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Chapter 1Introdu
tionIn this review I would like to show the importan
e and the power of measurementsof anisotropies in the 
osmi
 mi
rowave ba
kground (CMB).CMB anisotropies are so useful mainly be
ause they are small: For a given model,they 
an be 
al
ulated within linear perturbation theory, to very good approxima-tion. They are in
uen
ed only little by the non-linear pro
esses of galaxy formation.This allows us to 
ompute them very pre
isely (to about 1%, whi
h is high pre
i-sion for present 
osmologi
al standards). For given initial 
u
tuations, the resultdepends only on the 
osmologi
al parameters. If we 
an measure CMB anisotropiesto a pre
ision of, say 1%, this allows us therefore to determine 
osmologi
al parame-ters to about 1%. An unpre
edented possibility! Consider that at present, after thework of two generations, e.g. the Hubble parameter is known only to about 25%,the baryon density is known to about 10% and the un
ertainties in the dark matterdensity, the 
osmologi
al 
onstant and the spa
e 
urvature are even larger.This somewhat too optimisti
 
on
lusion has however three 
aveats whi
h wewant to mention before entering the subje
t of this review.1. Initial 
onditions: The result depends on the model for the initial 
u
tu-ations. The simplest in
ationary s
enarios whi
h lead to adiabati
 perturba-tions, 
ontain in general three to four free parameters, like the ratio of tensor tos
alar perturbations (r) and the spe
tral index of the s
alar and tensor pertur-bations (nS and nT ), so a few more parameters need to be �tted additionallyto the data.More generi
 initial 
onditions allow for at least four additional iso
urvaturemodes with arbitrary (anti-)
orrelations. The initial 
onditions are then givenby a 5� 5 positive semi-de�nite matrix, and, in prin
iple, several spe
tral in-di
es [1, 2℄. In most of this review we shall ignore this possibility and assumethat initial perturbations are purely adiabati
. Even if iso
urvature 
onstribu-tions 
annot be ex
luded, this most simple model is in good agreement withthe present data.If the perturbations are generated by a
tive sour
es like, e.g., topologi
al de-



fe
ts, then the modeling is far more 
ompli
ated, and the analysis is too dif-ferent to be in
luded in this review.2. Degenera
y: Even though we 
an measure over 1000 independent modes(C`'s) of the CMB anisotropy spe
trum, there are 
ertain 
ombinations of the
osmologi
al parameters that lead to degenera
ies in the CMB spe
trum. Theresult is, e.g., very sensitive to the sum 
matter+
�, but not to the di�eren
e(\
osmi
 
onfusion").3. Cosmi
 varian
e: Sin
e the 
u
tuations are 
reated by random pro
esses,we 
an only 
al
ulate expe
tation values. Yet we have only one universe totake measurements (\
osmi
 varian
e"). For small{s
ale 
u
tuations we 
anin general assume that the expe
tation value over ensembles of universes is thesame as a spatial average (a kind of ergodi
 hypothesis), but for large s
aleswe 
an't es
ape large statisti
al errors.1.1 Friedmann-Lemâ�tre universesFriedmann-Lemâ�tre universes are homogeneous and isotropi
 solutions of Einstein'sequations. The hyper-surfa
es of 
onstant time are homogeneous and isotropi
, i.e.,spa
es of 
onstant 
urvature with metri
 a2(�)
ijdxidxj, where 
ij is the metri
 ofa spa
e with 
onstant 
urvature �. This metri
 
an be expressed in the form
ijdxidxj = dr2 + �2(r) �d#2 + sin2#d'2� (1.1)�2(r) = 8<: r2 ; � = 0sin2 r ; � = 1sinh2 r ; � = �1; (1.2)where we have res
aled a(�) su
h that � = �1 or 0. (With this normalization thes
ale fa
tor a has the dimension of a length and � and r are dimensionless for � 6= 0.)The four-dimensional metri
 is then of the formg��dx�dx� = �a2(�)d�2 + a2(�)
ijdxidxj: (1.3)Here � is 
alled the 
onformal time.Einstein's equations redu
e to ordinary di�erential equations for the fun
tiona(�) (with _� d=d�):� _aa�2 + � = 8�G3 a2� + 13�a2 (1.4)� _aa�� = �4�G3 a2 (� + 3p) + 13�a2 = ��aa�� � _aa�2 ; (1.5)3



where � = �T 00 , p = T ii (no sum!) and all other 
omponents of the energy momen-tum tensor have to vanish by the requirement of isotropy and homogeneity. � is the
osmologi
al 
onstant.Energy momentum \
onservation" (whi
h is also a 
onsequen
e of (1.4) and (1.5)due to the 
ontra
ted Bian
hi identity) reads_� = �3� _aa� (�+ p): (1.6)After these preliminaries (whi
h we suppose to be known to the audien
e) letus answer the following question: Given an obje
t with 
omoving diameter �1 at aredshift z(�) = (a0=a) � 1. Under whi
h angle #(�; z) do we see this obje
t todayand how does this angle depend on 
� and 
�?We de�ne 
m =  8�G�a23 � _aa�2 !�=�0
� = �a23 � _aa�2 ������=�0 (1.7)
� = ��� _aa�2 ������=�0 ;where the index 0 indi
ates the value of a given variable today. Friedmann's equation(1.4) then requires 1 = 
m + 
� + 
�: (1.8)Ba
k to our problem: Without loss of generality we set r = 0 at our position
Figure 1.1: The two ends of the obje
t emit a 
ash simultaneously from A and B at z1whi
h rea
hes us today.and thus r = r1 = �0� �1 at the position of the 
ashes, A and B at redshift z1. If �denotes the 
omoving ar
 length between A and B we have � = �(r1)# = �(�0��1)#,i.e. # = ��(�0 � �1) : (1.9)1or physi
al size a(�)� = d 4



It remains to 
al
ulate (�0 � �1)(z1).Note that in the 
ase � = 0 we 
an still normalize the s
ale fa
tor a as we want,and it is 
onvenient to 
hoose a0 = 1, so that 
omoving s
ales today be
ome physi
als
ales. However, for � 6= 0, we have already normalized a su
h that � = �1 and� = sin r or sinh r. We have in prin
iple no normalization 
onstant left.From the Friedmann equation we have_a2 = 8�G3 a4�+ 13�a4 � �a2: (1.10)We assume that � is a 
ombination of \dust" (
old, non{relativisti
 matter) withpd = 0 and radiation with prad = 1=3�rad.From (1.6) we �nd that �rad / a�4 and �d / a�3. Therefore, withH0 = � _aa2 � (�0),we de�ne 8�G3 a4� = H20 �a40
rad + 
daa30� (1.11)13�a4 = H20
�a4 (1.12)��a2 = H20
�a2a20 : (1.13)The Friedmann equation then impliesdad� = H0a20�
rad + aa0
d + a4a40
� + a2a20
�� 12 (1.14)so that�0 � �1 = 1H0a0 Z z10 dz[
rad(z + 1)4 + 
d(z + 1)3 + 
� + 
�(z + 1)2℄ 12 : (1.15)Here we have introdu
ed the 
osmologi
al redshift z + 1 = a0=a. (In prin
iple we
ould of 
ourse also add other matter 
omponents like, e.g. \quintessen
e" [9℄, whi
hwould lead to a somewhat di�erent form of the integral (1.15), but for de�niteness,we remain with dust, radiation and a 
osmologi
al 
onstant.)In general, this integral has to be solved numeri
ally. It determines the angle#(�; z1) under whi
h an obje
t with 
omoving size � at z1 is seen.On the other hand, the angular diameter distan
e to an obje
t of physi
al size dseen under angle # is given by �0 � �1 = r1 = ��1 � da1#�. If we are able to measurethe redshift and the 
omoving angular diameter distan
e of a 
ertain 
lass of obje
ts
omparing with Eq. (1.15) allows in prin
iple to determine the parameters 
m, 
�,
� and H0.We have ��H20a20 = 
� ) H0a0 = 1pj
�j for 
� 6= 0.Observationally we know 10�5 < 
rad � 10�4 as well as 0:1 � 
d <� 1, j
�j <� 1and j
�j <� 1. 5



Figure 1.2: The fun
tion �(�0 � �1) as a fun
tion of the redshift z for di�erent valuesof the 
osmologi
al parameters 
� (left, with 
�=0) and 
� (right, with 
�=0), namely�0:8 [dotted℄, �0:3 [short{dashed℄, 0 [solid℄, 0:3 [dot{dashed℄, 0:8 [long{dashed℄.If we are interested in small redshifts, z1 <� 10, we may safely negle
t 
rad. Inthis region, Eq. (1.15) is very sensitive to 
� and provides an ex
ellent mean to
onstrain the 
osmologi
al 
onstant.At high redshift, z1 >� 1000, negle
ting radiation is no longer a good approxima-tion.We shall later need the opening angle of the horizon distan
e,#H(z1) = �1�(�0 � �1) ; (1.16)�1 = 1H0a0 Z 1z1 dz[
rad(z + 1)4 + 
d(z + 1)3 + 
� + 
�(z + 1)2℄ 12 : (1.17)(Clearly this integral diverges if 
rad = 
d = 0. This is exa
tly what happens duringan in
ationary period and leads there to the solution of the horizon problem.)The value of the radiation density is well known. For photons plus three sortsof massless neutrinos we have�rad = 7:94� 10�34(T0=2:737K)4g=
m3 :This gives 
radh2 = 4:2 � 10�5(T0=2:737K)4 ; (1.18)H0 = 100h kmsMp
 : (1.19)Negle
ting 
rad, for 
� = 0 and small 
urvature, 0 < j
�j � 
d at high enoughredshift, z1 � 10, one has �0 � �1 ' 2pj
�j=
d = 2=(H0a0p
d). This yields6



Figure 1.3: #H(z1) (in degrees) for di�erent values of the 
osmologi
al parameters 
�and 
� the line styles are as in Fig. 1.2.#(�; z1) ' p
dH0a0�=2 = 12p
dH0�phys=(z1+1), where �phys = a1� is the physi
als
ale 
orresponding to 
omoving size �.1.2 Re
ombination and the 
osmi
 mi
rowave ba
k-ground (CMB)During its expansion, the universe 
ools adiabati
ally. At early times, it is domi-nated by a thermal radiation ba
kground with � = C=a4 = ge�aSBT 4,2 and we �ndthat T / a�1. Here geff = nb+7=8nF is the e�e
tive number of degrees of freedom,bosons 
ounting as 1 and fermions 
ounting as 7=8 (see e.g. [10℄). At temperaturesbelow 0:5MeV only neutrinos and photons are still relativisti
 leading to the densityparameter given in Eq. (1.18). ( Neutrinos have a somewhat lower temperature thanphotons, T� = (4=11)1=3T , sin
e they have already dropped out of thermal equilib-rium at T ' 1MeV, before e� annihilation whi
h therefore reheats the photons butnot the neutrinos, see e.g. [10, 11℄.)The photons obey a Plan
k distribution,f(�) = 1e�=T � 1 : (1.20)At a temperature of about T � 4000K � 0:4eV, the number density of photonswith energies above the hydrogen ionization energy drops below the baryon density2We will use units with ~ = 
 = kB = 1 throughout this report. The Stefan{Boltzmann 
onstantis then given by aSB = �2k4B=(60~3
2) = �2=60. 7



of the universe, and the protons begin to (re-)
ombine to neutral hydrogen. (Heliumhas already re
ombined earlier.) Photons and baryons are tightly 
oupled before (re-)
ombination by non{relativisti
 Thomson s
attering of ele
trons. During re
ombi-nation the free ele
tron density drops sharply and the mean free path of the photonsgrows larger than the Hubble s
ale. At the temperature Tde
 � 3000K (
orrespond-ing to the redshift zde
 ' 1100 and the physi
al time tde
 = a0�de
 ' 105years)photons be
ome free and the universe be
omes transparent.After re
ombination, the photon distribution evolves a

ording to Liouville'sequation (geodesi
 spray):p���f � �i��p�p� �f�pi � LXgf = 0; (1.21)where i = 1; 2; 3. Sin
e the photons are massless, jpj2 = P3i=1 pipi = (p0)2 . Herep0 is the 0-
omponent of the momentum 4-ve
tor in 
onformal time. Isotropy of thedistribution implies that f depends on pi only via jpj = p0, and so�f�pi = �p0�pi �f�p0 = pip0 �f�p0 : (1.22)In a Friedmann universe (also if � 6= 0!) we �nd for p�p� = a2 (�(p0)2 + p2) = 0[exer
ise!℄ pi�if � �i��p�p�pi 1p0 �f�p0 = �2(p0)2� _aa2� �f�p0 : (1.23)Inserting this result into (1.21) leads to��f � 2p0� _aa� �f�p0 = 0; (1.24)whi
h is satis�ed by an arbitrary fun
tion f = f(p0a2). Hen
e the distributionof free{streaming photons 
hanges just by redshifting the physi
al energy � = ap0or the physi
al momentum p = ajpj = �. Therefore, setting T / a�1 even afterre
ombination, the bla
kbody shape of the photon distribution remains un
hanged.Note however that after re
ombination the photons are no longer in thermalequilibrium and the T in the Plan
k distribution is not a temperature in the thermo-dynami
al sense but merely a parameter in the photon distribution fun
tion.The bla
kbody spe
trum of these 
osmi
 photons whi
h are 
alled the \
os-mi
 mi
rowave ba
kground" (CMB) is extremely well veri�ed observationally (seeFig. 1.4). The limits on deviations are often parameterized in terms of three param-eters: The 
hemi
al potential �, the Compton y parameter (whi
h quanti�es a wellde�ned 
hange in the spe
trum arising from intera
tions with a non{relativisti
 ele
-tron gas at a di�erent temperature, see e.g. [11℄) and Y� (des
ribing a 
ontaminationby free-free emission).The present limits on these parameters are (at 95% CL, [7℄)j�j < 9 � 10�5; jyj < 1:2 � 10�5; jY� j < 1:9 � 10�5: (1.25)8



Figure 1.4: Spe
trum of the 
osmi
 ba
kground radiation. The graph on the left showsthe measurements of the FIRAS experiment on COBE (the verti
al bars), overlaid by abla
kbody spe
trum at a temperature of 2.73 K. The error bars are 20 times magni�ed!The image on the right shows a larger number of measurements. The FIRAS data isrepresented by the fat line around the peak of the spe
trum (from Peebles [11℄).The CMB Photons have not only a very thermal spe
trum, but they are alsodistributed very isotropi
ally, apart from a dipole whi
h is (most probably) simplydue to our motion relative to the surfa
e of last s
attering:An observer moving with velo
ity v relative to a sour
e emitting a photon withproper momentum p = ��n sees this photon redshifted with frequen
y�0 = 
� (1� nv) ; (1.26)where 
 = 1p1�v2 is the relativisti
 
-fa
tor. For an isotropi
 emission of photons
oming from all dire
tions n this leads to a dipole anisotropy in �rst order in v.This dipole anisotropy, whi
h is of the order of��TT �dipole ' 10�3has already been dis
overed in the 70ties [12, 13℄. Interpreting it as due to ourmotion with respe
t to the last s
attering surfa
e implies a velo
ity for the solar-system bary-
enter of v = 371� 0:5 km=s at 68% CL ([7℄).The COBE3 DMR experiment (Di�erential Mi
rowave Radiometer) has found
u
tuations of vuut*��TT �2+ � 10�5 (1.27)on all angular s
ales � � 7Æ [8℄. On smaller angular s
ales many experiments havefound 
u
tuations (we shall des
ribe the experimental results in more detail later),but all of them are <� 10�4.3Cosmi
 Ba
kground Explorer, NASA satellite laun
hed 1990.9



As we shall see later, the CMB 
u
tuations on large s
ales provide a measurefor the deviation of the geometry from the Friedmann-Lemâ�tre one. The geometryperturbations are thus small and we may 
al
ulate their e�e
ts by linear perturbationtheory. On smaller s
ales, �T=T re
e
ts the 
u
tuations in the energy density inthe baryon/radiation plasma prior to re
ombination. Their amplitude is just aboutright to allow the formation of the presently observed non{linear stru
tures (likegalaxies, 
lusters, et
.) out of small initial 
u
tuations by gravitational instability.These �ndings strongly support the hypothesis whi
h we assume here, namelythat the large s
ale stru
ture (i.e. galaxy distribution) observed in the universeformed by gravitational instability from relatively small (� 10�4�10�5) initial 
u
-tuations. As we shall see, su
h initial 
u
tuations leave an interesting \�ngerprint"on the 
osmi
 mi
rowave ba
kground.

10



Chapter 2Perturbation TheoryThe tool for the analysis of CMB anisotropies is 
osmologi
al perturbation theory.We spend therefore some time on this subje
t, espe
ially on the fundamental level.On
e all the variables are de�ned, we will be rather brief in the derivation of thebasi
 perturbation equations. First of all, be
ause these derivations are in generalnot very illuminating and se
ondly be
ause nowadays all of you 
an obtain themvery easily by setting g�� = �g�� + "a2h�� (2.1)(�g�� being the unperturbed Friedmann metri
) and asking Mathemati
a or Mapleto 
al
ulate the Einstein Tensor using the 
ondition "2 = 0. We 
onventionally set(absorbing the \smallness" parameter " into h��)g�� = �g�� + a2h�� ; �g00 = �a2; �gij = a2
ij jh�� j � 1T �� = T �� + ��� ; T 00 = ���; T ij = �pÆij j��� j=��� 1: (2.2)2.1 Gauge transformation, gauge invarian
eThe �rst fundamental problem we want to dis
uss is the problem of '
hoi
e of gauge'in 
osmologi
al perturbation theory:For linear perturbation theory to apply, the spa
etime manifoldM with metri
g and the energy momentum tensor T of the real, observable universe must be insome sense 
lose to a Friedmann universe, i.e., the manifoldM with a Robertson{Walker metri
 �g and a homogeneous and isotropi
 energy momentum tensor T .It is an interesting, non{trivial unsolved problem how to 
onstru
t �g and T fromthe physi
al �elds g and T in pra
ti
e. There are two main diÆ
ulties: Spatialaveraging pro
edures depend on the 
hoi
e of a hyper{surfa
e of 
onstant time anddo not 
ommute with derivatives, so that averaged �elds �g and T will in generalnot satisfy Einstein's equations. Se
ondly, averaging is in pra
ti
e impossible oversuper{horizon s
ales. 11



Even though we 
annot give a 
onstru
tive pres
ription, we now assume thatthere exists an averaging pro
edure whi
h leads to a Friedmann universe with spa-tially averaged tensor �elds Q, su
h that the deviations (T���T ��)=maxf��gfjT��jgand (g���g��)=maxf��gfg��g are small, and �g and T satisfy Friedmann's equations.Let us 
all su
h an averaging pro
edure 'admissible'. There may be many di�er-ent admissible averaging pro
edures (e.g. over a di�erent hyper{surfa
e) leading toslightly di�erent Friedmann ba
kgrounds. But sin
e jg � �gj is small of order �, thedi�eren
e of the two Friedmann ba
kgrounds must also be small of order � and we
an regard it as part of the perturbation.We 
onsider now a �xed admissible Friedmann ba
kground (�g; �T ) as 
hosen.Sin
e the theory is invariant under di�eomorphisms (
oordinate transformations),the perturbations are not unique. For an arbitrary di�eomorphism � and its pullba
k��, the two metri
s g and ��(g) des
ribe the same geometry. Sin
e we have 
hosenthe ba
kground metri
 �g we only allow di�eomorphisms whi
h leave �g invarianti.e. whi
h deviate only in �rst order form the identity. Su
h an 'in�nitesimal'isomorphism 
an be represented as the in�nitesimal 
ow of a ve
tor �eld X, � = �X� .Remember the de�nition of the 
ow: For the integral 
urve 
x(s) of X with startingpoint x, i.e., 
x(s = 0) = x we have �Xs (x) = 
x(s). In terms of the ve
tor �eld X,to �rst order in �, its pullba
k is then of the form�� = id+ �LX(LX denotes the Lie derivative in dire
tion X). The transformation g ! ��(g) isequivalent to �g + �a2h ! �g + �(a2h + LX�g), i.e. under an 'in�nitesimal 
oordinatetransformation' the metri
 perturbation h transforms ash! h + a�2LX�g : (2.3)In the 
ontext of 
osmologi
al perturbation theory, in�nitesimal 
oordinate transfor-mations are 
alled 'gauge transformations'. The perturbation of a arbitrary tensor�eld Q = �Q+ �Q(1) obeys the gauge transformation lawQ(1) ! Q(1) + LX �Q : (2.4)Sin
e every ve
tor �eld X generates a gauge transformation � = �X� , we 
an
on
lude that only perturbations of tensor �elds with LXQ = 0 for all ve
tor �eldsX, i.e., with vanishing (or 
onstant) 'ba
kground 
ontribution' are gauge invariant.This simple result is sometimes referred to as the 'Stewart-Walker Lemma' [3℄.The gauge dependen
e of perturbations has 
aused many 
ontroversies in the lit-erature, sin
e it is often diÆ
ult to extra
t the physi
al meaning of gauge dependentperturbations, espe
ially on super{horizon s
ales. This has led to the developmentof gauge invariant perturbation theory whi
h we are going to use throughout thisreview. The advantage of the gauge{invariant formalism is that the variables usedhave simple geometri
 and physi
al meanings and are not plagued by gauge modes.12



Although the derivation requires somewhat more work, the �nal system of pertur-bation equations is usually simple and well suited for numeri
al treatment. Weshall also see, that on sub-horizon s
ales, the gauge invariant matter perturbationsvariables approa
h the usual, gauge dependent ones. Sin
e one of the gauge invari-ant geometri
al perturbation variables 
orresponds to the Newtonian potential, theNewtonian limit 
an be performed easily.First we note that sin
e all relativisti
 equations are 
ovariant (i.e. 
an be writtenin the form Q = 0 for some tensor �eld Q), it is always possible to express the
orresponding perturbation equations in terms of gauge invariant variables [4, 5, 6℄.2.2 Gauge invariant perturbation variablesSin
e the f� = 
onstg hyper-surfa
es are homogeneous and isotropi
, it is sensibleto perform a harmoni
 analysis: A (spatial) tensor �eld Q on these hyper-surfa
es
an be de
omposed into 
omponents whi
h transform irredu
ibly under translationsand rotations. All su
h 
omponents evolve independently. For a s
alar quantity fin the 
ase � = 0 this is nothing else than its Fourier de
omposition:f(x; �) = Z d3kf̂(k)eikx: (2.5)(The exponentials Yk(x) = eikx are the unitary irredu
ible representations of theEu
lidean translation group.) For � = 1 su
h a de
omposition also exists, but thevalues k are dis
rete, k2 = `(` + 2) and for � = �1, they are bounded from below,k2 > 1. Of 
ourse, the fun
tions Yk are di�erent for � 6= 0.They are always the 
omplete orthogonal set of eigenfun
tions of the Lapla
ian,�Y (S) = �k2Y (S): (2.6)In addition, a tensorial variable (at �xed position x) 
an be de
omposed intoirredu
ible 
omponents under the rotation group SO(3).For a ve
tor �eld, this is its de
omposition into a gradient and a rotation,Vi = ri'+Bi; (2.7)where Biji = 0; (2.8)where we used Xji to denote the three{dimensional 
ovariant derivative of X. ' isthe spin 0 and B is the spin 1 
omponent of V.For a symmetri
 tensor �eld we haveHij = HL
ij + �rirj � 13�
ij�HT + 12 �H(V )ijj +H(V )jji �+H(T )ij ; (2.9)13



where H(V )jii = H(T )ii = H(T )jijj = 0: (2.10)Here HL and HT are spin 0 
omponents, H(V )i is a spin 1 
omponent and H(T )ij is aspin 2 
omponent.We shall not need higher tensors (or spinors). As a basis for ve
tor and tensormodes we use the ve
tor and tensor type eigenfun
tions to the Lapla
ian,�Y (V )j = �k2Y (V )j (2.11)and�Y (T )ji = �k2Y (T )ji ; (2.12)where Y (V )j is a transverse ve
tor, Y (V )jjj = 0 and Y (T )ji is a symmetri
 transversetra
eless tensor, Y (T )jj = Y (T )jiji = 0.A

ording to Eqs. (2.7) and (2.9) we 
an 
onstru
t s
alar type ve
tors and tensorsand ve
tor type tensors. To this goal we de�neY (S)j � �k�1Y (S)jj (2.13)Y (S)ij � k�2Y (S)jij + 13
ijY (S) (2.14)Y (V )ij � � 12k (Y (V )ijj + Y (V )jji ) : (2.15)In the following we shall extensively use this de
omposition and write down theperturbation equations for a given mode k.The de
omposition of a ve
tor �eld is then of the formBi = BY (S)i +B(V )Y (V )i : (2.16)The de
omposition of a tensor �eld is given by (
ompare 2.9)Hij = HLY (S)
ij +HTY (S)ij +H(V )Y (V )ij +H(T )Y (T )ij ; (2.17)where B, B(V )i , HL, HT , H(V )i and H(T )ij are fun
tions of � and k2.2.1 Metri
 perturbationsPerturbations of the metri
 are of the formg�� = �g�� + a2h��: (2.18)We parameterize them ash��dx�dx� = �2Ad�2 � 2Bid�dxi + 2Hijdxidxj; (2.19)14



and we de
ompose the perturbation variables Bi and Hij a

ording to (2.16) and(2.17).Let us 
onsider the behavior of h�� under gauge transformations. We set theve
tor �eld de�ning the gauge transformation toX = T�� + Li�i: (2.20)Using simple identities from di�erential geometry like LX(df) = d(LXf) and(LX
)ij = Xijj +Xjji, we obtainLX�g = a2 ��2� _aaT + _T� d�2 + 2� _Li � T;i� d�dxi+�2 _aaT
ij + Lijj + Ljji� dxidxj� : (2.21)Comparing this with (2.19) and using (2.3) we obtain the following behavior ofour perturbation variables under gauge transformations (de
omposing Li = LY (S)i +L(V )Y (V )i ): A ! A+ _aaT + _T (2.22)B ! B � _L� kT (2.23)B(V ) ! B(V ) � _L(V ) (2.24)HL ! HL + _aaT + k3L (2.25)HT ! HT � kL (2.26)H(V ) ! H(V ) � kL(V ) (2.27)H(T ) ! H(T ): (2.28)Two s
alar and one ve
tor variable 
an be brought to disappear by gauge transfor-mations.One often 
hooses kL = HT and T = B + _L, so that the variables HT and Bvanish. In this gauge (longitudinal gauge), s
alar perturbations of the metri
 are ofthe form (HT = B = 0): h(S)�� = �2	d�2 + 2�
ijdxidxj: (2.29)	 and � are the so 
alled Bardeen potentials. In general they are de�ned by	 = A� _aak�1� � k�1 _� (2.30)� = HL + 13HT � _aak�1� (2.31)with � = k�1 _HT � B. A short 
al
ulation using Eqs. (2.22) to (2.26) shows thatthey are gauge invariant. 15



For ve
tor perturbations it is 
onvenient to set kL(V ) = H(V ) so that H(V )vanishes and we have h(V )�� dx�dx� = 2�(V )Y (V )i d�dxi: (2.32)We shall 
all this gauge the \ve
tor gauge". In general �(V ) = k�1 _H(V ) � B(V ) isgauge invariant1.Clearly there are no tensorial (spin 2) gauge transformation and hen
e H(T )ij isgauge invariant.2.2.2 Perturbations of the energy momentum tensorLet T �� = T ��+��� be the full energy momentum tensor. We de�ne its energy density� and its energy 
ow 4-ve
tor u as the time-like eigenvalue and eigenve
tor of T �� :T �� u� = ��u�; u2 = �1: (2.33)We then de�ne their perturbations by� = �� (1 + Æ) ; u = u0�t + ui�i: (2.34)u0 is �xed by the normalization 
ondition,u0 = 1a(1� A): (2.35)We further set ui = 1avi = vY (S)i + v(V )Y (V )i: (2.36)We de�ne P �� � u�u� + Æ�� , the proje
tion tensor onto the part of tangent spa
enormal to u and set the stress tensor��� = P ��P ��T ��: (2.37)In the unperturbed 
ase we have � 00 = 0; � ij = �pÆij. In
luding perturbations, to�rst order we still obtain � 00 = � 0i = � i0 = 0: (2.38)But � ij 
ontains in general perturbations. We set� ij = �p �(1 + �L) Æij +�ij� ; with �ii = 0: (2.39)We de
ompose �ij as�ij = �(S)Y (S) ij +�(V )Y (V ) ij +�(T )Y (T ) ij : (2.40)We shall not derive the gauge transformation properties in detail, but just statesome results whi
h 
an be obtained as an exer
ise (see also [5℄):1Y (V )ij �(V ) is the shear of the hyper-surfa
es of 
onstant time.16



� Of the variables de�ned above only the �(S;V;T ) are gauge invariant; they de-s
ribe the anisotropi
 stress tensor, ��� = ��� � 1=3��� Æ�� . They are gauge in-variant due to the Stewart{Walker lemma, sin
e �� = 0. For perfe
t 
uids��� = 0.� A se
ond gauge invariant variable is� = �L � 
2sw Æ; (2.41)where 
2s � _p= _� is the adiabati
 sound speed and w � p=� is the enthalpy. One
an show that � is proportional to the divergen
e of the entropy 
ux of theperturbations. Adiabati
 perturbations are 
hara
terized by � = 0.� Gauge invariant density and velo
ity perturbations 
an be found by 
ombiningÆ, v and v(V )i with metri
 perturbations.We shall use V � v � 1k _HT = v(long) (2.42)Dg � Æ + 3(1 + w)�HL + 13HT� = Æ(long) + 3(1 + w)� (2.43)D � Æ(long) + 3(1 + w)� _aa� Vk (2.44)V (V ) � v(V ) � 1k _H(V ) = v(ve
) (2.45)
 � v(V ) � B(V ) = v(ve
) � B(V ) (2.46)
� V (V ) = �(V ): (2.47)Here v(long); Æ(long) and v(ve
)i are the velo
ity (and density) perturbations in thelongitudinal and ve
tor gauge respe
tively and �(V ) is the metri
 perturbation inve
tor gauge (see Eq. (2.32)). These variables 
an be interpreted ni
ely in terms ofgradients of the energy density and the shear and vorti
ity of the velo
ity �eld [14℄.But we just want to show that on s
ales mu
h smaller than the Hubble s
ale,k� � 1, the metri
 perturbations are mu
h smaller than Æ and v and we 
an thus\forget them" (whi
h will be important when 
omparing experimental results with
al
ulations in this formalism):The perturbations of the Einstein tensor are given by se
ond derivatives of themetri
 perturbations. Einstein's equations yield the following order of magnitudeestimate: O�ÆTT � O (8�GT )| {z }O( _aa)2=O(��2) = O� 1�2h+ k�h+ k2h� (2.48)O�ÆTT � = O �h+ k�h+ (k�)2h� : (2.49)17



For k� � 1 this gives O(Æ; v) = O � ÆTT � � O(h). On sub-horizon s
ales the di�er-en
e between Æ, Æ(long), Dg and D is negligible as well as the di�eren
e between vand V or v(V ), V (V ) and 
(V ).Later we shall also need other perturbation variables like the perturbation of thephoton brightness (energy{integrated photon distribution fun
tion), but we shallintrodu
e them as we get there and dis
uss some appli
ations �rst.2.3 Basi
 perturbation equationsAs already announ
ed, we do not derive Einstein's equations but just write downthose whi
h we shall need later:2.3.1 Constraint equations4�Ga2�D = (k2 � 3�)� (00)4�Ga2(� + p)V = k �� _aa�	� _�� (0i) ) (s
alar) (2.50)8�Ga2(� + p)
 = 12 �2�� k2� �(V ) (0i) (ve
tor) (2.51)2.3.2 Dynami
al equations�k2 (� + 	) = 8�Ga2p�(S) (s
alar) (2.52)k� _�(V ) + 2� _aa� �(V )� = 8�Ga2p�(V ) (ve
tor) (2.53)�H(T ) + 2� _aa� _H(T ) + �2�+ k2�H(T ) = 8�Ga2p�(T )ij (tensor) (2.54)There is a se
ond dynami
al s
alar eqn., whi
h is however 
ompli
ated and notneeded, sin
e we may instead use one of the 
onservation eqns. below. Note that forperfe
t 
uids, where �ij � 0, we have � = �	, �(V ) / 1=a2 and H obeys a dampedwave equation. The damping term 
an be negle
ted on small s
ales (over short timeperiods) when ��2 <� 2� + k2, and Hij represents propagating gravitational waves.For vanishing 
urvature, these are just the sub-horizon s
ales, k� >� 1. For � < 0,waves os
illate with a somewhat smaller frequen
y, ! = p2�+ k2, while for � > 0the frequen
y is somewhat larger.
18



2.3.3 Conservation equationsThe 
onservation equations, T ��;� = 0 lead to the following perturbation equations._Dg + 3 (
2s � w) � _aa�Dg + (1 + w)kV + 3w � _aa�� = 0_V + � _aa� (1� 3
2s)V = k (	� 3
2s�) + 
2sk1+wDg+ wk1+w ��� 23 �1� 3�k2 ��� 9>=>; (s
alar) (2.55)_
i + �1� 3
2s�� _aa�
i = p2(�+ p) �k � 2�k ��(V )i (ve
tor) (2.56)
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Chapter 3Simple appli
ationsWe �rst dis
uss some simple appli
ations whi
h will be important for the CMB. We
ould of 
ourse also write (2.55) in terms of D, but we shall just work with therelation D = Dg + 3(1 + w)��� + � _aa� k�1V � : (3.1)3.1 The pure dust 
uid at � = 0;� = 0We assume the dust to have w = 
2s = p = 0 and � = � = 0. The equations (2.55),(2.52) and (2.50) then redu
e to_Dg = �kV (energy 
onservation eqn:) (3.2)_V + � _aa�V = k	 (gravitational a

eleration eqn:) (3.3)� = �	 (3.4)�k2	 = 4�Ga2��Dg + 3�	+ � _aa� k�1V �� (Poisson eqn:): (3.5)In a pure dust universe � / a�3 ) ( _a=a)2 / a�1, whi
h is solved by a / �2.The Einstein equations then give immediately 4�G�a2 = 3=2( _a=a)2 = 6=�2. Settingk� = x and 0 = d=dx, the system (3.2-3.5) then be
omesD0g = �V (3.6)V 0 + 2xV = 	 (3.7)6x2 �Dg + 3�	+ 2xV�� = �	: (3.8)We use (3.8) to eliminate 	 and (3.6) to eliminate Dg, leading to�18 + x2�V 00 + �72x + 4x� V 0 � �72x2 + 4�V = 0: (3.9)20



The general solution of Eq. (3.9) isV = V0x+ V1x4 (3.10)with arbitrary 
onstants V0 and V1. Sin
e the perturbations are supposed to be smallinitially, they 
annot diverge for x! 0, and we have therefore to 
hoose V1 = 0 (thegrowing mode). Another way to argue is as follows: If the mode V1 has to be smallalready at some early initial time �in, it will be even mu
h smaller at later timesand may hen
e be negle
ted. The perturbation variables are then given byV = V0x (3.11)Dg = �15V0 � 12V0x2 (3.12)	 = 3V0: (3.13)The 
onstan
y of the gravitational potential 	 in a matter dominated universeand the growth of the density perturbations like the s
ale fa
tor a led Lifshitz to 
on-
lude 1946 [15℄ that pure gravitational instability 
annot be the 
ause for stru
tureformation: If we start from tiny thermal 
u
tuations of the order of 10�35, they 
anonly grow to about 10�30 through this pro
ess during the matter dominated regime.Or, to put it di�erently, if we do not want to modify the pro
ess of stru
ture for-mation, we need initial 
u
tuations of the order of at least 10�5. One possibility to
reate su
h 
u
tuations is due to quantum parti
le produ
tion in the 
lassi
al grav-itational �eld during in
ation. The rapid expansion of the universe during in
ationqui
kly transforms mi
ros
opi
 s
ales at whi
h quantum 
u
tuations are importantinto 
osmologi
al s
ales where these 
u
tuations are then \frozen in" as 
lassi
alperturbations in the energy density and the geometry.We distinguish two regimes:i) super-horizon, x� 1 where we haveDg = �15V0 (3.14)	 = 3V0 (3.15)V = V0x (3.16)and ii) sub-horizon, x� 1 where the solution is dominated by the termsV = V0x (3.17)Dg = �12V0x2 (3.18)	 = 3V0 = 
onst (3.19)Note that for dust D = Dg + 3	 + 6xV = �12V0x2 :In the variable D the 
onstant term has disappeared and we have D� 	 on superhorizon s
ales, x� 1. 21



3.2 The pure radiation 
uid, � = 0;� = 0In this limit we set w = 
2s = 1=3 and � = 0. We 
on
lude from � / a�4 that a / �and � = �	, and the perturbation equations be
ome (with the same notation asabove): D0g = �43V (3.20)V 0 = 2	 + 14Dg (3.21)�2x2	 = 3Dg + 12	 + 12x V (3.22)The general solution of this system isDg = D2 "
os� xp3�� 2p3x sin� xp3�#+D1 "sin� xp3�+ 2p3x 
os� xp3�# (3.23)V = �34D0g (3.24)	 = �3Dg � (12=x)V12 + 2x2 : (3.25)Again, regularity at x = 0 requires D1 = 0.In the super-horizon, x� 1 regime we obtain	 = 	0; Dg = D0 � 23V0x2; V = V0x (3.26)with D0 = �6	0 = �D2 (3.27)V0 = 12	0 = � 112D0: (3.28)On sub-horizon, x� 1 s
ales we �nd os
illating solutions with 
onstant amplitudewith a frequen
y of 1=p3:V = V2 sin� xp3� (3.29)Dg = D2 
os� xp3� ; 	 = �32x�2Dg (3.30)D2 = 4V2p3 : (3.31)22



Note that also for radiation perturbationsD = �23V0x2 � 	is small on super horizon s
ales, x � 1. The perturbation amplitude is givenby the largest gauge invariant perturbation variable. We 
on
lude therefore thatperturbations outside the Hubble horizon are frozen to �rst order. On
e they enterthe horizon they start to 
ollapse, but pressure resists the gravitational for
e and theradiation 
uid starts to os
illate. The perturbations of the gravitational potentialos
illate and de
ay like 1=a2 inside the horizon.3.3 Adiabati
 and iso
urvature initial 
onditionsfor a matter & radiation 
uidIn this se
tion we want to investigate a system with a matter and a radiation 
om-ponent that are 
oupled only by gravity. The matter 
omponent a
ts therefore asdark matter, sin
e it does not intera
t dire
tly with the radiation.Sin
e the matter and radiation perturbations behave in the same way on super-horizon s
ales,D(r)g = A+Bx2; D(m)g = A0 +B0x2; V (r) / V (m) / x; (3.32)we may require a 
onstant relation between matter and radiation perturbations. Aswe have seen in the previous se
tion, inside the horizon (x > 1) radiation perturba-tions start to os
illate while matter perturbations keep following a power law. Onsub-horizon s
ales a 
onstant ratio 
an thus no longer be maintained. There are twointeresting possibilities:3.3.1 Adiabati
 initial 
onditionsAdiabati
ity requires that matter and radiation perturbations are initially in perfe
tthermal equilibrium. This implies that their velo
ity �elds agree (see below, se
tionon Boltzmann eqn.!) V (r) = V (m); (3.33)so that the energy 
ux in the two 
uids is 
oupled initially.Let us investigate the radiation solution in the matter dominated era, whenthe 
orresponding s
ale is already sub-horizon. Sin
e 	 is dominated by the matter
ontribution, we have 	 ' 
onst = 	0. We negle
t the (de
aying) 
ontribution fromthe sub-dominant radiation to 	. Energy{momentum 
onservation for radiationthen gives D(r)0g = �43V (r) (3.34)V (r)0 = 2	 + 14D(r)g : (3.35)23



Now 	 is just a 
onstant given by the matter perturbations, and it a
ts like a
onstant sour
e term. The full solution of this system is thenD(r)g = A 
os� xp3�� 4p3B sin� xp3�� 8	 �
os� xp3�� 1� (3.36)V (r) = B 
os� xp3�+ p34 A sin� xp3�� 2p3	 sin� xp3� : (3.37)Our adiabati
 initial 
onditions requirelimx!0 V (r)x = V0 = limx!0 V (m)x <1: (3.38)Therefore B = 0 and A = 4V0 � 8	. Using in addition 	 = 3V0 (see (3.19)) weobtain D(r)g = �443 	 
os� xp3�+ 8	 (3.39)V (r) = 1p3	 sin� xp3� (3.40)D(m)g = �	(5 + 16x2) (3.41)V (m) = 13	x (3.42)	 = 3V0: (3.43)On super-horizon s
ales, x� 1 we haveD(r)g ' �203 	 and V (r) ' 13x	 ; (3.44)note that D(r)g = (4=3)D(m)g and V (r) = V (m) for adiabati
 initial 
onditions.3.3.2 Iso
urvature initial 
onditionsHere we want to solve the system (2.50) and (2.55) for dark matter and radiationunder the 
ondition that the metri
 perturbations vanish initially, i.e., 	 = 0,	 = �32 � _aa�2 k�2 �Dg + 3(1 + w)	 + 3(1 + w)� _aa� k�1V � = 0: (3.45)In prin
iple, we have four evolution and one 
onstraint equations. We thereforehave four 
onstants to adjust. Condition (3.45), however, requires an entire fun
tionto vanish. This may be impossible. Let us nevertheless try:24



If 	 = 0 the solutions of the radiation dominated equations are simplyD(r)g = A 
os� xp3�+B sin� xp3� (3.46)V (r) = p34 A sin� xp3�� p34 B 
os� xp3� : (3.47)For the matter perturbations we �ndV (m) = �V0a ; a / x�; 1 � � � 2 (3.48)D(m)g = C(m) � V0� � 1 xa if � 6= 1 (3.49)D(m)g = C(m) � V0 log(x) if � = 1 (3.50)Here � is the exponent of the s
ale fa
tor a / ��, hen
e � = 1 in the radiation eraand � = 2 in the matter era.	 = 0 implies withDg = 1� ��rD(r)g + �mD(m)g � and (3.51)V = 1� + p �(�r + pr)V (r) + �mV (m)� (3.52)that 0 = �r�mD(r)g +D(m)g + � _aa� k�1 �4�r�m V (r) + 3V (m)� : (3.53)Sin
e V (m) / 1=a it 
an 
ompensate, for small values of x, the term / 
os(x=p3)of V (r), whi
h behaves like 1=a as well, due to the pre-fa
tor �r=�m. This term 
analso be 
ompensated in D(r)g by the term V0x=a of D(m)g . In the purely radiationdominated universe, the log-dependen
e of D(m)g renders this 
ompensation imper-fe
t. However, there is no way to 
ompensate C(m) or the term proportional to A.We therefore have to 
hoose A = C(m) = 0 anda �r�m p33 B = V0; B = �ma�rp3V0: (3.54)(The 
ompensation of the smaller terms in D(r)g and D(m)g is only 
omplete if � ' 2.)With 
s = 1=p3 we �ndD(r)g ' �ma�r
sV0 sin (
sx) (iso
urvature) (3.55)D(r)g ' 	�8� 443 
os (
sx)� (adiabati
) : (3.56)25



The CMB anisotropies, whi
h we are going to determine in the next 
hapter, 
ontaina term �TT (k; �0;n) = � � �+ 14D(r)g (k; �de
) eikn(�0��de
) � � � : (3.57)On s
ales where this term dominates, the peaks in Dg translate into peaks in theangular power spe
trum of CMB anisotropies.For iso
urvature initial 
onditions, we �nd a �rst peak in Dg atx(1)i = k(1)i �de
 = 1
s �2 ; �(1)i = �k(1)i = 2
s�de
; #(1)i ' 2
s�de
� (�0 � �de
) ; (3.58)Here #(1)i is the angle under whi
h the 
omoving s
ale �(1)i at 
omoving distan
e�0 � �de
 is seen. In the next 
hapter, we will expand the temperature 
u
tuationsin terms of spheri
al harmoni
s. An 
u
tuation on the angular s
ale # then showsup around the harmoni
 ` � �=#. As an indi
ation, we note that for � = � = 0,the harmoni
 of the �rst iso
urvature peak is`(1)i � �=#(1)i � 110 ;In the adiabati
 
ase the �rst \peak" is at k(1)a = 0.Sin
e D(r)g is negative for small x, the �rst peaks are \expansion peaks", anddue to the gravitational attra
tion of the baryons (whi
h we have negle
ted in thissimple argument) they are less pronoun
ed than the se
ond (\
ompression") peaks.These se
ond peaks are usually 
alled the \�rst a
ousti
 peak". (It is the �rst
ompression peak and we shall adopt the 
onvention to 
all it the \�rst peak" mainlyfor 
onsisten
y with the literature.) They 
orrespond to wavelengths and angulars
ales �(2)i = 23
s�de
 ; #(2)i ' (2=3)
s�de
� (�0 � �de
) ; `(2)i � 350 (iso
urvature) (3.59)�(2)a = 
s�de
 ; #(2)a ' 
s�de
� (�0 � �de
) ; `(2)a � 200 (adiabati
): (3.60)Here the indi
ated harmoni
 is the one obtained in the 
ase � = � = 0, for a typi
albaryon density inferred from nu
leosynthesis.It is interesting to note that the distan
e between 
onse
utive peaks is indepen-dent of the initial 
ondition. It is given by�ki = k(2)i � k(1)i = �=(
s�de
) = �ka ; �# = 
s�de
� (�0 � �de
) ; �` � 200 : (3.61)Again, the numeri
al value indi
ated for �` 
orresponds to a universe with � =� = 0. The result is strongly dependent espe
ially on �. This is the reason why themeasurement of the peak position (or better of the inter-peak distan
e) allows ana

urate determination of 
urvature. 26



From our analysis we 
an draw the following important 
on
lusions: For s
aleswhere the D(r)g -term dominates, the CMB anisotropies show a series of a
ousti
os
illations with spa
ing �k, the position of the �rst signi�
ant peaks is at k = k(2)a=i,depending on the initial 
ondition.The spa
ing �k is independent of initial 
onditions. The angle �# onto whi
hthis s
ale is proje
ted in the sky is determined entirely by the matter 
ontent andthe geometry of the universe. A

ording to our �ndings in Chapter I, # will belarger if 
� < 0 (positive 
urvature) and smaller if 
� > 0 (see Fig. 1.3).In our analysis we have negle
ted the presen
e of baryons, in order to obtain sim-ple analyti
al results. Baryons have two e�e
ts: They lead to (�+3p)rad+bar > 0, andtherefore to an enhan
ement of the 
ompression peaks (the �rst, third, et
. a
ous-ti
 peak). In addition, the baryons slightly de
rease the sound speed 
s, in
reasingthereby �k and de
reasing �#.Another point whi
h we have negle
ted is the fa
t that the universe be
amematter dominated at �eq, only shortly before de
oupling: �de
 ' 4�eq, for 
m = 1.As we have seen, the gravitational potential on sub-horizon s
ales is de
aying inthe radiation dominated era. If the radiation dominated era is not very long beforede
oupling, the gravitational potential is still slightly de
aying and free streamingphotons fall into a deeper gravitational potential than they have to 
limb out of. Thise�e
t, 
alled \early integrated Sa
hs{Wolfe e�e
t" adds to the photon temperature
u
tuations at s
ales whi
h are only slightly larger than the position of the �rsta
ousti
 peak for adiabati
 perturbations. It therefore 'boosts' this peak and, at thesame time, moves it to lightly larger s
ales (larger angles, lower spheri
al harmoni
s).Sin
e �eq / h�2, the �rst a
ousti
 peak is larger if h is smaller.A small Hubble parameter in
reases therefore the a
ousti
 peaks. A similar e�e
tis observed if a 
osmologi
al 
onstant or negative 
urvature are present, sin
e �eq isretarded in those 
ases.The real universe 
ontains not only photons and dark matter, but also neutrinosand baryons. It has a
tually be found re
ently [16℄ that this 4 
uid mixture allows�ve di�erent modes whi
h grow or stay 
onstant. The adiabati
 mode, the darkmatter iso
urvature mode whi
h we have just dis
ussed, a similar baryon iso
urva-ture mode and two neutrino iso
urvature modes. The most generi
 initial 
onditionswhi
h allow for arbitrary 
orrelations between the di�erent modes are very unpre-di
table. We 
an maybe just say that they lead to a �rst a
ousti
 peak in therange of 150 � `(2) � 350 for a spatially 
at universe. In the rest of this review,we only dis
uss adiabati
 perturbations, whi
h are by far the most studied, butit is important to keep in mind that all the results espe
ially 
on
erning the esti-mation of 
osmologi
al parameters is not valid if we allow for more generi
 initial
onditions [1, 2℄.
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3.3.3 Ve
tor perturbations of perfe
t 
uidsIf �(V ) = 0 equation (2.56) implies 
 / a3
2s�1: (3.62)For _p= _� = 
2s � 1=3, this leads to a non{growing vorti
ity. The dynami
al Einsteinequation implies �(V ) / a�2 ; (3.63)and the 
onstraint (2.51) reads (at early times, so we 
an negle
t 
urvature)
 � x2�(V ): (3.64)If perturbations are 
reated in the very early universe on super{horizon s
ales(e.g. during an in
ationary period), ve
tor perturbations of the metri
 de
ay andbe
ome soon entirely negligible. Even if 
i remains 
onstant in a radiation domi-nated universe, it has to be so small on relevant s
ales at formation (xin � 1) thatwe may safely negle
t it.3.3.4 Tensor perturbationsThe situation is di�erent for tensor perturbations. Again we 
onsider the perfe
t
uid 
ase, �(T )ij = 0. There (2.54) implies (if � is negligible)H 00ij + 2�x H 0ij +Hij = 0 ; (3.65)with � = 1 in the radiation dominated era and � = 2 in the matter dominated era.The less de
aying mode solution to Eq. (3.65) is Hij = eijx1=2��J1=2��(x), where J�denotes the Bessel fun
tion of order � and eij is a transverse tra
eless polarizationtensor. This leads to Hij = 
onst for x� 1 (3.66)Hij = 1a for x >� 1: (3.67)

28



Chapter 4CMB anisotropies
4.1 Light-like geodesi
sAfter de
oupling, � > �de
, photons follow to a good approximation light-like geodesi
s.The temperature shift is then given by the energy shift of a given photon.The unperturbed photon traje
tory follows (x�) � (�;n(���0)+x0), where x0 isthe photon position at time �0 and n is the (parallel transported) photon dire
tion.With respe
t to a geodesi
 basis (e)3i=1, the 
omponents of n are 
onstant. If � = 0we may 
hoose ei = �=�xi; if � 6= 0 these ve
tor �elds are no longer paralleltransported and therefore do not form a geodesi
 basis (reiej = 0).Our metri
 is of the formd�s2 = a2ds2 ;with (4.1)ds2 = (
�� + h��) dx�dx�; 
00 = �1; 
i0 = 0; 
ij = 
ji (4.2)as before.We make use of the fa
t that light-like geodesi
s are 
onformally invariant. Morepre
isely ds2 and d�s2 have the same light-like geodesi
s, only the 
orrespondingaÆne parameters are di�erent. Let us denote the two aÆne parameters by � and ��respe
tively, and the tangent ve
tors to the geodesi
 byn = dxd�; �n = dxd�� ; n2 = �n2 = 0 ; n0 = 1 ; n2 = 1: (4.3)We set n0 = 1 + Æn0. The geodesi
 equation for the perturbed metri
ds2 = (
�� + h��)dx�dx� (4.4)yields, to �rst order, dd�Æn� = �Æ����n�n�: (4.5)For the energy shift, we have to determine Æn0. Sin
e g0� = �1 � Æ0� + �rst order,we obtain Æ�0�� = �1=2(h�0j� + h�0j� � _h��), so thatdd�Æn0 = h�0j�n�n� � 12 _h��n�n�: (4.6)29



Integrating this equation we use h�0j�n� = dd�(h�0n�), so that the 
hange of n0between some initial time �i and some �nal time �f is given byÆn0jfi = �h00 + h0jnj�fi � 12 Z fi _h��n�n�d� : (4.7)On the other hand, the ratio of the energy of a photon measured by some observerat tf to the energy emitted at ti isEfEi = (�n � u)f(�n � u)i = TfTi (n � u)f(n � u)i ; (4.8)where uf and ui are the four-velo
ities of the observer and emitter respe
tively, andthe fa
tor Tf=Ti is the usual (unperturbed) redshift, whi
h relates n and �n. Thevelo
ity �eld of observer and emitter is given byu = (1� A)�� + vi�i : (4.9)An observer measuring a temperature T0 re
eives photons that were emittedat the time �de
 of de
oupling of matter and radiation, at the �xed temperatureTde
. In �rst-order perturbation theory, we �nd the following relation between theunperturbed temperatures Tf , Ti, the measurable temperatures T0, Tde
, and thephoton density perturbation:TfTi = T0Tde
 �1� ÆTfTf + ÆTiTi � = T0Tde
 �1� 14Æ(r)jfi� ; (4.10)where Æ(r) is the intrinsi
 density perturbation in the radiation and we used �(r) / T 4in the last equality. Inserting the above equation and Eq. (4.7) into Eq. (4.8), andusing Eq. (2.19) for the de�nition of h�� , one �nds, after integration by parts [6℄ thefollowing result for s
alar perturbations:EfEi = T0Tde
 (1� �14D(r)g + V (b)j nj +	� ��fi + Z fi ( _	� _�)d�) : (4.11)Here D(r)g denotes the density perturbation in the radiation 
uid, and V (b) is thepe
uliar velo
ity of the baryoni
 matter 
omponent (the emitter and observer ofradiation). The �nal time values in the square bra
ket of Eq. (4.11) give rise onlyto monopole 
ontributions and to the dipole due to our motion with respe
t to theCMB, and will be negle
ted in what follows.Evaluating Eq. (4.11) at �nal time �0 (today) and initial time �de
, we obtainthe temperature di�eren
e of photons 
oming from di�erent dire
tions n and n0�TT � ÆT (n)T � ÆT (n0)T ; (4.12)30



with temperature perturbation�T (n)T = �14D(r)g + V (b)j nj +	� �� (�de
;xde
) + Z �0�de
( _	� _�)(�;x(�))d� ; (4.13)where x(�) is the unperturbed photon position at time � for an observer at x0, andxde
 = x(�de
) (If � = 0 we simply have x(�) = x0 � (�0 � �)n.). The �rst term inEq. (4.13) des
ribes the intrinsi
 inhomogeneities on the surfa
e of last s
attering,due to a
ousti
 os
illations prior to de
oupling. Depending on the initial 
onditions,it 
an 
ontribute signi�
antly on super-horizon s
ales. This is espe
ially importantin the 
ase of adiabati
 initial 
onditions. As we have seen in Eq. (3.44), in a dust+ radiation universe with 
 = 1, adiabati
 initial 
onditions imply D(r)g (k; �) =�20=3	(k; �) and V (b) = V (r) � D(r)g for k� � 1. With � = �	 the the squarebra
ket of Eq. (4.13) gives��T (n)T �(OSW )adiabati
 = 13	(�de
;xde
)on super-horizon s
ales. The 
ontribution to ÆTT from the last s
attering surfa
eon very large s
ales is 
alled the 'ordinary Sa
hs{Wolfe e�e
t' (OSW). It has beenderived for the �rst time by Sa
hs and Wolfe [23℄. For iso
urvature perturbations,the initial 
ondition D(r)g (k; �)! 0 for � ! 0 is satis�ed and the 
ontribution of Dgto the ordinary Sa
hs{Wolfe e�e
t 
an be negle
ted.��T (n)T �(OSW )iso
urvature = 2	(�de
;xde
)The se
ond term in (4.13) des
ribes the relative motions of emitter and observer.This is the Doppler 
ontribution to the CMB anisotropies. It appears on the sameangular s
ales as the a
ousti
 term, and we thus 
all the sum of the a
ousti
 andDoppler 
ontributions \a
ousti
 peaks".The last two terms are due to the inhomogeneities in the spa
etime geometry; the�rst 
ontribution determines the 
hange in the photon energy due to the di�eren
eof the gravitational potential at the position of emitter and observer. Togetherwith the part 
ontained in D(r)g they represent the \ordinary" Sa
hs-Wolfe e�e
t.The integral a

ounts for red-shift or blue-shift 
aused by the time dependen
e ofthe gravitational �eld along the path of the photon, and represents the so-
alledintegrated Sa
hs-Wolfe (ISW) e�e
t. In a 
 = 1, pure dust universe, the Bardeenpotentials are 
onstant and there is no integrated Sa
hs-Wolfe e�e
t; the blue-shiftwhi
h the photons a
quire by falling into a gravitational potential is exa
tly 
an
eledby the redshift indu
ed by 
limbing out of it. This is no longer true in a universewith substantial radiation 
ontribution, 
urvature or a 
osmologi
al 
onstant.The sum of the ordinary Sa
hs{Wolfe term and the integral is the full Sa
hs-Wolfe 
ontribution (SW). 31



For ve
tor perturbations Æ(r) and A vanish and Eq. (4.8) leads to(Ef=Ei)(V ) = (ai=af )[1� V (m)j njjfi + Z fi _�jnjd�℄ : (4.14)We obtain a Doppler term and a gravitational 
ontribution. For tensor perturba-tions, i.e. gravitational waves, only the gravitational part remains:(Ef=Ei)(T ) = (ai=af)[1� Z fi _Hljnlnjd�℄ : (4.15)Equations (4.11), (4.14) and (4.15) are the manifestly gauge invariant results for theSa
hs{Wolfe e�e
t for s
alar ve
tor and tensor perturbations. Disregarding againthe dipole 
ontribution due to our proper motion, Eqs. (4.14,4.15) imply the ve
torand tensor temperature 
u
tuations��T (n)T �(V ) = V (m)j (�de
;xde
)nj + Z fi _�j(�;x(�))njd� (4.16)��T (n)T �(T ) = � Z fi _Hlj(�;x(�))nlnjd� : (4.17)Note that for models where initial 
u
tuations have been led down in the very earlyuniverse, ve
tor perturbations are irrelevant as we have already pointed out. In thissense Eq. (4.16) is here mainly for 
ompleteness. However, in models where pertur-bations are sour
ed by some inherently inhomogeneous 
omponent (e.g. topologi
aldefe
ts) ve
tor perturbation 
an be important.4.2 Power spe
traOne of the basi
 tools to 
ompare models of large s
ale stru
ture with observationsare power spe
tra. They are the \harmoni
 transforms" of the two point 
orrela-tion fun
tions. If the perturbations of the model under 
onsideration are Gaussian(a relatively generi
 predi
tion from in
ationary models), then the power spe
tra
ontain the full statisti
al information of the model.One important power spe
trum is the dark matter power spe
trum,PD(k) = D��D(m)g (k; �0)��2E ; (4.18)where h i indi
ates a statisti
al average over \initial 
onditions" in a given model.PD(k) is usually 
ompared with the observed power spe
trum of the galaxy distri-bution.Another power spe
trum is given by the velo
ity perturbations,PV (k) = 
jV (k; �0)j2� ' H20
1:2PD(k)k�2 : (4.19)32



For ' we have used that jkV j(�0) = _D(m)g (�0) � H0
0:6Dg on sub-horizon s
ales(see e.g. [11℄).The power spe
trum we are most interested in is the CMB anisotropy powerspe
trum. It is de�ned as follows: �T=T is a fun
tion of position x0, time �0 andphoton dire
tion n. We develop the n{dependen
e in terms of spheri
al harmoni
s.We will suppress the argument �0 and often also x0 in the following 
al
ulations.All results are for today (�0) and here (x0). By statisti
al homogeneity expe
tationvalues are supposed to be independent of position. Furthermore, we assume thatthe pro
ess generating the initial perturbations is statisti
ally isotropi
. Then, theo�-diagonal 
orrelators of the expansion 
oeÆ
ients a`m vanish and we have�TT (x0;n; �0) = X̀;m a`m(x0)Y`m(n); ha`m � a�̀0m0i = Æ``0Æmm0C` (4.20)The C`'s are the CMB power spe
trum. We assume that the perturbations aregenerated by a homogeneous and isotropi
 pro
ess, so that C` depends neither onx0 nor on m, and that ha`m � a�̀0m0i vanishes for ` 6= `0 or m 6= m0.Let us, at this point insert a 
omment on the problem of 
osmi
 varian
e: Evenif our 'ergodi
 hypothesis' is 
orre
t and we may inter
hange ensemble and spatialaverages, we 
annot obtain very pre
ise averages for measurements of large s
ale
hara
teristi
s, due to the fa
t that we 
an observe only the universe around a givenposition. For example, let us assume that temperature 
u
tuations are Gaussian,as they are in most in
ationary models. The fun
tions a`m are then also Gaussiandistributed, and we have a varian
e of����� 12`+ 1 X̀m=�` ja`mj2 � C`����� = jCobs` � C`j = C`2`+ 1 ;on the average of the 2`+1 values a`m whi
h 
an in prin
iple be measured from onepoint with full sky 
overage. For simpli
ity, we negle
t the in
rease of the varian
edue to the fa
t that our own Milky Way blo
ks a portion of sky of about 20%.Wi
k's theorem now giveshC 2̀i � hC`i2 = hja`mj4i � hja`mj2i2 = 2hja`mj2i2For a given multipole ` we then expe
t a varian
e of the C`'sp(Cobs` )2 � C 2̀C` =r 22`+ 1 ; (4.21)in real experiments, this '
osmi
 varian
e' is in general mu
h larger due to the limitedsky 
overage.The two point 
orrelation fun
tion is related to the C`'s by��TT (n)�TT (n0)�n�n0=� = X`;`0;m;m0 ha`m � a�̀0m0iY`m(n)Y �̀0m0(n0) =33



X̀C` X̀m=�`Y`m(n)Y �̀m(n0)| {z }2`+14� P`(n�n0) = 14� X̀(2`+ 1)C`P`(�); (4.22)where we have used the addition theorem of spheri
al harmoni
s for the last equality.The P`'s are the Legendre polynomials.Clearly the alm's from s
alar, ve
tor and tensor perturbations are un
orrelated,Da(S)`ma(V )`0m0E = Da(S)`ma(T )`0m0E = Da(V )`m a(T )`0m0E = 0: (4.23)Sin
e ve
tor perturbations de
ay, their 
ontributions, the C(V )` , are negligible inmodels where initial perturbations have been laid down very early, e.g., after anin
ationary period. Tensor perturbations are 
onstant on super-horizon s
ales andperform damped os
illations on
e they enter the horizon.Let us �rst dis
uss in somewhat more detail s
alar perturbations. We spe
ializeto the 
ase � = 0 for simpli
ity. We suppose the initial perturbations to be given bya spe
trum, 
j	j2� k3 = A2kn�1�n�10 : (4.24)We multiply by the 
onstant �n�10 , the a
tual 
omoving size of the horizon, in orderto keep A dimensionless for all values of n. A then represents the amplitude ofmetri
 perturbations at horizon s
ale today, k = 1=�0.On super-horizon s
ales we have, for adiabati
 perturbations:14D(r)g = �53	 +O(x2); V (b) = V (r) = O(x) (4.25)The dominant 
ontribution on super-horizon s
ales (negle
ting the integratedSa
hs{Wolfe e�e
t R _�� _	 ) is then�TT (x0;n; �0) = 13	(xde
; �de
): (4.26)The Fourier transform of (4.26) gives�TT (k;n; �0) = 13	(k; �de
) � eikn(�0��de
) : (4.27)Using the de
ompositioneikn(�0��de
) = 1X̀=0 (2`+ 1)i`j`(k(�0 � �de
))P`(bk � n) ;
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where j` are the spheri
al Bessel fun
tions, we obtain��TT (x0;n; �0)�TT (x0;n0; �0)� (4.28)= 1V Z d3x0��TT (x0;n; �0)�TT (x0;n0; �0)�= 1(2�)3 Z d3k��TT (k;n; �0)��TT �� (k;n0; �0)�= 1(2�)39 Z d3k 
j	j2� 1X`;`0=0(2`+ 1)(2`0 + 1)j`(k(�0 � �de
))j`0(k(�0 � �de
))i`�`0�P`(k̂ � n) � P`0(k̂ � n0) : (4.29)Inserting P`(k̂n) = 4�2`+1Pm Y �̀m(k̂)Y`m(n) and P`0(k̂n0) = 4�2`0+1Pm0 Y �̀0m0(k̂)Y`0m0(n0),integration over the dire
tions d
k̂ gives Æ``0Æmm0Pm Y �̀m(n)Y`m(n0). Using as wellPm Y �̀m(n)Y`m(n0) = 2`+14� P`(�), where � = n � n0, we �nd��TT (x0;n; �0)�TT (x0;n0; �0)�nn0=� =X̀ 2`+ 14� P`(�) 2� Z dkk �19 j	j2� k3j 2̀(k(�0 � �de
)): (4.30)Comparing this equation with Eq. (4.22) we obtain for adiabati
 perturbationson s
ales 2 � ` � �(�0 � �de
)=�de
 � 100C(SW )` ' C(OSW )` ' 2� Z 10 dkk *����13	����2+ k3j 2̀ (k (�0 � �de
)) : (4.31)If 	 is a pure power law and we set k(�0 � �de
) � k�0, the integral (4.31) 
anbe performed analyti
ally. For the ansatz (4.24) one �nds for �3 < n < 3C(SW )` = A29 �(3� n)�(`� 12 + n2 )23�n�2(2� n2 )�(`+ 52 � n2 ) : (4.32)Of spe
ial interest is the s
ale invariant spe
trum, n = 1. This spe
trum witha time and s
ale independent gravitational potential has �rst been investigated byHarrison and by Zel'dovi
h [25℄. It is therefore 
alled the Harrison{Zel'dovi
h spe
-trum. It leads to`(`+ 1)C(SW )` = 
onst: ' *��TT (#`)�2+ ; #` � �=` : (4.33)This is pre
isely (within the a

ura
y of the experiment) the behavior observed bythe DMR experiment aboard COBE [8℄.35



In
ationary models predi
t very generi
ally a HZ spe
trum (up to small 
or-re
tions). The DMR dis
overy has therefore been regarded as a great su

ess, ifnot a proof, of in
ation. There are however other models like topologi
al defe
ts[27, 28, 29℄ or 
ertain string 
osmology models [30℄ whi
h also predi
t s
ale{invariant,i.e., Harrison Zel'dovi
h spe
tra of 
u
tuations. These models do however not be-long to the 
lass investigated here, sin
e in these models perturbations are indu
edby seeds whi
h evolve non{linearly in time.For iso
urvature perturbations, the main 
ontribution on large s
ales 
omes fromthe integrated Sa
hs{Wolfe e�e
t and (4.31) is repla
ed byC(ISW )` ' 8� Z dkk k3*����Z �0�de
 _	(k; �)j 2̀(k(�0 � �))d�����2+ : (4.34)Inside the horizon 	 is roughly 
onstant (matter dominated). Using the ansatz(4.24) for 	 inside the horizon and setting the integral in (4.34) � 2	(k; � =1=k)j 2̀(k�0), we obtain again (4.32), but with A2=9 repla
ed by 4A2. The Sa
hs{Wolfe temperature anisotropies 
oming from iso
urvature perturbations are there-fore about a fa
tor of 6 times larger than those 
oming from adiabati
 perturbations.On smaller s
ales, ` >� 100 the 
ontribution to �T=T is usually dominated bya
ousti
 os
illations, the �rst two terms in Eq. (4.13). Instead of (4.34) we thenobtain C(AC)` '2� Z 10 dkk k3*����14D(r)g (k; �de
)j`(k�0) + V (r)(k; �de
)j 0̀(k�0)����2+ : (4.35)On sub-horizon s
ales D(r)g and V (r) are os
illating like sine or 
osine wavesdepending on the initial 
onditions. Correspondingly the C(AC)` will show peaks andminima. On very small s
ales they are damped by the photon di�usion whi
h takespla
e during the re
ombination pro
ess (see next se
tion).For gravitational waves (tensor 
u
tuations), a formula analogous to (4.32) 
anbe derived (see appendix),C(T )` = 2� Z dkk2*����Z �0�de
 d� _H(�; k)j`(k(�0 � �))(k(�0 � �))2 ����2+ (`+ 2)!(`� 2)! : (4.36)To a very 
rude approximation we may assume _H = 0 on super-horizon s
alesand R d� _Hj`(k(�0 � �)) � H(� = 1=k)j`(k�0). For a pure power law,k3 
jH(k; � = 1=k)j2� = A2TknT ��nT0 ; (4.37)this gives C(T )` ' 2� (`+ 2)!(`� 2)!A2T Z dxx xnT j 2̀(x)x436



Figure 4.1: A COBE normalized sample adiabati
( solid line) and iso
urvature(dashed line) CMB anisotropy spe
trum, `(` + 1)C`, are shown on the top panel.The quantity shown in the bottom panel is the ratio of temperature 
u
tuations for�xed value of A (from Kanazawa et al. [31℄).= (`+ 2)!(`� 2)!A2T �(6� nT )�(`� 2 + nT2 )26�nT�2(72 � nT )�(`+ 4� nT2 ) : (4.38)For a s
ale invariant spe
trum (nT = 0) this results in`(`+ 1)C(T )` ' `(`+ 1)(`+ 3)(`� 2)A2T 815� : (4.39)The singularity at ` = 2 in this 
rude approximation is not real, but there is someenhan
ement of `(`+ 1)C(T )` at ` � 2.Sin
e tensor perturbations de
ay on sub-horizon s
ales, ` >� 60, they are not verysensitive to 
osmologi
al parameters.Again, in
ationary models (and topologi
al defe
ts) predi
t a s
ale invariantspe
trum of tensor 
u
tuations (nT � 0).On very small angular s
ales, ` >� 800, 
u
tuations are damped by 
ollisionaldamping (Silk damping). This e�e
t has to be dis
ussed with the Boltzmann equa-tion for photons derived in the next se
tion.
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Figure 4.2: Adiabati
 s
alar and tensor CMB anisotropy spe
tra are shown (toppanels). The bottom panels show the 
orresponding polarization spe
tra (see Se
-tion 4.4). (from [21℄).4.3 The Boltzmann equation4.3.1 Elements of the derivationWhen parti
les are not very tightly 
oupled, the 
uid approximation breaks downand they have to be des
ribed by a Boltzmann equation,p���f � �i��p�p� �f�pi = C[f ℄ : (4.40)C[f ℄ is a 
ollision integral whi
h des
ribes the intera
tions with other matter 
ompo-nents. The left hand side of (4.40) just requires the parti
les to move along geodesi
sin the absen
e of 
ollisions.Let us �rst 
onsider the situation where 
ollisions are negligible, C[f ℄ = 0. Theunperturbed Boltzmann equation for massless parti
les implies that f be a fun
tionof v = ap only. Here p = pgijpipj is the physi
al photon momentum (or energy).Setting f = �f(v) + F (�;x; v;n), where n denotes the momentum dire
tions, leadsthen to the perturbation equation��F + ni�iF � �(S) ijk njnk �F�ni = vd �fdv hniA;i + ninj �Bijj + _Hij�i : (4.41)Here �(S) ijk are the Christo�el symbols of the spa
e of 
onstant 
urvature �.To derive (4.41), we have used p2 = 0. The Liouville equation for parti
les withnon{vanishing mass 
an be found in Ref. [6℄.38



The ansatz f(x;p) = �f  g(3)(p;p) 12T (x;n) ! = �f � TvT (x;n)� (4.42)with T (x;n) = T (�) + �T (x;n) leads tof = �f � vd �fdv �TT : (4.43)Integrating (4.42) over photon energies, we 
an also write�TT = 14{; (4.44)where { is the brightness perturbation,{ = 4���a4 Z 10 Fv3dv: (4.45)Setting F = �v d �fdv �T�T�� ��TT � + ni�i��TT �� �(S) ijk njnk � ��TT ��ni = � hniA;i+�Bijj + _Hij�ninji :(4.46)The fa
t that gravitational perturbations of Liouville's equation 
an be 
astpurely in temperature perturbations of the original distribution is not astonishing.This is just an expression of gravity being \a
hromati
", i.e. independent of thephoton energy.We now de
ompose (4.46) into s
alar, ve
tor and tensor 
omponents. Eventhough �T=T is just a fun
tion, it 
an be represented in the form�TT (x;n) = 1X̀=0 �i1;:::;i`(x)ni1 � � �ni` ; (4.47)where the �i1;:::;i` are symmetri
 tra
eless tensor �elds that 
ontain s
alar, ve
tor,2{tensor and in prin
iple also higher tensor 
omponents. Sin
e spin 
omponentslarger than 2 are not sour
ed by the right hand side of equation (4.46) and sin
ethey are suppressed at early times, when 
ollisions are important, we negle
t themhere.For the s
alar 
ontribution to �T=T we obtain from (4.46)�� ��TT �(S) + k���TT �(S) � �(S) ijk njnk � ��TT �(S)�ni =� �k�A+ �2k �k�1 _HT � B�+ _HL + 13 _HT� ; (4.48)39



where we have introdu
ed the \dire
tion 
osine" � de�ned by niY;i= k�Y . Notethat in 
at spa
e, � = 0, we have just � = ik̂ � n.This equation is not manifestly gauge{invariant. However, settingM(S) = ��TT �(S) +HL + 13HT + ��k�1 _H � B� ; (4.49)it redu
es to ��M(S) + k�M(S) � �(S) ijk njnk �M(S)�ni = k� (�� 	) ; (4.50)where � and 	 are the Bardeen potentials. If nj are 
omponents with respe
t to ageodesi
 basis (or � = 0), the third term on the left hand side of Eq. (4.50) vanishes.For simpli
ity we now 
on
entrate on the 
ase � = 0. We 
an then integrate theequation and obtainM(S)(�0;n;k) = exp[ik � n(�in � �0)℄M(S)(�in;n;k)+ Z �0�in i exp[ik � n(� � �0)℄n � k (�� 	) d� : (4.51)Integration by parts and negle
ting the monopole term (�� 	) (�0), leads toM(S)(�0;n;k) =exp[ik � n(�in � �0)℄ �M(S)(�in;n;k) + (��	) (�in;k)�� Z �0�in exp[ik � n(� � �0)℄� _�� _	� d� : (4.52)Comparing this equation with (4.13), we see again that M(S) = ��TT �(S) (up togauge dependent monopole and dipole 
ontributions) if the initial 
ondition isM(S)(�in;n;k) = 14D(r)g (�in;k) + n � kV (b)(�in;k) ;whi
h is equivalent to require thatM(S)(�in) has no higher than �rst moments. Aswe shall see below, this assumption is quite reasonable sin
e 
ollisions suppress thebuild up of higher moments before re
ombination.Sin
e the right hand side of (4.50) is gauge invariant, the left hand side must beso as well and we 
on
lude that M(S) is a gauge{invariant variable (a dire
t proofof this, analyzing the gauge transformation properties of the distribution fun
tion,
an be found in Ref. [6℄).M(S) used in this work 
oin
ides with the s
alar temperature 
u
tuations upa to a gauge dependent monopole and dipole 
ontribution. In other work [44℄ thegauge invariant variable � �M(S)�� has been used. Sin
e � is independent of thephoton dire
tion n this di�eren
e in the de�nition shows up only in the monopole,C0. 40



The ve
tor and tensor parts of �T=T are gauge{invariant by themselves and wedenote them by M(V ) and M(T ) for 
onsisten
y. In the absen
e of 
ollisions andwith vanishing spatial 
urvature, they satisfy the equations_M(V ) + i�kM(V ) = �in`nmk`�(V )m (4.53)_M(T ) + i�kM(T ) = �in`nm _Hm`: (4.54)The 
omponents of the energy momentum tensor are obtained by integrating these
ond moments of the distribution fun
tion over the mass shell,T �� = ZPm(x) p�p�f(p; x)p2dpd
p̂p0 ; (4.55)where 
p̂ denotes the angular integration over momentum dire
tions. One �nds for� = 0 and setting � = n � k̂:D(r)g = 1� Z M(S)d
 (4.56)V (r) = 3i4� Z �M(S)d
 (4.57)�(r) = �98� Z ��2 � 13�M(S)d
 (4.58)�(r) = 0 (4.59)V (V )i = 14� Z niM(V )d
 (4.60)�(V )j = 6� Z �njM(V )d
 (4.61)�(T )ij = 3� Z ninjM(T )d
: (4.62)Let us now turn to the 
ollision term. At re
ombination (when the 
uid de-s
ription of radiation breaks down) the temperature is � 0:4 eV. The ele
tronsand nu
lei are non{relativisti
 and the dominant 
ollision pro
ess is non{relativisti
Thomson s
attering. Sin
e 
ollisions are important only before and during re
ombi-nation, where 
urvature e�e
ts are entirely negligible, we set � = 0 in the reminderof this se
tion.The 
ollision term is given byC[f ℄ = df+d� � df�d� ; (4.63)where f+ and f� denote the distribution of photons s
attered into respe
tively outof the beam due to Compton s
attering.41



In the matter (baryon/ele
tron) rest frame, whi
h we indi
ate by a prime, weknow df 0+d�0 (p;n) = a�Tne4� Z f 0(p0;n0)!(n;n0)d
0 ;where ne denotes the number density of free ele
trons, �T is the Thomson 
rossse
tion, and ! is the normalized angular dependen
e of the Thomson 
ross se
tion:!(n;n0) = 3=4[1 + (n � n0)2℄ = 1 + 34nijn0ij with nij � ninj � 13Æij :In the baryon rest frame whi
h moves with four velo
ity u, the photon energy isgiven by p0 = p�u� :We denote by p the photon energy with respe
t to a tetrad adapted to the sli
ingof spa
etime into f� = 
onstantg hyper{surfa
es:p = p�n� ; with n = a�1[(1� A)�� +Bi�i℄ :The unit ve
tor n is the normal to the hyper-surfa
es of 
onstant time. The lapsefun
tion and the shift ve
tor of the sli
ing are given by � = a(1+A) and � = �Bi�i. In �rst order, p0 = ap(1 + A)� apniBi ;and in zeroth order, 
learly, pi = apni :Furthermore, the baryon four velo
ity has the form u0 = a�1(1� A) ; ui = u0viup to �rst order. This yieldsp0 = p�u� = p(1 + ni(vi �Bi)) :Using this identity and performing the integration over photon energies, we �nd�r d�+(n)dt0 = �r�Tne[1 + 4ni(vi � Bi) + 14� Z �(n0)!(n; n0)d
0℄ :The distribution of photons s
attered out of the beam, has the well known form(see e.g. Lifshitz and Pitajewski [1983℄)df�dt0 = �Tnef 0(p0;n) ;so that we �nally obtainC 0 = 4��ra4 Z dp(df+dt0 � df�dt0 )p3 = �Tne[Ær� �+4ni(vi�Bi)+ 316�nij Z �(n0)n0ijd
0℄ ;where Ær = (1=4�) R �(n)d
 is the photon energy density perturbation.Using the de�nitions of the gauge{invariant variablesM(S) and V (b) for the photon42



brightness perturbation and the baryon velo
ity potential, we 
an write C 0 in gauge{invariant form. C 0 = 4�Tne[14D(r)g �M(S) + niV (b)i + 12nijM ij ℄ ; (4.64)with D(r)g = (1=�) RM(S)d
 andM ij � 38� Z M(S)(n0)n0ijd
0 :Sin
e the term in square bra
kets of (4.64) is already �rst order we 
an set dt0 =dt whi
h yields C = dt0d�C 0 = dtd�C 0 = aC 0. The Boltzmann equation for s
alarperturbations expressed in terms of the gauge invariant variableM(S) then be
omes_M(S)+ni�iM(S) = ni�i(��	)+a�Tne[14D(r)g �M(S)�ni�iV (b)+12nijM ij℄ : (4.65)For ve
tor and tensor perturbations we obtain in the same way_M(V ) + i�kM(V ) = �ninj�ijj + a�Tne �niV (V b)i + 12nijM (V )ij �M(V )� (4.66)_M(T ) + i�kM(T ) = �ninj _Hij + a�Tne hnijM (T )ij �M(T )i : (4.67)4.3.2 The tight 
oupling limitBefore re
ombination, when ne ' �b=mp,�T � 1a�Tne � 10
bh(1 + z)� 32� � �; zeq >� z >� zde
; (4.68)� 10
bh(1 + zeq)� 12 (1 + z)�1� z >� zeq : (4.69)To lowest order in �T , 
ollisions for
e the photon distribution to be of the formM(S) = 14Dg + niV (b)i + 12nijMij; (4.70)the building up of higher moments is strongly suppressed by 
ollisions.During re
ombination, the number density of free ele
trons, ne, de
reases rapidlyand the 
ollision term be
omes less and less important. Higher moments in thephoton distribution develop by free streaming.The 
ollision term C[M(S)℄ of equation (4.65) also appears in the equation ofmotion of the baryons as a drag. The Thomson drag for
e is given byFj = �r4� Z C[M(S)℄njd
 = �4a�Tne�r3 (Mj + V (b)i ) ; (4.71)43



with Mj = 3i4� Z njM(S)d
 :This yields the following s
alar baryon equation of motion in an ionized plasma_V (b) + (_a=a)V (b) = k	� 4a�Tne�r3�b (�k̂jMj + V (b)) ; (4.72)where we have added the drag for
e to the se
ond eq. of (2.55) with w = 
2s = 0.We now want to dis
uss equations (4.65,4.72) in the limit of very many 
ollisions.The 
omoving photon mean free path is given by �T = lT = (a�Tne)�1. In lowestorder �T=� and lT=�, 1 M(S) is given by (4.70), and Eq. (4.72) implies�k̂jMj + V (b) = 0 :Inserting the solution (4.70) in the Boltzmann equation (4.65) and integrating overdire
tions this implies kV (b) = kjMj = kV (r) = �34 _D(r)g ; (4.73)Implying espe
ially V (b) = V (r) � V . Eq. (4.73) is equivalent to the energy 
on-servation equation (2.55) for radiation. Using also (2.55) for baryons, w = 0, weobtain _D(r)g = �4k3 V (b) = 43 _D(b)g :This shows that entropy per baryon is 
onserved, � = 0. Before re
ombination,when the 
ollisions are suÆ
iently frequent, baryons and photons are adiabati
ally
oupled. Inserting (4.70) in (4.65) we �nd up to �rst order in �TM(S) = D(r)g � 4injk̂jV + 12nijM ij � �T [ _D(r)g � 4inj k̂j _V + 12nij _M ij+injkjD(r)g + 4ninjkik̂jV + i2ninmjkiMmj � i4njkj(�� 	)℄ :(4.74)Using (4.74) to 
al
ulate the drag for
e yieldsFj = ikj(�r=3)[4k�1 _V �D(r)g + 4(�� 	)℄ :Inserting Fj in (4.72), we obtain(�b + (4=3)�r) _V + �b( _a=a)V = k[(�r=3)D(r)g + (�b + (4=3)�r)	� (4�r=3)�℄ :This is equivalent to momentum 
onservation, the se
ond equation of (2.55) for� = �b + �r, p = �r=3 and � = � = 0, if we useD(r)g = (4=3)D(b)g and Dg = �rD(r)g + �bD(b)g�b + �r :1Here � is a typi
al size of a perturbation. For a given Fourier mode k, it is � � �=k.44



In this limit therefore, baryons and photons behave like a single 
uid with density� = �r + �b and pressure p = �r=3.From (2.55) we 
an derive a se
ond order equation for Dg. This equation 
an besimpli�ed if expressed in terms of the variable D related by (3.1). We obtain�D+
2sk2D+(1+3
2s�6w)( _a=a) _D�3[w(�a=a)�( _a=a)2(3(
2s�w)�(1=2)(1+w))℄D = 0 :For small wavelengths (sub-horizon), whi
h are however suÆ
iently large for the
uid approximation to be valid, 1=�T � 
sk � 1=�, we may drop the term insquare bra
kets. The ansatz D(t) = A(t) exp(�i R k
sdt) then eliminates the termof order 
2sk2. For the terms of order 
sk=� we obtain the equation2 _A=A+ (1 + 3
2s � 6w)( _a=a) + _
s=
s = 0 : (4.75)For the 
ase 
2s = w =
onst. , this equation is solved by A / (k�)1�� with � =2=(3w + 1), i.e., the short wave limit. In our situation we havew = �r3(�r + �b)
2s = _�r3( _�r + _�b) = (4=3)�r4�r + 3�b and_
s=
s = �3=2( _a=a) �b4�r + 3�b :Using all this, one �nds thatA = � �b + (4=3)�r
s(�r + �b)2a4�1=2 = � �+ p
s�2a4�1=2solves (4.75) exa
tly, so that we �nally obtain the approximate solution for the,tightly 
oupled matter radiation 
uid on sub-horizon s
alesD(t) / � �+ p
s�2a4�1=2 exp(�ik Z 
sd�) : (4.76)Note that this short wave approximation is only valid in the limit � � 1=(
sk), thusthe limit to the matter dominated regime, 
s ! 0 
annot be performed. In the limitto the radiation dominated regime, 
2s ! 1=3 and � / a�4 we re
over the a
ousti
waves with 
onstant amplitude whi
h we have already found in the last subse
tion.But also in this limit, we still need matter to ensure �T = 1=(a�Tne) � �. In theopposite 
ase, �T � �, radiation does not behave like an ideal 
uid but it be
omes
ollisionless and has to be treated with Liouville's equation ((4.65) without the
ollision term).
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4.3.3 Damping by photon di�usionIn this subse
tion we dis
uss the Boltzmann equation in the next order, (�T=�)2. Inthis order we will obtain the damping of 
u
tuations in an ionized plasma due to the�niteness of the mean free path; the non-perfe
t 
oupling. We follow the treatmentby Peebles [17℄ (using our gauge-invariant approa
h instead of syn
hronous gauge).Again we 
onsider Eqs. (4.65) and (4.72), but sin
e we are mainly interested in
ollisions whi
h take pla
e on time s
ales �T � �, we negle
t gravitational e�e
tsand the time dependen
e of the 
oeÆ
ients. We 
an then look for solutions of theform V /M(S) / exp(i(k � x� !�)) :In (4.65) and (4.72) this yields (negle
ting also the angular dependen
e of Comptons
attering, i.e., the term nijM ij)M(S) = 14 D(r)g � 4iknV1� i�T (! � k � n) (4.77)and �Tk!V = (4�r=3�b)(ikV +M ) ; (4.78)with M = (3=4�) R nM(S)d
. Integrating (4.65) over angles, one obtains _D(r)g +(i=3)kjM i = 0. With our ansatz therefore k �M = 3!D(r)g . Using this after s
alarmultipli
ation of (4.78) with k, we �nd, setting R = 3�b=4�r,V = (3=4)!D(r)g�Tk2R! � ik2 :Inserting this result for V in (4.77) leads toM(S) = D(r)g4 1 + 3�!=k1�i�T!R1� i�T (! � k�) ;where we have set � = k̂ � n. This is the result of Peebles [17℄, where the same
al
ulation is performed in syn
hronous gauge. Like there (x92), one obtains inlowest non-vanishing order !�T the following dispersion relation: Using12 Z 1�1M(S)d� = D(r)g4 ; whi
h yields 1 = 12 Z 1�1 1 + 3�!=k1�i�T!R1� i�T (! � k�)d�one �nds! = !0�i
 with !0 = k=[3(1+R)℄1=2 and 
 = (k2�T=6)R2 + 45(R + 1)(R + 1)2 : (4.79)In the baryon dominated regime, R � 1, therefore
 � k2�T=6 : (4.80)46



(If the angular dependen
e of Thompson s
attering is not negle
ted, the term 45(R+1) in Eq. (4.79) be
omes 89(R + 1). If also polarization is taken into a

ount, oneobtains 1615(R + 1).)Posing kdamp�T=6 = 1, this leads to a damping s
ale �damp � �T (�de
)=2, whi
his proje
ted in the mi
rowave sky to an angle#damp � �T (�de
)2�(�0 � �de
) :For � = 0 this 
orresponds to a few ar
 minutes and to the harmoni
 number`damp = �=#damp ' ��020�T (�de
) ' (1 + zde
)220 
bh : (4.81)This estimate is very 
rude sin
e we are using the approximation for �T from the tight
oupling regime just where 
oupling stops to be tight, and we assume an arbitraryvalue of ne � 0:1nb at the moment of de
oupling. Both these errors enhan
e thevalue of `damp somewhat. Numeri
al results give`damp � 800� 1000in a � = 0 universe. In open (
losed) universes, this s
ale (whi
h of 
ourse alsodepends on 
b) is moved to larger (lower) ` due to proje
tion. A reasonable approx-imation for the damping harmoni
 is`damp � 1000� 
bh0:02(1� 
�)1=2� :Temperature 
u
tuations on smaller s
ales, ` > `damp are exponentially damped byphoton di�usion.4.4 Polarization and moment expansionThomson s
attering is not isotropi
. And what is more, for a non{isotropi
 photondistribution it depends on the polarization: Even if the in
ident photon beam isunpolarized, the s
attered beam will be, unless the in
ident distribution is perfe
tlyisotropi
. In the previous se
tion we have negle
ted this e�e
t by summing overinitial polarizations and averaging over �nal polarizations. Now we want to derivethe di�eren
e in the Boltzmann equation taking into a

ount polarization.Polarization is usually 
hara
terized by means of the Stokes parameters [18, 19,20℄.For a harmoni
 ele
tromagneti
 wave with ele
tri
 �eldE(x; t) = (�1E1 + �2E2) ei!(nx�t) ; (4.82)47



where n, �1 and �2 form an orthonormal basis and the 
omplex �eld amplitudes areparameterized as Ej = ajeiÆj , the Stokes parameters are given byI = a21 + a22 (4.83)Q = a21 � a22 (4.84)U = 2a1a2 
os(Æ2 � Æ1) (4.85)V = 2a1a2 sin(Æ2 � Æ1): (4.86)I is the intensity of the wave (whose perturbation { has been introdu
ed in the pre-vious se
tion), while Q is a measure of the strength of linear polarization (the ratioof the prin
ipal axis of the polarization ellipse). V measures 
ir
ular polarizationwhi
h is not generated by Thomson s
attering and therefore V vanishes if the ini-tial 
ir
ular polarization vanishes (whi
h we assume). U is then determined via theidentity I2 = Q2 + U2.Sin
e Q vanishes in the ba
kground, to �rst order it obeys the unperturbedBoltzmann equation, ��Q+ injkjQ� �(S) ijk njnk �Q�ni = C[Q℄; (4.87)where C is the 
ollision integral. The same type of equation, with a somewhatdi�erent 
ollision integral is satis�ed by U . The 
ollision integral for V does not
ouple to I; Q or U and hen
e V � 0 is a 
onsistent solution.An expli
it derivation of the following Boltzmann hierar
hy in
luding polariza-tion is presented in Appendix B. Here we just repeat the ne
essary de�nitions andthe results.The brightness anisotropy 4M and the non-vanishing Stokes parameters Q andU 
an be expanded as M(�;k;n) = X̀ 2Xm=�2M(m)` (�; k)0Gm̀(n); (4.88)14[Q(�;k;n)� iU(�;k;n)℄ = X̀ 2Xm=�2(E(m)` � iB(m)` )2Gm̀(n): (4.89)The B-mode vanishes for s
alar perturbations, 0B` � 0. The spe
ial fun
tions sGm̀are des
ribed in Appendix B. The 
oeÆ
ients m = 0; m = �1 and m = �2 des
ribethe s
alar (S), ve
tor (V ) and tensor (T ) 
omponents respe
tively. The Boltzmannequation for the 
oeÆ
ients X(m)` is given by_M(m)` � k � 0�m̀2`� 1M(m)`�1 � 0�m̀+12`+ 3M(m)`+1� =�ne�TaM(m)` + S(m)` (` � m) (4.90)48



_E(m)` � k � 2�m̀2`� 1E(m)`�1 � 2m`(`+ 1)B(m)` � 2�m̀+12`+ 3E(m)`+1� =�ne�Ta[E(m)` +p6C(m)Æ`;2 (4.91)_B(m)` � k � 2�m̀2`� 1B(m)`�1 + 2m`(`+ 1)E(m)` � 2�m̀+12`+ 3B(m)`+1� =�ne�TaB(m)` : (4.92)where we set S(0)0 = ne�TaM(0)0 ; S(0)1 = ne�TaVb + k(	� �);S(0)2 = ne�TaC(0); S(1)1 = ne�Ta!b;S(1)2 = ne�TaC(1) + 4�; S(2)2 = ne�TaC(2) + _H (4.93)and C(m) = 110 [M(m)2 �p6E(m)2 ℄. The 
oupling 
oeÆ
ients ares�m̀ =r(`2 �m2)(`2 � s2)`2 :The CMB temperature and polarization power spe
tra are given in terms of theexpansion 
oeÆ
ients M(m)` , E(m)` and B(m)` as(2`+ 1)2CXY (m)` = 2nm� Z k2dkX(m)` Y (m)�` ; (4.94)where nm = 1 for m = 0 and nm = 2 for m = 1; 2, a

ounting for the number ofmodes. Sin
e B is parity odd, the only non-vanishing 
ross 
orrelation spe
trum isCTE.The Boltzmann hierar
hy presented above 
an be solved numeri
ally with pub-li
ly available fast numeri
al 
odes like CMBfast [33℄ or CAMCODE [34℄. Thisenables us to 
ompute the CMB anisotropy and polarization spe
tra for many dif-ferent values of 
osmologi
al parameters, and 
ompare them with present data.4.5 Parameter estimationIn the last se
tion of this 
hapter we make some general remarks about the depen-den
e of the CMB anisotropy spe
trum on di�erent parameters and about degen-era
ies. We start by enumerating the relevant physi
al pro
esses.4.5.1 Physi
al pro
esses� Before re
ombination, photons and baryons form a tightly 
oupled 
uid whi
hperforms a
ousti
 os
illations on sub-horizon s
ales.49



Figure 4.3: The temperature anisotropy (solid), the polarization (dashed) and their
orrelation (dotted) are shown for a purely s
alar standard CMD model.� Depending on the initial 
onditions, these os
illations are sine waves (iso
ur-vature 
ase) or 
osine waves (adiabati
 
ase).� After re
ombination, the photons move along perturbed geodesi
s, only in
u-en
ed by the metri
 perturbations.� Ve
tor perturbations of the metri
 de
ay as a�2 after 
reation and their e�e
tson CMB anisotropies are negligible for models where initial 
u
tuations are
reated early, e.g. during an in
ationary phase. This is di�erent for modelswhi
h 
onstantly seed 
u
tuations in the geometry, e.g. topologi
al defe
ts.� Tensor perturbations of the metri
 have 
onstant amplitude on super-horizons
ales and perform damped os
illations / a�1 on
e they enter the horizon.� S
alar perturbations of the metri
 are roughly 
onstant if they enter the hori-zon only after the time of matter and radiation equality. On s
ales whi
h enterthe horizon before equality they are damped by a fa
tor (zeq=zin)2, where zeqand zin are the redshift of equality and of horizon 
rossing, respe
tively.� Perturbations on small s
ales, k >� kT ' (
bh=20)(zde
 + 1)2H0 are exponen-tially damped by 
ollisional damping during re
ombination (Silk damping).4.5.2 S
ale dependen
e� On large s
ales (larger than the horizon s
ale at re
ombination, ` <� `H '�=#H , with #H = �de
=�(�0 � �de
), perturbations are dominated by gravi-50



tational e�e
ts: In
ationary models typi
ally lead to k3 hj	� �j2(k; �de
)i '
onst: and k3 hH2i ' 
onst: on these s
ales. This implies a 
at \Harrison-Zel'dovi
h" spe
trum,��TT �2 (#`) ' `(`+ 1)C` ' 
onst:; #` = �̀ : (4.95)� On intermediate s
ales, `H < ` < `damp � 800, CMB anisotropies mainlyre
e
t the a
ousti
 os
illations of the photon/baryon plasma prior to re
ombi-nation. The position of the �rst peak is severely a�e
ted by initial 
onditions(adiabati
 or iso
urvature). For � = 0, the �rst 
ontra
tion peak is at about`(a)1 � 200 if the initial 
onditions are adiabati
, while the �rst 
ontra
tionpeak is at `(i)1 � 350 for iso
urvature initial 
onditions. The amplitude of andthe distan
e between the peaks depend strongly on 
osmologi
al parameters.� On small s
ales, `damp < `, 
u
tuations are 
ollisionally damped during re
om-bination (\Silk damping"). The damping s
ale depends mainly on 
bh and
.4.5.3 The main in
uen
e of 
osmologi
al parameters� Curvature, h2
�:{ Mainly a�e
ts the inter{peak distan
e, �`, and, for given initial 
ondi-tions, the position of the �rst peak. Positive 
urvature lowers �` whilenegative 
urvature enhan
es it.{ Curvature also leads to an integrated Sa
hs{Wolfe 
ontribution whi
his espe
ially important for � > 0 at very low `. Overall, this leads tosome enhan
ement of the Sa
hs{Wolfe 
ontribution and therefore (afternormalization to the COBE measurements) to somewhat lower a
ousti
peaks.� Baryon density, �b = 
bh2 � 10�29g=
m3:{ A high baryoni
 density enhan
es the 
ompression peaks and de
reasesthe expansion peaks via the self{gravity of the baryons.{ It also redu
es the damping s
ale, �T = 1=(ade
�Tne(�de
)), leading to anin
rease in `damp.{ Baryons de
rease the plasma sound velo
ity, 
s = 1=3(1 + _�b= _�
)�1, andhen
e prolongs the os
illation period. This in
reases the spa
ing betweena
ousti
 peaks.
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� Cosmologi
al Constant, � = 
�h28�G � 10�29g=
m3:The presen
e of a 
osmologi
al 
onstant at �xed 
tot = 
m + 
� delays theepo
h of equal matter and radiation. During the radiation dominated era, thegravitational potential is not 
onstant, but de
ays as soon as a given s
aleenters the horizon. If �eq � �de
 this indu
es an integrated Sa
hs{Wolfe (ISW)
ontribution whi
h boosts mainly the �rst a
ousti
 peak. 
� also boosts thelate integrated Sa
hs{Wolfe 
ontribution.� Hubble Parameter, H0 = 100h km=(s Mp
): The in
uen
e of the Hubbleparameter is 
ompli
ated and depends sensitively on the variables whi
h arekept �xed during its variation (
� or !� = h2
�). As one example of itsin
uen
e: for �xed 
urvature and 
osmologi
al 
onstant, lowering the Hubbleparameter also delays the epo
h of equal matter and radiation, �eq ! �de
,sin
e zeq + 1 = 
m
rad ' 2:4 � 104
mh2: (4.96)Therefore the same type of ISW 
ontribution as for �{models boosts the �rsta
ousti
 peak.� Initial 
onditions:{ A tensor 
ontribution enhan
es the large s
ales 
u
tuations but not thea
ousti
 peaks, thereby lowering their relative amplitude.{ A \blue" 
u
tuation spe
trum, n > 1, enhan
es 
u
tuations on smallers
ales and raises thereby the a
ousti
 peaks.4.5.4 Degenera
yOne important issue in determining 
osmologi
al parameters from CMB anisotropymeasurements is the 
hoise of good variables, whi
h requires physi
al insight in howanisotropies are in
uen
ed. As we have argued before, the Hubble parameter, his not a good variable sin
e its in
uen
e is very 
ompli
ated. It enters the 
osmi
densities �� / 
�h2 and the length s
ales like �eq or �de
. Another limitation forparameter estimation from CMB anisotropies is degenera
y. We illustrate here justone example. As we have dis
ussed in Chapter 3, the position of the �rst a
ousti
peak only depends on the sound horizon, �s = R �de
 
sd� and the angular diameterdistan
e to the last s
attering surfa
e, �(�0��de
). The distan
e between subsequentpeaks in the CMB power spe
trum is proportional to�` = �(�0 � �de
)�sIn Fig. 4.4 (left panel) we show lines of 
onstant R = �`=�`0 in the 
m { 
�plane. Here �`0 = �`0(
� = 
� = 0) is the value of �` in a spatially 
at universe52



with vanishing 
osmologi
al 
onstant. To the right the CMB anisotropy spe
trafor s
alar perturbations with �xed index n = 1 and �xed values of the matterdensity !m and the baryon density !b. But the 
osmologi
al 
onstant and h vary,so that 
� and 
m 
orrespond to the values indi
ated by bullets on the left panel.Clearly, for ` > 50 these spe
tra are perfe
tly degenerate. On the other hand, dueto 
osmi
 varian
e, the low ` CMB anisotropies will never be known to very gooda

ura
y so that this degenera
y 
annot be lifted by CMB anisotropy observationsalone. Additional data like the supernova type Ia measurements, observations ofthe galaxy distribution (large s
ale stru
ture) or CMB polarization are needed.
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Figure 4.4: Left: The lines of 
onstant R are shown in the 
�{
m plane. Thevalues 
�;
m for whi
h the CMB anisotropy spe
tra are shown right are indi
atedas bla
k dots. Right: Three CMB anisotropy spe
tra with di�erent values of 
�and 
m but �xed R are shown. For ` >� 50 these spe
tra are 
learly degenerate.Thesolid line represents a 
at model, while the dotted line 
orresponds to a 
losed andthe dashed line to an open universe.There are also other degenera
ies like the opti
al depth to reionization and thetensor 
ontribution or the s
alar spe
tral index and the tensor 
ontribution. Theimportant lesson to learn is that even if the very stringent model assumptions are
orre
t, we still need other data to measure 
osmologi
al parameters and espe
iallywe will only feel 
omfortable with a suÆ
ient amount of redundan
y.
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Chapter 5Observations and ResultsIn this short, �nal 
hapter we want to dis
uss brie
y the experimental situationwhi
h is very mu
h in 
ow and may have 
hanged 
onsiderably already at the mo-ment when this review appears. It has been 
lear for a long time that, if initial
u
tuations have led to the formation of large s
ale stru
ture by gravitational insta-bility, they should have indu
ed 
u
tuations in the 
osmi
 mi
rowave ba
kground[23, 24℄. Before spring 1992, however, only the dipole anisotropy had been dete
ted[12, 13℄. Its value is [7℄*��TT �2+dipole = (1:528� 0:004)� 10�6 :After many upper limits, the DMR experiment aboard the COBE satellite mea-sured for the �rst time 
onvin
ingly positive anisotropies [8℄. It found*��TT �2+ (�) � (30�K)2 (5.1)on all angular s
ales � � 7Æ. Many more positive measurements have been performedsin
e then. In Fig. 5.1 we just show the COBE DMR results [35℄ together with thethree most re
ent experiments, BOOMERANG [36℄, MAXIMA-1 [37℄ and DASI [38℄As one sees in this �gure, present data, agrees very well with a simple 
at modelof purely s
alar, s
ale invariant, ns = 1, adiabati
 
u
tuations with 
osmologi
alparameter !b = 0:02, 
� = 0, 
� = 0:7, h = 0:65 whi
h are also preferred fromother 
osmologi
al data. However, the error-bars are still 
onsiderable.The experiments 
an be split into three 
lasses: Satellite experiments, balloon{borne experiments and ground based experiments. The te
hni
al and e
onomi
aladvantages of ground based experiments are obvious. Their main problem is atmo-spheri
 
u
tuation. This 
an be redu
ed by two methods:� Choose a very high altitude and very 
old site, e.g. the south pole. Severalexperiments like SP, Python and White Dish have 
hosen this site.54



Figure 5.1: The measured temperature anisotropies, `(`+1)C` are shown in a lin-linplot (left) and in a log-lin plot (right) with the theoreti
al 
urve from a standard,adiabati
 
old dark matter model. The data points shown are those from COBEDMR (solid, magenta, low `), BOOMERANG (solid, red), DASI (dashed, blue) andMAXIMA-1 (dotted, green).� Measure anisotropies on small s
ales, preferably by interferometry (DASI,CAT, VSA, Jodrell Bank).Balloon{borne experiments 
ying at about 40km altitude have less problemswith the Earths atmosphere but they fa
e the following diÆ
ulties:� They are limited in weight.� They 
annot be manipulated at will in 
ight.� They have a rather short duration.� To se
ure all the data taken on the balloon, they have to be re
overed inta
t.Yet the advantages of over
oming the atmosphere are so signi�
ant that manygroups have 
hosen this approa
h, like e.g.MAXIMA-1, TopHat, et
. The BOOMERanGexperiment 
ombines the two advantages of a 
old site and balloon altitude. It hasperformed a long{duration 
ight (10 days) on the south pole in De
ember 1998.The third possibility are satellite experiments. They avoid atmospheri
 problemsaltogether, but this solution is very expensive. So far two satellite experiments havebeen laun
hed: COBE in 1989 (NASA mission) and MAP in June 2001 (Mi
rowaveAnisotropy Probe, a NASA MIDEX mission), one more is planned: PLANCK, anESA medium size mission of the \Horizon 2000" program, to be laun
hed in 2007.As I am writing this lines, MAP has safely arrived at its destination, the Lagrangepoint L2 of the sun-earth system. It will perform measurements at �ve frequen
ies55



in the range from 22 to 90 GHz. The instruments of PLANCK will operate at ninefrequen
ies, 
overing 20 to 800 GHz. At low frequen
ies (below 100 GHz) radiore
eivers are used (so 
alled \HEMTs", high ele
tron mobility transistors) while thehigh frequen
y instruments are bolometers. Re
ent progress in dete
tor te
hnologiesshould enable the two new satellites to perform signi�
antly better than COBE {the radio re
eivers of PLANCK, e.g., are supposed to be 1000 times more sensitivethan the ones used for COBE, and the angular resolution has improved from sevendegrees to four ar
 minutes. For more details also on other experiments see� http://astro.este
.esa.nl/PLANCK� http://map.gsf
.nasa.gov� http://www.gsf
.nasa.gov/astro/
obe/
obe home.html� http://spe
trum.lbl.gov/www/max.html� http://oberon.roma1.infn.it/boomerang/I �nish this short 
hapter with Table 5.1 whi
h shows the ranges for the 
os-mologi
al parameters 
tot = 1� 
�, h2
b and ns as determined purely by CMBanisotropies. Ex
ept for the last referen
e, a purely s
alar spe
trum of adiabati

u
tuations is assumed. The parameter estimation pro
ess also assumes 'weak pri-ors' on the values of other 
osmologi
al observables, like e.g. that the age of theUniverse be larger than 10Gyrs. or 0:4 < h < 0:9. I do not 
omment this table mu
hfurther but refer the reader to the original literature and many improved papers onthis subje
t whi
h will appear shortly.Clearly, the results shown in Table 5.1 are very 
onsistent. It is interesting tonote, how the upper limit on the s
alar spe
tral index deteriorates if one allows fora tensor 
omponent. This is one of the degenera
ies in the CMB data whi
h 
anbe broken by in
luding large s
ale stru
ture data in the analysis (see [42℄). Other
osmologi
al parameters are not well 
onstrained by CMB data alone. However, ifCMB data is 
ombined with SN1a and large s
ale stru
ture data, the error barsare signi�
antly redu
ed and eviden
e for a non-vanishing 
osmologi
al 
onstant
� � 0:7 be
omes very strong (see [39, 40, 42℄).A
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Ref. Data 
tot 
bh2 ns errors[39℄ BOOM and DMR data 1:02+0:06�0:05 0:022+0:004�0:003 0:96+0:1�0:09 1� � errors[40℄ DASI and DMR data 1:05+0:06�0:06 0:022+0:004�0:004 1:01+0:09�0:07 1� � errors[41℄ MAX and DMR data 0:90+0:18�0:16 0:0325+0:0125�0:0125 0:99+0:14�0:14 2� � errors[42℄ all data, no priors 1:06+0:59�0:13 0:02+0:06�0:01 0:93+0:75�0:16 2� � errorsallows also tensor modeTable 5.1: Some results from parameter estimations from re
ent CMB data alone.The errors given are formal 1 or 2-� errors whi
h assume the underlying model tobe 
orre
t and no systemati
 problems in the data. They are obtained by marginal-ization or maximization over all other model parameters.
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Appendix AThe C`'s from gravitational wavesWe 
onsider metri
 perturbations whi
h are produ
ed by some isotropi
 randompro
ess (for example during in
ation). After produ
tion, they evolve a

ording to adeterministi
 equation of motion. By reasons of isotropy and due to symmetry, the
orrelation fun
tions of hij(k; �) have to be of the formhhij(k; �)h�lm(k; �0)i = [kikjklkmH1(k; �; �0) +(kiklÆjm + kikmÆjl + kjklÆim + kjkmÆil)H2(k; �; �0) +kikjÆlmH3(k; �; �0) + klkmÆijH�3 (k; �0; �) ++ÆijÆlmH4(k; �; �0) + (ÆilÆjm + ÆimÆjl)H5(k; �; �0)℄ :(A.1)Here the fun
tions Ha are fun
tions of the modulus k = jkj only. Furthermore, allof them ex
ept H3 are hermitian in � and �0. This is the most general ansatz for anisotropi
 
orrelation tensor satisfying the required symmetries. To proje
t out thetensorial part of this 
orrelation tensor we a
t on hij it with the tensor proje
tionoperator, T mnij = Pmi P nj � (1=2)PijPmn with Pij = Æij � k̂ik̂j : (A.2)This yields hh(T )ij (k; �)h(T )�lm (k; �0)i =H5(k; �; �0)[ÆilÆjm + ÆimÆjl � ÆijÆlm + k�2(Æijklkm +Ælmkikj � Æilkjkm � Æimklkj � Æjlkikm � Æjmklki) +k�4kikjklkm℄ : (A.3)From Eq. (4.17), we then obtain��TT (n)�TT (n0)� � 1V Z d3x��TT (n;x)�TT (n0;x)� =� 12��3 Z k2dkd
k̂ Z �0�de
 d� Z �0�de
 d�0 exp(ik � n(�0 � �)) exp(�ik � n(�0 � �0)) �hh _h(T )ij (�;k) _h(T )�lm (�0;k)ininjn0ln0mi : (A.4)58



Here d
k̂ denotes the integral over dire
tions in k spa
e. We use the normalizationof the Fourier transformf̂(k) = 1pV Z d3x exp(ix � k)f(x) ; f(x) = 1(2�)3 Z d3k exp(�ix � k)f̂(k) ;where V is an (arbitrary) normalization volume.We now introdu
e the form (A.3) of < h(T )h(T ) >. We further make use of theassumption that the perturbations have been 
reated at some early epo
h, e.g. dur-ing an in
ationary phase, after whi
h they evolved deterministi
ally. The fun
tionH5(k; �; �0) is thus a produ
t of the formH5(k; �; �0) = H(k; �) �H�(k; �0) : (A.5)Introdu
ing this in Eq. (A.4) yields��TT (n)�TT (n0)� =� 12��3 Z k2dkd
k̂ �(n � n0)2 � 1 + �02 + �2 � 4��0(n � n0) + �2�02� �Z �0�de
 d� Z �0�de
 d�0 h _H(k; �) _H�(k; �0) exp(ik�(�0 � �)) exp(�ik�0(�0 � �0))i ;(A.6)where � = (n � k̂) and �0 = (n0 � k̂). To pro
eed, we use the identity [43℄exp((ik�(�0 � �)) = 1Xr=0(2r + 1)irjr(k(�0 � �))Pr(�) : (A.7)Here jr denotes the spheri
al Bessel fun
tion of order r and Pr is the Legendrepolynomial of degree r.Furthermore, we repla
e ea
h fa
tor of � in Eq. (A.6) by a derivative of theexponential exp(ik�(�0� �)) with respe
t to k(�0� �) and 
orrespondingly with �0.We then obtain��TT (n)�TT (n0)� =� 12��3Xr;r0 (2r + 1)(2r0 + 1)i(r�r0) Z k2dkd
k̂Pr(�)Pr0(�0)�h2(n � n0)2 Z d�d�0jr(k(�0 � �))jr0(k(�0 � �0)) _H(k; �) _H�(k; �0)� Z d�d�0[jr(k(�0 � �))jr0(k(�0 � �0)) + j 00r (k(�0 � �))jr0(k(�0 � �0)) +jr(k(�0 � �))j 00r0(k(�0 � �0))� j 00r (k(�0 � �))j 00r0(k(�0 � �0))℄ _H(k; �) _H�(k; �0)�4(n � n0) Z d�d�0j 0r(k(�0 � �))j 0r0(k(�0 � �0)) _H(k; �) _H�(k; �0)i : (A.8)59



Here only the Legendre polynomials, Pr(�) and Pr0(�0) depend on the dire
tionk̂. To perform the integration d
k̂, we use the addition theorem for the spheri
alharmoni
s Yrs, Pr(�) = 4�(2r + 1) rXs=�r Yrs(n)Y �rs(k̂) : (A.9)The orthogonality of the spheri
al harmoni
s then yields(2r + 1)(2r0 + 1) Z d
k̂Pr(�)Pr0(�0) =16�2Ærr0 rXs=�rYrs(n)Y �rs(n0) =4�Ærr0Pr(n � n0) : (A.10)In Eq. (A.8) the integration over d
k̂ then leads to terms of the form (n �n0)Pr(n �n0)and (n � n0)2Pr(n � n0). To redu
e them, we usexPr(x) = r + 12r + 1Pr+1 + r2r + 1Pr�1 : (A.11)Applying this and its iteration for x2Pr(x), we obtainh�TT (n)�TT �(n0)i =12�2 Xr (2r + 1) Z k2dk Z d�d�0 _H(k; �) _H�(k; �0)n� 2(r + 1)(r + 2)(2r + 1)(2r + 3)Pr+2 + 1(2r � 1)(2r + 3)Pr + 2r(r � 1)(2r � 1)(2r + 1)Pr�2��jr(k(�0 � �))jr(k(�0 � �0))� Pr[jr(k(�0 � �)j 00r (k(�0 � �0))+jr(k(�0 � �0))j 00r (k(�0 � �))� j 00r (k(�0 � �))j 00r0(k(�0 � �0))℄�4 � r + 12r + 1Pr+1 + r2r + 1Pr�1� j 0r(k(�0 � �))j 0r(k(�0 � �0))o ; (A.12)where the argument of the Legendre polynomials, n �n0, has been suppressed. Usingthe relations j 0r = � r + 12r + 1jr+1 + r2r + 1jr�1 (A.13)for Bessel fun
tions, and its iteration for j 00, we 
an rewrite Eq. (A.12) in terms ofthe Bessel fun
tions jr�2 to jr+2.We now insert the de�nition of C`:��TT (n) � �TT (n0)�(n�n0)=
os � = 14��`(2`+ 1)C`P`(
os �) ; (A.14)60



and 
ompare the 
oeÆ
ients in Eqs. (A.12) and (A.14). We obtain the somewhatlengthy expressionC` =2� Z dkk2 Z d�d�0 _H(k; �) _H�(k; �0)njl(k(�0 � �))jl(k(�0 � �0))�� 1(2`� 1)(2`+ 3) + 2(2`2 + 2`� 1)(2`� 1)(2`+ 3) + (2`2 + 2`� 1)2(2`� 1)2(2`+ 3)2� 4`3(2`� 1)2(2`+ 1) � 4(`+ 1)3(2`+ 1)(2`+ 3)2�� [j`(k(�0 � �))j`+2(k(�0 � �0)) + j`+2(k(�0 � �))j`(k(�0 � �0))℄�12l + 1 �2(`+ 2)(`+ 1)(2`2 + 2`� 1)(2`� 1)(2`+ 3)2 + 2(`+ 1)(`+ 2)(2`+ 3) � 8(`+ 1)2(`+ 2)(2`+ 3)2 �� [j`(k(�0 � �))j`�2(k(�0 � �0)) + j`�2(k(�0 � �))j`(k(�0 � �0))℄�12l + 1 �2`(`� 1)(2`2 + 2`� 1)(2`� 1)2(2`+ 3) + 2`(`� 1)(2`� 1)(2 � 8`2(`� 1)(2`� 1)2 �+j`+2(k(�0 � �))j`+2(k(�0 � �0))�� 2(`+ 2)(`+ 1)(2`+ 1)(2`+ 3) � 4(`+ 1)(`+ 2)2(2`+ 1)(2`+ 3)2 + (`+ 1)2(`+ 2)2(2`+ 1)2(2`+ 3)2�+j`�2(k(�0 � �))j`�2(k(�0 � �0))�� 2`(`� 1)(2`� 1)(2`+ 1) � 4`(`� 1)2(2`� 1)2(2`+ 1) + `2(`� 1)2(2`� 1)2(2`+ 1)2�� (A.15)An analysis of the 
oeÆ
ient of ea
h term reveals that the 
urly bra
ket in thisexpression is just f� � �g = `(`� 1)(`+ 1)(`+ 2)�j`(k(�0 � �))(k(�0 � �))2 �2and the result is equivalent toC` = 2� Z dkk2jI(`; k)j2`(`� 1)(`+ 1)(`+ 2) ; (A.16)with I(`; k) = Z �0�de
 d� _H(�; k)j`((k(�0 � �))(k(�0 � �))2 : (A.17)
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Appendix BBoltzmann equation andpolarizationIn this appendix we derive the Boltzmann equation taking into a

ount polarization,and we write it as a hierar
hy of equations using an orthonormal expansion in thespa
e of photon dire
tions. Up to the 
ollision term, the Eqs. (4.65), (4.66) and(4.67) are still valid. We �rst re-derive the 
ollision term taking into a

ount thepolarization dependen
e of Thomson s
attering.Just before the pro
ess of re
ombination during whi
h the 
uid des
ription ofradiation breaks down, the temperature is � 0:4 eV. The ele
trons and nu
leiare non-relativisti
 and the dominant 
ollision pro
ess is non-relativisti
 Thomsons
attering.Thomson s
attering depends on the polarization of the in
oming radiation �eld.We des
ribe the polarization state of the radiation �eld by the Stokes parameters [18,20, 21, 19℄:For a harmoni
 ele
tro-magneti
 wave with ele
tri
 �eldE(x; t) = (�1E1 + �2E2) eipn � x�i!t ; (B.1)where n, �1 and �2 form an orthonormal basis and the 
omplex �eld amplitudes areparameterized as Ej = ajeiÆj , the Stokes parameters are given byI = a21 + a22 (B.2)Q = a21 � a22 (B.3)U = 2a1a2 
os(Æ2 � Æ1) (B.4)V = 2a1a2 sin(Æ2 � Æ1): (B.5)I is the intensity of the wave (whose perturbationM has interested us so far), whileQ is a measure of the strength of linear polarization (the ratio of the prin
ipal axisof the polarization ellipse). U and V give phase information (the orientation ofthe ellipse). For non-relativisti
 Thomson s
attering V is 
ompletely de
oupled and(sin
e it vanishes at early times) is therefore never generated.62



As Q and U vanish in the ba
kground, perturbations 
annot 
ouple to them(sin
e su
h terms are 2nd order), and the Liouville equations for Q and U be
ome(negle
ting s
attering and spatial 
urvature)��(Q;U) + in`k`(Q;U) = 0: (B.6)The di�erential 
ross se
tion of Thomson s
attering for a photon with in
identpolarization �(i) s
attering into the outgoing polarization �(s) � �0 is [18℄d�d
 = 38��T ����(s)�(i)��2 : (B.7)
Figure B.1: De�nition of the angles and ve
tors for Thomson s
attering in the (n; �2)plane.It is often 
onvenient to introdu
e the two `partial' intensities I1 � a21 = (I+Q)=2and I2 � a22 = (I � Q)=2. A wave s
attered in the (n; �2) plane (see �gure B.1) byan angle � has the intensities I(s)1 = 3�T8� I(i)1I(s)2 = 3�T8� I(i)2 
os2 �; (B.8)or, expressed in terms of the Stokes parameters,� I(s)Q(s) � = 3�T16� � 1 + 
os2 � sin2 �sin2 � 1 + 
os2 � �� I(i)Q(i) � : (B.9)A rotation in the (�1; �2) plane doesn't 
hange the intensity of the wave, but it
hanges Q and U to Q0 = Q 
os(2�) + U sin(2�) (B.10)U 0 = �U sin(2�) +Q 
os(2�) : (B.11)To determine the 
ross se
tion that a given 'initial' wave(I(i); Q(i); U (i)) propagating in dire
tion n be s
attered into a wave (I(s); Q(s); U (s))with dire
tion n0, we need to go through the following steps (we will use the plane(y; z) as referen
e plane, see �gure (B.2) for de�nitions of the angles and ve
tors):63



Figure B.2: De�nition of the angles and ve
tors for Thomson s
attering in thegeneral 
ase. The polarization ve
tors are oriented like in �gure B.1.1. Rotate around n su
h that the plane (n;n0) turns into the plane (nz). Oneneeds to apply the rotation (B.10,B.11) for � = � to the Stokes parameters.2. Rotate the new plane (n;n0) around z into the referen
e plane (y; z). Thisoperation does not in
uen
e the in
oming Stokes parameters..3. Now we are in the known 
ase of (B.8) and (B.9). Hen
e we 
an apply thes
attering matrix.4. We then rotate the s
attering plane ba
k around z into the old (z;n0) plane.This does not 
hange the s
attered Stokes parameters.5. Finally we rotate around n0 by the angle �0 to rea
h the original state. Todo this, we have to apply the rotation matrix (B.10,B.11) again, but now for� = �0.Following the steps outlined above, we re
over the s
attering matrix in the basis(I1; I2; U) given in equations (B.13) - (B.16) (see also [19℄). V is 
ompletely de-
oupled from the other parameters and follows an evolution whi
h is independentof the rest. Hen
e by starting with V (t � tde
) = 0 it will stay zero and 
an benegle
ted. The s
attering matrix P , whi
h determines the (non vanishing) s
atteredStokes parameters from the initial ones,0� I(s)1I(s)2U (s) 1A = �T4�P 0� I(i)1I(i)2U (i) 1A (B.12)
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is then given by P = hP (0) +p1� �2p1� �02P (1) + P (2)i ; (B.13)where P (0) = 340� 2(1� �2)(1� �02) + �2�02 �2 0�02 1 00 0 0 1A ; (B.14)P (1) = 34 0� 4��0 
os(�0 � �) 0 2� sin(�0 � �)0 0 0�4�0 sin(�0 � �) 0 2 
os(�0 � �) 1A ; (B.15)P (2) = 340� �2�02 
os[2(�0 � �)℄ ��2 
os[2(�0 � �)℄ �2�0 sin[2(�0 � �)℄��02 
os[2(�0 � �)℄ 
os[2(�0 � �)℄ ��0 sin[2(�0 � �)℄�2��02 sin[2(�0 � �)℄ 2� sin[2(�0 � �)℄ 2��0 
os[2(�0 � �)℄ 1A :(B.16)As we are in an isotropi
 situation, we will perform all the 
al
ulations in aspe
ial 
oordinate system with k k ẑ and n;n0 as in Fig. B.2. Clearly the results areindependent of this 
oordinate 
hoi
e.The matrix R 
onne
ting (I1; I2; U) with (I; Q; U) is given by0� I1I2U 1A = 0� 1=2(I +Q)1=2(I �Q)U 1A = 12 0� 1 1 01 �1 00 0 2 1A0� IQU 1A � R0� IQU 1A : (B.17)To 
al
ulate the 
ollision term in
luding polarization , we 
hange into the (I1; I2)basis . For ea
h of the two intensities � 2 f1; 2g we then have the 
ollision termgiven by C[f (�)℄ = df (�)+d� � df (�)�d� ; (B.18)where f (�)+ and f (�)� denote the distribution of photons in the polarization state �s
attered into respe
tively out of the beam due to Compton s
attering.In the matter (baryon/ele
tron) rest frame, whi
h we indi
ate by a prime, weknow that df (�)0+d�0 (p;n) = a�Tne4� Z f (Æ)0(p0;n0)P �Æ (n;n0)d
0 ;where ne denotes the ele
tron number density and P �Æ is the 2�2 upper left 
orner ofthe normalized Thomson s
attering matrix (B.13). In the baryon rest frame whi
hmoves with four velo
ity u, the photon energy is given byp0 = p�u� :65



We denote the photon energy with respe
t to a tetrad adapted to the sli
ing ofspa
e-time into f� = 
onstantg hyper{surfa
es by p :p = p�n� ; with n = a�1[(1� A)�� +Bi�i℄ ;The lapse fun
tion and the shift ve
tor of the sli
ing are given by � = a(1 +A) and� = �Bi�i . In �rst order, p0 = ap(1 + A)� apniBi ;and to zeroth order pi = apni. Furthermore, the baryon four velo
ity has the formu0 = a�1(1� A) ; ui = u0vi up to �rst order. This yieldsp0 = p�u� = p(1 + ni(vi �Bi)) :Using this identity and performing the integration over photon energies, we obtain�
 d�(�)+ (n)d�0 = a�
�Tne �1 + 4ni(vi �Bi)+14� Z �(Æ)(n0)P �Æ (n;n0)d
0� :Photons whi
h are s
attered leave the beam, with the probability given by theThomson 
ross se
tion (see e.g. [22℄)df (�)�dt0 = �Tnef (�)0(p0;n) ;so that we �nally haveC(�)0 = 4��
a4 Z dp df (�)+dt0 � df (�)�dt0 ! p3 = 12�Tne[4ni(vi � Bi)� �(�)+ 14� Z �(Æ)(n0)P �Æ (n;n0)d
0℄ : (B.19)By setting C(M) = C(1) +C(2) and C(Q) = C(1)�C(2) we transform the 
ollisionintegral ba
k to the normal stokes parameters. The term for U has the same formas the one for Q, just with the 
orresponding matrix elements in the integral. TheBoltzmann equation then �nally be
omes (setting E � (4M; Q; U) and for the 
at
ase, � = 0): _M+ i�kM = i�k(�� 	+ nm�(V )m ) + n`nm _Hm`+a�Tne ��M� i�Vb + n`!b;` + 14 Z d
0P �1 E 0�� (B.20)_Q + i�kQ = a�Tne ��Q + Z d
0P �2 E 0�� (B.21)_U + i�kU = a�Tne ��U + Z d
0P �3 E 0��; (B.22)66



where we have to use the s
attering matrix transformed into the (M; Q; U) basis,P = PS + PV + PT with (B.23)PS = R�1P (0)R= 380� 3� �2 � �02 + 3�2�02 (1� 3�2)(1� �02) 0(1� �2)(1� 3�02) 3(1� �2)(1� �02) 00 0 0 1A (B.24)PV = p1� �2p1� �02R�1P (1)R= 32p1� �2p1� �020� ��0C ��0C ��S��0C ��0C ��S�0S �0S C 1A (B.25)PT = R�1P (2)R= 380� (1� �2)(1� �02)CT �(1� �2)(1 + �02)CT 2(1� �2)�0ST�(1 + �2)(1� �02)CT (1 + �2)(1 + �02)CT �2(1 + �2)�0ST�2�(1� �02)ST 2�(1 + �02)ST 4��0CT 1Awith C = 
os(�� �0), S = sin(�� �0) andCT = 
os(2(�� �0)), ST = sin(2(�� �0)). The parts PS; PV ; PT of P des
ribe thes
attering of the s
alar, ve
tor and tensor 
ontribution to E respe
tively.The fun
tions M, Q and U depend on the wave ve
tor k, the photon dire
tionn and 
onformal time �. We 
hoose for ea
h k-mode a referen
e system with z-axisparallel to k. For s
alar perturbations we a
hieve in this way azimuthal symmetry| the right-hand side of the Boltzmann equation and therefore also the brightnessM(S) depend only on � = (k̂�n) and 
an be expanded in Legendre polynomials. Theright-hand side of the Boltzmann equation also determines the azimuthal dependen
eof ve
tor and tensor perturbations. One 
an 
ontinue with this approa
h, but theresulting equations for Q and U and espe
ially also their power spe
tra dependexpli
itly on the 
oordinate system. Therefore, we prefer an approa
h whi
h isinherently 
ovariant under rotation.B.1 Ele
tri
 and magneti
 polarizationThe Stokes parameters expli
itly depend on the 
oordinate system, and Eqs. (B.21)and (B.22) transform rather 
ompli
ated under rotations of the 
oordinate system.A method to 
hara
terize CMB polarization due to non-relativisti
 Thomson s
at-tering whi
h is more 
onvenient than the Stokes parameters sin
e its transformationproperties are very simple has been developed some years ago [47, 48, 49, 51, 52℄.A detailed derivation of this method goes beyond the s
ope of this report. Here wejust repeat the de�nitions and the main results. We setT = (M; 14[Q + iU ℄; 14[Q� iU ℄) (B.26)67



In terms of this ve
tor the 
ollision integral above 
an we written (in ve
tor form)as C[T ℄ = a�Tne[� T + � 14� Z d
0M0 + (n � vb); 0; 0�+ 110 2Xm=�2 Z d
0P (m)(n;n0)T 0℄ (B.27)From Eqs. (B.13) to (B.17) one 
an determine the s
attering matrix for the ve
torT P (m) = 0B� Y m02 Y m2 �q32 2Y m02 Y m2 �q32 �2Y m02 Y m2�p6Y m02 2Y m2 3 2Y m02 2Y m2 3 �2Y m02 2Y m2�p6Y m02 �2Y m2 3 2Y m02 �2Y m2 3 �2Y m02 �2Y m2 1CA (B.28)where sY m0l = sY m�l (n0) and sY ml are the spin-weighted spheri
al harmoni
s [50, 51℄.We now de
ompose the Fourier 
omponents of the temperature anisotropy Mand the polarization variables E and B asM = X̀ 2Xm=�2M(m)` 0Gm̀; (B.29)14(Q� iU) = X̀ 2Xm=�2(E(m)` � iB(m)` )2Gm̀(n): (B.30)Here m = 0 is the s
alar mode, m = �1 are the ve
tor and m = �2 are the tensormodes. The fun
tions sGm̀ are 
losely related to the spin weighted harmoni
s sY m` :sGm̀(n) = (�i)`r 4�2`+ 1sY m` (n)The evolution equations in term of these variables 
an be given in the following
ompa
t form [52℄ _M(m)` � k � 0�m̀2`� 1M(m)`�1 � 0�m̀+12`+ 3M(m)`+1� =�ne�TaM(m)` + S(m)` (` � m) (B.31)_E(m)` � k � 2�m̀2`� 1E(m)`�1 � 2m`(`+ 1)B(m)` � 2�m̀+12`+ 3E(m)`+1� =�ne�Ta[E(m)` +p6C(m)Æ`;2 (B.32)_B(m)` � k � 2�m̀2`� 1B(m)`�1 + 2m`(`+ 1)E(m)` � 2�m̀+12`+ 3B(m)`+1� =�ne�TaB(m)` : (B.33)68



where we have setS(0)0 = ne�TaM(0)0 ; S(0)1 = ne�TaVb + k(	� �);S(0)2 = ne�TaC(0); S(1)1 = ne�Ta!b;S(1)2 = ne�TaC(1) + k�; S(2)2 = ne�TaC(2) + _H (B.34)and C(m) = 110 [M(m)2 �p6E(m)2 ℄. The 
oupling 
oeÆ
ients ares�m̀ =r(`2 �m2)(`2 � s2)`2 :Note that for s
alar perturbations, m = 0, B-polarization is not sour
ed and wehave B(0)` � 0.Finally we want to 
onne
t the intensitiesM(m)` with the more familiar expansionof the s
alar (S), ve
tor (V ) and tensor (T ) 
ontributions to the brightness fun
tionin terms of Legendre polynomials. Usually one setsM =M(S) +M(V ) +M(T ) :HereM(S) only depends on � = (n �k)=k and the n-dependen
e ofM(V ) andM(T )
an be written asM(V )(�; �) = p1��2 hM(V )1 (�) 
os�+M(V )2 (�) sin�i (B.35)M(T )(�; �) = (1� �2) hM(T )+ 
os(2�) +M(T )� sin(2�)i ; (B.36)where � is the azimuthal angle in the plane normal to k. Ea
h of the fun
tionsM(S;V;T )� (�) is now expanded in Legendre polynomialsM(S;V;T )� = X̀(�i)`(2`+ 1)�(S;V;T )�;` P`(�) : (B.37)The 
oeÆ
ients �(S;V;T )�;` are then related to M(m)` via the identitiesM(0)` = (2`+ 1)�(S)` (B.38)M(�1)` = p`(`+ 1) h�(V )2;`+1 � i�(V )1;`+1 + �(V )1;`�1 � i�(V )1;`�1i (B.39)M(�2)` = �s(`+ 2)!(`� 2)! � 12`+ 3�(T )"#;`+2 + 2(2`+ 1)(2`� 1)(2`+ 3)�(T )"#;`+ 12`� 1�(T )"#;`�2� ; (B.40)where �"#;` = �+` � i��` :We do not repeat this 
orresponden
e for the Stokes parameters Q and U sin
eit is rather 
ompli
ated and not very useful as it depends on the 
oordinate system
hosen. 69



B.2 Power spe
traIn the previous appendix and in Chapter 4 we have derived the expression for theCMB anisotropy power spe
trum for s
alar and tensor perturbations. Here we givethe general expression for s
alar, ve
tor and tensor 
u
tuations, polarizations and
ross 
orrelations. To make 
onta
t with the results derived before, one has touse Eqs. (B.37,B.38) and (B.40) and negle
t the 
ollision term in the Boltzmannequation.We expand the present CMB anisotropies and polarization in spheri
al harmon-i
s: �T (n; �0)=T0 =P`m a`mY m` (n). The 
oeÆ
ients a`m are random variables withzero mean and rotationally invariant varian
es, C` � hj a`m j2i. The 
orrelationfun
tion of the anisotropy pattern then has the standard expression:�ÆTT0 (n1)ÆTT0 (n2)� = 14� X̀(2`+ 1)C`P`(
os �) (B.41)where 
os � = n1 � n2 and h� � �i denotes ensemble average. We use the Fouriertransform normalization f̂(k) = 1V Z f(x) exp(ik � x)d3x ; (B.42)with some normalization volume V . Using statisti
al homogeneity we have�ÆTT0 (n1)ÆTT0 (n2)� = 1V Z d3x�ÆTT0 (x;n1)ÆTT0 (x;n2)�= 1(2�)3 Z d3k�ÆTT0 (k;n1)ÆTT0 (k;n2)� : (B.43)Inserting our ansatz (B.37) for ÆTT0 =M, and using the addition theorem for spheri
alharmoni
s,P`(n1 � n2) = 4�2`+1Pm Y �̀m(n1)Y`m(n2), we �nd�ÆTT0 (n1)ÆTT0 (n2)� = 2� X`;`0;m;m0(�1)(`�`0)Y`m(n1)Y �̀0m0(n2)� Z k2dkd
k̂Y �̀m(k̂)Y`0m0(k̂)h�`��̀0i(k)= 12�2 X̀(2`+ 1)P`(n1 � n2) Z k2dkh�`��̀i(k) ; (B.44)from whi
h we 
on
ludeCMM;(S)` = 2� Z k2dkhj�(S)` (t0; k)j2i ; (B.45)70



where the supers
ript (S) indi
ates that Eq. (B.45) gives the 
ontribution from s
alarperturbations and MM means that it is the 
ontribution to the intensity perturba-tion.The QQ, UU ,MQ,MU and QU 
orrelators depend with the Stokes parameterson the parti
ular 
oordinate system 
hosen. It is mu
h more 
onvenient to expressthe polarization power spe
tra in terms of the variables E and B whi
h are indepen-dent of the 
oordinate system. Furthermore, sin
e B is parity odd, its 
orrelatorswith M and E vanishes. One �nds the simple general expression [52℄(2`+ 1)2CXY (m)` = 2nm� Z k2dkX(m)` Y (m)�` ; (B.46)where nm = 1 for m = 0 and nm = 2 for m = 1; 2, a

ounting for the number ofmodes. Here X and Y run over M; E and B.
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