we are going to determine in the next hapter, ontaina term �TT (k; �0;n) = � � �+ 14D(r)g (k; �de) eikn(�0��de) � � � : (3.57)On sales where this term dominates, the peaks in Dg translate into peaks in theangular power spetrum of CMB anisotropies.For isourvature initial onditions, we �nd a �rst peak in Dg atx(1)i = k(1)i �de = 1s �2 ; �(1)i = �k(1)i = 2s�de; #(1)i ' 2s�de� (�0 � �de) ; (3.58)Here #(1)i is the angle under whih the omoving sale �(1)i at omoving distane�0 � �de is seen. In the next hapter, we will expand the temperature utuationsin terms of spherial harmonis. An utuation on the angular sale # then showsup around the harmoni ` � �=#. As an indiation, we note that for � = � = 0,the harmoni of the �rst isourvature peak is`(1)i � �=#(1)i � 110 ;In the adiabati ase the �rst \peak" is at k(1)a = 0.Sine D(r)g is negative for small x, the �rst peaks are \expansion peaks", anddue to the gravitational attration of the baryons (whih we have negleted in thissimple argument) they are less pronouned than the seond (\ompression") peaks.These seond peaks are usually alled the \�rst aousti peak". (It is the �rstompression peak and we shall adopt the onvention to all it the \�rst peak" mainlyfor onsisteny with the literature.) They orrespond to wavelengths and angularsales �(2)i = 23s�de ; #(2)i ' (2=3)s�de� (�0 � �de) ; `(2)i � 350 (isourvature) (3.59)�(2)a = s�de ; #(2)a ' s�de� (�0 � �de) ; `(2)a � 200 (adiabati): (3.60)Here the indiated harmoni is the one obtained in the ase � = � = 0, for a typialbaryon density inferred from nuleosynthesis.It is interesting to note that the distane between onseutive peaks is indepen-dent of the initial ondition. It is given by�ki = k(2)i � k(1)i = �=(s�de) = �ka ; �# = s�de� (�0 � �de) ; �` � 200 : (3.61)Again, the numerial value indiated for �` orresponds to a universe with � =� = 0. The result is strongly dependent espeially on �. This is the reason why themeasurement of the peak position (or better of the inter-peak distane) allows anaurate determination of urvature. 26



From our analysis we an draw the following important onlusions: For saleswhere the D(r)g -term dominates, the CMB anisotropies show a series of aoustiosillations with spaing �k, the position of the �rst signi�ant peaks is at k = k(2)a=i,depending on the initial ondition.The spaing �k is independent of initial onditions. The angle �# onto whihthis sale is projeted in the sky is determined entirely by the matter ontent andthe geometry of the universe. Aording to our �ndings in Chapter I, # will belarger if 
� < 0 (positive urvature) and smaller if 
� > 0 (see Fig. 1.3).In our analysis we have negleted the presene of baryons, in order to obtain sim-ple analytial results. Baryons have two e�ets: They lead to (�+3p)rad+bar > 0, andtherefore to an enhanement of the ompression peaks (the �rst, third, et. aous-ti peak). In addition, the baryons slightly derease the sound speed s, inreasingthereby �k and dereasing �#.Another point whih we have negleted is the fat that the universe beamematter dominated at �eq, only shortly before deoupling: �de ' 4�eq, for 
m = 1.As we have seen, the gravitational potential on sub-horizon sales is deaying inthe radiation dominated era. If the radiation dominated era is not very long beforedeoupling, the gravitational potential is still slightly deaying and free streamingphotons fall into a deeper gravitational potential than they have to limb out of. Thise�et, alled \early integrated Sahs{Wolfe e�et" adds to the photon temperatureutuations at sales whih are only slightly larger than the position of the �rstaousti peak for adiabati perturbations. It therefore 'boosts' this peak and, at thesame time, moves it to lightly larger sales (larger angles, lower spherial harmonis).Sine �eq / h�2, the �rst aousti peak is larger if h is smaller.A small Hubble parameter inreases therefore the aousti peaks. A similar e�etis observed if a osmologial onstant or negative urvature are present, sine �eq isretarded in those ases.The real universe ontains not only photons and dark matter, but also neutrinosand baryons. It has atually be found reently [16℄ that this 4 uid mixture allows�ve di�erent modes whih grow or stay onstant. The adiabati mode, the darkmatter isourvature mode whih we have just disussed, a similar baryon isourva-ture mode and two neutrino isourvature modes. The most generi initial onditionswhih allow for arbitrary orrelations between the di�erent modes are very unpre-ditable. We an maybe just say that they lead to a �rst aousti peak in therange of 150 � `(2) � 350 for a spatially at universe. In the rest of this review,we only disuss adiabati perturbations, whih are by far the most studied, butit is important to keep in mind that all the results espeially onerning the esti-mation of osmologial parameters is not valid if we allow for more generi initialonditions [1, 2℄.
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3.3.3 Vetor perturbations of perfet uidsIf �(V ) = 0 equation (2.56) implies 
 / a32s�1: (3.62)For _p= _� = 2s � 1=3, this leads to a non{growing vortiity. The dynamial Einsteinequation implies �(V ) / a�2 ; (3.63)and the onstraint (2.51) reads (at early times, so we an neglet urvature)
 � x2�(V ): (3.64)If perturbations are reated in the very early universe on super{horizon sales(e.g. during an inationary period), vetor perturbations of the metri deay andbeome soon entirely negligible. Even if 
i remains onstant in a radiation domi-nated universe, it has to be so small on relevant sales at formation (xin � 1) thatwe may safely neglet it.3.3.4 Tensor perturbationsThe situation is di�erent for tensor perturbations. Again we onsider the perfetuid ase, �(T )ij = 0. There (2.54) implies (if � is negligible)H 00ij + 2�x H 0ij +Hij = 0 ; (3.65)with � = 1 in the radiation dominated era and � = 2 in the matter dominated era.The less deaying mode solution to Eq. (3.65) is Hij = eijx1=2��J1=2��(x), where J�denotes the Bessel funtion of order � and eij is a transverse traeless polarizationtensor. This leads to Hij = onst for x� 1 (3.66)Hij = 1a for x >� 1: (3.67)
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Chapter 4CMB anisotropies
4.1 Light-like geodesisAfter deoupling, � > �de, photons follow to a good approximation light-like geodesis.The temperature shift is then given by the energy shift of a given photon.The unperturbed photon trajetory follows (x�) � (�;n(���0)+x0), where x0 isthe photon position at time �0 and n is the (parallel transported) photon diretion.With respet to a geodesi basis (e)3i=1, the omponents of n are onstant. If � = 0we may hoose ei = �=�xi; if � 6= 0 these vetor �elds are no longer paralleltransported and therefore do not form a geodesi basis (reiej = 0).Our metri is of the formd�s2 = a2ds2 ;with (4.1)ds2 = (�� + h��) dx�dx�; 00 = �1; i0 = 0; ij = ji (4.2)as before.We make use of the fat that light-like geodesis are onformally invariant. Morepreisely ds2 and d�s2 have the same light-like geodesis, only the orrespondingaÆne parameters are di�erent. Let us denote the two aÆne parameters by � and ��respetively, and the tangent vetors to the geodesi byn = dxd�; �n = dxd�� ; n2 = �n2 = 0 ; n0 = 1 ; n2 = 1: (4.3)We set n0 = 1 + Æn0. The geodesi equation for the perturbed metrids2 = (�� + h��)dx�dx� (4.4)yields, to �rst order, dd�Æn� = �Æ����n�n�: (4.5)For the energy shift, we have to determine Æn0. Sine g0� = �1 � Æ0� + �rst order,we obtain Æ�0�� = �1=2(h�0j� + h�0j� � _h��), so thatdd�Æn0 = h�0j�n�n� � 12 _h��n�n�: (4.6)29



Integrating this equation we use h�0j�n� = dd�(h�0n�), so that the hange of n0between some initial time �i and some �nal time �f is given byÆn0jfi = �h00 + h0jnj�fi � 12 Z fi _h��n�n�d� : (4.7)On the other hand, the ratio of the energy of a photon measured by some observerat tf to the energy emitted at ti isEfEi = (�n � u)f(�n � u)i = TfTi (n � u)f(n � u)i ; (4.8)where uf and ui are the four-veloities of the observer and emitter respetively, andthe fator Tf=Ti is the usual (unperturbed) redshift, whih relates n and �n. Theveloity �eld of observer and emitter is given byu = (1� A)�� + vi�i : (4.9)An observer measuring a temperature T0 reeives photons that were emittedat the time �de of deoupling of matter and radiation, at the �xed temperatureTde. In �rst-order perturbation theory, we �nd the following relation between theunperturbed temperatures Tf , Ti, the measurable temperatures T0, Tde, and thephoton density perturbation:TfTi = T0Tde �1� ÆTfTf + ÆTiTi � = T0Tde �1� 14Æ(r)jfi� ; (4.10)where Æ(r) is the intrinsi density perturbation in the radiation and we used �(r) / T 4in the last equality. Inserting the above equation and Eq. (4.7) into Eq. (4.8), andusing Eq. (2.19) for the de�nition of h�� , one �nds, after integration by parts [6℄ thefollowing result for salar perturbations:EfEi = T0Tde (1� �14D(r)g + V (b)j nj +	� ��fi + Z fi ( _	� _�)d�) : (4.11)Here D(r)g denotes the density perturbation in the radiation uid, and V (b) is thepeuliar veloity of the baryoni matter omponent (the emitter and observer ofradiation). The �nal time values in the square braket of Eq. (4.11) give rise onlyto monopole ontributions and to the dipole due to our motion with respet to theCMB, and will be negleted in what follows.Evaluating Eq. (4.11) at �nal time �0 (today) and initial time �de, we obtainthe temperature di�erene of photons oming from di�erent diretions n and n0�TT � ÆT (n)T � ÆT (n0)T ; (4.12)30



with temperature perturbation�T (n)T = �14D(r)g + V (b)j nj +	� �� (�de;xde) + Z �0�de( _	� _�)(�;x(�))d� ; (4.13)where x(�) is the unperturbed photon position at time � for an observer at x0, andxde = x(�de) (If � = 0 we simply have x(�) = x0 � (�0 � �)n.). The �rst term inEq. (4.13) desribes the intrinsi inhomogeneities on the surfae of last sattering,due to aousti osillations prior to deoupling. Depending on the initial onditions,it an ontribute signi�antly on super-horizon sales. This is espeially importantin the ase of adiabati initial onditions. As we have seen in Eq. (3.44), in a dust+ radiation universe with 
 = 1, adiabati initial onditions imply D(r)g (k; �) =�20=3	(k; �) and V (b) = V (r) � D(r)g for k� � 1. With � = �	 the the squarebraket of Eq. (4.13) gives��T (n)T �(OSW )adiabati = 13	(�de;xde)on super-horizon sales. The ontribution to ÆTT from the last sattering surfaeon very large sales is alled the 'ordinary Sahs{Wolfe e�et' (OSW). It has beenderived for the �rst time by Sahs and Wolfe [23℄. For isourvature perturbations,the initial ondition D(r)g (k; �)! 0 for � ! 0 is satis�ed and the ontribution of Dgto the ordinary Sahs{Wolfe e�et an be negleted.��T (n)T �(OSW )isourvature = 2	(�de;xde)The seond term in (4.13) desribes the relative motions of emitter and observer.This is the Doppler ontribution to the CMB anisotropies. It appears on the sameangular sales as the aousti term, and we thus all the sum of the aousti andDoppler ontributions \aousti peaks".The last two terms are due to the inhomogeneities in the spaetime geometry; the�rst ontribution determines the hange in the photon energy due to the di�ereneof the gravitational potential at the position of emitter and observer. Togetherwith the part ontained in D(r)g they represent the \ordinary" Sahs-Wolfe e�et.The integral aounts for red-shift or blue-shift aused by the time dependene ofthe gravitational �eld along the path of the photon, and represents the so-alledintegrated Sahs-Wolfe (ISW) e�et. In a 
 = 1, pure dust universe, the Bardeenpotentials are onstant and there is no integrated Sahs-Wolfe e�et; the blue-shiftwhih the photons aquire by falling into a gravitational potential is exatly aneledby the redshift indued by limbing out of it. This is no longer true in a universewith substantial radiation ontribution, urvature or a osmologial onstant.The sum of the ordinary Sahs{Wolfe term and the integral is the full Sahs-Wolfe ontribution (SW). 31



For vetor perturbations Æ(r) and A vanish and Eq. (4.8) leads to(Ef=Ei)(V ) = (ai=af )[1� V (m)j njjfi + Z fi _�jnjd�℄ : (4.14)We obtain a Doppler term and a gravitational ontribution. For tensor perturba-tions, i.e. gravitational waves, only the gravitational part remains:(Ef=Ei)(T ) = (ai=af)[1� Z fi _Hljnlnjd�℄ : (4.15)Equations (4.11), (4.14) and (4.15) are the manifestly gauge invariant results for theSahs{Wolfe e�et for salar vetor and tensor perturbations. Disregarding againthe dipole ontribution due to our proper motion, Eqs. (4.14,4.15) imply the vetorand tensor temperature utuations��T (n)T �(V ) = V (m)j (�de;xde)nj + Z fi _�j(�;x(�))njd� (4.16)��T (n)T �(T ) = � Z fi _Hlj(�;x(�))nlnjd� : (4.17)Note that for models where initial utuations have been led down in the very earlyuniverse, vetor perturbations are irrelevant as we have already pointed out. In thissense Eq. (4.16) is here mainly for ompleteness. However, in models where pertur-bations are soured by some inherently inhomogeneous omponent (e.g. topologialdefets) vetor perturbation an be important.4.2 Power spetraOne of the basi tools to ompare models of large sale struture with observationsare power spetra. They are the \harmoni transforms" of the two point orrela-tion funtions. If the perturbations of the model under onsideration are Gaussian(a relatively generi predition from inationary models), then the power spetraontain the full statistial information of the model.One important power spetrum is the dark matter power spetrum,PD(k) = D��D(m)g (k; �0)��2E ; (4.18)where h i indiates a statistial average over \initial onditions" in a given model.PD(k) is usually ompared with the observed power spetrum of the galaxy distri-bution.Another power spetrum is given by the veloity perturbations,PV (k) = 
jV (k; �0)j2� ' H20
1:2PD(k)k�2 : (4.19)32



For ' we have used that jkV j(�0) = _D(m)g (�0) � H0
0:6Dg on sub-horizon sales(see e.g. [11℄).The power spetrum we are most interested in is the CMB anisotropy powerspetrum. It is de�ned as follows: �T=T is a funtion of position x0, time �0 andphoton diretion n. We develop the n{dependene in terms of spherial harmonis.We will suppress the argument �0 and often also x0 in the following alulations.All results are for today (�0) and here (x0). By statistial homogeneity expetationvalues are supposed to be independent of position. Furthermore, we assume thatthe proess generating the initial perturbations is statistially isotropi. Then, theo�-diagonal orrelators of the expansion oeÆients a`m vanish and we have�TT (x0;n; �0) = X̀;m a`m(x0)Y`m(n); ha`m � a�̀0m0i = Æ``0Æmm0C` (4.20)The C`'s are the CMB power spetrum. We assume that the perturbations aregenerated by a homogeneous and isotropi proess, so that C` depends neither onx0 nor on m, and that ha`m � a�̀0m0i vanishes for ` 6= `0 or m 6= m0.Let us, at this point insert a omment on the problem of osmi variane: Evenif our 'ergodi hypothesis' is orret and we may interhange ensemble and spatialaverages, we annot obtain very preise averages for measurements of large saleharateristis, due to the fat that we an observe only the universe around a givenposition. For example, let us assume that temperature utuations are Gaussian,as they are in most inationary models. The funtions a`m are then also Gaussiandistributed, and we have a variane of����� 12`+ 1 X̀m=�` ja`mj2 � C`����� = jCobs` � C`j = C`2`+ 1 ;on the average of the 2`+1 values a`m whih an in priniple be measured from onepoint with full sky overage. For simpliity, we neglet the inrease of the varianedue to the fat that our own Milky Way bloks a portion of sky of about 20%.Wik's theorem now giveshC 2̀i � hC`i2 = hja`mj4i � hja`mj2i2 = 2hja`mj2i2For a given multipole ` we then expet a variane of the C`'sp(Cobs` )2 � C 2̀C` =r 22`+ 1 ; (4.21)in real experiments, this 'osmi variane' is in general muh larger due to the limitedsky overage.The two point orrelation funtion is related to the C`'s by��TT (n)�TT (n0)�n�n0=� = X`;`0;m;m0 ha`m � a�̀0m0iY`m(n)Y �̀0m0(n0) =33



X̀C` X̀m=�`Y`m(n)Y �̀m(n0)| {z }2`+14� P`(n�n0) = 14� X̀(2`+ 1)C`P`(�); (4.22)where we have used the addition theorem of spherial harmonis for the last equality.The P`'s are the Legendre polynomials.Clearly the alm's from salar, vetor and tensor perturbations are unorrelated,Da(S)`ma(V )`0m0E = Da(S)`ma(T )`0m0E = Da(V )`m a(T )`0m0E = 0: (4.23)Sine vetor perturbations deay, their ontributions, the C(V )` , are negligible inmodels where initial perturbations have been laid down very early, e.g., after aninationary period. Tensor perturbations are onstant on super-horizon sales andperform damped osillations one they enter the horizon.Let us �rst disuss in somewhat more detail salar perturbations. We speializeto the ase � = 0 for simpliity. We suppose the initial perturbations to be given bya spetrum, 
j	j2� k3 = A2kn�1�n�10 : (4.24)We multiply by the onstant �n�10 , the atual omoving size of the horizon, in orderto keep A dimensionless for all values of n. A then represents the amplitude ofmetri perturbations at horizon sale today, k = 1=�0.On super-horizon sales we have, for adiabati perturbations:14D(r)g = �53	 +O(x2); V (b) = V (r) = O(x) (4.25)The dominant ontribution on super-horizon sales (negleting the integratedSahs{Wolfe e�et R _�� _	 ) is then�TT (x0;n; �0) = 13	(xde; �de): (4.26)The Fourier transform of (4.26) gives�TT (k;n; �0) = 13	(k; �de) � eikn(�0��de) : (4.27)Using the deompositioneikn(�0��de) = 1X̀=0 (2`+ 1)i`j`(k(�0 � �de))P`(bk � n) ;
34



where j` are the spherial Bessel funtions, we obtain��TT (x0;n; �0)�TT (x0;n0; �0)� (4.28)= 1V Z d3x0��TT (x0;n; �0)�TT (x0;n0; �0)�= 1(2�)3 Z d3k��TT (k;n; �0)��TT �� (k;n0; �0)�= 1(2�)39 Z d3k 
j	j2� 1X`;`0=0(2`+ 1)(2`0 + 1)j`(k(�0 � �de))j`0(k(�0 � �de))i`�`0�P`(k̂ � n) � P`0(k̂ � n0) : (4.29)Inserting P`(k̂n) = 4�2`+1Pm Y �̀m(k̂)Y`m(n) and P`0(k̂n0) = 4�2`0+1Pm0 Y �̀0m0(k̂)Y`0m0(n0),integration over the diretions d
k̂ gives Æ``0Æmm0Pm Y �̀m(n)Y`m(n0). Using as wellPm Y �̀m(n)Y`m(n0) = 2`+14� P`(�), where � = n � n0, we �nd��TT (x0;n; �0)�TT (x0;n0; �0)�nn0=� =X̀ 2`+ 14� P`(�) 2� Z dkk �19 j	j2� k3j 2̀(k(�0 � �de)): (4.30)Comparing this equation with Eq. (4.22) we obtain for adiabati perturbationson sales 2 � ` � �(�0 � �de)=�de � 100C(SW )` ' C(OSW )` ' 2� Z 10 dkk *����13	����2+ k3j 2̀ (k (�0 � �de)) : (4.31)If 	 is a pure power law and we set k(�0 � �de) � k�0, the integral (4.31) anbe performed analytially. For the ansatz (4.24) one �nds for �3 < n < 3C(SW )` = A29 �(3� n)�(`� 12 + n2 )23�n�2(2� n2 )�(`+ 52 � n2 ) : (4.32)Of speial interest is the sale invariant spetrum, n = 1. This spetrum witha time and sale independent gravitational potential has �rst been investigated byHarrison and by Zel'dovih [25℄. It is therefore alled the Harrison{Zel'dovih spe-trum. It leads to`(`+ 1)C(SW )` = onst: ' *��TT (#`)�2+ ; #` � �=` : (4.33)This is preisely (within the auray of the experiment) the behavior observed bythe DMR experiment aboard COBE [8℄.35



Inationary models predit very generially a HZ spetrum (up to small or-retions). The DMR disovery has therefore been regarded as a great suess, ifnot a proof, of ination. There are however other models like topologial defets[27, 28, 29℄ or ertain string osmology models [30℄ whih also predit sale{invariant,i.e., Harrison Zel'dovih spetra of utuations. These models do however not be-long to the lass investigated here, sine in these models perturbations are induedby seeds whih evolve non{linearly in time.For isourvature perturbations, the main ontribution on large sales omes fromthe integrated Sahs{Wolfe e�et and (4.31) is replaed byC(ISW )` ' 8� Z dkk k3*����Z �0�de _	(k; �)j 2̀(k(�0 � �))d�����2+ : (4.34)Inside the horizon 	 is roughly onstant (matter dominated). Using the ansatz(4.24) for 	 inside the horizon and setting the integral in (4.34) � 2	(k; � =1=k)j 2̀(k�0), we obtain again (4.32), but with A2=9 replaed by 4A2. The Sahs{Wolfe temperature anisotropies oming from isourvature perturbations are there-fore about a fator of 6 times larger than those oming from adiabati perturbations.On smaller sales, ` >� 100 the ontribution to �T=T is usually dominated byaousti osillations, the �rst two terms in Eq. (4.13). Instead of (4.34) we thenobtain C(AC)` '2� Z 10 dkk k3*����14D(r)g (k; �de)j`(k�0) + V (r)(k; �de)j 0̀(k�0)����2+ : (4.35)On sub-horizon sales D(r)g and V (r) are osillating like sine or osine wavesdepending on the initial onditions. Correspondingly the C(AC)` will show peaks andminima. On very small sales they are damped by the photon di�usion whih takesplae during the reombination proess (see next setion).For gravitational waves (tensor utuations), a formula analogous to (4.32) anbe derived (see appendix),C(T )` = 2� Z dkk2*����Z �0�de d� _H(�; k)j`(k(�0 � �))(k(�0 � �))2 ����2+ (`+ 2)!(`� 2)! : (4.36)To a very rude approximation we may assume _H = 0 on super-horizon salesand R d� _Hj`(k(�0 � �)) � H(� = 1=k)j`(k�0). For a pure power law,k3 
jH(k; � = 1=k)j2� = A2TknT ��nT0 ; (4.37)this gives C(T )` ' 2� (`+ 2)!(`� 2)!A2T Z dxx xnT j 2̀(x)x436



Figure 4.1: A COBE normalized sample adiabati( solid line) and isourvature(dashed line) CMB anisotropy spetrum, `(` + 1)C`, are shown on the top panel.The quantity shown in the bottom panel is the ratio of temperature utuations for�xed value of A (from Kanazawa et al. [31℄).= (`+ 2)!(`� 2)!A2T �(6� nT )�(`� 2 + nT2 )26�nT�2(72 � nT )�(`+ 4� nT2 ) : (4.38)For a sale invariant spetrum (nT = 0) this results in`(`+ 1)C(T )` ' `(`+ 1)(`+ 3)(`� 2)A2T 815� : (4.39)The singularity at ` = 2 in this rude approximation is not real, but there is someenhanement of `(`+ 1)C(T )` at ` � 2.Sine tensor perturbations deay on sub-horizon sales, ` >� 60, they are not verysensitive to osmologial parameters.Again, inationary models (and topologial defets) predit a sale invariantspetrum of tensor utuations (nT � 0).On very small angular sales, ` >� 800, utuations are damped by ollisionaldamping (Silk damping). This e�et has to be disussed with the Boltzmann equa-tion for photons derived in the next setion.
37
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Figure 4.2: Adiabati salar and tensor CMB anisotropy spetra are shown (toppanels). The bottom panels show the orresponding polarization spetra (see Se-tion 4.4). (from [21℄).4.3 The Boltzmann equation4.3.1 Elements of the derivationWhen partiles are not very tightly oupled, the uid approximation breaks downand they have to be desribed by a Boltzmann equation,p���f � �i��p�p� �f�pi = C[f ℄ : (4.40)C[f ℄ is a ollision integral whih desribes the interations with other matter ompo-nents. The left hand side of (4.40) just requires the partiles to move along geodesisin the absene of ollisions.Let us �rst onsider the situation where ollisions are negligible, C[f ℄ = 0. Theunperturbed Boltzmann equation for massless partiles implies that f be a funtionof v = ap only. Here p = pgijpipj is the physial photon momentum (or energy).Setting f = �f(v) + F (�;x; v;n), where n denotes the momentum diretions, leadsthen to the perturbation equation��F + ni�iF � �(S) ijk njnk �F�ni = vd �fdv hniA;i + ninj �Bijj + _Hij�i : (4.41)Here �(S) ijk are the Christo�el symbols of the spae of onstant urvature �.To derive (4.41), we have used p2 = 0. The Liouville equation for partiles withnon{vanishing mass an be found in Ref. [6℄.38



The ansatz f(x;p) = �f  g(3)(p;p) 12T (x;n) ! = �f � TvT (x;n)� (4.42)with T (x;n) = T (�) + �T (x;n) leads tof = �f � vd �fdv �TT : (4.43)Integrating (4.42) over photon energies, we an also write�TT = 14{; (4.44)where { is the brightness perturbation,{ = 4���a4 Z 10 Fv3dv: (4.45)Setting F = �v d �fdv �T�T�� ��TT � + ni�i��TT �� �(S) ijk njnk � ��TT ��ni = � hniA;i+�Bijj + _Hij�ninji :(4.46)The fat that gravitational perturbations of Liouville's equation an be astpurely in temperature perturbations of the original distribution is not astonishing.This is just an expression of gravity being \ahromati", i.e. independent of thephoton energy.We now deompose (4.46) into salar, vetor and tensor omponents. Eventhough �T=T is just a funtion, it an be represented in the form�TT (x;n) = 1X̀=0 �i1;:::;i`(x)ni1 � � �ni` ; (4.47)where the �i1;:::;i` are symmetri traeless tensor �elds that ontain salar, vetor,2{tensor and in priniple also higher tensor omponents. Sine spin omponentslarger than 2 are not soured by the right hand side of equation (4.46) and sinethey are suppressed at early times, when ollisions are important, we neglet themhere.For the salar ontribution to �T=T we obtain from (4.46)�� ��TT �(S) + k���TT �(S) � �(S) ijk njnk � ��TT �(S)�ni =� �k�A+ �2k �k�1 _HT � B�+ _HL + 13 _HT� ; (4.48)39



where we have introdued the \diretion osine" � de�ned by niY;i= k�Y . Notethat in at spae, � = 0, we have just � = ik̂ � n.This equation is not manifestly gauge{invariant. However, settingM(S) = ��TT �(S) +HL + 13HT + ��k�1 _H � B� ; (4.49)it redues to ��M(S) + k�M(S) � �(S) ijk njnk �M(S)�ni = k� (�� 	) ; (4.50)where � and 	 are the Bardeen potentials. If nj are omponents with respet to ageodesi basis (or � = 0), the third term on the left hand side of Eq. (4.50) vanishes.For simpliity we now onentrate on the ase � = 0. We an then integrate theequation and obtainM(S)(�0;n;k) = exp[ik � n(�in � �0)℄M(S)(�in;n;k)+ Z �0�in i exp[ik � n(� � �0)℄n � k (�� 	) d� : (4.51)Integration by parts and negleting the monopole term (�� 	) (�0), leads toM(S)(�0;n;k) =exp[ik � n(�in � �0)℄ �M(S)(�in;n;k) + (��	) (�in;k)�� Z �0�in exp[ik � n(� � �0)℄� _�� _	� d� : (4.52)Comparing this equation with (4.13), we see again that M(S) = ��TT �(S) (up togauge dependent monopole and dipole ontributions) if the initial ondition isM(S)(�in;n;k) = 14D(r)g (�in;k) + n � kV (b)(�in;k) ;whih is equivalent to require thatM(S)(�in) has no higher than �rst moments. Aswe shall see below, this assumption is quite reasonable sine ollisions suppress thebuild up of higher moments before reombination.Sine the right hand side of (4.50) is gauge invariant, the left hand side must beso as well and we onlude that M(S) is a gauge{invariant variable (a diret proofof this, analyzing the gauge transformation properties of the distribution funtion,an be found in Ref. [6℄).M(S) used in this work oinides with the salar temperature utuations upa to a gauge dependent monopole and dipole ontribution. In other work [44℄ thegauge invariant variable � �M(S)�� has been used. Sine � is independent of thephoton diretion n this di�erene in the de�nition shows up only in the monopole,C0. 40



The vetor and tensor parts of �T=T are gauge{invariant by themselves and wedenote them by M(V ) and M(T ) for onsisteny. In the absene of ollisions andwith vanishing spatial urvature, they satisfy the equations_M(V ) + i�kM(V ) = �in`nmk`�(V )m (4.53)_M(T ) + i�kM(T ) = �in`nm _Hm`: (4.54)The omponents of the energy momentum tensor are obtained by integrating theseond moments of the distribution funtion over the mass shell,T �� = ZPm(x) p�p�f(p; x)p2dpd
p̂p0 ; (4.55)where 
p̂ denotes the angular integration over momentum diretions. One �nds for� = 0 and setting � = n � k̂:D(r)g = 1� Z M(S)d
 (4.56)V (r) = 3i4� Z �M(S)d
 (4.57)�(r) = �98� Z ��2 � 13�M(S)d
 (4.58)�(r) = 0 (4.59)V (V )i = 14� Z niM(V )d
 (4.60)�(V )j = 6� Z �njM(V )d
 (4.61)�(T )ij = 3� Z ninjM(T )d
: (4.62)Let us now turn to the ollision term. At reombination (when the uid de-sription of radiation breaks down) the temperature is � 0:4 eV. The eletronsand nulei are non{relativisti and the dominant ollision proess is non{relativistiThomson sattering. Sine ollisions are important only before and during reombi-nation, where urvature e�ets are entirely negligible, we set � = 0 in the reminderof this setion.The ollision term is given byC[f ℄ = df+d� � df�d� ; (4.63)where f+ and f� denote the distribution of photons sattered into respetively outof the beam due to Compton sattering.41



In the matter (baryon/eletron) rest frame, whih we indiate by a prime, weknow df 0+d�0 (p;n) = a�Tne4� Z f 0(p0;n0)!(n;n0)d
0 ;where ne denotes the number density of free eletrons, �T is the Thomson rosssetion, and ! is the normalized angular dependene of the Thomson ross setion:!(n;n0) = 3=4[1 + (n � n0)2℄ = 1 + 34nijn0ij with nij � ninj � 13Æij :In the baryon rest frame whih moves with four veloity u, the photon energy isgiven by p0 = p�u� :We denote by p the photon energy with respet to a tetrad adapted to the sliingof spaetime into f� = onstantg hyper{surfaes:p = p�n� ; with n = a�1[(1� A)�� +Bi�i℄ :The unit vetor n is the normal to the hyper-surfaes of onstant time. The lapsefuntion and the shift vetor of the sliing are given by � = a(1+A) and � = �Bi�i. In �rst order, p0 = ap(1 + A)� apniBi ;and in zeroth order, learly, pi = apni :Furthermore, the baryon four veloity has the form u0 = a�1(1� A) ; ui = u0viup to �rst order. This yieldsp0 = p�u� = p(1 + ni(vi �Bi)) :Using this identity and performing the integration over photon energies, we �nd�r d�+(n)dt0 = �r�Tne[1 + 4ni(vi � Bi) + 14� Z �(n0)!(n; n0)d
0℄ :The distribution of photons sattered out of the beam, has the well known form(see e.g. Lifshitz and Pitajewski [1983℄)df�dt0 = �Tnef 0(p0;n) ;so that we �nally obtainC 0 = 4��ra4 Z dp(df+dt0 � df�dt0 )p3 = �Tne[Ær� �+4ni(vi�Bi)+ 316�nij Z �(n0)n0ijd
0℄ ;where Ær = (1=4�) R �(n)d
 is the photon energy density perturbation.Using the de�nitions of the gauge{invariant variablesM(S) and V (b) for the photon42



brightness perturbation and the baryon veloity potential, we an write C 0 in gauge{invariant form. C 0 = 4�Tne[14D(r)g �M(S) + niV (b)i + 12nijM ij ℄ ; (4.64)with D(r)g = (1=�) RM(S)d
 andM ij � 38� Z M(S)(n0)n0ijd
0 :Sine the term in square brakets of (4.64) is already �rst order we an set dt0 =dt whih yields C = dt0d�C 0 = dtd�C 0 = aC 0. The Boltzmann equation for salarperturbations expressed in terms of the gauge invariant variableM(S) then beomes_M(S)+ni�iM(S) = ni�i(��	)+a�Tne[14D(r)g �M(S)�ni�iV (b)+12nijM ij℄ : (4.65)For vetor and tensor perturbations we obtain in the same way_M(V ) + i�kM(V ) = �ninj�ijj + a�Tne �niV (V b)i + 12nijM (V )ij �M(V )� (4.66)_M(T ) + i�kM(T ) = �ninj _Hij + a�Tne hnijM (T )ij �M(T )i : (4.67)4.3.2 The tight oupling limitBefore reombination, when ne ' �b=mp,�T � 1a�Tne � 10
bh(1 + z)� 32� � �; zeq >� z >� zde; (4.68)� 10
bh(1 + zeq)� 12 (1 + z)�1� z >� zeq : (4.69)To lowest order in �T , ollisions fore the photon distribution to be of the formM(S) = 14Dg + niV (b)i + 12nijMij; (4.70)the building up of higher moments is strongly suppressed by ollisions.During reombination, the number density of free eletrons, ne, dereases rapidlyand the ollision term beomes less and less important. Higher moments in thephoton distribution develop by free streaming.The ollision term C[M(S)℄ of equation (4.65) also appears in the equation ofmotion of the baryons as a drag. The Thomson drag fore is given byFj = �r4� Z C[M(S)℄njd
 = �4a�Tne�r3 (Mj + V (b)i ) ; (4.71)43



with Mj = 3i4� Z njM(S)d
 :This yields the following salar baryon equation of motion in an ionized plasma_V (b) + (_a=a)V (b) = k	� 4a�Tne�r3�b (�k̂jMj + V (b)) ; (4.72)where we have added the drag fore to the seond eq. of (2.55) with w = 2s = 0.We now want to disuss equations (4.65,4.72) in the limit of very many ollisions.The omoving photon mean free path is given by �T = lT = (a�Tne)�1. In lowestorder �T=� and lT=�, 1 M(S) is given by (4.70), and Eq. (4.72) implies�k̂jMj + V (b) = 0 :Inserting the solution (4.70) in the Boltzmann equation (4.65) and integrating overdiretions this implies kV (b) = kjMj = kV (r) = �34 _D(r)g ; (4.73)Implying espeially V (b) = V (r) � V . Eq. (4.73) is equivalent to the energy on-servation equation (2.55) for radiation. Using also (2.55) for baryons, w = 0, weobtain _D(r)g = �4k3 V (b) = 43 _D(b)g :This shows that entropy per baryon is onserved, � = 0. Before reombination,when the ollisions are suÆiently frequent, baryons and photons are adiabatiallyoupled. Inserting (4.70) in (4.65) we �nd up to �rst order in �TM(S) = D(r)g � 4injk̂jV + 12nijM ij � �T [ _D(r)g � 4inj k̂j _V + 12nij _M ij+injkjD(r)g + 4ninjkik̂jV + i2ninmjkiMmj � i4njkj(�� 	)℄ :(4.74)Using (4.74) to alulate the drag fore yieldsFj = ikj(�r=3)[4k�1 _V �D(r)g + 4(�� 	)℄ :Inserting Fj in (4.72), we obtain(�b + (4=3)�r) _V + �b( _a=a)V = k[(�r=3)D(r)g + (�b + (4=3)�r)	� (4�r=3)�℄ :This is equivalent to momentum onservation, the seond equation of (2.55) for� = �b + �r, p = �r=3 and � = � = 0, if we useD(r)g = (4=3)D(b)g and Dg = �rD(r)g + �bD(b)g�b + �r :1Here � is a typial size of a perturbation. For a given Fourier mode k, it is � � �=k.44



In this limit therefore, baryons and photons behave like a single uid with density� = �r + �b and pressure p = �r=3.From (2.55) we an derive a seond order equation for Dg. This equation an besimpli�ed if expressed in terms of the variable D related by (3.1). We obtain�D+2sk2D+(1+32s�6w)( _a=a) _D�3[w(�a=a)�( _a=a)2(3(2s�w)�(1=2)(1+w))℄D = 0 :For small wavelengths (sub-horizon), whih are however suÆiently large for theuid approximation to be valid, 1=�T � sk � 1=�, we may drop the term insquare brakets. The ansatz D(t) = A(t) exp(�i R ksdt) then eliminates the termof order 2sk2. For the terms of order sk=� we obtain the equation2 _A=A+ (1 + 32s � 6w)( _a=a) + _s=s = 0 : (4.75)For the ase 2s = w =onst. , this equation is solved by A / (k�)1�� with � =2=(3w + 1), i.e., the short wave limit. In our situation we havew = �r3(�r + �b)2s = _�r3( _�r + _�b) = (4=3)�r4�r + 3�b and_s=s = �3=2( _a=a) �b4�r + 3�b :Using all this, one �nds thatA = � �b + (4=3)�rs(�r + �b)2a4�1=2 = � �+ ps�2a4�1=2solves (4.75) exatly, so that we �nally obtain the approximate solution for the,tightly oupled matter radiation uid on sub-horizon salesD(t) / � �+ ps�2a4�1=2 exp(�ik Z sd�) : (4.76)Note that this short wave approximation is only valid in the limit � � 1=(sk), thusthe limit to the matter dominated regime, s ! 0 annot be performed. In the limitto the radiation dominated regime, 2s ! 1=3 and � / a�4 we reover the aoustiwaves with onstant amplitude whih we have already found in the last subsetion.But also in this limit, we still need matter to ensure �T = 1=(a�Tne) � �. In theopposite ase, �T � �, radiation does not behave like an ideal uid but it beomesollisionless and has to be treated with Liouville's equation ((4.65) without theollision term).
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4.3.3 Damping by photon di�usionIn this subsetion we disuss the Boltzmann equation in the next order, (�T=�)2. Inthis order we will obtain the damping of utuations in an ionized plasma due to the�niteness of the mean free path; the non-perfet oupling. We follow the treatmentby Peebles [17℄ (using our gauge-invariant approah instead of synhronous gauge).Again we onsider Eqs. (4.65) and (4.72), but sine we are mainly interested inollisions whih take plae on time sales �T � �, we neglet gravitational e�etsand the time dependene of the oeÆients. We an then look for solutions of theform V /M(S) / exp(i(k � x� !�)) :In (4.65) and (4.72) this yields (negleting also the angular dependene of Comptonsattering, i.e., the term nijM ij)M(S) = 14 D(r)g � 4iknV1� i�T (! � k � n) (4.77)and �Tk!V = (4�r=3�b)(ikV +M ) ; (4.78)with M = (3=4�) R nM(S)d
. Integrating (4.65) over angles, one obtains _D(r)g +(i=3)kjM i = 0. With our ansatz therefore k �M = 3!D(r)g . Using this after salarmultipliation of (4.78) with k, we �nd, setting R = 3�b=4�r,V = (3=4)!D(r)g�Tk2R! � ik2 :Inserting this result for V in (4.77) leads toM(S) = D(r)g4 1 + 3�!=k1�i�T!R1� i�T (! � k�) ;where we have set � = k̂ � n. This is the result of Peebles [17℄, where the samealulation is performed in synhronous gauge. Like there (x92), one obtains inlowest non-vanishing order !�T the following dispersion relation: Using12 Z 1�1M(S)d� = D(r)g4 ; whih yields 1 = 12 Z 1�1 1 + 3�!=k1�i�T!R1� i�T (! � k�)d�one �nds! = !0�i with !0 = k=[3(1+R)℄1=2 and  = (k2�T=6)R2 + 45(R + 1)(R + 1)2 : (4.79)In the baryon dominated regime, R � 1, therefore � k2�T=6 : (4.80)46



(If the angular dependene of Thompson sattering is not negleted, the term 45(R+1) in Eq. (4.79) beomes 89(R + 1). If also polarization is taken into aount, oneobtains 1615(R + 1).)Posing kdamp�T=6 = 1, this leads to a damping sale �damp � �T (�de)=2, whihis projeted in the mirowave sky to an angle#damp � �T (�de)2�(�0 � �de) :For � = 0 this orresponds to a few ar minutes and to the harmoni number`damp = �=#damp ' ��020�T (�de) ' (1 + zde)220 
bh : (4.81)This estimate is very rude sine we are using the approximation for �T from the tightoupling regime just where oupling stops to be tight, and we assume an arbitraryvalue of ne � 0:1nb at the moment of deoupling. Both these errors enhane thevalue of `damp somewhat. Numerial results give`damp � 800� 1000in a � = 0 universe. In open (losed) universes, this sale (whih of ourse alsodepends on 
b) is moved to larger (lower) ` due to projetion. A reasonable approx-imation for the damping harmoni is`damp � 1000� 
bh0:02(1� 
�)1=2� :Temperature utuations on smaller sales, ` > `damp are exponentially damped byphoton di�usion.4.4 Polarization and moment expansionThomson sattering is not isotropi. And what is more, for a non{isotropi photondistribution it depends on the polarization: Even if the inident photon beam isunpolarized, the sattered beam will be, unless the inident distribution is perfetlyisotropi. In the previous setion we have negleted this e�et by summing overinitial polarizations and averaging over �nal polarizations. Now we want to derivethe di�erene in the Boltzmann equation taking into aount polarization.Polarization is usually haraterized by means of the Stokes parameters [18, 19,20℄.For a harmoni eletromagneti wave with eletri �eldE(x; t) = (�1E1 + �2E2) ei!(nx�t) ; (4.82)47



where n, �1 and �2 form an orthonormal basis and the omplex �eld amplitudes areparameterized as Ej = ajeiÆj , the Stokes parameters are given byI = a21 + a22 (4.83)Q = a21 � a22 (4.84)U = 2a1a2 os(Æ2 � Æ1) (4.85)V = 2a1a2 sin(Æ2 � Æ1): (4.86)I is the intensity of the wave (whose perturbation { has been introdued in the pre-vious setion), while Q is a measure of the strength of linear polarization (the ratioof the prinipal axis of the polarization ellipse). V measures irular polarizationwhih is not generated by Thomson sattering and therefore V vanishes if the ini-tial irular polarization vanishes (whih we assume). U is then determined via theidentity I2 = Q2 + U2.Sine Q vanishes in the bakground, to �rst order it obeys the unperturbedBoltzmann equation, ��Q+ injkjQ� �(S) ijk njnk �Q�ni = C[Q℄; (4.87)where C is the ollision integral. The same type of equation, with a somewhatdi�erent ollision integral is satis�ed by U . The ollision integral for V does notouple to I; Q or U and hene V � 0 is a onsistent solution.An expliit derivation of the following Boltzmann hierarhy inluding polariza-tion is presented in Appendix B. Here we just repeat the neessary de�nitions andthe results.The brightness anisotropy 4M and the non-vanishing Stokes parameters Q andU an be expanded as M(�;k;n) = X̀ 2Xm=�2M(m)` (�; k)0Gm̀(n); (4.88)14[Q(�;k;n)� iU(�;k;n)℄ = X̀ 2Xm=�2(E(m)` � iB(m)` )2Gm̀(n): (4.89)The B-mode vanishes for salar perturbations, 0B` � 0. The speial funtions sGm̀are desribed in Appendix B. The oeÆients m = 0; m = �1 and m = �2 desribethe salar (S), vetor (V ) and tensor (T ) omponents respetively. The Boltzmannequation for the oeÆients X(m)` is given by_M(m)` � k � 0�m̀2`� 1M(m)`�1 � 0�m̀+12`+ 3M(m)`+1� =�ne�TaM(m)` + S(m)` (` � m) (4.90)48



_E(m)` � k � 2�m̀2`� 1E(m)`�1 � 2m`(`+ 1)B(m)` � 2�m̀+12`+ 3E(m)`+1� =�ne�Ta[E(m)` +p6C(m)Æ`;2 (4.91)_B(m)` � k � 2�m̀2`� 1B(m)`�1 + 2m`(`+ 1)E(m)` � 2�m̀+12`+ 3B(m)`+1� =�ne�TaB(m)` : (4.92)where we set S(0)0 = ne�TaM(0)0 ; S(0)1 = ne�TaVb + k(	� �);S(0)2 = ne�TaC(0); S(1)1 = ne�Ta!b;S(1)2 = ne�TaC(1) + 4�; S(2)2 = ne�TaC(2) + _H (4.93)and C(m) = 110 [M(m)2 �p6E(m)2 ℄. The oupling oeÆients ares�m̀ =r(`2 �m2)(`2 � s2)`2 :The CMB temperature and polarization power spetra are given in terms of theexpansion oeÆients M(m)` , E(m)` and B(m)` as(2`+ 1)2CXY (m)` = 2nm� Z k2dkX(m)` Y (m)�` ; (4.94)where nm = 1 for m = 0 and nm = 2 for m = 1; 2, aounting for the number ofmodes. Sine B is parity odd, the only non-vanishing ross orrelation spetrum isCTE.The Boltzmann hierarhy presented above an be solved numerially with pub-lily available fast numerial odes like CMBfast [33℄ or CAMCODE [34℄. Thisenables us to ompute the CMB anisotropy and polarization spetra for many dif-ferent values of osmologial parameters, and ompare them with present data.4.5 Parameter estimationIn the last setion of this hapter we make some general remarks about the depen-dene of the CMB anisotropy spetrum on di�erent parameters and about degen-eraies. We start by enumerating the relevant physial proesses.4.5.1 Physial proesses� Before reombination, photons and baryons form a tightly oupled uid whihperforms aousti osillations on sub-horizon sales.49



Figure 4.3: The temperature anisotropy (solid), the polarization (dashed) and theirorrelation (dotted) are shown for a purely salar standard CMD model.� Depending on the initial onditions, these osillations are sine waves (isour-vature ase) or osine waves (adiabati ase).� After reombination, the photons move along perturbed geodesis, only inu-ened by the metri perturbations.� Vetor perturbations of the metri deay as a�2 after reation and their e�etson CMB anisotropies are negligible for models where initial utuations arereated early, e.g. during an inationary phase. This is di�erent for modelswhih onstantly seed utuations in the geometry, e.g. topologial defets.� Tensor perturbations of the metri have onstant amplitude on super-horizonsales and perform damped osillations / a�1 one they enter the horizon.� Salar perturbations of the metri are roughly onstant if they enter the hori-zon only after the time of matter and radiation equality. On sales whih enterthe horizon before equality they are damped by a fator (zeq=zin)2, where zeqand zin are the redshift of equality and of horizon rossing, respetively.� Perturbations on small sales, k >� kT ' (
bh=20)(zde + 1)2H0 are exponen-tially damped by ollisional damping during reombination (Silk damping).4.5.2 Sale dependene� On large sales (larger than the horizon sale at reombination, ` <� `H '�=#H , with #H = �de=�(�0 � �de), perturbations are dominated by gravi-50



tational e�ets: Inationary models typially lead to k3 hj	� �j2(k; �de)i 'onst: and k3 hH2i ' onst: on these sales. This implies a at \Harrison-Zel'dovih" spetrum,��TT �2 (#`) ' `(`+ 1)C` ' onst:; #` = �̀ : (4.95)� On intermediate sales, `H < ` < `damp � 800, CMB anisotropies mainlyreet the aousti osillations of the photon/baryon plasma prior to reombi-nation. The position of the �rst peak is severely a�eted by initial onditions(adiabati or isourvature). For � = 0, the �rst ontration peak is at about`(a)1 � 200 if the initial onditions are adiabati, while the �rst ontrationpeak is at `(i)1 � 350 for isourvature initial onditions. The amplitude of andthe distane between the peaks depend strongly on osmologial parameters.� On small sales, `damp < `, utuations are ollisionally damped during reom-bination (\Silk damping"). The damping sale depends mainly on 
bh and
.4.5.3 The main inuene of osmologial parameters� Curvature, h2
�:{ Mainly a�ets the inter{peak distane, �`, and, for given initial ondi-tions, the position of the �rst peak. Positive urvature lowers �` whilenegative urvature enhanes it.{ Curvature also leads to an integrated Sahs{Wolfe ontribution whihis espeially important for � > 0 at very low `. Overall, this leads tosome enhanement of the Sahs{Wolfe ontribution and therefore (afternormalization to the COBE measurements) to somewhat lower aoustipeaks.� Baryon density, �b = 
bh2 � 10�29g=m3:{ A high baryoni density enhanes the ompression peaks and dereasesthe expansion peaks via the self{gravity of the baryons.{ It also redues the damping sale, �T = 1=(ade�Tne(�de)), leading to aninrease in `damp.{ Baryons derease the plasma sound veloity, s = 1=3(1 + _�b= _�)�1, andhene prolongs the osillation period. This inreases the spaing betweenaousti peaks.
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� Cosmologial Constant, � = 
�h28�G � 10�29g=m3:The presene of a osmologial onstant at �xed 
tot = 
m + 
� delays theepoh of equal matter and radiation. During the radiation dominated era, thegravitational potential is not onstant, but deays as soon as a given saleenters the horizon. If �eq � �de this indues an integrated Sahs{Wolfe (ISW)ontribution whih boosts mainly the �rst aousti peak. 
� also boosts thelate integrated Sahs{Wolfe ontribution.� Hubble Parameter, H0 = 100h km=(s Mp): The inuene of the Hubbleparameter is ompliated and depends sensitively on the variables whih arekept �xed during its variation (
� or !� = h2
�). As one example of itsinuene: for �xed urvature and osmologial onstant, lowering the Hubbleparameter also delays the epoh of equal matter and radiation, �eq ! �de,sine zeq + 1 = 
m
rad ' 2:4 � 104
mh2: (4.96)Therefore the same type of ISW ontribution as for �{models boosts the �rstaousti peak.� Initial onditions:{ A tensor ontribution enhanes the large sales utuations but not theaousti peaks, thereby lowering their relative amplitude.{ A \blue" utuation spetrum, n > 1, enhanes utuations on smallersales and raises thereby the aousti peaks.4.5.4 DegenerayOne important issue in determining osmologial parameters from CMB anisotropymeasurements is the hoise of good variables, whih requires physial insight in howanisotropies are inuened. As we have argued before, the Hubble parameter, his not a good variable sine its inuene is very ompliated. It enters the osmidensities �� / 
�h2 and the length sales like �eq or �de. Another limitation forparameter estimation from CMB anisotropies is degeneray. We illustrate here justone example. As we have disussed in Chapter 3, the position of the �rst aoustipeak only depends on the sound horizon, �s = R �de sd� and the angular diameterdistane to the last sattering surfae, �(�0��de). The distane between subsequentpeaks in the CMB power spetrum is proportional to�` = �(�0 � �de)�sIn Fig. 4.4 (left panel) we show lines of onstant R = �`=�`0 in the 
m { 
�plane. Here �`0 = �`0(
� = 
� = 0) is the value of �` in a spatially at universe52



with vanishing osmologial onstant. To the right the CMB anisotropy spetrafor salar perturbations with �xed index n = 1 and �xed values of the matterdensity !m and the baryon density !b. But the osmologial onstant and h vary,so that 
� and 
m orrespond to the values indiated by bullets on the left panel.Clearly, for ` > 50 these spetra are perfetly degenerate. On the other hand, dueto osmi variane, the low ` CMB anisotropies will never be known to very goodauray so that this degeneray annot be lifted by CMB anisotropy observationsalone. Additional data like the supernova type Ia measurements, observations ofthe galaxy distribution (large sale struture) or CMB polarization are needed.
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Figure 4.4: Left: The lines of onstant R are shown in the 
�{
m plane. Thevalues 
�;
m for whih the CMB anisotropy spetra are shown right are indiatedas blak dots. Right: Three CMB anisotropy spetra with di�erent values of 
�and 
m but �xed R are shown. For ` >� 50 these spetra are learly degenerate.Thesolid line represents a at model, while the dotted line orresponds to a losed andthe dashed line to an open universe.There are also other degeneraies like the optial depth to reionization and thetensor ontribution or the salar spetral index and the tensor ontribution. Theimportant lesson to learn is that even if the very stringent model assumptions areorret, we still need other data to measure osmologial parameters and espeiallywe will only feel omfortable with a suÆient amount of redundany.
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Chapter 5Observations and ResultsIn this short, �nal hapter we want to disuss briey the experimental situationwhih is very muh in ow and may have hanged onsiderably already at the mo-ment when this review appears. It has been lear for a long time that, if initialutuations have led to the formation of large sale struture by gravitational insta-bility, they should have indued utuations in the osmi mirowave bakground[23, 24℄. Before spring 1992, however, only the dipole anisotropy had been deteted[12, 13℄. Its value is [7℄*��TT �2+dipole = (1:528� 0:004)� 10�6 :After many upper limits, the DMR experiment aboard the COBE satellite mea-sured for the �rst time onviningly positive anisotropies [8℄. It found*��TT �2+ (�) � (30�K)2 (5.1)on all angular sales � � 7Æ. Many more positive measurements have been performedsine then. In Fig. 5.1 we just show the COBE DMR results [35℄ together with thethree most reent experiments, BOOMERANG [36℄, MAXIMA-1 [37℄ and DASI [38℄As one sees in this �gure, present data, agrees very well with a simple at modelof purely salar, sale invariant, ns = 1, adiabati utuations with osmologialparameter !b = 0:02, 
� = 0, 
� = 0:7, h = 0:65 whih are also preferred fromother osmologial data. However, the error-bars are still onsiderable.The experiments an be split into three lasses: Satellite experiments, balloon{borne experiments and ground based experiments. The tehnial and eonomialadvantages of ground based experiments are obvious. Their main problem is atmo-spheri utuation. This an be redued by two methods:� Choose a very high altitude and very old site, e.g. the south pole. Severalexperiments like SP, Python and White Dish have hosen this site.54



Figure 5.1: The measured temperature anisotropies, `(`+1)C` are shown in a lin-linplot (left) and in a log-lin plot (right) with the theoretial urve from a standard,adiabati old dark matter model. The data points shown are those from COBEDMR (solid, magenta, low `), BOOMERANG (solid, red), DASI (dashed, blue) andMAXIMA-1 (dotted, green).� Measure anisotropies on small sales, preferably by interferometry (DASI,CAT, VSA, Jodrell Bank).Balloon{borne experiments ying at about 40km altitude have less problemswith the Earths atmosphere but they fae the following diÆulties:� They are limited in weight.� They annot be manipulated at will in ight.� They have a rather short duration.� To seure all the data taken on the balloon, they have to be reovered intat.Yet the advantages of overoming the atmosphere are so signi�ant that manygroups have hosen this approah, like e.g.MAXIMA-1, TopHat, et. The BOOMERanGexperiment ombines the two advantages of a old site and balloon altitude. It hasperformed a long{duration ight (10 days) on the south pole in Deember 1998.The third possibility are satellite experiments. They avoid atmospheri problemsaltogether, but this solution is very expensive. So far two satellite experiments havebeen launhed: COBE in 1989 (NASA mission) and MAP in June 2001 (MirowaveAnisotropy Probe, a NASA MIDEX mission), one more is planned: PLANCK, anESA medium size mission of the \Horizon 2000" program, to be launhed in 2007.As I am writing this lines, MAP has safely arrived at its destination, the Lagrangepoint L2 of the sun-earth system. It will perform measurements at �ve frequenies55



in the range from 22 to 90 GHz. The instruments of PLANCK will operate at ninefrequenies, overing 20 to 800 GHz. At low frequenies (below 100 GHz) radioreeivers are used (so alled \HEMTs", high eletron mobility transistors) while thehigh frequeny instruments are bolometers. Reent progress in detetor tehnologiesshould enable the two new satellites to perform signi�antly better than COBE {the radio reeivers of PLANCK, e.g., are supposed to be 1000 times more sensitivethan the ones used for COBE, and the angular resolution has improved from sevendegrees to four ar minutes. For more details also on other experiments see� http://astro.este.esa.nl/PLANCK� http://map.gsf.nasa.gov� http://www.gsf.nasa.gov/astro/obe/obe home.html� http://spetrum.lbl.gov/www/max.html� http://oberon.roma1.infn.it/boomerang/I �nish this short hapter with Table 5.1 whih shows the ranges for the os-mologial parameters 
tot = 1� 
�, h2
b and ns as determined purely by CMBanisotropies. Exept for the last referene, a purely salar spetrum of adiabatiutuations is assumed. The parameter estimation proess also assumes 'weak pri-ors' on the values of other osmologial observables, like e.g. that the age of theUniverse be larger than 10Gyrs. or 0:4 < h < 0:9. I do not omment this table muhfurther but refer the reader to the original literature and many improved papers onthis subjet whih will appear shortly.Clearly, the results shown in Table 5.1 are very onsistent. It is interesting tonote, how the upper limit on the salar spetral index deteriorates if one allows fora tensor omponent. This is one of the degeneraies in the CMB data whih anbe broken by inluding large sale struture data in the analysis (see [42℄). Otherosmologial parameters are not well onstrained by CMB data alone. However, ifCMB data is ombined with SN1a and large sale struture data, the error barsare signi�antly redued and evidene for a non-vanishing osmologial onstant
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Ref. Data 
tot 
bh2 ns errors[39℄ BOOM and DMR data 1:02+0:06�0:05 0:022+0:004�0:003 0:96+0:1�0:09 1� � errors[40℄ DASI and DMR data 1:05+0:06�0:06 0:022+0:004�0:004 1:01+0:09�0:07 1� � errors[41℄ MAX and DMR data 0:90+0:18�0:16 0:0325+0:0125�0:0125 0:99+0:14�0:14 2� � errors[42℄ all data, no priors 1:06+0:59�0:13 0:02+0:06�0:01 0:93+0:75�0:16 2� � errorsallows also tensor modeTable 5.1: Some results from parameter estimations from reent CMB data alone.The errors given are formal 1 or 2-� errors whih assume the underlying model tobe orret and no systemati problems in the data. They are obtained by marginal-ization or maximization over all other model parameters.
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Appendix AThe C`'s from gravitational wavesWe onsider metri perturbations whih are produed by some isotropi randomproess (for example during ination). After prodution, they evolve aording to adeterministi equation of motion. By reasons of isotropy and due to symmetry, theorrelation funtions of hij(k; �) have to be of the formhhij(k; �)h�lm(k; �0)i = [kikjklkmH1(k; �; �0) +(kiklÆjm + kikmÆjl + kjklÆim + kjkmÆil)H2(k; �; �0) +kikjÆlmH3(k; �; �0) + klkmÆijH�3 (k; �0; �) ++ÆijÆlmH4(k; �; �0) + (ÆilÆjm + ÆimÆjl)H5(k; �; �0)℄ :(A.1)Here the funtions Ha are funtions of the modulus k = jkj only. Furthermore, allof them exept H3 are hermitian in � and �0. This is the most general ansatz for anisotropi orrelation tensor satisfying the required symmetries. To projet out thetensorial part of this orrelation tensor we at on hij it with the tensor projetionoperator, T mnij = Pmi P nj � (1=2)PijPmn with Pij = Æij � k̂ik̂j : (A.2)This yields hh(T )ij (k; �)h(T )�lm (k; �0)i =H5(k; �; �0)[ÆilÆjm + ÆimÆjl � ÆijÆlm + k�2(Æijklkm +Ælmkikj � Æilkjkm � Æimklkj � Æjlkikm � Æjmklki) +k�4kikjklkm℄ : (A.3)From Eq. (4.17), we then obtain��TT (n)�TT (n0)� � 1V Z d3x��TT (n;x)�TT (n0;x)� =� 12��3 Z k2dkd
k̂ Z �0�de d� Z �0�de d�0 exp(ik � n(�0 � �)) exp(�ik � n(�0 � �0)) �hh _h(T )ij (�;k) _h(T )�lm (�0;k)ininjn0ln0mi : (A.4)58



Here d
k̂ denotes the integral over diretions in k spae. We use the normalizationof the Fourier transformf̂(k) = 1pV Z d3x exp(ix � k)f(x) ; f(x) = 1(2�)3 Z d3k exp(�ix � k)f̂(k) ;where V is an (arbitrary) normalization volume.We now introdue the form (A.3) of < h(T )h(T ) >. We further make use of theassumption that the perturbations have been reated at some early epoh, e.g. dur-ing an inationary phase, after whih they evolved deterministially. The funtionH5(k; �; �0) is thus a produt of the formH5(k; �; �0) = H(k; �) �H�(k; �0) : (A.5)Introduing this in Eq. (A.4) yields��TT (n)�TT (n0)� =� 12��3 Z k2dkd
k̂ �(n � n0)2 � 1 + �02 + �2 � 4��0(n � n0) + �2�02� �Z �0�de d� Z �0�de d�0 h _H(k; �) _H�(k; �0) exp(ik�(�0 � �)) exp(�ik�0(�0 � �0))i ;(A.6)where � = (n � k̂) and �0 = (n0 � k̂). To proeed, we use the identity [43℄exp((ik�(�0 � �)) = 1Xr=0(2r + 1)irjr(k(�0 � �))Pr(�) : (A.7)Here jr denotes the spherial Bessel funtion of order r and Pr is the Legendrepolynomial of degree r.Furthermore, we replae eah fator of � in Eq. (A.6) by a derivative of theexponential exp(ik�(�0� �)) with respet to k(�0� �) and orrespondingly with �0.We then obtain��TT (n)�TT (n0)� =� 12��3Xr;r0 (2r + 1)(2r0 + 1)i(r�r0) Z k2dkd
k̂Pr(�)Pr0(�0)�h2(n � n0)2 Z d�d�0jr(k(�0 � �))jr0(k(�0 � �0)) _H(k; �) _H�(k; �0)� Z d�d�0[jr(k(�0 � �))jr0(k(�0 � �0)) + j 00r (k(�0 � �))jr0(k(�0 � �0)) +jr(k(�0 � �))j 00r0(k(�0 � �0))� j 00r (k(�0 � �))j 00r0(k(�0 � �0))℄ _H(k; �) _H�(k; �0)�4(n � n0) Z d�d�0j 0r(k(�0 � �))j 0r0(k(�0 � �0)) _H(k; �) _H�(k; �0)i : (A.8)59



Here only the Legendre polynomials, Pr(�) and Pr0(�0) depend on the diretionk̂. To perform the integration d
k̂, we use the addition theorem for the spherialharmonis Yrs, Pr(�) = 4�(2r + 1) rXs=�r Yrs(n)Y �rs(k̂) : (A.9)The orthogonality of the spherial harmonis then yields(2r + 1)(2r0 + 1) Z d
k̂Pr(�)Pr0(�0) =16�2Ærr0 rXs=�rYrs(n)Y �rs(n0) =4�Ærr0Pr(n � n0) : (A.10)In Eq. (A.8) the integration over d
k̂ then leads to terms of the form (n �n0)Pr(n �n0)and (n � n0)2Pr(n � n0). To redue them, we usexPr(x) = r + 12r + 1Pr+1 + r2r + 1Pr�1 : (A.11)Applying this and its iteration for x2Pr(x), we obtainh�TT (n)�TT �(n0)i =12�2 Xr (2r + 1) Z k2dk Z d�d�0 _H(k; �) _H�(k; �0)n� 2(r + 1)(r + 2)(2r + 1)(2r + 3)Pr+2 + 1(2r � 1)(2r + 3)Pr + 2r(r � 1)(2r � 1)(2r + 1)Pr�2��jr(k(�0 � �))jr(k(�0 � �0))� Pr[jr(k(�0 � �)j 00r (k(�0 � �0))+jr(k(�0 � �0))j 00r (k(�0 � �))� j 00r (k(�0 � �))j 00r0(k(�0 � �0))℄�4 � r + 12r + 1Pr+1 + r2r + 1Pr�1� j 0r(k(�0 � �))j 0r(k(�0 � �0))o ; (A.12)where the argument of the Legendre polynomials, n �n0, has been suppressed. Usingthe relations j 0r = � r + 12r + 1jr+1 + r2r + 1jr�1 (A.13)for Bessel funtions, and its iteration for j 00, we an rewrite Eq. (A.12) in terms ofthe Bessel funtions jr�2 to jr+2.We now insert the de�nition of C`:��TT (n) � �TT (n0)�(n�n0)=os � = 14��`(2`+ 1)C`P`(os �) ; (A.14)60



and ompare the oeÆients in Eqs. (A.12) and (A.14). We obtain the somewhatlengthy expressionC` =2� Z dkk2 Z d�d�0 _H(k; �) _H�(k; �0)njl(k(�0 � �))jl(k(�0 � �0))�� 1(2`� 1)(2`+ 3) + 2(2`2 + 2`� 1)(2`� 1)(2`+ 3) + (2`2 + 2`� 1)2(2`� 1)2(2`+ 3)2� 4`3(2`� 1)2(2`+ 1) � 4(`+ 1)3(2`+ 1)(2`+ 3)2�� [j`(k(�0 � �))j`+2(k(�0 � �0)) + j`+2(k(�0 � �))j`(k(�0 � �0))℄�12l + 1 �2(`+ 2)(`+ 1)(2`2 + 2`� 1)(2`� 1)(2`+ 3)2 + 2(`+ 1)(`+ 2)(2`+ 3) � 8(`+ 1)2(`+ 2)(2`+ 3)2 �� [j`(k(�0 � �))j`�2(k(�0 � �0)) + j`�2(k(�0 � �))j`(k(�0 � �0))℄�12l + 1 �2`(`� 1)(2`2 + 2`� 1)(2`� 1)2(2`+ 3) + 2`(`� 1)(2`� 1)(2 � 8`2(`� 1)(2`� 1)2 �+j`+2(k(�0 � �))j`+2(k(�0 � �0))�� 2(`+ 2)(`+ 1)(2`+ 1)(2`+ 3) � 4(`+ 1)(`+ 2)2(2`+ 1)(2`+ 3)2 + (`+ 1)2(`+ 2)2(2`+ 1)2(2`+ 3)2�+j`�2(k(�0 � �))j`�2(k(�0 � �0))�� 2`(`� 1)(2`� 1)(2`+ 1) � 4`(`� 1)2(2`� 1)2(2`+ 1) + `2(`� 1)2(2`� 1)2(2`+ 1)2�� (A.15)An analysis of the oeÆient of eah term reveals that the urly braket in thisexpression is just f� � �g = `(`� 1)(`+ 1)(`+ 2)�j`(k(�0 � �))(k(�0 � �))2 �2and the result is equivalent toC` = 2� Z dkk2jI(`; k)j2`(`� 1)(`+ 1)(`+ 2) ; (A.16)with I(`; k) = Z �0�de d� _H(�; k)j`((k(�0 � �))(k(�0 � �))2 : (A.17)
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Appendix BBoltzmann equation andpolarizationIn this appendix we derive the Boltzmann equation taking into aount polarization,and we write it as a hierarhy of equations using an orthonormal expansion in thespae of photon diretions. Up to the ollision term, the Eqs. (4.65), (4.66) and(4.67) are still valid. We �rst re-derive the ollision term taking into aount thepolarization dependene of Thomson sattering.Just before the proess of reombination during whih the uid desription ofradiation breaks down, the temperature is � 0:4 eV. The eletrons and nuleiare non-relativisti and the dominant ollision proess is non-relativisti Thomsonsattering.Thomson sattering depends on the polarization of the inoming radiation �eld.We desribe the polarization state of the radiation �eld by the Stokes parameters [18,20, 21, 19℄:For a harmoni eletro-magneti wave with eletri �eldE(x; t) = (�1E1 + �2E2) eipn � x�i!t ; (B.1)where n, �1 and �2 form an orthonormal basis and the omplex �eld amplitudes areparameterized as Ej = ajeiÆj , the Stokes parameters are given byI = a21 + a22 (B.2)Q = a21 � a22 (B.3)U = 2a1a2 os(Æ2 � Æ1) (B.4)V = 2a1a2 sin(Æ2 � Æ1): (B.5)I is the intensity of the wave (whose perturbationM has interested us so far), whileQ is a measure of the strength of linear polarization (the ratio of the prinipal axisof the polarization ellipse). U and V give phase information (the orientation ofthe ellipse). For non-relativisti Thomson sattering V is ompletely deoupled and(sine it vanishes at early times) is therefore never generated.62



As Q and U vanish in the bakground, perturbations annot ouple to them(sine suh terms are 2nd order), and the Liouville equations for Q and U beome(negleting sattering and spatial urvature)��(Q;U) + in`k`(Q;U) = 0: (B.6)The di�erential ross setion of Thomson sattering for a photon with inidentpolarization �(i) sattering into the outgoing polarization �(s) � �0 is [18℄d�d
 = 38��T ����(s)�(i)��2 : (B.7)
Figure B.1: De�nition of the angles and vetors for Thomson sattering in the (n; �2)plane.It is often onvenient to introdue the two `partial' intensities I1 � a21 = (I+Q)=2and I2 � a22 = (I � Q)=2. A wave sattered in the (n; �2) plane (see �gure B.1) byan angle � has the intensities I(s)1 = 3�T8� I(i)1I(s)2 = 3�T8� I(i)2 os2 �; (B.8)or, expressed in terms of the Stokes parameters,� I(s)Q(s) � = 3�T16� � 1 + os2 � sin2 �sin2 � 1 + os2 � �� I(i)Q(i) � : (B.9)A rotation in the (�1; �2) plane doesn't hange the intensity of the wave, but ithanges Q and U to Q0 = Q os(2�) + U sin(2�) (B.10)U 0 = �U sin(2�) +Q os(2�) : (B.11)To determine the ross setion that a given 'initial' wave(I(i); Q(i); U (i)) propagating in diretion n be sattered into a wave (I(s); Q(s); U (s))with diretion n0, we need to go through the following steps (we will use the plane(y; z) as referene plane, see �gure (B.2) for de�nitions of the angles and vetors):63



Figure B.2: De�nition of the angles and vetors for Thomson sattering in thegeneral ase. The polarization vetors are oriented like in �gure B.1.1. Rotate around n suh that the plane (n;n0) turns into the plane (nz). Oneneeds to apply the rotation (B.10,B.11) for � = � to the Stokes parameters.2. Rotate the new plane (n;n0) around z into the referene plane (y; z). Thisoperation does not inuene the inoming Stokes parameters..3. Now we are in the known ase of (B.8) and (B.9). Hene we an apply thesattering matrix.4. We then rotate the sattering plane bak around z into the old (z;n0) plane.This does not hange the sattered Stokes parameters.5. Finally we rotate around n0 by the angle �0 to reah the original state. Todo this, we have to apply the rotation matrix (B.10,B.11) again, but now for� = �0.Following the steps outlined above, we reover the sattering matrix in the basis(I1; I2; U) given in equations (B.13) - (B.16) (see also [19℄). V is ompletely de-oupled from the other parameters and follows an evolution whih is independentof the rest. Hene by starting with V (t � tde) = 0 it will stay zero and an benegleted. The sattering matrix P , whih determines the (non vanishing) satteredStokes parameters from the initial ones,0� I(s)1I(s)2U (s) 1A = �T4�P 0� I(i)1I(i)2U (i) 1A (B.12)
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is then given by P = hP (0) +p1� �2p1� �02P (1) + P (2)i ; (B.13)where P (0) = 340� 2(1� �2)(1� �02) + �2�02 �2 0�02 1 00 0 0 1A ; (B.14)P (1) = 34 0� 4��0 os(�0 � �) 0 2� sin(�0 � �)0 0 0�4�0 sin(�0 � �) 0 2 os(�0 � �) 1A ; (B.15)P (2) = 340� �2�02 os[2(�0 � �)℄ ��2 os[2(�0 � �)℄ �2�0 sin[2(�0 � �)℄��02 os[2(�0 � �)℄ os[2(�0 � �)℄ ��0 sin[2(�0 � �)℄�2��02 sin[2(�0 � �)℄ 2� sin[2(�0 � �)℄ 2��0 os[2(�0 � �)℄ 1A :(B.16)As we are in an isotropi situation, we will perform all the alulations in aspeial oordinate system with k k ẑ and n;n0 as in Fig. B.2. Clearly the results areindependent of this oordinate hoie.The matrix R onneting (I1; I2; U) with (I; Q; U) is given by0� I1I2U 1A = 0� 1=2(I +Q)1=2(I �Q)U 1A = 12 0� 1 1 01 �1 00 0 2 1A0� IQU 1A � R0� IQU 1A : (B.17)To alulate the ollision term inluding polarization , we hange into the (I1; I2)basis . For eah of the two intensities � 2 f1; 2g we then have the ollision termgiven by C[f (�)℄ = df (�)+d� � df (�)�d� ; (B.18)where f (�)+ and f (�)� denote the distribution of photons in the polarization state �sattered into respetively out of the beam due to Compton sattering.In the matter (baryon/eletron) rest frame, whih we indiate by a prime, weknow that df (�)0+d�0 (p;n) = a�Tne4� Z f (Æ)0(p0;n0)P �Æ (n;n0)d
0 ;where ne denotes the eletron number density and P �Æ is the 2�2 upper left orner ofthe normalized Thomson sattering matrix (B.13). In the baryon rest frame whihmoves with four veloity u, the photon energy is given byp0 = p�u� :65



We denote the photon energy with respet to a tetrad adapted to the sliing ofspae-time into f� = onstantg hyper{surfaes by p :p = p�n� ; with n = a�1[(1� A)�� +Bi�i℄ ;The lapse funtion and the shift vetor of the sliing are given by � = a(1 +A) and� = �Bi�i . In �rst order, p0 = ap(1 + A)� apniBi ;and to zeroth order pi = apni. Furthermore, the baryon four veloity has the formu0 = a�1(1� A) ; ui = u0vi up to �rst order. This yieldsp0 = p�u� = p(1 + ni(vi �Bi)) :Using this identity and performing the integration over photon energies, we obtain� d�(�)+ (n)d�0 = a��Tne �1 + 4ni(vi �Bi)+14� Z �(Æ)(n0)P �Æ (n;n0)d
0� :Photons whih are sattered leave the beam, with the probability given by theThomson ross setion (see e.g. [22℄)df (�)�dt0 = �Tnef (�)0(p0;n) ;so that we �nally haveC(�)0 = 4��a4 Z dp df (�)+dt0 � df (�)�dt0 ! p3 = 12�Tne[4ni(vi � Bi)� �(�)+ 14� Z �(Æ)(n0)P �Æ (n;n0)d
0℄ : (B.19)By setting C(M) = C(1) +C(2) and C(Q) = C(1)�C(2) we transform the ollisionintegral bak to the normal stokes parameters. The term for U has the same formas the one for Q, just with the orresponding matrix elements in the integral. TheBoltzmann equation then �nally beomes (setting E � (4M; Q; U) and for the atase, � = 0): _M+ i�kM = i�k(�� 	+ nm�(V )m ) + n`nm _Hm`+a�Tne ��M� i�Vb + n`!b;` + 14 Z d
0P �1 E 0�� (B.20)_Q + i�kQ = a�Tne ��Q + Z d
0P �2 E 0�� (B.21)_U + i�kU = a�Tne ��U + Z d
0P �3 E 0��; (B.22)66



where we have to use the sattering matrix transformed into the (M; Q; U) basis,P = PS + PV + PT with (B.23)PS = R�1P (0)R= 380� 3� �2 � �02 + 3�2�02 (1� 3�2)(1� �02) 0(1� �2)(1� 3�02) 3(1� �2)(1� �02) 00 0 0 1A (B.24)PV = p1� �2p1� �02R�1P (1)R= 32p1� �2p1� �020� ��0C ��0C ��S��0C ��0C ��S�0S �0S C 1A (B.25)PT = R�1P (2)R= 380� (1� �2)(1� �02)CT �(1� �2)(1 + �02)CT 2(1� �2)�0ST�(1 + �2)(1� �02)CT (1 + �2)(1 + �02)CT �2(1 + �2)�0ST�2�(1� �02)ST 2�(1 + �02)ST 4��0CT 1Awith C = os(�� �0), S = sin(�� �0) andCT = os(2(�� �0)), ST = sin(2(�� �0)). The parts PS; PV ; PT of P desribe thesattering of the salar, vetor and tensor ontribution to E respetively.The funtions M, Q and U depend on the wave vetor k, the photon diretionn and onformal time �. We hoose for eah k-mode a referene system with z-axisparallel to k. For salar perturbations we ahieve in this way azimuthal symmetry| the right-hand side of the Boltzmann equation and therefore also the brightnessM(S) depend only on � = (k̂�n) and an be expanded in Legendre polynomials. Theright-hand side of the Boltzmann equation also determines the azimuthal dependeneof vetor and tensor perturbations. One an ontinue with this approah, but theresulting equations for Q and U and espeially also their power spetra dependexpliitly on the oordinate system. Therefore, we prefer an approah whih isinherently ovariant under rotation.B.1 Eletri and magneti polarizationThe Stokes parameters expliitly depend on the oordinate system, and Eqs. (B.21)and (B.22) transform rather ompliated under rotations of the oordinate system.A method to haraterize CMB polarization due to non-relativisti Thomson sat-tering whih is more onvenient than the Stokes parameters sine its transformationproperties are very simple has been developed some years ago [47, 48, 49, 51, 52℄.A detailed derivation of this method goes beyond the sope of this report. Here wejust repeat the de�nitions and the main results. We setT = (M; 14[Q + iU ℄; 14[Q� iU ℄) (B.26)67



In terms of this vetor the ollision integral above an we written (in vetor form)as C[T ℄ = a�Tne[� T + � 14� Z d
0M0 + (n � vb); 0; 0�+ 110 2Xm=�2 Z d
0P (m)(n;n0)T 0℄ (B.27)From Eqs. (B.13) to (B.17) one an determine the sattering matrix for the vetorT P (m) = 0B� Y m02 Y m2 �q32 2Y m02 Y m2 �q32 �2Y m02 Y m2�p6Y m02 2Y m2 3 2Y m02 2Y m2 3 �2Y m02 2Y m2�p6Y m02 �2Y m2 3 2Y m02 �2Y m2 3 �2Y m02 �2Y m2 1CA (B.28)where sY m0l = sY m�l (n0) and sY ml are the spin-weighted spherial harmonis [50, 51℄.We now deompose the Fourier omponents of the temperature anisotropy Mand the polarization variables E and B asM = X̀ 2Xm=�2M(m)` 0Gm̀; (B.29)14(Q� iU) = X̀ 2Xm=�2(E(m)` � iB(m)` )2Gm̀(n): (B.30)Here m = 0 is the salar mode, m = �1 are the vetor and m = �2 are the tensormodes. The funtions sGm̀ are losely related to the spin weighted harmonis sY m` :sGm̀(n) = (�i)`r 4�2`+ 1sY m` (n)The evolution equations in term of these variables an be given in the followingompat form [52℄ _M(m)` � k � 0�m̀2`� 1M(m)`�1 � 0�m̀+12`+ 3M(m)`+1� =�ne�TaM(m)` + S(m)` (` � m) (B.31)_E(m)` � k � 2�m̀2`� 1E(m)`�1 � 2m`(`+ 1)B(m)` � 2�m̀+12`+ 3E(m)`+1� =�ne�Ta[E(m)` +p6C(m)Æ`;2 (B.32)_B(m)` � k � 2�m̀2`� 1B(m)`�1 + 2m`(`+ 1)E(m)` � 2�m̀+12`+ 3B(m)`+1� =�ne�TaB(m)` : (B.33)68



where we have setS(0)0 = ne�TaM(0)0 ; S(0)1 = ne�TaVb + k(	� �);S(0)2 = ne�TaC(0); S(1)1 = ne�Ta!b;S(1)2 = ne�TaC(1) + k�; S(2)2 = ne�TaC(2) + _H (B.34)and C(m) = 110 [M(m)2 �p6E(m)2 ℄. The oupling oeÆients ares�m̀ =r(`2 �m2)(`2 � s2)`2 :Note that for salar perturbations, m = 0, B-polarization is not soured and wehave B(0)` � 0.Finally we want to onnet the intensitiesM(m)` with the more familiar expansionof the salar (S), vetor (V ) and tensor (T ) ontributions to the brightness funtionin terms of Legendre polynomials. Usually one setsM =M(S) +M(V ) +M(T ) :HereM(S) only depends on � = (n �k)=k and the n-dependene ofM(V ) andM(T )an be written asM(V )(�; �) = p1��2 hM(V )1 (�) os�+M(V )2 (�) sin�i (B.35)M(T )(�; �) = (1� �2) hM(T )+ os(2�) +M(T )� sin(2�)i ; (B.36)where � is the azimuthal angle in the plane normal to k. Eah of the funtionsM(S;V;T )� (�) is now expanded in Legendre polynomialsM(S;V;T )� = X̀(�i)`(2`+ 1)�(S;V;T )�;` P`(�) : (B.37)The oeÆients �(S;V;T )�;` are then related to M(m)` via the identitiesM(0)` = (2`+ 1)�(S)` (B.38)M(�1)` = p`(`+ 1) h�(V )2;`+1 � i�(V )1;`+1 + �(V )1;`�1 � i�(V )1;`�1i (B.39)M(�2)` = �s(`+ 2)!(`� 2)! � 12`+ 3�(T )"#;`+2 + 2(2`+ 1)(2`� 1)(2`+ 3)�(T )"#;`+ 12`� 1�(T )"#;`�2� ; (B.40)where �"#;` = �+` � i��` :We do not repeat this orrespondene for the Stokes parameters Q and U sineit is rather ompliated and not very useful as it depends on the oordinate systemhosen. 69



B.2 Power spetraIn the previous appendix and in Chapter 4 we have derived the expression for theCMB anisotropy power spetrum for salar and tensor perturbations. Here we givethe general expression for salar, vetor and tensor utuations, polarizations andross orrelations. To make ontat with the results derived before, one has touse Eqs. (B.37,B.38) and (B.40) and neglet the ollision term in the Boltzmannequation.We expand the present CMB anisotropies and polarization in spherial harmon-is: �T (n; �0)=T0 =P`m a`mY m` (n). The oeÆients a`m are random variables withzero mean and rotationally invariant varianes, C` � hj a`m j2i. The orrelationfuntion of the anisotropy pattern then has the standard expression:�ÆTT0 (n1)ÆTT0 (n2)� = 14� X̀(2`+ 1)C`P`(os �) (B.41)where os � = n1 � n2 and h� � �i denotes ensemble average. We use the Fouriertransform normalization f̂(k) = 1V Z f(x) exp(ik � x)d3x ; (B.42)with some normalization volume V . Using statistial homogeneity we have�ÆTT0 (n1)ÆTT0 (n2)� = 1V Z d3x�ÆTT0 (x;n1)ÆTT0 (x;n2)�= 1(2�)3 Z d3k�ÆTT0 (k;n1)ÆTT0 (k;n2)� : (B.43)Inserting our ansatz (B.37) for ÆTT0 =M, and using the addition theorem for spherialharmonis,P`(n1 � n2) = 4�2`+1Pm Y �̀m(n1)Y`m(n2), we �nd�ÆTT0 (n1)ÆTT0 (n2)� = 2� X`;`0;m;m0(�1)(`�`0)Y`m(n1)Y �̀0m0(n2)� Z k2dkd
k̂Y �̀m(k̂)Y`0m0(k̂)h�`��̀0i(k)= 12�2 X̀(2`+ 1)P`(n1 � n2) Z k2dkh�`��̀i(k) ; (B.44)from whih we onludeCMM;(S)` = 2� Z k2dkhj�(S)` (t0; k)j2i ; (B.45)70



where the supersript (S) indiates that Eq. (B.45) gives the ontribution from salarperturbations and MM means that it is the ontribution to the intensity perturba-tion.The QQ, UU ,MQ,MU and QU orrelators depend with the Stokes parameterson the partiular oordinate system hosen. It is muh more onvenient to expressthe polarization power spetra in terms of the variables E and B whih are indepen-dent of the oordinate system. Furthermore, sine B is parity odd, its orrelatorswith M and E vanishes. One �nds the simple general expression [52℄(2`+ 1)2CXY (m)` = 2nm� Z k2dkX(m)` Y (m)�` ; (B.46)where nm = 1 for m = 0 and nm = 2 for m = 1; 2, aounting for the number ofmodes. Here X and Y run over M; E and B.
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