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2D. Perturbed stress-energy tensor 19E. The perturbed Einstein equations 21F. Perturbed onservation equations 22VI. Bulk perturbation with a brane 23A. Brane position and its displaement 23B. Indued metri and �rst fundamental form 24C. First Israel ondition for the standard 4-dimensional perturbation variables 25D. Regularity onditions for oordinate transformations and non-standard 4-dimensional perturbationvariables 26E. Extrinsi urvature and seond Israel ondition 29F. Sail equation 30VII. The brane point of view 31A. Projeted Weyl tensor on the brane 31B. Perturbed Einstein equations on the brane 32C. Perturbed onservation equation 34VIII. Conlusion 34Aknowledgments 35Referenes 35Appendix 37I. INTRODUCTIONThe idea that our 4-dimensional observed universe may be a hypersurfae or \brane" in a higher dimensionalspaetime is motivated by string- and M -theory [1{3℄. In partiular, 5-dimensional braneworld senarios, in whihour universe represents the boundary of a 5-dimensional spaetime, have reently reeived onsiderable attention [4{58℄. The ase in whih the bulk spaetime is Anti de Sitter spae and orbifold ompati�ation is realized with thebrane as �xed point has been partiularly studied. In this situation, it has been shown that 4-dimensional gravity isreovered on the brane [11, 20, 22, 23℄ on energy sales muh lower than the brane tension and/or bulk urvature,and late time osmology is not hanged if the brane tension is suÆiently high [12, 13, 15{18℄. In an attempt tosolve the �ne-tuning problem between the bulk osmologial onstant and the brane tension, more omplex modelsin whih the bulk or the brane are �lled with several speies (suh as salar �elds) have reently been proposed (seefor example [24℄ and referenes therein).In these models Z2 symmetry is often assumed, and this is partiularly onvenient when onsidering boundaryonditions on the brane. If Z2 symmetry is dropped, brane motion in the bulk must be taken into aount andinvolved alulations are required in order to determine the boundary onditions on the brane. Whilst Z2 symmetryis motivated by M -theory and is required for a supersymmetri brane on�guration, suh as a BPS state [1℄, thereexist situations in whih Z2 symmetry is broken. This ours, for example, when the brane is harged and ouples toa 4-form �eld in the bulk [30℄. Cosmologial asymmetri brane models have been studied in [21, 26{32℄.These developments have prompted us to derive gauge invariant perturbation theory for brane osmology with oneodimension. Our aim is develop a formalism whih may then be applied to any situation of osmologial interest.Previously, perturbations in braneworld osmology have been extensively studied in the literature mostly for the aseof Z2 symmetry [35{51℄. Here we onsider the most general situation in whih the spatial bakground geometry on thebrane has maximal symmetry and thus represents a spae of onstant urvature k. We do not assume Z2 symmetry,and the boundary onditions on the brane are disussed. Also, no partiular gauge hoie for the metri omponentg44 is made. The perturbation equations in the bulk and on the brane are derived for general bulk and brane stress-energy tensors. This makes our formalism partiularly onvenient when analyzing situations in whih di�erent bulkomponents (suh as several salar �elds) are also onsidered. The formalism an be used to study phenomena whihhave important observational onsequenes, the most important of them being the alulation of the anisotropies ofthe osmi mirowave bakground [47, 51℄. Sine one must in general �rst determine the behaviour of perturbations inthe bulk before being able to determine their behaviour on the brane [34℄, we pay partiular attention to the relationbetween bulk and brane gauge invariant perturbation variables. These beome more subtle when the position of the



3brane is displaed. Indeed we de�ne a set of gauge invariant variables in whih the perturbation equations on thebrane beome similar to the usual 4-dimensional equations. We then study the new terms arising in braneworlds.Sine we assume very general bakground spaetimes and no Z2 symmetry, some of our equations are extremelyumbersome. In order to guide the reader through the rest of the paper, we now give a general overview of themethods we use, the variables we introdue, and the equations we derive in this paper.The basi setup is one of a 3 + 1-dimensional brane where the 3-spae of onstant time is maximally symmetri(a spae of onstant urvature), embedded in a 4 + 1-dimensional bulk. As Z2 symmetry is not assumed, the bulkspaetimes on eah side of the brane will generally di�er. Both the brane and the bulk may ontain arbitrary matter.Our notation is as follows:� x�; � = 0, 1, 2, 3, 4 : spaetime oordinates (Greek indies), with metri g�� and ovariant derivative D�,� xi; i = 1, 2, 3 : oordinates on the maximally symmetri 3-spae (seond part of Latin alphabet) with metriij and ovariant derivative ri,� �a; a = 0, 1, 2, 3 : brane-worldsheet oordinates (�rst part of Latin alphabet),� X�(�a) : brane position in target-spae.� A Roman subsript b indiates \brane" whilst B denotes \bulk".� Certain variables suh as the brane matter ontent (P (�a), �(�a), et) are only de�ned on the brane. Othervariables suh as the normal vetor to the brane ?� or the extrinsi urvature K�� are also de�ned at the braneposition, but sine they desribe the embedding of the brane in the bulk, they may take di�erent values oneither side of the brane. All these brane-related variables are underlined.The ation for the system isS = SEH + SmB + Smb + SGH= Z d5xpjgj� 12�5R + LmB�+ Z d4�qj�jLmb + SGH: (1.1)Here SGH is the Gibbons-Hawking boundary term required to onsistently derive the Israel juntion onditions [54℄,and �5 is the fundamental 5-dimensional Newton onstant (related to the 5-dimensional Plank mass M5 by �5 =6�2M35 ). Furthermore, R is the bulk salar urvature, g�� and �ab are the bulk metri and the indued metri onthe brane respetively, and LmB and Lmb are respetively the Lagrangians for arbitrary matter in the bulk and matteron�ned on the brane. They may also ontain a osmologial onstant or brane tension. The indued metri on thebrane is (see for example [67℄) �ab(�) = g��(X)�X���a �X���b ; (1.2)and the Einstein equations resulting from ation (1.1) areG�� = �5 �T�� +DT��� ; (1.3)where D is a ovariant Dira Æ-funtion speifying the position of the brane (see Setion III B), andT�� = 2pjgj � ÆSmBÆg��� ; (1.4)T�� = 2qj�j �X���a �X���b � ÆSmbÆ�ab� : (1.5)As noted above, we underline T�� and �ab to emphasize that they are only de�ned on the brane (see Setion III).We onsider these Einstein equations (1.3) for a homogeneous and isotropi brane and bulk bakground with �rstorder perturbations. As is summarised shematially in the left hand panels of Fig. 1, these equations ontain threeparts: one is ontinuous; the seond is disontinuous aross the brane; and the third part is singular at the braneposition (proportional to D). The oeÆients of eah of the individual parts must be equated, leading to a number ofdi�erent equations. The ontinuous part gives the Einstein equations in the bulk and, via the Gauss-Codai equation,they also determine the 4-dimensional Einstein tensor on the brane (see Setion IV). The disontinuous (but non



4singular) part is only non-trivial when Z2 symmetry is not assumed. It then gives equations for the ontinuous partof the extrinsi urvature, and it desribes the energy and momentum exhange between the brane and bulk, leadingto the equation of motion for the brane | the so-alled \sail equation" [30{32℄. Finally, the singular part representsthe seond juntion ondition whih relates the bulk geometries on eah side of the brane through the brane geometryand matter ontent.We also disuss the so-alled onservation equations for the stress-energy tensors given in Eqns (1.4,1.5). Again,these ontain a disontinuous, ontinuous and singular part. As is summarized shematially in the right hand panelsof Fig. 1, the ontinuous part gives the bulk energy momentum onservation, the disontinuity simply desribes theonservation of the jump of the bulk stress-energy on the brane, and the singular part leads to energy momentumonservation of the brane with a possible ontribution from the bulk, and to the sail equation.When disussing the perturbations of these equations, we will make use of the maximal symmetry of the 3-dimensional subspaes parallel to the brane. Our geometrial quantities will be deomposed into salar, vetor andtensor degrees of freedom (with respet to these 3-spaes). This deomposition is not idential to the more physialone ontaining density modes, vortiity modes, and 5-dimensional gravitational waves. The relationship between thesetwo approahes is given in Setion VA. Finally, in order to set up a onsistent gauge-invariant formalism for theevolution of these perturbations, we will see that it is ruial to take fully into aount the perturbed brane motion(whih an be written in a gauge invariant manner). This degree of freedom will be entral to our analysis.The outline of the paper is the following. In the next setion (Setion II) we disuss the unperturbed (or bakground)5-dimensional bulk: we allow a foliation (with two odimensions) into maximally symmetri 3-spaes, and do notspeify the presene of the brane. The Einstein and onservation equations for the bulk bakground are derived. InSetion III we introdue the brane and we disuss the boundary onditions at the brane position for the unperturbedspaetime without imposing Z2 symmetry. In Setion IV we derive the bakground equations for an observer on thebrane. In Setion V, we perturb the bakground. We introdue gauge invariant variables and derive the perturbedEinstein and onservation equations in terms of these variables. The perturbed brane inluding the perturbation ofthe brane position is disussed in Setion VI. In Setion VII we reformulate the perturbation theory from the pointof view of an observer on�ned to the brane, and in the last setion we draw some onlusions.Finally, we also provide an extensive and highly tehnial Appendix where we present all the relevant intermediatesteps required to obtain the results presented in the text. (Examples are, for instane, the perturbed Christo�elsymbols and the omponents of the perturbed Riemann and Weyl tensors.) The Appendix is, in fat, more generalthan the main text sine there we onsider an N+1-dimensional brane (with an N -dimensional maximally symmetrisubspae) embedded in a N + 2-dimensional bulk: in the text we have set N = 3. Furthermore, whilst the textpresents the perturbation equations in full generality, some spei� examples suh as a bulk salar �eld are disussedbriey in the Appendix. II. BULK BACKGROUNDIn this setion we desribe the bulk bakground geometry and energy ontent without introduing a brane. Weassume that the spae orthogonal to the �fth dimension is maximally symmetri so that a homogeneous and isotropibrane an be aommodated, as disussed in the next setion. We onsider the most general stress-energy tensorwhih satis�es these symmetry onditions, and then derive the Einstein equations and the onservation equations.A. Metri and notationWe onsider a 5-dimensional spaetime with one timelike oordinate x0 � �, and four spaelike oordinatesfx1; x2; x3; x4g, where x4 � y. We assume that the onstant time hypersurfaes are loally of the form M� R,where M is a 3-dimensional maximally symmetri spae, i.e., a 3-spae of onstant urvature, parameterized bythe oordinates fx1; x2; x3g, with spatial metri a2(�; y)ij . The urvature of this spae will be denoted by k. Forexample, we may hoose the oordinates fx1; x2; x3g suh thatij = Æij + kxixj1� kÆpqxpxq ; (2.1)where Æij is the Kroneker symbol. The last spaelike oordinate y (the \extra dimension") is orthogonal to themaximally symmetri spae. The metri has the signature +����. The line element of the metri an thereforebe written as ds2 = n2d�2 � a2ijdxidxj � b2dy2: (2.2)
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FIG. 1: Struture of the Einstein equations and of the energy momentum onservation equations in the oordinate system (2.2),where oordinates 0, i are also brane oordinates and 4 represents the diretion orthogonal to the brane. In omponents, theEinstein equations an be split into three parts: f��g, f�4g, and f44g, where �, � run on indies 0, i. These three parts possessa ontinuous part (de�ned everywhere in the bulk) and a jump at the brane position. Part f��g also exhibits a singular termat the brane position. The role played by all these terms is shown in the above diagrams.



6An overdot will denote derivation with respet to �, and a prime derivation with respet to y. In addition, we shallde�ne �u � 1n��; (2.3)�n � 1b �y: (2.4)Covariant derivatives with respet to the full metri will be denoted by D�, and those with respet to ij by ri. Foronveniene we also de�ne H � 1n _aa ; I � 1n _nn ; U � 1n _bb ; (2.5)H � 1b a0a ; I � 1b n0n ; U � 1b b0b ; (2.6)as well as r2 � riri ; � � r2a2 ; rij � rirj ; K � ka2 : (2.7)Notie that �u and �n do not ommute sine �u�n � �n�u = I�u � U�n.B. Stress-energy tensorWe now onsider the bulk stress-energy tensor T�� whose energy ux need not be at rest with respet to our (�; y)oordinates. Let U� be the normalized timelike eigenvetor of T �� with eigenvalue �0. Correspondingly let N� be thenormalized eigenvetor orthogonal to both U� and to the maximally symmetri 3-spaes, with eigenvalue Y0. Finally,let P0 be the eigenvalue of the three eigenvetors parallel to the maximally symmetri 3-dimensional slies. Note thatany symmetri tensor an be deomposed in this way, and that the symmetry requires that the eigenvetors parallelto the symmetri 3-spaes are degenerate. In terms of these variables, the bulk stress-energy tensor an be written asT�� = (P0 + �0)U�U� � (P0 � Y0)N�N� � P0g��; (2.8)where the vetors U� and N� are given byU� = � 1n;0; 1b�� ; U�U� = 1; (2.9)N� = �� 1n�;0;�1b � ; N�N� = �1: (2.10)Here � represents the Lorentz boost whih must be performed along the y axis in order to be in the uid's rest frame.When one is not in the rest frame of the uid, both its energy density and its pressure along the extra dimension aremodi�ed, and the uid exhibits a ux through an y = onstant hypersurfae. As usual,  = 1=p1� �2.Below it will be more onvenient to use a di�erent de�nition for the stress-energy tensor omponents | a de�nitionwhih is less adapted to the uid, but better adapted to our oordinates. To derive it, let us denote by u� the5-veloity of a bulk observer who is at rest with respet to our oordinate system,u� = � 1n;0; 0� ; u�u� = 1; (2.11)and by n� the spaelike unit vetor orthogonal to both u� and M,n� = �0;0;�1b� ; n�n� = �1 ; n�u� = 0: (2.12)Note that neither u� nor n� are geodesi vetor �elds, but their orthogonality and normalization is onserved. Themost general form of the bulk stress-energy tensor satisfying the required symmetry with respet to translations androtations in M an be written asT�� = (P + �)u�u� � (P � Y )n�n� � Pg�� � 2Fu(�n�); (2.13)



7where f(�g�) � 12 (f�g� + g�f�) denotes symmetrization. In omponents this givesT00 = n2�; (2.14)Tij = a2Pij ; (2.15)T04 = �nbF; (2.16)T44 = b2Y: (2.17)Thus � = T��u�u� is the bulk energy density as measured by an observer with 5-veloity u�, F = T��u�n� is theenergy ux transverse to M, and P , Y are the pressure along the diretions xi, y, respetively. The new variables �,Y , P and F are related to the old ones by � = 2(�0 + �2Y0); (2.18)Y = 2(Y0 + �2�0); (2.19)P = P0; (2.20)F = �2(�0 + Y0): (2.21)The last relation again shows that F represents the energy ux in y diretion. This ux, as well as the energy density� and pressure Y along the y diretion measured by an observer at rest with respet to the oordinate system, areobtained from the omponents of the stress-energy tensor in a frame at rest with respet to the uid simply by aLorentz transformation. Somewhat more ompliated but equally straightforward expressions express the old variablesin terms of the new ones (see Appendix C2). Note that in (2.9) the bulk veloity of the uid is � = n�U�=u�U� .When � = 0,  = 1, we reover the ase in whih U� = u� and N� = n�, so that the rest frame of the bulk matterand the oordinate system oinide. C. Einstein equationsThe Christo�el symbols, the Riemann, Rii, Einstein and Weyl tensors for the metri (2.2) are given in Appen-dies B3, B4, B6, B7 and B8 respetively, and the bakground bulk Einstein equations areG�� = �5T��: (2.22)With the stress-energy tensor (2.13) and the Einstein tensor from Appendix B6, Eq. (2.22) beomes3K + 3H (H+ U)� 3 (�n + 2H)H = �5� f00g ; (2.23)�K � 3 �H2 �H2�� (�u + U) (U + 2H) + (�n + I) (I + 2H) = �5P fijg ; (2.24)3 (�uH +HH �HI) = �5F f04g ; (2.25)�3K � 3 (�u + 2H)H+ 3 (H + I)H = �5Y f44g ; (2.26)where we have indiated in braes on the right hand side from whih omponent of the Einstein tensor these bulkEinstein equations are derived. Equations (2.23,2.26) were �rst disussed in [12℄, and integrated with respet to the�fth dimension in [13℄, for the ase of a negative bulk osmologial onstant, P = Y = �� = �.The �rst and the third of these equations (2.23,2.25) are onstraints (i.e., they do not involve seond derivativeswith respet to time). The other two are dynamial equations. In fat, there are only two independent dynamialvariables whih an be written as a ombination of the sale fators n, a, and b. One an hoose oordinates to removethis ambiguity: for example, in Gaussian oordinates b = 1 as in [13℄, and in onformal oordinates b = n [19, 36℄.Of ourse other hoies of oordinates are also allowed. We shall, however, keep b undetermined, so that any usefulhoie for b an be made at the end. D. Conservation equationsThe Bianhi identities lead to the so-alled onservation equations for the stress-energy tensor,D�T�� = 0: (2.27)



8Only for � = 0 and � = 4 are there non-trivial relations,�u�+ 3H(P + �) + U(Y + �) + (�n + 3H + 2I)F = 0 f0g ; (2.28)(�u + 3H+ 2U)F + �nY + 3H(Y � P ) + I(Y + �) = 0 f4g : (2.29)These are the onservation equations for the energy density and the energy ux of the bulk omponents, respetively.The generalisation to several omponents is straightforward (see Appendix C4). Written in term of the intrinsi uidquantities, they give an equation of evolution for the energy density �0 and for uid bulk veloity �.III. BULK BACKGROUND WITH A BRANEWe now onsider a homogeneous and isotropi 3-brane orthogonal to y (lying in the spae of maximal symmetry)as a singular soure, with intrinsi stress-energy tensor T�� .A. Brane position, indued metri and �rst fundamental formLet us hoose the intrinsi brane oordinates (�0; �i) = (�; xi), and embed the brane aording toX0 = �; (3.1)X i = xi; (3.2)X4 = yb = onstant: (3.3)Note that it is always possible to hoose the bakground oordinate y suh that the unperturbed brane is at rest: thisis the only oordinate hoie made in this paper.As we shall see, the presene of the brane will introdue disontinuities at y = yb in several variables. For thatreason, it is useful to deompose a given funtion f asf = [f ℄ ��(y � yb)� 12�+ hfi (y); (3.4)where � is the Heaviside funtion. This equation de�nes the ontinuous funtion hfi (y), whilst the disontinuity orjump of f when going from one side to the other side of the brane is given by[f ℄ = lim"!0+ (f(yb + ")� f(yb � ")) � f+ � f�: (3.5)Notie that we have the two produt relationshfgi = hfi hgi+ 14 [f ℄ [g℄ ; (3.6)[fg℄ = hfi [g℄ + [f ℄ hgi : (3.7)For later onveniene, and when onsidering a ontinuous funtion hfi, we will also de�ne the ontinuous part andthe jump of its derivative by h�ni hfi � h�n hfii ; (3.8)[�n℄ hfi � [�n hfi℄ : (3.9)Sometimes we shall also need �f� for variables f desribing the embedding of the brane, and thus whih may takedi�erent values, f+, f�, on either side of the brane. The quantities �f� and 
f� are de�ned by�f� � f+ � f�; (3.10)
f� � 12 �f+ + f�� : (3.11)The normal unit vetor to the brane, ?�, is given by?� �X���a = 0 ; ?�?� = �1: (3.12)



9One obtains (up to an overall sign) ?� = �0;0;�1b� : (3.13)As we shall see, b an be disontinuous on the brane and ?� an have di�erent values on either side of the brane.From the indued metri one an de�ne the �rst fundamental form [69℄ q�� = g�� + ?�?� , where g�� is againevaluated on (either side of) the brane, and we have q��?� = 0. On the brane, q�� is related to �ab(�) byq��(X) = �X���a �X���b �ab(�): (3.14)We an deompose the stress-energy tensor on the brane, T��(X), asT�� = (P + �)u�u� � Pq��; (3.15)where u� is the 4-vetor of the energy ux on the brane matter,u� = � 1n;0; 0� ; u�u� = 1: (3.16)Note that T��?� = u�?� = 0. This is the most generi stress-energy tensor ompatible with a homogeneous andisotropi brane. B. Einstein equationIn the presene of the brane, the 5-dimensional Einstein equations beomeG�� = �5 �T�� +DT��� ; (3.17)where, from Eqn (1.1), the \ovariant Dira funtion" D isD = qjqjpjgjÆ(y � yb): (3.18)Here g and q are the determinants of the metri g�� and �rst fundamental form q�� respetively, evaluated at thebrane position. Written in omponents, the Einstein equations with the brane, Eq. (3.17), beome3K + 3H (H+ U)� 3 (�n + 2H)H = �5 ��+D�� f00g ; (3.19)�K � 3 �H2 �H2�� (�u + U) (U + 2H) + (�n + I) (I + 2H) = �5 (P +DP ) fijg ; (3.20)3 (�uH +HH �HI) = �5F f04g ; (3.21)�3K � 3 (�u + 2H)H + 3 (H + I)H = �5Y f44g : (3.22)A global solution to these equations has been derived in [12, 14℄ with the assumption of a pure negative osmologialonstant in the bulk, and using Gaussian oordinates. The right hand sides of Eqns (3.19,3.20) ontain a singularterm proportional to D due to the presene of the brane. As we will see below, although the �rst fundamental form isontinuous on the brane, its �rst derivative with respet to the �fth dimension y (i.e., the terms H and I) may jumpand its seond derivative (�nH and �nI) an be singular. Thus the Einstein tensor ontains a singular part whihmust be mathed with the singular part of the stress-energy tensor. We now turn to the problem of relating theseterms to the brane matter ontent. C. Israel juntion onditionsThe extrinsi urvature formalism is a useful tool in the analysis of juntion onditions on a singular surfae [70℄.The �rst Israel ondition [65℄ imposes the ontinuity of the �rst fundamental form,�q��� = 0: (3.23)
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FIG. 2: Shemati illustration of the �rst Israel ondition. We have embedded in a Minkowskian spae a 2-dimensional spaelikebulk of metri ds2 = a2dx2+ b2dy2. The brane is the thik horizontal line in the middle of both panels, and the grids representthe metri oeÆients so that the grid spaing is proportional to b and a along the vertial and the horizontal diretionsrespetively. In the left panel, [a℄ 6= 0, [b℄ = 0, in the right one, [b℄ 6= 0, [a℄ = 0. The �rst Israel ondition states that whenonsidering a line of onstant x, there must not be any disontinuity when rossing the brane: this is obviously not the ase inthe left panel. On the ontrary, nothing is said about how the spaing of the horizontal lines evolves aross the brane. Thistranslates into the fat that b is allowed to be disontinuous (right panel).Hene q�� is well-de�ned on the brane. Sine we have q00 = n2(X) and qij = �a2(X)ij , this ondition implies theontinuity of the sale fators n and a: [n℄ = [a℄ = 0 (see Figure 2). Note that the ontinuity of the metri funtion bis not required by the juntion onditions and will not be assumed in what follows1 (see also Appendix F).Nevertheless, the �rst derivative with respet to y of a and n (whih are proportional to I and H), are allowed tojump. In order to study the behaviour of these quantities on the brane we onsider the extrinsi urvature tensor (orseond fundamental form) with respet to the brane, namelyK�� = q�(�D�?�): (3.24)For the bakground metri, the omponents of the extrinsi urvature areK00 = �n2I; (3.25)Kij = a2Hij : (3.26)Let us de�ne the surfae \stress tensor" S�� on the brane byS�� = T�� � 13Tq�� : (3.27)Then the seond Israel ondition [65℄ relates the jump in the extrinsi urvature with the energy ontent on the braneand requires that [K�� ℄ = ��5S�� : (3.28)(Note that the hoie of the sign here is onsistent with our hoie for the sign of ?� in Eq. (3.13).) For our bakgroundthis ondition an be written as (see Appendix D7)[I ℄ = �5�23�+ P� ; (3.29)[H ℄ = ��5 13�: (3.30)1 Allowing b to be disontinuous makes the ovariant Dira funtion D ill-de�ned. This is not a serious problem, as all the terms involvingthis funtion an be grouped together to give the seond Israel ondition. Therefore, we shall ontinue to use the notation D and supposethat when b is not ontinuous, it orresponds to a regularized and mathematially onsistent expression.
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Allowed

FIG. 3: Illustration of the seond Israel ondition. With the same onventions as in �g. 2, we show an example where [H℄ 6= 0.This is possible if the energy density on the brane is non zero (it is positive in this illustration).(See also Figure 3.) Alternatively, Eqns (3.29,3.30) an be obtained diretly from the singular part of the Einsteinequations (3.19,3.20). D. Boundary onditions in the bulkWe now omment briey on the question of boundary onditions at the brane. Consider �rst the bulk Einsteinequations (3.19{3.22). They form a system of seond order partial di�erential equations in � and y, and in order tosolve them we must speify initial onditions on a spaelike Cauhy hypersurfae, boundary onditions far from ourbraneworld (at in�nity in a one brane senario, or on another brane), and boundary onditions at our brane. TheIsrael juntion onditions impose the ontinuity of a and n, and �x the jump in their normal derivatives at the brane.Sine the Einstein equations represent a set of seond order partial di�erential equations, these juntion onditionsare suÆient to allow us to solve the Einstein equations everywhere in the bulk.We now turn to the Einstein equations on the brane.IV. THE BRANE POINT OF VIEWAn observer on the brane will not see 4-dimensional Einstein gravity. This may, however, be reovered in partiularsituations at low energy. The 4-dimensional Einstein tensor in general depends on bulk quantities and is quadrati inthe brane stress-energy tensor.Here we disuss the 4-dimensional \Einstein equations" whih lead to the modi�ed Friedmann equations, and alsothe onservation equation on the brane. Finally we interpret the deviation from the 4-dimensional theory in terms ofthe 5-dimensional one. A. Einstein gravity on the braneThrough the Gauss-Codai equations, we an write the 4-dimensional Einstein tensor (4)G�� in terms of the bulkstress-energy tensor T��, the extrinsi urvature K�� and the projeted Weyl tensor E�� . The details of the alulationan be found in [34℄, and the result is(4)G�� = 23 �G��q��q�� ��G��?�?� + 14G� q����KK�� +K��K�� + 12q��(K2 �K��K��) + E�� : (4.1)



12The projeted Weyl tensor E�� on the brane is obtained from the bulk Weyl tensor C��Æ as followsC��Æ = R��Æ + 23(g�[ÆR℄� + g�[RÆ℄�) + 16Rg�[gÆ℄�; (4.2)E�� = C����?�?� : (4.3)Here f[�g�℄ � 12 (f�g� � g�f�) denotes antisymmetrization. This projetion represents the ontribution of the freegravity in the bulk to the gravity on the brane. In omponents, we haveE00 = 12n2Z ; (4.4)E ij = 16a2Zij ; (4.5)Z = K + (�u + U) (U �H)� (�n + I) (I �H) : (4.6)There is only one independent omponent in the Weyl tensor (as well as in its projetion on the brane). This isrelated to the fat that this spaetime is the 5-dimensional analog of a 4-dimensional type-D spaetime in Petrov'slassi�ation [68℄. B. Friedmann equations on the braneSine the tensor (4)G�� ontains only derivatives of the ontinuous �rst fundamental form with respet to � and xi,it is ontinuous. Hene, on taking the ontinuous part of the right hand side of Eq. (4.1) (and applying the produtrelation (3.6)), we �nd the projeted 4-dimensional Einstein equation on the brane,(4)G�� = 23�5�hT��i q��q�� ��hT��?�?�i+ 14 hT i� q����hKi hK��i+ hK��i hK��i+ 12q��(hKi2 � hK��i hK��i)+14 �� [K℄ [K�� ℄ + [K��℄ [K�� ℄ + 12q��([K℄2 � [K�� ℄ [K�� ℄)�+ 
E��� : (4.7)The right hand side of equation (4.7) an be split into four parts. The �rst depends on the average of the bulk stress-energy tensor, hT��i. The seond is given by four terms quadrati in the average of the extrinsi urvature hK��i.These terms are known one the bulk Einstein equations have been solved. They vanish when Z2 symmetry is assumed| we return to this point below. Then there is a third part whih ontains four terms quadrati in the jump of theextrinsi urvature [K�� ℄. We have already determined these through the seond juntion ondition (3.29,3.30), andthey are related to the brane stress-energy tensor: these terms will be responsible for the non-standard �2 ontributionin the brane Friedmann equations. Finally there is a fourth part, the average of the projeted bulk Weyl tensor onthe brane, desribing the e�et from the free gravity in the bulk.In omponents, we obtain the modi�ed Friedmann equations whih ontain a dynamial equation and a onstraint:3 �H2 +K� = 12�5 h�+ P � Y i+ �2512�2 + 3 hHi2 + 12 hZi ; (4.8)�2�uH� 3H2 �K = 16�5 h�+ P + 3Y i+ �2512(�+ 2P )�� hHi h2I +Hi+ 16 hZi ; (4.9)where we have isolated the ontinuous part of the projetion of the bulk Weyl tensor,hZi = K � �uH+ h(�u + U �H)Ui � h�n + Ii hI �Hi � �254 �23�+ P� (�+ P ): (4.10)(These equations ould alternatively have been obtained from the ontinuous part of the Einstein equations,Eqns (3.19{3.22).)The osmologial onsequenes of these equations have been studied in [13, 15{18℄ with assumption of Z2 symmetry,in whih ase hK��i = hHi = hIi = 0. These authors onsidered a negative osmologial onstant in the bulk andassumed that the brane stress-energy tensor onsists of a rigid part | the brane tension | and a uid,T�� = �q�� + T f�� : (4.11)



13In this ase the bulk stress-energy tensor an be tuned to the brane tension in suh a way that deviations fromstandard Friedmann equations are e�etive only at energies of order � and higher.If we assume F = hHi = _Y = 0, integrate the sum of Eq. (3.21) and (3.22) one with respet to time, and omparethe result with (4.8), one obtains an expression for the sum of the ontinuous part of the projeted bulk Weyl tensorand the ontinuous part of the bulk energy density and pressure: this behaves as a radiation term,hZi+ �5 h�+ P i = C=a4; (4.12)where C is an integration onstant (see Appendix E2). In [13, 15{18℄ this is disussed for the ase �+ P = 0 so thathZi / a�4.Furthermore, notie that Eq. (4.11) is not a neessary requirement in order for the 5-dimensional Friedmannequations on the brane to redue to the standard 4-dimensional Friedmann equations at low energy. It suÆes thatthe brane stress-energy tensor is dominated by a term whih is almost a osmologial onstant today (i.e., it an bea slow-rolling salar �eld, see for example [25℄). In this ase, one has� = �� + �f ; (4.13)P = P � + P f ; (4.14)�� ' �P � ' �; (4.15)where �f , P f are the energy density and pressure of the ordinary matter ontent on the brane. Now, if in additionj�+ P j � jY j; (4.16)Y ' �; (4.17)� ' 16�5�2; (4.18)the �rst two terms of the right hand side of the above Friedmann equations on the brane are proportional to �4�f ,�4P f , with �4 = 16�25� = �5�� ; (4.19)and one re-obtains a term linear in the brane matter ontent. Note also that there are no extra �2 appearing in theprojeted Weyl tensor (4.10) sine with these onditions P + � is �-independent. This was also noted in Ref. [52℄.C. Closing the system when Z2 symmetry is brokenWhen solving the Einstein equations on the brane (4.7), we need the ontinuous part of the extrinsi urvaturehK��i. If Z2 symmetry is assumed | as motivated by M -theory | the evolution of the bulk is the same on boththe sides of the brane. In this ase the Israel onditions determine K�� entirely: it is always possible to hoose aoordinate system in whih n(yb + y) = n(yb � y) and a(yb + y) = a(yb � y), i.e., where n and a are even. Thus Iand H are odd and the ontinuous value of K�� aross the brane vanishes,hK��i = 0 (Z2 symmetry): (4.20)This implies hIi = hHi = 0; (Z2 symmetry);I+ = �I� = 12 [I ℄ ;H+ = �H� = 12 [H ℄ : (4.21)If Z2 symmetry is not assumed, as in this paper, the evolution on either side will in general be di�erent and hK��ino longer vanishes, hK��i 6= 0 (Z2 symmetry broken): (4.22)



14One an, however, obtain a ondition for the ontinuous part of the extrinsi urvature by onsidering the jump ofEq. (4.1). We obtain 0 = 23�5�[T�� ℄ q��q�� ��[T��?�?� ℄ + 14 [T ℄� q���� [K℄ hK��i+ [K��℄ hK��i+ q��([K℄ hKi � [K�� ℄ hK��i)�hKi [K�� ℄ + hK��i [K�� ℄ + �E��� : (4.23)(Notie that �(4)G��� = 0.) This beomes, in omponents,� hHi = 14 �[P + �� Y ℄ + 1�5 [Z ℄� ; (4.24)(�+ 3P ) hHi � � hIi = 14 �[P + �+ 3Y ℄ + 1�5 [Z ℄� ; (4.25)where, using Eq. (4.6) and the juntion onditions (3.29) and (3.30), the jump of Z on the brane an be expressed as[Z ℄ = (�u + 2 hUi �H) [U ℄� [�n℄ hI �Hi � �5 hIi�2P + 53��+ �5 hHi�P + 23�� : (4.26)(Note that Eqns (4.24,4.25) ould alternatively have been obtained from the disontinuous part of the Einsteinequations (3.19{3.22).)Equations (4.24,4.25) allow one to �x the unknown quantities hHi, hIi, provided the jumps of both the bulk matterontent and the Weyl tensor are known. Thus the ontinuous part of the extrinsi urvature depends not only on thebrane matter ontent but also on the disontinuity of the bulk stress-energy and the projeted Weyl tensors. If bothvanish, Eqns (4.24,4.25) allow in partiular the trivial solution hHi = hIi = 0, whih holds with Z2 symmetry. Thejump of the Weyl tensor, Eq. (4.26), ontains �rst derivatives of the extrinsi urvature with respet to y, and so it isnot possible in general to determine hIi and hHi without �rst solving the Einstein equations in the bulk. Nonetheless,if the projetion (4.26) of the 5-dimensional bulk Weyl tensor on the brane is known a priori (as in the ase of aShwarzshild-Anti de Sitter bulk with a known blak hole mass on both side of the brane), then hIi and hHi an bedetermined diretly from Eqns (4.24,4.25) (see [30{32℄ for a more detailed disussion).D. Brane motionOn ontrating Eq. (4.23) with the �rst fundamental form q�� and using the seond juntion ondition (3.28), oneobtains T�� hK��i = [?�?�T�� ℄ : (4.27)This equation is known as the \sail equation" [30{32℄. The right hand side is an external fore density on the branedue to the asymmetry of the bulk stress-energy tensor on the two sides. In analogy with Newton's seond law (herethe fore is due to a pressure di�erene between the two sides of the brane), T��, hK��i, and [?�?�T�� ℄ play the roleof mass, aeleration, and fore, respetively. Notie from (4.20) that when Z2 symmetry is assumed, this equationvanishes identially. When Z2 symmetry is broken, the \aeleration" hK��i is non-zero. In this paper we do notassume Z2 symmetry, but reall that we have hosen a oordinate system in whih the brane is at rest: Eq. (4.28)must therefore be understood as ditating the ondition that must be satis�ed by hHi and hIi (and therefore by theoordinate system itself) for the brane to remain at a �xed position yb. Later, however, we will see that Eq. (4.27)does indeed give a more intuitive equation of motion for the perturbed brane position or brane displaement (seeSetion VIF).In omponents the sail equation leads to �hIi �+ 3 hHiP = [Y ℄ ; (4.28)whih an also be obtained by taking the disontinuous part of the f44g omponent of the Einstein equation, Eq. (3.22)or, of ourse, by a linear ombination of Eqns (4.24,4.25). This is the only ombination of Equations (4.24,4.25) whihdoes not involve the Weyl tensor.



15E. Conservation equationsThe singular part of the 5-dimensional energy onservation equation (2.28) yields the stress-energy onservationequation on the brane: we �nd �u�+ 3H(P + �) = � [F ℄ : (4.29)(Again the generalisation to several interating omponents may be found in Appendix D5.) Notie that the jumpin the bulk energy ux transverse to the brane enters in the onservation equation, meaning that the brane matterontent an at as a soure or a sink to the energy ux along the �fth dimension. When this energy ux is ontinuous,the onservation equation on the brane redues to the usual one, as disussed in [34℄. Another onservation equationappears in brane osmology: by onsidering the singular part of Eq. (2.29) we obtain again the sail equation (4.28).Both equations were �rst found in [12℄ for the ase a bulk osmologial onstant.V. BULK PERTURBATIONSWe now turn to perturbed quantities, and begin in this setion by analysing the properties of the perturbed bulk:the perturbed brane itself will be introdued in Setion VI. We work throughout with gauge independent perturbationvariables, whih are inspired from a generalisation of the Newtonian (or longitudinal) gauge to the 5-dimensional ase.First we introdue the bulk metri perturbation variables using the standard salar, vetor, tensor deomposition.We study their gauge transformation properties and de�ne gauge invariant ombinations. Then, in Setion VD, theperturbations of the bulk stress-energy tensor are onsidered, leading, in Setion VE, to the gauge invariant perturbedbulk Einstein equations. Finally we write down the perturbed onservation equations (Bianhi identities).A. Classi�ation of the perturbationsLet us onsider the perturbations of a spaetime with one timelike and n spaelike oordinates. The perturbedmetri of this spaetime possesses 12 (n+1)(n+2) di�erent omponents. Amongst these, a oordinate transformationallows n + 1 of them to be �xed, so that there are 12n(n + 1) independent metri oeÆients. For example, insynhronous gauge, the Æg0� are set to zero.When solving perturbation equations about a given spaetime, one is naturally led to lassify perturbations. Twolassi�ations are of partiular relevane. Firstly, the perturbations may be lassi�ed aording to their physialmeaning, and this is done by looking at the spin of the perturbation in a loally Minkowskian frame. The di�erentperturbations are density (spin 0) modes, vortiity (spin 1) modes, and gravitational (spin 2) waves. Seondly, theperturbations may be lassi�ed more geometrially in terms of irreduible omponents under the group of isometriesof the unperturbed spaetime. This leads to salar, vetor and tensor perturbations. Under some irumstanes,these two lassi�ations are idential. In partiular, this is true for a Friedmann-Lemâ�tre-Robertson-Walker (FLRW)spaetime, whih an be foliated by a set of maximally symmetri spaelike hypersurfaes. In brane osmology,however, the bulk is not as symmetri as in the FLRW ase, and the two lassi�ations are di�erent.Components whih transform irreduibly under symmetries of the bakground spaetime evolve independently (tolinear order) while the physial spin omponents mix.1. Physial splittingAs explained above, metri perturbations an be deomposed aording to their spin with respet to a loal rotationof the oordinate system. This leads to density modes, vortiity modes, and gravitational waves. Gravitational (spin2) waves are \true" degrees of freedom of the gravitational �eld in the sense that they an exist even in vauum. Thenumber of gravitational wave modes is given by the dimension of the vetor spae spanned by symmetri, transverse,traeless rank 2 tensors in an n-dimensional spae: this is 12 (n � 2)(n + 1). In addition, when there is a non trivialmatter ontent, there may be vortiity (or spin 1) modes arising from rotational veloity �elds, whih have n � 1independent omponents. Finally, there remain 12n(n+ 1)� 12 (n � 2)(n+ 1) � (n � 1) = 2 possible density (spin 0)modes, whih are usually represented by the two Bardeen potentials � and 	 [60, 61℄.



16More shematially, let us onsider the metri perturbation around a loally inertial frame, written in synhronousgauge and in Fourier spae onsidering the wave vetor ki = kÆi1 :
Æg�� = 0BBBBBBBBBB�

0 0 0 0 : : : 00 2k2E � 2C ikV2 ikV3 : : : ikVn0 ikV2 �2C + nXi=3 h+i h�23 : : : h�2n0 ikV3 h�23 �2C � h+3 h�3n... ... ... . . . ...0 ikVn h�2n h�3n : : : �2C � h+n
1CCCCCCCCCCA : (5.1)

The quantities E and C desribe the density modes (with the standard de�nition of the Bardeen potentials, one has� = �C and 	 = ��2tE), the Vi (i = 2; : : : ; n) represent the vortiity modes, and the h+i (i = 3; : : : ; n) and h�jk(2 � j < k � n) represent the gravitational waves (when n = 3, these notations agree with the standard de�nition ofthe h+ and h� modes). 2. Geometrial splittingThe three above types of perturbation generally do not evolve independently: even at linear order, they are oupledif the unperturbed spaetime does not possess any symmetries. However, for most osmologial models (inluding theones onsidered in this paper), spaetime possesses some symmetries, being invariant under a ertain group of globaltransformations. We onsider the symmetry group SO(N) with N < n, whih is of ourse relevant when there existsa oordinate system in whih N oordinates span a maximally symmetri spae.When this is the ase, perturbations may be deomposed into omponents whih transform irreduibly underSO(N)-rotations of the oordinate system. This leads to what we all salar, vetor and tensor perturbations whih areperturbations whose spin with respet to SO(N) is 0, 1 and 2 respetively. The main advantage of this deomposition isthat the three new types of perturbation are now deoupled from eah other, and hene are onvenient when studyingthe evolution of osmologial perturbations. For example, onsider an n-dimensional spae with N oordinates(labelled by i, j, et) spanning an N -dimensional, maximally symmetri sub-spae, with metri ij , and assoiatedovariant derivative ri. The n � N remaining oordinates will be labelled by A, B, et. In this ase, the metriperturbations an be deomposed as Ægij = �2Cij � 2rijE � 2r(i �Ej) � 2��Eij ; (5.2)ÆgiA = riE(A) + �E(A)i; (5.3)ÆgAB = E(AB); (5.4)where barred quantities are divergeneless N -vetors, and double barred quantities are divergeneless, traeless N -tensors of rank 2 (with respet to the ovariant derivative ri and metri ij respetively). With our de�nitions, itis lear that C, E, E(A), E(AB) are salars, �Ei, �E(A)i are vetors, and ��Eij are tensors under SO(N) rotations. Theperturbed metri omponents an then be written as
Æg�� =

0BBBBBBBBBBBBBB�
0 0 0 0 : : : 0 00 2k2E � 2C �2ik �E2 �2ik �E3 : : : �2ik �EN ikE(A)0 �2ik �E2 �2C + NXi=3 h+i h�23 : : : h�2N �E(A)20 ik �E3 h�23 �2C � h+3 h�3N �E(A)3... ... ... . . . ... ...0 ik �EN h�2N h�3N : : : �2C � h+N �E(A)N0 ikE(A) �E(A)2 �E(A)3 : : : �E(A)N E(AB)

1CCCCCCCCCCCCCCA ; (5.5)
with the h+k ; h�lm desribing ��Eij . Obviously, one has� 2 + (n�N) + 12 (n�N)(n�N + 1) salar degrees of freedom,



17� (N � 1)(n�N + 1) vetor degrees of freedom and,� 12 (N � 2)(N + 1) tensor degrees of freedom.By de�nition, the tensor omponents are spin 2 quantities and represent gravitational waves. It is lear that whenN 6= n, not all the gravitational waves are tensor perturbations (with respet to SO(N)): 12 (n �N)(n + N � 1) ofthem are atually salar or vetor perturbations. In fat, the spin of the seond deomposition an be understood asthe projetion of the spin of the �rst deomposition on the maximally symmetri spae. Therefore, density modes arealways salar perturbations, vortiity modes an be either salar of vetor perturbations, and gravitational waves anbe any of the three. By omparing Eqns (5.1) and (5.5), it is lear that:� the 2 + (n � N) + 12 (n � N)(n � N + 1) salars deompose as 2 density modes, n � N vortiity modes, and12 (n�N)(n�N + 1) gravitational waves,� the (N � 1)(n�N + 1) vetors represent (N � 1) vortiity modes and (N � 1)(n�N) gravitational waves,� the 12 (N � 2)(N + 1) tensors all represent gravitational waves.For our purpose (n = N + 1 = 4), this redues to� 4 salar degrees of freedom whih split into the 2 density modes, 1 vortiity mode, and 1 gravitational wave,� 4 vetor degrees of freedom whih go into 2 vortiity modes and 2 gravitational waves,� 2 tensor degrees of freedom whih all represent gravitational waves.As expeted, we have 10 degrees of freedom 5 of whih are gravitational waves. This deomposition ensures that evenin the vauum, the salar and vetor parts of the Einstein equation will allow non trivial solutions. These are usuallyalled \gravisalars" and \graviphotons" [63, 64℄. This e�et represents the most striking hange to the physis ofbrane osmologial perturbations as ompared to that of the standard FLRW ase sine it an our at arbitrary lowenergy as long as the orresponding gravitational waves exist in the bulk.3. The brane point of viewThe brane is, by de�nition, desribed by N +1 oordinates: one timelike and the N spaelike oordinates spanningan N -dimensional maximally symmetri spae. For the ase of one odimension, we have N = n� 1. The perturbedindued metri of the maximally symmetri spae then has 12n(n�1) independent omponents. An important questionis how these perturbations an interat with the bulk perturbations. It is lear that whatever the bulk matter ontent,there are at least 12 (n � 2)(n + 1) = 12n(n � 1) � 1 degrees of freedom whih arise from the gravitational waves inthe bulk. Therefore, one an expet that 12 (n� 2)(n+ 1) of the brane perturbations an interat with the bulk. Wewill see that this is indeed the ase: the seond Israel ondition essentially states that the disontinuity of some bulkperturbations whih an exist even in the vauum desribe the matter ontent of the brane. But this also suggests thatone additional salar degree of freedom of the brane is likely not to be diretly related with the bulk perturbations.It happens, indeed, that this extra degree of freedom physially orresponds to the perturbation of the brane positionin the bulk, whih is independent of the gravitational waves. For example, if the bulk is pure Minkowski spae, onean onsider a �xed oordinate system (as, e.g., Newtonian gauge, whih is unambiguously �xed). The position of thebrane in this oordinate system is de�ned independently of the metri perturbations. This extra degree of freedomensures that in any situation all the brane perturbations an be related to bulk perturbations (see also the disussionin Ref. [19℄). One of the aims of this paper is to make the link between these two sets of perturbations.B. Geometrial perturbation variablesWe now make use of maximal symmetry on M. Due to rotational invariane, we an split the perturbations intoomponents whih transform irreduibly under rotations, i.e., into di�erent SO(3)-spin omponents, whih evolveindependently to �rst order perturbation theory. One ould then go on and split these into irreduible omponentsunder translations, orresponding to the expansion in terms of eigenvetors of the Laplaian on M (whih is theFourier transform in the ase k = 0) [61℄. Following the disussion of the last paragraph, the perturbed line elementan be generally written asds2 = n2(1 + 2A)d�2 + 2anBid�dxi � a2(ij + hij)dxidxj + 2nbB?d�dy + 2baE?idxidy � b2(1� 2E??)dy2: (5.6)



18Here, the ? indies of E?i, E?? are labels. The quantities Bi and E?i are vetors on M whih an be respetivelydeomposed into salar (spin 0) omponents B, E?, and divergeneless vetor (spin 1) omponents �Bi, �E(?)i, suhthat ijri �Bj = ijri �E(?)j = 0. Equivalently, the tensor on M, hij , an be deomposed into two salars, C andE, a divergeneless vetor, �Ei, and divergeneless, traeless, tensor (spin 2) omponent, ��Eij , suh that ijri �Ej =ijri ��Eij = ��Eii = 0. This deomposition is Bi = riB + �Bi; (5.7)E?i = riE? + �E(?)i; (5.8)hij = 2Cij + 2Eij ; (5.9)Eij = r(iEj) + ��Eij ; (5.10)Ei = riE + �Ei: (5.11)The indies of these M-quantities are raised and lowered with the metri ij . The symmetries of the metri ensurethat the salar (A, B, C, E, B?, E?, E??), vetor ( �Bi, �Ei, �E(?)i) and tensor ( ��Eij) quantities evolve independently.C. Gauge invariant metri perturbationsLet us onsider an in�nitesimal oordinate transformationx� ! x� + ��; (5.12)with �� = (T; Li; L?); (5.13)Li = riL+ �Li: (5.14)Under this oordinate hange the geometrial perturbations transform in the following way:A ! A+ �u(nT ) + IbL?; (5.15)Bi ! Bi � an _Li + nariT; (5.16)C ! C +HnT +HbL?; (5.17)Ei ! Ei + Li; (5.18)��Eij ! ��Eij ; (5.19)B? ! B? � bn _L? + nb T 0; (5.20)E?i ! E?i � abL0i � bariL?; (5.21)E?? ! E?? � UnT � �n(bL?); (5.22)�anB + a2n2 _E� ! �anB + a2n2 _E�+ T; (5.23)�abE? + a2b2E0� ! �abE? + a2b2E0�� L?: (5.24)(Reall that _ � �=�� and that 0 � �=�y. In this setion we will use both this notation and the �u;n de�ned inEqns (2.3,2.4): we aim to do so in suh a way as to keep the equations as simple as possible.) We an therefore de�nethe following four salar and two vetor perturbation variables, whih are invariant under in�nitesimal oordinatetransformations, also alled gauge transformations in this ontext:	 = A� �u�aB + a2n _E�+ I �aE? + a2b E0� ; (5.25)� = �C +H�aB + a2n _E��H �aE? + a2b E0� ; (5.26)



19� = B? � n�n�anB + a2n2 _E�� b�u�abE? + a2b2E0� ; (5.27)h = E?? + U �aB + a2n _E�� �n�aE? + a2b E0� ; (5.28)��i = �Bi + an _�Ei; (5.29)�hi = �E(?)i + ab �E0i: (5.30)The two vetor variables possess two independent omponents (hene four degrees of freedom). The tensor variable ��Eijis gauge invariant sine there are no tensor type gauge transformations, and possesses two independent omponents.All these quantities represent a generalisation of the Newtonian gauge often used in FLRW osmologies (we an nolonger all it a \longitudinal gauge", as Æg04 6= 0). It is ompletely �xed by setting � anB + a2n2 _E�, Ei, �abE? + a2b2E0�to 0 and in this ase one has Æg00 = 2n2	; (5.31)Æg0i = an��i; (5.32)Ægij = 2a2(�ij � ��Eij); (5.33)Æg04 = nb�; (5.34)Ægi4 = ba�hi; (5.35)Æg44 = 2b2h: (5.36)This gauge is perfetly well-suited for desribing the bulk perturbation without a brane. In the presene of a brane,however, things are more ompliated sine some of these quantities involve �rst or seond derivatives with respet tothe �fth dimension, and hene they are not always regular at the brane position (see Setion VIC). For this reason,other gauge hoies are often preferred, but not essential2.D. Perturbed stress-energy tensorWe now perturb the unit vetors U� and N�, de�ned in Eqns (2.8{2.10), whih are the timelike and spaelike eigen-vetors normal to the maximally symmetri 3-spaes. It follows from the normalization onditions, Eqns (2.9,2.10),that eah vetor has only four independent omponents. Furthermore, as U� and N� are eigenvetors of a symmet-ri tensor, they are normal to eah other, N�U� = 0. Hene at perturbed order there are only seven independentomponents whih we denote by vi0, f i0, w. They are de�ned byÆU� = � 1n(�w �A� �B?); 1avi0; 1b (w + �E??)� ; (5.37)ÆN� = � 1n(�w + �A+B?); 1af i0;�1b (�w +E??)� : (5.38)Negleting the metri perturbations, the quantity w represents the perturbation of the Lorentz boost �,w = Æ� = Æ(�) = 2Æ�: (5.39)As usual, we will deompose vi0, f i0, into salar and vetor omponents,v0i = riv0 + �v0i ; (5.40)f0i = rif0 + �f0i : (5.41)2 In any ase, there is no partiular reason why the brane and bulk metri perturbations should be the same as the brane perturbationdepends expliitly on the brane position, whih is not a quantity that an be de�ned everywhere in the bulk.



20Finally, in order to write down the stress-energy tensor, it is also useful to introdue the variablesvi = (vi0 + �f i0); (5.42)f i = (f i0 + �vi0); (5.43)whih have a deomposition into salar and vetor omponents similar to (5.40,5.41). With these de�nitions, generalperturbations of the bulk stress-energy tensor, ÆT�� , areÆT00 = n2 (Æ�+ 2�A) ; (5.44)ÆT0i = �an ((�+ P )vi � �Bi � F (fi +E?i)) ; (5.45)ÆT04 = �nb (ÆF + F (A�E??)� �B?) ; (5.46)ÆTij = a2 (ÆPij +�ij + 2P (Cij +Eij)) ; (5.47)ÆTi4 = ba ((P � Y )fi + F (vi �Bi)� Y E?i) ; (5.48)ÆT44 = b2 (ÆY � 2Y E?? � 2FB?) : (5.49)Here we have de�ned, aording to (2.18{2.21,5.39):Æ� = 2(Æ�0 + �2ÆY0) + 2Fw; (5.50)ÆY = 2(ÆY0 + �2Æ�0) + 2Fw; (5.51)ÆP = ÆP0; (5.52)ÆF = �2(Æ�0 + ÆY0) + (�+ Y )w; (5.53)and we have introdued the anisotropi stress tensor �ij , whih again may be deomposed into a salar, (divergene-less) vetor, and (divergeneless, traeless) tensor omponents aording to�ij = �rij � 13r2ij��+r(i ��j) + ���ij : (5.54)On investigation of the behaviour of these variables under the in�nitesimal oordinate transformations (5.12) (seeAppendix G), we �nd the following salar gauge invariant variablesv℄ = v + an _E; (5.55)�v℄i = �vi + an _�Ei; (5.56)f ℄ = f � abE0; (5.57)�f ℄i = �fi � ab �E0i; (5.58)w℄ = w � _� �anB + a2n2 _E�+ 0� �abE? + a2b2 E0�� bn�� �abE? + a2b2E0� ; (5.59)ÆX℄0 = ÆX0 � _X0� anB + a2n2 _E�+X 00�abE? + a2b2E0� ; (5.60)where X0 is any salar quantity (density �0, pressure P0, et). The anisotropi stress tensor �ij is gauge invariant byitself due to the Stewart-Walker lemma [62℄. Notie that �, Y , F and w are not salars (sine they depend expliitlyon the hoie of the oordinate system via the vetor �elds u� and n�), but we an, however, de�ne the followinggauge invariant variables, Æ�℄ = 2(Æ�℄0 + �2ÆY ℄0 ) + 2Fw℄; (5.61)ÆY ℄ = 2(ÆY ℄0 + �2Æ�℄0) + 2Fw℄; (5.62)ÆP ℄ = ÆP ℄0 ; (5.63)ÆF ℄ = �2(Æ�℄0 + ÆY ℄0 ) + (�+ Y )w℄: (5.64)As an example, the perturbed stress-energy tensor for a salar �eld is given in Appendix G5.



21E. The perturbed Einstein equationsThe expliit forms of the perturbed Christo�el symbols, the perturbed Riemann, Rii and Einstein tensors are allgiven in Appendies F4, F5, F8, F7, where they are expressed in terms of the gauge invariant variables introduedabove. We now write down the full perturbed bulk Einstein equations also in terms of gauge invariant variables. Theysplit into seven salar, three vetor (eah with two independent omponents), and one tensor (with two independentomponents) equations, adding up to the required 15 omponents of a symmetri 5 � 5 tensor. These equationsare given below, where we indiate on the right hand side of eah equation from whih omponent of the Einsteinequations they were derived and, when neessary, the term to whih they are proportional. The seven salar equationsare �(2� + h) + 6K��3 �2H2 + 2HU�	� 3H�uh� 3 (2H+ U) �u��3(H�n + 4H2)h� 6h�nH+3(�n + 4H)�n�+3 (�n + 3H + I) (H�) = �5 �Æ�℄ � F�� f00g ; (5.65)12 (�n +H + 2I)��(U + 2H)	� (�u + U �H)h� 2�u� = �5 �(P + �)av℄ � Faf ℄� f0ig ; (5.66)�2K�+2 �(U + 2H)(�u + U) + 3H2�	+ 2	�u(U + 2H)+2 �(I + 2H)(�n + I) + 3H2�h+ 2h�n(I + 2H)+(�u + U)�u(h+ 2�)�(U + 2H)�u(	� h� 3�)+(�n + I)�n(	� 2�)+(I + 2H)�n(	� h� 3�)� 12 (�n�u + �u�n + I�u + U�n)�� ((U + 2H)�n + (I + 2H)�u) ��� ((�n + I)(U + 2H) + (�u + U)(I + 2H))�3 (U�u � I�n) �� 6HH� = �5 �ÆP ℄ + 23��� fijg/ ij ; (5.67)��	+ h = �5a2� fijg/ rij ; (5.68)�3 ((�u�n + (H � I)�u +H�n)� +H�n	�H�uh)�3��uH� �12� + 3(H2 �HU)�� = �5 �ÆF ℄ + F (	� h)� f04g ; (5.69)12 (�u +H + 2U)��(�n + I �H)	� (2H + I)h+ 2�n� = �5 �Fav℄ + (P � Y )af ℄� fi4g ; (5.70)��(2��	)� 6K�+3H (�u + 4H)	 + 6	�uH+3 (�u + 4H) �u�+3 (H�n) 	 + 3 �2H2 + 2HI�h� 3 (2H�n + I�n) ��3 (�u + 3H+ U) (H�) = �5 �ÆY ℄ � F�� f44g : (5.71)The three vetor equations are: �12(� + 2K)��i�12 (�n + 4H) �(�n + I �H)��i�+12 (�n + 4H) �(�u + U �H)�hi� = �5 �(P + �)(�v℄i � ��i)� F ( �f ℄i + �hi)� f0ig ; (5.72)



22(�u + 2H+ U) ��i � (�n + 2H + I) �hi = �5a��i fijg ; (5.73)12(� + 2K)�hi+12 (�u + 4H) �(�n + I �H)��i��12 (�u + 4H) �(�u + U �H)�hi� = �5 �F (�v℄i � ��i) + (P � Y )( �f ℄i + �hi)� fi4g ; (5.74)and the tensor equation is�(�� 2K) ��Eij + (�u + 3H+ U) �u ��Eij � (�n + 3H + I) �n ��Eij = �5 ���ij fijg : (5.75)As a small aside, it is interesting to hek our analysis of Setion VA. We shall take for simpliity an empty,Minkowski bulk, so that the terms proportional to K, H, U , H and I vanish. Then the above equations redue to�(h+ 2�) = �3�2n�; (5.76)�(	� 2�) = �3�2u�; (5.77)�� = �6�u�n�; (5.78)��2u � �2n ���� = 0; (5.79)�n�hi = �u ��i; (5.80)��2u � �2n ��� ��i = 0; (5.81)��2u � �2n ��� ��Eij = 0: (5.82)In the vauum, in addition to the usual two tensor modes, there are one salar and two vetor degrees of freedomwhih satisfy wave equations and represent the gravisalar and graviphoton (for a total of �ve gravitons, as expeted).The remaining degrees of freedom an only exist if matter is present. They desribe either density or vortiity modes.F. Perturbed onservation equationsWe now ompute the perturbed energy momentum onservation equations. Even though they do not ontain newinformation, they an provide useful evolution equations for the matter ontent of the bulk. Here we write themdown just for the total bulk matter. The generalisation to several omponents is straightforward and is given inAppendix I3. Written in terms of gauge invariant variables there are three salar onservation equations,(�u + 3H+ 2U)(Æ�℄ � F�) + 3HÆP ℄ + U(ÆY ℄ � Æ�℄)+(�n + 3H + 2I) �ÆF ℄ + F (	 + h)�+� �(P + �)av℄ � Faf ℄��3(P + �)�u�� (�+ Y )�uh� F�u�+ F�n(	� h� 3�) = 0 f0g ; (5.83)(�u + 3H+ U) �(P + �)av℄ � Faf ℄�+(�n + 3H + I) �Fav℄ + (P � Y )af ℄�+ÆP ℄ + 23(� + 3K)a2�+ (P + �)	 + (Y � P )h+ F� = 0 fig ; (5.84)(�u + 3H+ 2U) �ÆF ℄ � F (	 + h)� (�+ Y )��+(�n + 3H + 2I)(ÆY ℄ � F�)� 3HÆP ℄ � I(ÆY ℄ � Æ�℄)+� �Fav℄ + (P � Y )af ℄�+F�u(	� h� 3�) + 3(P � Y )�n� + (�+ Y )�n	+ F�n� = 0 f4g ; (5.85)and one vetor onservation equation,(�u + 4H+ U) �(P + �)(�v℄i � ��i)� F ( �f ℄i + �hi)�+(�n + 4H + I)�F (�v℄i � ��i) + (P � Y )( �f ℄i + �hi)�+12 (� + 2K)a��i = 0 fig : (5.86)



23Finally, in order to lose the system, we must speify an equation of state for ÆP ℄, ÆY ℄, f ℄i and �ij , as funtionseither of Æ�℄ or of some other non dynamial variables (suh as the entropy). For example, all these quantities vanishfor a bulk ontaining non relativisti matter. For a salar �eld, most of them are also set to zero, as is disussed inAppendix G5. We an interpret the three salar equations (5.83{5.85) as the onservation equations for Æ�℄, v℄, andÆF ℄.Notie that with these Bianhi or onservation equations, three salar and one vetor Einstein equations are redun-dant and an be dropped. Formally, the seven salar Einstein equations an be split into four dynamial equations forthe four salar metri perturbations �, 	, � and h, and three onstraint equations. It happens, however, that withour hoie of variables, the splitting is not ompletely straightforward. For example, the f0�g Einstein equations arethe onstraint equations for the metri omponents gij , gi4, g44, the rest being the evolution equations. However, interms of our gauge invariant variables, Eq. (5.68) is obviously a onstraint equation. This is beause 	 involves �rstand seond time derivatives of the metri perturbation E. Equivalently, the three vetor Einstein equations an besplit into one onstraint equation and two dynamial equations for the variables ��i and �hi.VI. BULK PERTURBATION WITH A BRANEIn the previous setion we have onsidered the most general perturbed 5-dimensional bulk spaetime for whih thereis a perturbed maximally symmetri spae orthogonal to the �fth diretion. We have seen that its dynamis an bedesribed in terms of four geometrial salar perturbation variables governed by four evolution equations and threeonstraints, two geometrial vetor perturbation variables governed by two evolution equations and a onstraint, andone geometrial tensor variable governed by one tensor evolution equation. In this setion we add a brane to thissystem | that is we assume, as was the ase for the bakground, that the bulk ontains a perturbed homogeneousand isotropi brane as a singular soure. This will introdue one new geometrial degree of freedom, the branedisplaement, whose dynamis has to be onsidered in order to fully desribe the perturbations on the brane.A. Brane position and its displaementThe perturbed brane embedding is given by X0 = �0 + �0(�a); (6.1)X i = �i + �i(�a); (6.2)X4 = yb + �(�a): (6.3)Here � is the displaement of the brane from its bakground position X4 = yb, and it is a funtion on the braneworldsheet. It is a true new degree of freedom whih sometimes also alled \radion" [19, 59℄. On the ontrary, as wewill soon see, the perturbations in the X0 and X i diretions an be set to zero without loss of generality, as they donot lead to any physial onsequenes (e.g., to a physial \deformation" of the brane) [19℄ .It was �rst notied in [22℄ that, when studying brane perturbations of a Randall-Sundrum bakground (of Ref. [11℄),using the transverse and traeless gauge in Gaussian normal oordinates, the brane position is no more at onstanty in presene of matter soures. The presene of an � 6= 0 an be interpreted as a bending of the brane due to thepresene of matter or gravitational waves. The bending � an in priniple be set to zero by hoosing a onvenientset of bulk oordinates suh that y = yb, sine by the in�nitesimal oordinate transformation de�ned in the previoussetion, Eq. (5.13), one has �! �� L?: (6.4)This is not, however, the most general possibility. As was noted in [36, 53℄, suh a gauge hoie will also �x thegauge of some other perturbation variables. In fat, if we hoose L? suh that � is zero, �abE? + a2b2E0� is �xed (seeEq. (5.24)). In a gauge invariant approah one must keep � arbitrary.We now an de�ne the perturbed vetor orthogonal to the brane, ?�+Æ ?�. One easily obtains (See Appendix H2)Æ ?� = (�b _�;�bri�;�bE??) : (6.5)Note that no vetor perturbations enter in the above formula. This is just a onsequene of Frobenius theorem [66℄.Also, the fat that the perturbations �a do not enter in the above expression illustrates that they do not orrespondto any physial deformation of the brane (see further omments below).



24B. Indued metri and �rst fundamental formIn this subsetion we alulate the perturbed �rst fundamental form whih will be used in the perturbed �rst Israeljuntion ondition in the following subsetions.We shall �rst look at the perturbation of the indued metri �ab(�a). In doing so, it is important to reall that thebrane embedding in the unperturbed and perturbed bulks (respetively given by (3.1{3.3), (6.1{6.3)) are di�erent.Therefore, eah brane variable has two ontribution to its perturbation: one oming from the perturbation of thevariable and a seond ontribution due to the fat that we have to evaluate it at the perturbed brane position. Weobtain Æ�00(�a) = 2n2 �A+ _�0 + In�0 + Ib�� ; (6.6)Æ�0i(�a) = an�Bi � an _�i + nari�0� ; (6.7)Æ�ij(�a) = �2a2 ��C +Hn�0 +Hb�� ij +Eij +r(i�j)� ; (6.8)where, to �rst order in perturbation theory, the right hand side of these equations are evaluated at x� = X�(orresponding to the unperturbed embedding). As usual, we an deompose the perturbation �i into its salar andvetor parts using the metri ij evaluated at the unperturbed brane position: �i = ri� + ��i. This is possible sine,for perturbations, the time derivative �� and spatial derivatives �i are equivalent to derivation with respet to �0 and�i respetively.A word of aution is in order here. Reall that the quantities A, C, I , H , et., are de�ned in the bulk. However, dueto the presene of the brane, they may be (and in fat, are | see below) disontinuous at the brane position. For thisreason, they may only be evaluated on eah side of the brane. Therefore we must hek that the above expressionsare onsistent in the sense that they have the same value when evaluated on both sides of the brane | only if thatis the ase, they an be onsidered well de�ned on the brane. As we shall soon see, this onsisteny in fat resultsfrom the �rst Israel ondition. Antiipating this result, the above equations allow us to de�ne in the standard waythe brane perturbations A, Bi, et., A � A+ _�0 + In�0 + Ib�; (6.9)B � B � an _� + na �0; (6.10)�Bi � �Bi � an _��i; (6.11)C � C +Hn�0 +Hb�; (6.12)E � E + �; (6.13)�Ei � �Ei + ��i; (6.14)��Eij � ��Eij : (6.15)Using the standard 4-dimensional perturbation theory, we onstrut the two Bardeen potentials, as well as the branevetor and tensor metri perturbations,	 � A� �u�aB + a2n _E� = 	+ I �b���aE? + a2b E0�� ; (6.16)� � �C +H�aB + a2n _E� = ��H �b���aE? + a2b E0�� ; (6.17)��i � �Bi + an _�Ei = ��i; (6.18)��Eij � ��Eij : (6.19)(The two �rst equations are equivalent to Eqns (5.21) of Ref. [45℄.) Finally, using Eq. (3.14), the perturbed �rstfundamental form is Æq00 = 2n2(A+ Ib�); (6.20)Æq0i = anBi; (6.21)Æqij = �2a2(C +Hb�)ij � 2a2Eij ; (6.22)



25Æq04 = �nb�B? � bn _�� ; (6.23)Æqi4 = ba�E?i � bari�� ; (6.24)Æq44 = 0: (6.25)Notie that the �i do not appear in equations (6.16{6.25): this is again related to the fat that they do not representphysial degrees of freedom. These above expressions an also be obtained by starting from the de�nitionq�� = g�� +?�?� ; (6.26)paying attention that in the perturbed and unperturbed ases, the bulk metri is not evaluated at the same position(y = yb + � and y = yb respetively) [19℄.C. First Israel ondition for the standard 4-dimensional perturbation variablesUsing Eqns (5.15{5.24,6.4), the oordinate transformations of the following variables are obviously ontinuous asthey do not involve derivatives with respet to y:A+ Ib� ! A+ Ib�+ �u(nT ); (6.27)Bi ! Bi � an _Li + nariT; (6.28)C +Hb� ! C +Hb�+HnT; (6.29)Ei ! Ei + Li; (6.30)��Eij ! ��Eij ; (6.31)�anB + a2n2 _E� ! �anB + a2n2 _E�+ T: (6.32)Given the �rst fundamental form (6.20{6.25), the �rst Israel onditions imply that these quantities, whih are linearombinations of the omponents (6.20) to (6.23) of the perturbed �rst fundamental form Æq�� , are ontinuous,[A℄ + [Ib℄ � = 0; (6.33)[Bi℄ = 0; (6.34)[C℄ + [Hb℄ � = 0; (6.35)[Ei℄ = 0; (6.36)h ��Eiji = 0; (6.37)��anB + a2n2 _E�� = 0; (6.38)or, equivalently [	℄ = � �Ib�� I �aE? + a2b E0�� ; (6.39)[�℄ = �Hb��H �aE? + a2b E0�� ; (6.40)���i� = 0; (6.41)h ��Eiji = 0: (6.42)Hene tensor perturbations are ontinuous and only the two salar quantities �, h and the vetor quantity �hi mayjump. The �rst two equations are equivalent to [�℄ = [	℄ = 0; (6.43)



26whih ensures that the brane Bardeen potentials � and 	 are well de�ned. We also see that the bulk vetor andtensor perturbation ��i and ��Eij may be de�ned on the brane where they redue to the standard vetor and tensormetri perturbations of a 4-dimensional spaetime with maximally symmetri spaelike hypersurfaes. Equivalently,the orresponding �rst fundamental form an be rewritten asÆq00 = 2n2	+ (_q00 + 2q00��)�anB + a2n2 _E� ; (6.44)Æq0i = �na qij ��j + q00ri �anB + a2n2 _E�+ qij _Ej ; (6.45)Æqij = 2qk(i �Ekj) � Ækj)�� ; (6.46)whih indeed redue to 2n2	, �na qij ��j and 2a2(�ij� ��Eij), in longitudinal gauge (B = E = 0) for salar perturbationsand in the gauge �Ei = 0 for vetor perturbations.D. Regularity onditions for oordinate transformations and non-standard 4-dimensional perturbationvariablesSo far we have given the relationship between the intrinsi brane metri perturbations, the brane displaement �,and some of the bulk metri perturbations. Things beome a little bit more involved when we onsider the other bulkmetri perturbations that appear in Æg�4.As we already notied, the �rst Israel ondition does not onstrain E?? (see Eq. (6.25)). Nevertheless, sine thetransformation law for E?? an be written asE?? ! E?? � UnT � �n(bL?); (6.47)and sine all the metri oeÆients must remain �nite, it follows that �bL?� = 0 (see also Appendix F) . Furthermore,as the oordinate transformation x� ! x�+�� must be invertible, we also require �L?� = 0. Thus if b is not ontinuous,then L?(yb) = 0: [b℄ 6= 0 ) L?(y = yb) = 0: (6.48)This is the only additional requirement that one must impose on the oordinate system in the viinity of the brane.Note that if Z2 symmetry is assumed, L?(y) = 0 must be imposed even though b is ontinuous [36℄.As mentioned in Setion III C, the only plae where disontinuities or singularities are allowed is the brane position.When � = 0, the brane is at y = yb. However, if the brane position is perturbed, � 6= 0, the above requirement implies[b℄ � = 0; (6.49)and hene b is not allowed to jump if the brane position is perturbed. If the unperturbed metri has a zeroth orderdisontinuity in the oeÆient b, the brane position must remain at � = 0 to �rst order perturbation theory (seeFigure 4). This statement is in fat valid even in the absene of metri perturbations (see Appendix F).Let us now onsider the oordinate transformations of the variables Æq04 and Æqi4 given in Eqns (6.23,6.24),bB? � b2n _� ! bB? � b2n _�+ nT 0; (6.50)bE?i � b2a ri� ! bE?i � b2a ri�� aL0i: (6.51)The �rst Israel ondition also states that [bB?℄� �b2n � _� = [bB?℄ = 0; (6.52)[bE?i℄� �b2a �ri� = [bE?i℄ = 0: (6.53)Therefore, in order for the transformations (6.50,6.51) to be ontinuous we have to imply that a valid oordinatehange satis�es [T 0℄ = 0; (6.54)�Li0� = 0: (6.55)
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Allowed Forbidden

FIG. 4: Illustration of the onstraints on the brane position � implied by the unperturbed \sale fator" b. When [b℄ = 0 atzeroth order, then the brane position � an be non zero at �rst order (left panel). On the ontrary, if [b℄ 6= 0 at zeroth order,then the brane position must be zero at �rst order, in order the perturbation theory to be valid, so that right panel representsa forbidden situation. This is due to the fat that in the situation of the right panel, an in�nitesimal, �rst order oordinatehange ould hange by a large (zeroth order) amount some perturbed metri oeÆients in the viinity of the brane. (Herewe have represented a situation orresponding to an unperturbed bulk, but of ourse it also holds when it is perturbed. In fatthe perturbation of the brane position neessarily indues some metri perturbations in the bulk.)These onditions ensure that T and Li admit seond derivatives. This standard requirement for any valid oordinatetransformation is therefore preserved even in the presene of a brane. In partiular (see Eqns 5.23,5.18)), this meansthat if � anB + a2n2 _E�0 or Ei0 are disontinuous (whih is allowed), then � anB + a2n2 _E� and Ei annot be transformedidentially to zero by oordinate hanges. This does not prevent the quantities �, 	, �, h from being well de�ned.However, it does mean that there may not be a oordinate system in whih Eqns (5.31{5.36) are valid (whih wenever needed to suppose).The �rst Israel ondition does not require the ontinuity of � and �hi, see Eqns (6.89,6.97) below. Finally, from�aE? + a2b E0�! �aE? + a2b E0�� bL?; (6.56)and using the fat that �bL?� = 0, the jump ��aE? + a2b E0�� � � (6.57)is gauge invariant. Therefore the gauge invariant quantity h given in Eqn (5.28) may ontain a singular part,h = E?? + U �aB + a2n _E�� �n��aE? + a2b E0���D�; (6.58)whih again shows that h annot always be a omponent of the perturbed metri tensor in the viinity of the brane.Of ourse, this does not invalidate the results found previously, but simply suggests that other variables may be moresuitable to desribe the metri perturbations in the viinity of the brane.After these remarks on the regularity requirements of gauge transformations in a bulk-brane system, we an nowde�ne some further gauge invariant salar variables in terms of whih we will express the seond Israel ondition.They will also be used to write the Einstein equations for an observer on the brane when we want to ompare ourresults with the usual 4-dimensional osmologial perturbation theory.Let us �rst de�ne the gauge invariant ombination�℄ � ���abE? + a2b2E0� : (6.59)Sine �abE? + a2b2E0� an be disontinuous, �℄ is de�ned on eah side of the brane. Note that we have�b�℄� = ��: (6.60)



28Furthermore, we set 
b�℄� � �: (6.61)When b is ontinuous, �=b an be interpreted as the \gauge invariant brane position" | that is, the position of thebrane unambiguously de�ned when D�abE? + a2b2 E0�E is set to zero by a suitable oordinate hange (whih alwaysexists if b is ontinuous).In priniple, derivatives normal to the brane are not de�ned for brane variables. But in what follows we will alsouse �n(b�℄) whih we simply de�ne as �n(b�℄) � U�� �n�aE? + a2b E0� : (6.62)In other words, the operator �n ats on every metri perturbation de�ned in the bulk but not on � (i.e., we de�ne�n� � 0). Along similar lines, one an also de�ne �2n(b�℄) and �2n�. The quantity �n(b�℄) an ontain a singular termbeause of the disontinuous part of �aE? + a2b E0�. Therefore, it is useful to de�ne �n� by�n� � �n(b�℄) + D�: (6.63)This new quantity an take di�erent values on eah side of the brane, so that we an de�ne [�n�℄ and h�n�i followingEqns (3.10,3.11).We may not simply ontinue � into the bulk as a variable � is independent of y. This is a gauge dependentontinuation and the de�nitions for �n(b�℄) and �2n(b�℄) given above would be valid only in the gauge where � isindependent of y. From the above expressions it is also lear that the variables �n(b�℄) and �2n(b�℄) and all braneperturbation variables whih ontain these derivatives, like e.g. h below, are gauge invariant only with respet togauge transformations parallel to the brane. Therefore, it is important to keep in mind that these quantities arede�ned only on (eah side of) the brane, although the notation �n(b�℄), �n� may be slightly misleading. They simplyrefer to Eqns (6.62,6.63).Using equation (6.59), one an de�ne several gauge invariant quantities whih an also only be evaluated on eitherside of the brane (that is either at y = yb + �+ or at y = yb + ��) :� � B? � nb� anB + a2n2 _E�0 � bn _� = �� (�u � U)(b�℄); (6.64)h � E?? + U �aB + a2n _E�� Ub� = h� �n(b�℄): (6.65)By omparing the last equation to Eq. (6.58), it appears that h does not ontain a singular term (and hene it is aquantity that has a meaning on eah side of the brane).Using Eqns (6.39,6.40) we have 	 = 	+ Ib�℄; (6.66)� = ��Hb�℄: (6.67)The derivatives �n	 and �n� are de�ned via Eq. (6.62,6.63) above. The above equations will beome very usefulwhen onsidering the seond Israel onditions and writing down the perturbed Weyl tensor.The �rst Israel ondition states that � and 	 are de�ned on the brane, and that �n�, �n	, �, and h are well-de�ned on both sides of the brane, but it does not imply their ontinuity. In fat, it is their disontinuity whih willenter into the perturbed seond Israel ondition. Using the above de�nitions we have the following relations for thedisontinuous and the ontinuous parts of the gauge invariant salar perturbation variables:[	℄ = � [I ℄ � + hIi�; (6.68)[�℄ = [H ℄ �� hHi�; (6.69)[�℄ = [�℄� (�u � hUi) �� [U ℄ �; (6.70)[h℄ = [h℄ + [�n�℄ ; (6.71)and h	i = 	� hIi�+ 14 [I ℄ �; (6.72)



29h�i = �+ hHi�� 14 [H ℄ �; (6.73)h�i = h�i+ (�u � hUi)� + 14 [U ℄ �; (6.74)hhi = hhi+ h�n�i : (6.75)If Z2 symmetry is assumed, the �rst of these relations redue to[	℄ = � [I ℄�; (6.76)[�℄ = [H ℄ �; (6.77)and h	i = 	+ 14 [I ℄ �; (6.78)h�i = �� 14 [H ℄ �: (6.79)These relations are very important. They allow us to move freely between the bulk (non underlined) perturbationvariables, whih are de�ned everywhere, and the brane-related (underlined) variables, whih are well de�ned only onthe brane, i.e. they are either de�ned on the brane, like � and 	, or on both sides of the brane, like b�℄, �n�, �n	,�, or h, et.The main di�erene between the brane and bulk perturbation variables is �℄ whih appears in the former. The branedisplaement, however, is not unrelated to the bulk metri perturbations: a displaement of the brane indues metriperturbation in the bulk (as one ould have guessed by making an analogy with a harged surfae in eletromagnetism).E. Extrinsi urvature and seond Israel onditionWe de�ne the perturbed stress-energy tensor on the brane asÆT�� = (Æ�+ ÆP )u�u� + 2(�+ P )u(�Æu�) � ÆPq�� � PÆq�� + a2��� ; (6.80)where Æu� is the perturbation of the energy veloity on the brane whih is given byÆu� = �� 1nA; 1avi; b2n _�� : (6.81)(The Æu4 omponent is determined by the ondition (?�+ Æ ?�)(u�+ Æu�) = 0.) The variable ��� is the anisotropistress tensor and it is gauge invariant by itself.As disussed in Appendix H7, we de�ne the gauge invariant perturbations for the energy density and the pressureon the brane by Æ�℄ = Æ�� _��anB + a2n2 _E� ; (6.82)ÆP ℄ = ÆP � _P �anB + a2n2 _E� : (6.83)Similarly we de�ne the gauge invariant perturbation variables for the veloity on the brane,v℄ = v + an _E; (6.84)�v℄i = �vi + an _�Ei: (6.85)To impose the seond Israel juntion ondition, we need to ompute ÆK�� whih is the di�erene between theperturbed value of K�� at the brane position y = yb + �, and the bakground value of K�� . The results are given inAppendix H6. The extrinsi urvature has to be ompared to the perturbation of the surfae stress tensor,ÆS�� = ÆT�� � 13ÆTq�� � 13TÆq�� ; (6.86)



30whose omponents are given in Appendix H7.The perturbation of the seond Israel ondition,[ÆK�� ℄ = ��5ÆS�� ; (6.87)yields four disontinuity onditions for the salar perturbation variables �, h, �, and the �rst derivatives �n	 and�n�, ���+ 3 [�n��HhH [�℄℄ = �5Æ�℄; (6.88)12 ��� (�u + U � 2H)(b�℄)� = �5(P + �)av℄; (6.89)[�n	+ Ih� (�u + U) �℄ = �5�ÆP ℄ + 23Æ�℄� ; (6.90)�� = �5a2�: (6.91)In terms of the gauge invariant bulk variables these onditions read���+ 3 [�n��Hh+H�℄+3�(H [U ℄� [�n℄ hHi)�3� (HhUi � h�ni hHi) + 3�u� = �5Æ�℄; (6.92)12 [�℄ + (�u �H)� = �5(P + �)av℄; (6.93)[�n	+ Ih� (�u + U) �℄+�([�n℄ hIi � [(�u + U)U ℄)��(h�ni hIi � h(�u + U)Ui)� �2u� = �5�ÆP ℄ + 23Æ�℄� ; (6.94)�� = �5a2�: (6.95)Notie that when Z2 symmetry is imposed � never appears in these equations.For the vetor perturbation variables we obtain two disontinuity onditions for �hi and the �rst derivative �n ��i,�12 [�n + I �H ℄ ��i + 12 �(�u + U �H)�hi� = �5(P + �)(v℄i � ��i); (6.96)� ��hi� = �5a��i: (6.97)Finally, there is also a disontinuity ondition for the normal derivative of the tensor perturbation variable ��Eij :� h�n ��Eiji = �5 ���ij : (6.98)Note that the Israel onditions do not give any onstraint on the f�4g omponents of Eq. (6.87). The above onstraintsan also be found diretly from the singular part of Einstein's equations (5.65{5.75). This is relatively straightforwardfor the vetor and tensor modes, but muh more involved for the salar part, as one must rewrite the equations usingthe underlined quantities de�ned above, and also beause one has to onsider the perturbation of the ovariant Dirafuntion D. However, for ompleteness, this has been undertaken in Appendix I1, and we have heked that bothapproahes lead to the same result. F. Sail equationAs we have seen, the juntion onditions are onveniently written using the underlined variables �, et. In order touse them, we must know b�℄. The jump of this quantity, �, is given by Eq. (6.91). As its ontinuous part � representsthe brane displaement, it is natural to seek an equation desribing the brane motion. As for the unperturbed ase,suh an equation is found by taking the disontinuous part of the f44g omponent of Einstein's equations. This yields3 hHi ÆP ℄ � hIi Æ�℄�3P ��n��Hh+H�+ 13����� h�n	+ Ih� (�u + U) �i = hÆY ℄i ; (6.99)



31where ÆY ℄ orresponds to the pressure perturbation along the extra dimension as measured by an observer at restwith respet to the brane. The relationship between ÆY ℄ and ÆY ℄ is given in Eq. (7.26) below. Equation (6.99) is thetypial equation for the displaement of a membrane (it involves the Laplaian of the displaement �). When goingbak to the bulk (non underlined) perturbations, Eq. (6.99) beomes, as expeted, a wave equation for �:��2u(��)� 3H�u �2��+ P��� P��+ 2K���3�P + 23��� �2�uH+ 4H2��(P + �)��3 hHi hH � Ii+ �54 �(P + �)�+�(3 hHi [Y � P ℄ + hIi [Y + �℄) = �ÆY ℄�� 3 hHi ÆP ℄ + hIi Æ�℄+3P h�n��Hh+H�i+� h�n	+ Ih� (�u + U) �i+2�u hF i�� � (�u �NH) hF i+3 hHi���54 (P + �)2 + hY � P i�+ hIi� ���54 (P + �)�+ hY + �i� : (6.100)Note that there is nothing whih guarantees a priori that the motion of the brane is stable. Even in the simplestase (Z2 symmetry, k = 0, no bulk perturbation ontributing to the right hand side of the above equation and branestress-energy tensor dominated by a onstant tension term), this equation beomes��2� + 2 _aa�� �r2 � 2�aa�� = 0; (6.101)and the mass term beomes negative for suÆiently fast expansion rate of the brane!VII. THE BRANE POINT OF VIEWIn the previous setions we have derived the bulk perturbation equations and their boundary onditions on thebrane. This allows us in priniple to solve the full system of perturbation equations in the bulk for given initialonditions. From these one an determine also the perturbed Weyl tensor and the seond fundamental form.In order to make ontat with 4-dimensional osmology in this setion, we want to write the perturbed version ofthe 4-dimensional Einstein equations on the brane. As for the bakground, this an either be done diretly from theperturbed bulk Einstein equations (5.65{5.75), or using the Gauss-Codai equation.A. Projeted Weyl tensor on the braneThe full expression of the perturbed Weyl tensor ÆC��Æ is given in Appendix F9. Here we write only the omponentsof the perturbed projeted Weyl tensor, ÆE�� , on the spaelike diretion ?�+Æ ?�, written in terms of the underlinedgauge invariant variables. We haveÆE00 = 12n2ÆZ℄ + 2E00	+( _E00 + 2E00��)� anB + a2n2 _E� ; (7.1)ÆE0i = �nriÆEv � an �ÆEvi+E00ri �anB + a2n2 _E�+ E ij _Ej ; (7.2)ÆE ij = 16a2ijÆZ℄+�rij � 13r2ij� ÆE� + ar(i �ÆE�j) + a2 ��ÆE�ij



32+ _E ij �anB + a2n2 _E�+ 2Ek(i(Ekj) � Ækj)�); (7.3)ÆE04 = E00Æq04; (7.4)ÆE i4 = Eji Æqj4; (7.5)ÆE44 = 0; (7.6)where we have set ÆZ℄ � 23(� + 3K)� + 13�(	� h)+ (�u + U) (�u�+H	)� (�u + 2U �H) (�uh+ U	)� (�n + I)��n��Hh+H� + 13�(b�℄)�� (�n + 2I �H) (�n	+ Ih� (�u + U) �)�	�u (U �H)� (h�n ���u) (I �H) ; (7.7)ÆEv � 23 (� (H	+ �u�) + (�uh+ U	) + (U �H)h+ (H � I) �� 12�n ��� (�u + U � 2H) (b�℄)�� ; (7.8)ÆE� � 13 ���	� 2h+ (H + I � 2�n)(b�℄)� : (7.9)Sine, by solving the bulk equations, we in priniple obtain the non underlined variables, it is useful to express theabove omponents also in terms of these,ÆZ℄ = 23(� + 3K)� + 13�(	� h)+ (�u + U) (�u�+H	)� (�u + 2U �H) (�uh+ U	)� (�n + I) (�n��Hh+H�)� (�n + 2I �H) (�n	+ Ih� (�u + U) �)�	�u (U �H)� (h�n ���u) (I �H)+Z 0�℄; (7.10)ÆEv = 23 �� (H	+ �u�) + (�uh+ U	) + (U �H)h� � 12�n + I �H��� ; (7.11)ÆE� = 13 (��	� 2h) : (7.12)For the vetor and tensor part of the projeted Weyl tensor we have de�ned�ÆEvi � �16(� + 2K)��i + 13 (�n +H) �(�n + I �H) ��i � (�u + U �H) �hi� ; (7.13)�ÆE�i � 13 �(�u + 2 (H� U)) ��i + (2�n + (H � I)) �hi� ; (7.14)��ÆE�ij � 13 ((�u + 3H� 2U) �u � (�� 2K) + (2�n + 3H � I) �n) ��Eij : (7.15)B. Perturbed Einstein equations on the braneWith these de�nitions, we an now write the projeted perturbed Einstein equations on the brane. They split intofour salar equations, 2 (� + 3K)��6H (H	+ �u�) = 16�25 Xb �b!Xb Æ�℄b



33�2 hHi 
3�n�� 3Hh+ 3H�+�b�℄�+12�5XB DÆP ℄B + Æ�℄B � ÆY ℄BE+ 12 DÆZ℄E ; (7.16)�2 (H	+ �u�) = 16�25 Xb �b!Xb �(P b + �b)av℄b��32 hHi 
�� (�u + U � 2H)(b�℄)�+23�5XB D(PB + �B)v℄B � FBf ℄BE+ hÆEvi ; (7.17)+23 (�	� (� + 3K)�)+2 (�u + 3H) (H	+ �u�)+2	�uH = 16�25 Xb �b!Xb ÆP ℄b�2 hHi h�n	+ Ih� (�u + U)�i+2 hH + Ii��n��Hh+H�+ 13�b�℄�+16�5XB DÆP ℄B + Æ�℄B + 3ÆY ℄BE+16�25 Xb (P b + �b)!Xb Æ�℄b + 16 DÆZ℄E ; (7.18)��	 = 16�25 Xb �b! a2Xb �b�hH + Ii��14�25 Xb (P b + �b)! a2Xb �b+23�5a2XB h�Bi+ DÆE�E ; (7.19)two vetor equations,�12 (� + 2K) ��i = 16�25 Xb �b!Xb �(P b + �b)(�vb ℄i � ��i)�+22 hHi 
(�n + I �H)��i � (�u + U �H)�hi�+23�5XB D(PB + �B)(�vB ℄i � ��i)� FB( �fB ℄i + �hi)E+ 
 �ÆEvi � ; (7.20)(�u + 2H) ��i = 16�25 Xb �b!aXb ��bi+ hH + Ii 
�hi��14�25 Xb (P b + �b)! aXb ��bi+23�5aXB 
��Bi �+ 
 �ÆE�i � ; (7.21)



34and one tensor equation (�u + 3H)�u ��Eij � (�� 2K) ��Eij = 16�25 Xb �b!Xb ���bij+ hH + IiD�n ��EijE�14�25 Xb (P b + �b)!Xb ���bij+23�5XB D���BijE+ D ��ÆE�ijE ; (7.22)where we have set, for the bulk matter quantities evaluated at the brane position,Æ�℄ = Æ�℄ + �0�℄ � 2F bn _�℄; (7.23)ÆP ℄ = ÆP ℄ + P 0�℄; (7.24)ÆF ℄ = ÆF ℄ + F 0�℄ � (�+ Y ) bn _�℄; (7.25)ÆY ℄ = ÆY ℄ + Y 0�℄ � 2F bn _�℄; (7.26)af℄ = af ℄ � b�℄: (7.27)These orretions follow from the fat that we have to go in a oordinate system whih follows the brane. The termsproportional to X 0�℄ are here beause we onsider the bulk matter ontent at y = yb + � rather than at y = yb, theterms proportional to _�℄ ome from the fat that we also perform a Lorentz boost in order to follow the brane motion,and the term b�℄ in the last equation omes from the fat that the brane is bent.As for the unperturbed ase, the ontinuous parts of the bulk stress-energy tensor and of the projeted Weyl tensorappear on the right hand side of these equations, as well as the omponents of the ontinuous part of the perturbedextrinsi urvature. These are related through the disontinuous part of the Einstein equations to the disontinuityof the perturbed Weyl tensor and of the bulk perturbed matter ontent. The orresponding equations an be foundin Appendix I5. C. Perturbed onservation equationThe brane matter onservation equations follow from the singular part of D�T �� = 0 or from the Bianhi identities.One obtains (see Appendix I3)�uÆ�℄ + 3H(Æ�℄ + ÆP ℄)+(P + �)�av℄ � 3(P + �)�u� = � hÆF ℄ + F	i ; (7.28)(�u + 3H) �(P + �)av℄�+ ÆP ℄+23 (� + 3K)a2�+ (P + �)	 = � hFav℄ + (P � Y )af ℄i ; (7.29)(�u + 4H)�(P + �)(�v℄i � ��i)�+12 (� + 2K)a��i = � hF (�v℄i � ��i) + (P � Y )( �f ℄i + �hi)i : (7.30)Again, when there are no disontinuities in the bulk matter perturbations, one obtains the usual onservation equa-tions. VIII. CONCLUSIONIn this paper we have derived gauge invariant osmologial perturbation theory in braneworld senarios with oneodimension. The unperturbed bakground system we onsidered (Setions II{IV) onsists of a 5-dimensional bulk



35spaetime with a maximally symmetri 3-dimensional subspae of urvature k, ontaining arbitrary (possibly inter-ating) matter with energy-momentum tensor T��, and a homogeneous and isotropi 3-brane again with arbitrarystress energy tensor T�� . We have not assumed Z2 symmetry aross the brane. As suh, our work generalises thatof previous authors who have onsidered perturbation theory mainly in the Z2-symmetri ase, and with spei�bulk (and brane) matter (e.g., a bulk osmologial onstant [45℄ or salar �eld [24℄). We believe that the generalsetup onsidered here is a neessary omponent of any serious attempt whih may be made to takle suh importantquestions as the osmi mirowave bakground anisotropies in braneworlds.The only oordinate hoie we have made is to �x the unperturbed brane to be at a given position yb in the extradimension. The bulk metri is expliitly time-dependent. When the bulk ontains only a osmologial onstant, thisis not the most natural oordinate system: there one would work with (stati) Shwarzshild-AdS5 and a dynamialbrane [14, 55{57℄. However, in the ase of arbitrary bulk matter and espeially for the study of perturbations, wehave found it more onvenient to work in a oordinate system in whih the brane is at rest.In Setions II{IV we derived all the relevant bakground equations, ending with the brane Friedmann equation (4.8{4.9). As disussed in Setion IV, when Z2 symmetry is not assumed, one has additional ontributions to the 4-dimensional Einstein tensor on the brane. In order to study these terms one has to inlude equations for the extrinsiurvature.In the remainder of the paper we studied perturbations of this system, setting up a ompletely gauge invariantformalism. Setion V ontains a general disussion of the lassi�ation of perturbations in an n+1-dimensional spaetime, as well as the interplay between bulk and brane perturbations. An important point whih we note there is theexistene of one extra salar degree of freedom on the brane whih is not a metri perturbation (although it interatswith some bulk metri perturbations): this is the brane displaement. In Setion VI we have derived an equation ofmotion for the gauge invariant perturbation variable desribing this quantity.In Setion V we introdued the perturbed 5-dimensional bulk spaetime. This led to the de�nition of four salar,two vetor and one tensor gauge invariant bulk perturbation variables given in equations (5.25{5.30). Followingthe de�nition of gauge invariant variables for the perturbations of the bulk matter, we were able to write downthe perturbed bulk Einstein equations in a gauge invariant manner. The perturbed brane was then introduedin Setion VI. In analogy with usual 4-dimensional osmologial perturbation theory, our aim was to introduetwo salar gauge invariant brane perturbation variables (the Bardeen potentials), one vetor and one tensor metriperturbation. The orret de�nition of these variables an only be given one the perturbed brane metri and Israeljuntion onditions are used determine the brane variables in terms of the ontinuous part and the jump of the bulkperturbations. The brane variables are de�ned in equations (6.16{6.19). The gauge invariant brane displaement alsoenters in these de�nitions. Finally the perturbed Einstein equations on the brane were derived in Setion VII. As inthe unperturbed ase, they ontain a ontribution from the projetion of the perturbed bulk Weyl tensor whih ingeneral have to be determined by solving the bulk equations.Despite the fat that we have tried to present our results as learly as possible, the formalism presented in this paperis tehnially rather ompliated. This reets the fat that we have onsidered a very general senario. The orollaryis, however, that our results should be appliable to a whole variety of di�erent (and possibly simpler) situations ofinterest in braneworld senarios. In a forthoming paper, we plan to apply this formalism to a spei� model andsolve some of the perturbation equations presented here.AknowledgmentsWe would like to thank Franis Bernardeau, Timon Boehm, Philippe Brax, David Langlois, Roy Maartens and Jean-Philippe Uzan for enlightening disussions. A.R. thanks Chlo�e Riazuelo for pointing out an error in the perturbedWeyl tensor (F98). R.D. and F.V. thank the Intitute for Advaned Study for hospitality. F.V. and D.S. thank theSwiss Foundation Ernst et Luie Shmidheiny for travel support. D.S. is grateful to the Rokefeller Foundation forwonderful hospitality in Bellagio, Italy, during the �nal stages of this work. This work is supported by the SwissNational Siene Foundation.[1℄ J. Polhinski, String Theory (Cambridge Universty Press, Cambridge, England, 1998), volumes 1 and 2.[2℄ P. Horava and E. Witten, Nul. Phys. B640, 506 (1996).[3℄ P. Horava and E. Witten, Nul. Phys. B675, 94 (1996).[4℄ K. Akama, Pregeometry, Leture Notes in Physis 176, edited by K. Kikkawa, N. Nakanishi, and H. Nariai (Springer-Verlag,Berlin, 1982), p. 267.[5℄ V.A. Rubakov and M.E. Shaposhnikov, Phys. Lett. B 125, 136 (1983).
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37[70℄ W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation, (Freeman, New York, 1970).APPENDIXIn this Appendix, we give all the neessary formulae that were used to obtain the results presented in the text.Here we will onsider an N + 1 + 1-dimensional bulk with, N -dimensional maximally symmetri, spaelike hyper-surfaes of onstant urvature k. Therefore, here � = 0, 1, : : :, M , where M = N + 1, and i = 1, 2, : : :, N . We willonsider both the unperturbed (Setion B{E) and perturbed ases (Setion F{I). Both the bulk and the brane matterontent are arbitrary as well as the global geometry of the bulk. Furthermore, we do not assume Z2 symmetry.APPENDIX A: SOME USEFUL FORMULAE1. Some ensor de�nitions and sign onventionsFollowing the de�nitions of [70℄, we use the sign onvention (�++), that is the signature of the metri is (+� : : :�),and the Riemann and Rii tensors are respetively de�ned byR��Æ = �� ��Æ � �Æ� �� + � ��� ��Æ � � �Æ�� �� ; (A1)R�� = R���� : (A2)The Weyl tensor is de�ned byC��Æ = R��Æ � 1N (R�g�Æ �R�Æg� +R�Æg� �R�g�Æ)+ 1N(N + 1)R(g�g�Æ � g�Æg�): (A3)2. Brane-related metri quantitiesThe indued metri is de�ned by �ab � g�� �aX� �bX� : (A4)The metri an be projeted bak in the bulk to give the �rst fundamental formq�� � �pq�pX� �qX�: (A5)More generally, any tensor Xa1:::an de�ned for the brane an be projeted bak in the bulk usingX�1:::�n = Xp1:::pn �p1X�1 : : : �pnX�n : (A6)In partiular, for the brane Riemann tensor, one hasR��Æ = �pX� �qX� �rX �sXÆ Rpqrs: (A7)One an also de�ne the normal spaelike unit vetor ?� to the brane aording to?��aX� = 0 ; ?�?� = �1; (A8)and the bulk metri evaluated at the brane position an be split intog�� = q�� �?�� ; (A9)with ?�� � ?�?� : (A10)



38Note that Eq. (A8) implies ?��2abX� = ��aX� �bX�(K�� + � ���?�): (A11)One an also de�ne the extrinsi urvature aording toK�� � q�(�D�?�); (A12)whih obeys the following relations q��K�� = K�� ; (A13)?��K�� = 0: (A14)With these de�nition, the brane Riemann and Rii tensors, the brane salar urvature and the brane Einsteintensor an be rewrittenRabd = �aX� �bX� �X� �dX� �R���� �D(�?�)D(�?�) �D(�?�)D(�?�)� ; (A15)R��Æ = q��q��q�q�ÆR���� �K�K�Æ +K�ÆK� ; (A16)R�� = N � 1N �q��q��R�� � 1N � 1q�� �G��?�� + 1N + 1G���KK�� +K��K�� + E�� ; (A17)R = R+R��?�� +K��K�� �K2; (A18)G�� = N � 1N �q��q��G�� � q�� �G��?�� + 1N + 1G���KK�� +K��K�� + 12q�� �K2 �K��K���+ E�� : (A19)APPENDIX B: BACKGROUND GEOMETRIC QUANTITIES1. Metrig00 = n2 ; g00 = 1n2 ; (B1)gij = �a2ij ; gij = � 1a2 ij ; (B2)gMM = �b2 ; gMM = � 1b2 : (B3)2. Notations~H = _aa ; ~I = _nn ; ~U = _bb ; (B4)~H = a0a ; ~I = n0n ; ~U = b0b : (B5)3. Christo�el symbols



39� 0ij = a2n2 ~Hij ; � 0MM = b2n2 ~U ; (B6)� 000 = ~I ; � ij0 = ~HÆij ; � MM0 = ~U ; (B7)� 00M = ~I ; � ijM = ~HÆij ; � MMM = ~U; (B8)� M00 = n2b2 ~I ; � Mij = �a2b2 ~Hij ; (B9)�kij = (N)�kij ; (B10)� ��0 = ~I +N ~H+ ~U ; � ��M = ~I +N ~H + ~U: (B11)The supersript N means that the orresponding quantity is evaluated using the metri ij .4. Rii tensorR00 = �(�� + ~U � ~I) ~U �N(�� + ~H� ~I) ~H+ n2b2 (�y + ~I � ~U)~I +N n2b2 ~H ~I; (B12)Rij = (N � 1)ijk + a2n2 ij(�� +N ~H+ ~U � ~I) ~H� a2b2 ij(�y +N ~H + ~I � ~U) ~H; (B13)R0M = N(� _~H � ~H ~H + ~H~I + ~U ~H); (B14)RMM = �(�y + ~I � ~U)~I �N(�y + ~H � ~U) ~H + b2n2 (�� + ~U � ~I) ~U +N b2n2 ~H ~U : (B15)5. Salar urvatureR = �N(N + 1) ~H2n2 + ka2 � ~Hb2!+ 2N ka2 � 2n2 (�� + ~U � ~I)( ~U +N ~H) + 2b2 (�y + ~I � ~U)(~I +N ~H): (B16)6. Einstein tensorG00 = N(N � 1)2 � ~H2 + n2a2 k� n2b2 ~H2�+N ~H ~U �N n2b2 ( ~H 0 + ~H2 � ~H ~U); (B17)Gij = �N(N � 1)2 �a2n2 ~H2 + k� a2b2 ~H2� ij + (N � 1)kij�a2n2 ij(�� + ~U � ~I)� ~U + (N � 1) ~H�+ a2b2 ij(�y + ~I � ~U)�~I + (N � 1) ~H� ; (B18)G0M = N(� _~H � ~H ~H + ~H~I + ~U ~H); (B19)GMM = �N(N � 1)2 � b2n2 ~H2 + b2a2 k� ~H2��N b2n2 ( _~H + ~H2 � ~H~I) +N ~H ~I: (B20)7. Riemann tensorR0M0M = b2(�� + ~U � ~I) ~U � n2(�y + ~I � ~U)~I; (B21)R0i0j = a2ij(�� + ~H� ~I) ~H� a2n2b2 ij ~H ~I; (B22)R0iMj = a2ij( _~H + ~H ~H � ~H~I � ~U ~H); (B23)RMiMj = a2ij(�y + ~H � ~U) ~H � b2a2n2 ij ~H ~U ; (B24)Rijkl = �a4(ikjl � iljk) ~H2n2 + ka2 � ~H2b2 ! : (B25)



408. Weyl tensorC0M0M = N � 1N + 1n2b2Z ; (B26)C0i0j = � 1N N � 1N + 1a2n2Zij ; (B27)CMiMj = 1N N � 1N + 1b2a2Zij ; (B28)Cijkl = � 2N(N + 1)(ikjl � iljk)a4Z ; (B29)with Z = ka2 + 1n2 (�� + ~U � ~I)( ~U � ~H)� 1b2 (�y + ~I � ~U)(~I � ~H): (B30)APPENDIX C: BACKGROUND MATTER CONTENT1. Unit vetorsFrom the �elds X (�) = � and X (?) = y, one an build two unit vetors u� and n�:u� = D�X (�)pD�X (�)D�X (�) ; (C1)u� = (n;0; 0); (C2)u� = � 1n;0; 0� ; (C3)u�u� = 1; (C4)n� = D�X (?)p�D�X (?)D�X (?) ; (C5)n� = (0;0; b); (C6)n� = �0;0;�1b� ; (C7)n�n� = �1: (C8)One an de�ne the following operators: �u � u��� = 1n��; (C9)�n � �n��� = 1b�y: (C10)As in the main text, we also use H = �uaa ; I = �unn ; U = �ubb ; (C11)H = �naa ; I = �nnn ; U = �nbb : (C12)2. Stress-energy tensor



41For the bulk matter, it is more onvenient to introdue the unit vetor U� whih represents the bulk N +2-veloityof the uid: U� = (n;0;�b�); (C13)U� = � 1n;0; 1b�� ; (C14)U�U� = 1; (C15)2(1� �2) = 1: (C16)Here � represents the Lorentz boost whih must be performed along the y axis in order to be in the rest frame ofthe bulk matter. As usual  = 1=p1� �2. Due to the symmetries of spaetime, the stress energy tensor of anyomponent possesses N idential eigenvalues P0. The other eigenvalues are �0 (assoiated to the timelike eigenvetorU�) and Y0 (assoiated to the spaelike eigenvetor N�). One hasN� = �� 1n�;0;�1b � ; (C17)N� = (�n�;0; b): (C18)T�� = (P0 + �0)U�U� � (P0 � Y0)N�N� � P0g��; (C19)= (P + �)u�u� � (P � Y )n�n� � Pg�� � 2Fu(�n�): (C20)T00 = n22(�0 + �2Y0) � n2� ; T 00 = 1n2 �; (C21)Tij = a2P0ij � a2Pij ; T ij = 1a2Pij ; (C22)T0M = �nb�2(Y0 + �0) � �nbF ; T 0M = 1nbF; (C23)TMM = b22(Y0 + �2�0) � b2Y ; TMM = 1b2Y: (C24)� = 2(�0 + �2Y0); (C25)Y = 2(Y0 + �2�0); (C26)P = P0; (C27)F = �2(�0 + Y0); (C28)�1 + �2 = F�+ Y ; (C29)� = �+ Y2F 0�1�s1�� 2F�+ Y �21A ; (C30)�0 = �� �2Y1 + �2= �� Y2 +r (�+ Y )24 � F 2; (C31)Y0 = Y � �2�1 + �2= Y � �2 +r (�+ Y )24 � F 2; (C32)P0 = P: (C33)



423. Einstein equationsN(N � 1)2 �H2 +K �H2�+NHU �N(�nH +H2) = �N+2�; (C34)�N(N � 1)2 �H2 +K �H2�+ (N � 1)K�(�u + U) (U + (N � 1)H) + (�n + I) (I + (N � 1)H) = �N+2P; (C35)N(�uH +HH �HI) = N(�nH+HH �HU) = �N+2F; (C36)�N(N � 1)2 �H2 +K �H2��N(�uH+H2) +NHI = �N+2Y: (C37)4. Conservation equationsFor any speies, D�T ��f = Q�f ; (C38)Q�f = �f0U�f �Df0N�f ; (C39)Qf� = (nf (�f0 + �fDf0 );0;�bf (Df0 + �f�f0 )) � (n�f ;0;�bDf ); (C40)�f = (�f0 + �Df0 ); (C41)Df = (Df0 + ��f0 ); (C42)�f0 = (�f � �Df ); (C43)Df0 = (Df � ��f ); (C44)Q�f = � 1n�f ;0; 1bDf� ; (C45)Xf �f =Xf Df = 0; (C46)�u�f +NH(Pf + �f ) + U(Yf + �f ) + (�n +NH + 2I)Ff = �f ; (C47)(�u +NH+ 2U)Ff + �nYf + I(Yf + �f ) +NH(Yf � Pf ) = Df : (C48)APPENDIX D: BACKGROUND BRANE-RELATED QUANTITIES1. Brane positionIn general, one has the brane position X� as a funtion of N + 1 variables �a. We hooseX0 = �0; (D1)X i = �i; (D2)XM = yb: (D3)2. Indued metriOne �rst builds the unit vetor orthogonal to the brane:?� �X���a = 0; (D4)?� = (0;0; b); (D5)?� = �0;0;�1b� : (D6)



43The omponents of this vetor have the same funtional form but possibly di�erent numerial values when evaluatedat y = yb+ and y = yb�. Then the indued metri is given by:q�� = g�� +?�?� ; (D7)q��?� = 0: (D8)q00 = n2; (D9)qij = �a2ij : (D10)3. First Israel onditionsFor any quantity f , we de�ne f = [f ℄ ��(y � yb)� 12�+ hfi ; (D11)where [f ℄ is the disontinuity of f , hfi is the ontinuous part of f and � is the Heaviside funtion. The �rst Israelondition states that q��(yb+) = q��(yb�) : [a℄ = 0; (D12)[n℄ = 0: (D13)In partiular, this means that b is allowed to be disontinuous at the brane position. Also, the derivatives of a and nwith respet to y an be disontinuous. 4. Extrinsi urvatureK�� = q�(�D�?�); (D14)K��?� = 0: (D15)K00 = �n2b ~I; (D16)Kij = a2b ~Hij ; (D17)K � g��K�� = q��K�� = �1b (~I +N ~H); (D18)K��K�� = 1b2 (~I2 +N ~H2); (D19)K2 �K��K�� = Nb2 ((N � 1) ~H2 + 2 ~H ~I): (D20)5. Stress-energy tensorFormally, one an take a stress-energy tensor of the above form to desribe the brane ontent, provided that wehave �0 � D�; (D21)P0 � DP ; (D22)Y0 � 0; (D23) = 1; (D24)� = 0; (D25)with D = qjqjpjgjÆ(y � yb): (D26)



44The ondition  = 1 and � = 0 has not neessarily to be satis�ed but is a onsequene of the oordinate hoie to putthe brane at rest with respet to the oordinate system. Beause of the Dira term (D26), P and � depend on �; xionly. Sine the stress energy tensor of the brane is stritly zero elsewhere, its eigenvetors are not de�ned outside thishypersurfae. The vetor ?� appears as the analog of the vetor N� as an eigenvetor assoiated to the eigenvalueY0 = 0. Equivalently one an de�ne an N + 2-veloity u� whih orresponds to the eigenvetor assoiated with theeigenvalue �0. Therefore, T b�� = DT��; (D27)T�� ?� = 0; (D28)T�� = (P + �)u�u� � Pq�� ; (D29)u� � (n;0; 0): (D30)6. S�� tensorS�� = T�� � 1N Tq�� : (D31)S00 = n2�N � 1N �+ P� ; (D32)Sij = 1N a2�ij : (D33)7. Seond Israel ondition[K�� ℄ = ��N+2S�� : (D34)" ~Ib# = �N+2�N � 1N �+ P� ; (D35)" ~Hb # = ��N+2 1N �; (D36)�N " ~Hb # = �N+2�; (D37)" ~Ib#+ (N � 1)" ~Hb # = �N+2P ; (D38)" ~Ib#� " ~Hb # = �N+2(P + �): (D39)8. Projeted Weyl tensorE�� = C����?�?� ; (D40)g��E�� = q��E�� = ?�E�� = 0: (D41)E00 = N � 1N + 1n2Z ; (D42)E ij = N � 1N(N + 1)a2Zij : (D43)



45APPENDIX E: BRANE POINT OF VIEW, UNPERTURBED CASEUnless otherwise noted, all the quantities are evaluated at the brane position. The quantity h�niX stands for theontinuous part of �nX at the brane position.1. Friedmann equationTaking the ontinuous part of the Einstein equation at the brane position, we getN(N � 1)2 �H2 +K� = �2N+28 N + 1N �2 + �N+2 h�Bi�NHhUi+N h�ni hHi+ 12N(N + 1) hHi2 ; (E1)�12(N � 1) �H�1�u +N� �H2 +K� = ��2N+28 �2P 2 + 2N � 1N P�+ N � 1N �2�+ �N+2 hPBi+ h(�u + U + (N � 1)H)Ui� h�n + Ii hI + (N � 1)Hi � 12N(N � 1) hHi2 : (E2)As suh, these equations are not yet very useful beause they involve many terms whih are not expliit `branevariables'. 2. New Friedmann equationConsider the ombination hHfMMg+Hf0Mgi of the Einstein equations. It yields(�u + (N + 1)H)�N(N � 1)2 �H2 +K � hHi2�� N � 18N �2N+2�2� = �(N � 1)�N+2 hHY +HF i : (E3)In the ase hHF i = �� hY i = 0, they an be integrated exatly and we �ndN(N � 1)2 �H2 +K� = N � 18N �2N+2�2 � N � 1N + 1�N+2 hY i+ CaN+1 : (E4)3. Friedmann equations using the Weyl tensorIn general, the Friedmann equation an onveniently be rewritten using the Weyl tensor. One hasN(N � 1)2 �H2 +K� = N � 18N �2N+2 Xb �b!2+N(N � 1)2 hHi2+N � 1N + 1�N+2XB hPB + �B � YBi+ N � 1N + 1 hZi ; (E5)�N � 12 �N +H�1�u� �H2 +K� = N � 18N �2N+2 Xb �b! Xb (�b + 2Pb)!�N(N � 1)2 hHi2 � (N � 1) hHi hI �Hi+ N � 1N(N + 1)�N+2XB hPB + �B +NYBi+ N � 1N(N + 1) hZi : (E6)4. Relationship between hK��i and �E���



46� hHi = 1N + 1 �[P + �� Y ℄ + 1�N+2 [Z ℄� ; (E7)(NP + �) hHi � � hIi = 1N + 1 �[P + �+NY ℄ + 1�N+2 [Z ℄� : (E8)5. Conservation equationThese an be found either by taking the singular part of (C47), or by onsidering the disontinuity of (B19). Abulk energy exhange term �B an have a singular omponent �(D)B so that �B = D�(D)B +[�B℄ ��(y � yb)� 12�+ h�Bi.�u�b +NH(Pb + �b) = �b; (E9)[FB℄ = �(D)B ; (E10)Xb �b = �XB [FB℄ : (E11)One also has the sail equation �hIiXb �b +N hHiXb Pb = XB [YB℄ : (E12)APPENDIX F: PERTURBED GEOMETRIC VARIABLES1. MetriÆg00 = 2n2A ; Æg00 = � 1n2 2A; (F1)Æg0i = anBi ; Æg0i = 1anBi; (F2)Ægij = �a2hij ; Ægij = 1a2 hij ; (F3)Æg0M = nbB? ; Æg0M = 1nbB?; (F4)ÆgiM = baE?i ; ÆgiM = � 1baEi?; (F5)ÆgMM = 2b2E?? ; ÆgMM = � 1b2 2E??: (F6)Bi = riB + �Bi; (F7)hij = 2Cij + 2Eij ; (F8)Eij = r(iEj) + ��Eij ; (F9)Ei = riE + �Ei; (F10)E?i = riE? + �E(?)i: (F11)All 3-vetors indies are raised and lowered using metri ij . ri represents its assoiated ovariant derivative andr2 = riri. Barred vetors are divergeneless, double barred tensors are divergeneless and traeless with respet toij and ri. 2. In�nitesimal oordinate transformation



47Under an in�nitesimal oordinate transformation x� ! x� + ��, the perturbed part of a tensor transforms asÆT�1:::�u�1:::�d ! ÆT�1:::�u�1:::�d + ����T�1:::�u�1:::�d � ��i��iT�1:::�i:::�u�1:::�d + ��j ��jT�1:::�u�1:::�j :::�d : (F12)Setting �� = (T; Li; L?); (F13)Li = riL+ �Li; (F14)the metri perturbations transform into A ! A+ _T + ~IT + ~IL?; (F15)Bi ! Bi � an _Li + nariT; (F16)C ! C + ~HT + ~HL?; (F17)Ei ! Ei + Li; (F18)��Eij ! ��Eij ; (F19)B? ! B? � bn _L? + nb T 0; (F20)E?i ! E?i � abL0i � bariL?; (F21)E?? ! E?? � ~UT � L?0 � ~UL?; (F22)�anB + a2n2 _E� ! �anB + a2n2 _E�+ T; (F23)�abE? + a2b2E0� ! �abE? + a2b2E0�� L?: (F24)There is one subtlety due to the fat that b may be disontinuous. We onsider the above in�nitesimal oordinatetransformation. For the fMMg omponent, we havegMM ! gMM � T��(b2)� 2b�y(bL?): (F25)For the oordinate hange to be valid, the metri omponents must remain �nite, therefore one must have[bL?℄ = 0: (F26)If b is ontinuous, then L? an be an arbitrary (ontinuous) oordinate transformation, but if b is disontinuous, thenL?(�; xi; yb) = 0. Geometrially, this is related to the fat that the oordinate system is allowed to exhibit somepathologies only at the brane position, but not in its viinity.3. Gauge invariant metri perturbationsUsing the transformation laws for � anB + a2n2 _E�, Ei, ��abE? + a2b2E0�, it is possible to onstrut the followinggauge invariant quantities: 	 = A� (�� + ~I)�anB + a2n2 _E�+ ~I �abE? + a2b2E0� ; (F27)� = �C + ~H�anB + a2n2 _E�� ~H �abE? + a2b2E0� ; (F28)� = B? � nb �y �anB + a2n2 _E�� bn�� �abE? + a2b2E0� ; (F29)h = E?? + ~U �anB + a2n2 _E�� (�y + ~U)�abE? + a2b2E0� ; (F30)��i = �Bi + an _�Ei; (F31)�hi = �E(?)i + ab �E0i: (F32)



48Æg00 = 2n2	+ (2g00�� + _g00)�anB + a2n2 _E�� g000�abE? + a2b2E0� ; (F33)Æg0i = �nagij ��j + g00ri �anB + a2n2 _E�+ gij _Ej ; (F34)Ægij = _gij �anB + a2n2 _E�� g0ij �abE? + a2b2E0�+ 2gk(i(Ekj) � Ækj)�); (F35)Æg0M = nb�+ g00�y �anB + a2n2 _E�� gMM�� �abE? + a2b2E0� ; (F36)ÆgiM = � bagij�hj � gMMri� anB + a2n2 _E�+ gijEj 0; (F37)ÆgMM = 2b2h+ _gMM �anB + a2n2 _E�� (2gMM�y + g0MM)�abE? + a2b2E0� : (F38)4. Christo�el symbolsÆ� 000 = _A� nb ~IB?; (F39)Æ� 00i = riA� an ~HBi; (F40)Æ� 0ij = a2n2 ��2A ~Hij + ~Hhij + 12 _hij�+ anr(iBj) + a2nb ~HB?ij ; (F41)Æ� 00M = A0 � bn ~UB?; (F42)Æ� 0iM = 12 an(�y + ~I � ~H)Bi � 12 ban2 (�� + ~H+ ~U)E?i + 12 bnriB?; (F43)Æ� 0MM = bn (�y + ~I)B? � b2n2 (�� + 2 ~U)E?? � 2 b2n2 ~UA; (F44)Æ� i00 = n2a2riA� na (�� + ~H)Bi + n2ba ~IEi?; (F45)Æ� i0j = 12 _hij + 12 na (riBj �rjBj); (F46)Æ� ijk = 12(rjhik +rkhij �rkhij) + jk �an ~HBi � ab ~HEi?� ; (F47)Æ� i0M = �12 ba (�� + ~H� ~U)Ei? � 12 na (�y + ~H � ~I)Bi + 12 nba2riB?; (F48)Æ� ijM = 12hij 0 + 12 ba (riE?j �rjEi?); (F49)Æ� iMM = � ba(�y + ~H)Ei? + b2an ~UBi + b2a2riE??; (F50)Æ� M00 = �nb (�� + ~U)B? + n2b2 (�y + 2~I)A+ 2n2b2 ~IE??; (F51)Æ� M0i = 12 anb2 (�y + ~I + ~H)Bi � 12 ab (�� + ~U � ~H)E?i � 12 nbriB?; (F52)Æ� Mij = �a2b2 �2 ~HE??ij + ~Hhij + 12h0ij�� abr(iE?j) + a2nb ~HB?ij ; (F53)Æ� M0M = � _E?? + nb ~IB?; (F54)Æ� MiM = �riE?? + ab ~HE?i; (F55)Æ� MMM = �E??0 + bn ~UB?; (F56)



49Æ� ��0 = ��(A�E?? +NC +r2E); (F57)Æ� ��i = ri(A�E?? +NC +r2E); (F58)Æ� ��M = �y(A�E?? +NC +r2E): (F59)5. Rii tensorFrom now on, we shall write any perturbation variables mostly with the gauge invariant quantities de�ned above.The non-gauge invariant terms will be put under the form of some fators involving omponents of the orrespondingunperturbed tensor multiplied by � anB + a2n2 _E�, Ei and �abE? + a2b2E0�.ÆR00 = n2a2r2	+(N ~H+ ~U)��	+ (�2� + (2 ~U � ~I)��)h+N(�2� + (2 ~H� ~I)��)�+n2b2 (�y +N ~H + ~I � ~U)(�y	+ 2~I	+ 2~Ih)� n2b2 ~I�y(	 + h+N�)�nb (���y + ~U�y + (N ~H + ~I)�� +N ~H~I +N ~U ~H + _~I + ~U 0)�+( _R00 + 2R00��)� anB + a2n2 _E�� (R000 + 2R0M��)�abE? + a2b2E0� ; (F60)ÆR0i = ((N � 1) ~H+ ~U)ri	+ (�� � ~H+ ~U)rih+ (N � 1)��ri��12 nb (�y + (N � 2) ~H + 2~I)�+12 na (r2 +K(N � 1))��i � naRij ��j+12 anb2 (�y + (N + 1) ~H � ~U)�(�y + ~I � ~H)��i�� 12 ab (�y + (N + 1) ~H � ~I)�(�� + ~U � ~H)�hi�+R00ri �anB + a2n2 _E��R0Mri �abE? + a2b2E0�+Rij _Ej ; (F61)ÆRij = (ijr2 +Nrij + 2K(N � 1)ij)��rij(	 + 2�� h)�a2n2 ij �2 _~H+ 2 ~H(N ~H+ ~U � ~I)	 + ~H��(	 + h+N�)��a2b2 ij �2 ~H 0 + 2 ~H(N ~H + ~I � ~U)h+ ~H�y(	 + h+N�)�+a2nbij � ~H�y + ~H�� + 2N ~H ~H + ~H0 + _~H��+an (�� + (N � 1) ~H + ~U)r(i ��j) � ab (�y + (N � 1) ~H + ~I)r(i�hj)+�a2n2 (�2� + (N ~H+ ~U � ~I)��)� a2b2 (�2y + (N ~H + ~I � ~U)�y)� ( ��Eij � ij�)� (r2 � 2K) ��Eij+ _Rij �anB + a2n2 _E��R0ij �abE? + a2b2E0�+ 2Rk(i(Ekj) � Ækj)�); (F62)ÆR0M = N ~H�y	�N ~H��h+N(���y + ( ~H � ~I)�� + ( ~H� ~U)�y)�+12 nba2r2� + nb (~I 0 + ~I(N ~H + ~I � ~U))�� bn ( _~U + ~U(N ~H+ ~U � ~I))�+( _R0M +R0M�� +R00�y)�anB + a2n2 _E�� (R00M +R0M�y +RMM��)�abE? + a2b2E0� ; (F63)ÆRiM = �((N � 1) ~H + ~I)rih� (�y � ~H + ~I)ri	+ (N � 1)�yri�+12 bn (�� + (N � 2) ~H+ 2 ~U)ri�+12 ba (r2 +K(N � 1))�hi � baRij�hj



50+12 an (�� + (N + 1) ~H� ~U)�(�y + ~I � ~H)��i�� 12 ban2 (�� + (N + 1) ~H� ~I)�(�� + ~U � ~H)�hi�+R0Mri �anB + a2n2 _E��RMMri�abE? + a2b2E0�+RijEj 0; (F64)ÆRMM = b2a2r2h� b2n2 (�� +N ~H+ ~U � ~I)(��h+ 2 ~Uh+ 2 ~U	) + b2n2 ~U��(	 + h�N�)�(�2y + (2~I � ~U)�y)	� (N ~H + ~I)�yh+N(�2y + (2 ~H � ~U)�y)�+ bn (���y + (N ~H+ ~U)�y + ~I�� +N ~H~I +N ~U ~H + _~I + ~U 0)�+( _RMM + 2RMM�y)�anB + a2n2 _E�� (R0MM + 2R0M�y)�abE? + a2b2E0� : (F65)6. Salar urvatureÆR = 2a2 �r2(	� h� (N � 1)��KN(N � 1)��+ 2n2 �2( ~U +N ~H)(�� + ~U � ~I)	 + 2( _~U +N _~H)	+(�� + ~U � ~I)(��h+N���)+(N ~H+ ~U)��(h�	) +N(N + 1)( ~H2	+ ~H���)�+ 2b2 �2(~I +N ~H)(�y + ~I � ~U)h+ 2(~I 0 +N ~H 0)h+(�y + ~I � ~U)(�yh+N�y�))+(N ~H + ~I)�y(	� h) +N(N + 1)( ~H2h� ~H�y�)�� 2nb ��y�� + (N ~H+ ~U)�y + (N ~H + ~I)��+N ~H0 + ~U 0 +N _~H + _~I +N(N + 1) ~H ~H��+ _R�anB + a2n2 _E��R0�abE? + a2b2 E0� ; (F66)7. Einstein tensorÆG00 = n2a2 (r2 �KN(N � 1))(h��)+N �n2a2r2 � (N ~H+ ~U)�� + n2b2 (�2y + (N ~H � ~U)�y)���N �n2b2 ~H�y(h��) + ~H��(h��) + ((N � 1) ~H2 + 2 ~H ~U)(	 + h)�+N nb � ~H�y +N ~H ~H + ~H0��+2G00(	 + h)� nb G0M�+( _G00 + 2G00��)�anB + a2n2 _E�� (G000 + 2G0M��)�abE? + a2b2E0� ; (F67)ÆG0i = ri(( ~U � ~H)(	 + h) + ��(h��) +N( ~H	+ _�))



51�12 nb (�y + (N � 2) ~H + 2~I)ri�+12 anb2 (�y + (N + 1) ~H � ~U)�(�y + ~I � ~H)��i�� 12 ab (�y + (N + 1) ~H � ~I)�(�� + ~U � ~H)�hi�+12 na (r2 +K(N � 1))��i � naGij ��j+G00ri�anB + a2n2 _E��G0Mri�abE? + a2b2E0�+Gij _Ej ; (F68)ÆGij = (ijr2 �rij)(	 + �� (h��)�N�)+a2n2 ij �2( ~U + (N � 1) ~H)(�� + ~U � ~I) +N(N � 1) ~H2� (� +	)+a2n2 ij �(�2� + ( ~U � ~I)��)(h� (N � 1)�)� ((N � 1) ~H + ~U)��(	 + h�N�)�+a2b2 ij �2(~I + (N � 1) ~H)(�y + ~I � ~U) +N(N � 1) ~H2� (h��)+a2b2 ij �(�2y + (~I � ~U)�y)(	� (N � 1)�)� ((N � 1) ~H + ~I)�y(	 + h+N�)��a2nbij ��y�� + ((N � 1) ~H+ ~U)�y + ((N � 1) ~H + ~I)�� +N(N � 1) ~H ~H��+2a2ij � 1n2 (� +	)��( ~U + (N � 1) ~H) + 1b2 (h��)�y(~I + (N � 1) ~H)��a2nbij��(N � 1) ~H0 + ~U 0 + (N � 1) _~H + _~I��N �a2n2 ~U�� � a2b2 ~I�y��� 2Gij�+an ��� + (N � 1) ~H+ ~U�r(i ��j) � ab ��y + (N � 1) ~H + ~I�r(i�hj)+�a2n2 (�2� + (N ~H+ ~U � ~I)��)� (r2 � 2K)� a2b2 (�2y + (N ~H + ~I � ~U)�y)� ��Eij+ _Gij �anB + a2n2 _E��G0ij �abE? + a2b2E0�+ 2Gk(i(Ekj) � Ækj)�); (F69)ÆG0M = 12 �nba2r2 +N bn ( _~H+ ~H2 � ~H~I � ~H ~U)�N nb ( ~H 0 + ~H2 � ~H ~I � ~H ~U)��+N( ~H�y(� +	)� ~H��(h��) + (���y � ~U�y � ~I��)�)+12 � bnG00 � nb GMM��+( _G0M +G0M�� +G00�y)�anB + a2n2 _E�� (G00M +G0M�y +GMM��)�abE? + a2b2E0� ; (F70)ÆGiM = �ri((~I � ~H)(	 + h) + �y(� +	) +N( ~Hh+�0))+12 bn (�� + (N � 2) ~H+ 2 ~U)ri�+12 an (�� + (N + 1) ~H� ~U)�(�y + ~I � ~H)��i�� 12 ban2 (�� + (N + 1) ~H� ~I)�(�� + ~U � ~H)�hi�+12 ba (r2 +K(N � 1))�hi � baGij�hj+G0Mri �anB + a2n2 _E��GMMri �abE? + a2b2E0�+GijEj 0; (F71)ÆGMM = b2a2 (r2 �KN(N � 1))(	 + �)�N � b2a2r2 � b2n2 (N ~H� ~I)�� + (N ~H + ~I)�y��



52+N � b2n2 ~H��(	 + �) + ~H�y(� +	) + ((N � 1) ~H2 + 2 ~H ~I)(� +	)��N bn � ~H�� +N ~H ~H + _~H���2GMM(	 + h) + bnG0M�+( _GMM + 2G0M�y)�anB + a2n2 _E�� (G0MM + 2GMM�y)�abE? + a2b2E0� : (F72)8. Riemann tensorÆR0i0j = ��n2rij + a2 ~Hij�� + a2n2b2 ~Hij�y�	� 2a2n2b2 ~H ~Iij(	 + h)+a2nb ij( ~H�� + ~H~I + ~U ~H)� + an(�� + ~H)r(i ��j) � an2b ~Ir(i�hj)+�a2(�2� + (2 ~H� ~I)��)� a2n2b2 ~I�y� ( ��Eij � ij�)+( _R0i0j + 2R0i0j��)�anB + a2n2 _E�� (R00i0j +RMi0j�� +R0iMj��)�abE? + a2b2E0�+R0k0j(Eki � Æki �) +R0i0k(Ekj � Ækj�); (F73)ÆR0ijk = a2rj��( ��Eik � ik�)� a2 ~Hikrj	+ anrjr(i ��k)+12a2 ~Hik �nbrj�� anb2 (�y + ~I � ~H)��j + ab (�� + ~U � ~H)�hj��[j $ k℄+(R0i0krj +R0ij0rk)�anB + a2n2 _E�� (R0iMkrj +R0ijMrk)�abE? + a2b2E0�+Rlijk �rl _E � na ��l� ; (F74)ÆR0i0M = �n2(�y + ~I � ~H)ri	� n2 ~Irih+ 12nb(�� + 2 ~U � ~H)ri�+12an(�� + 2 ~H� ~U)�(�y + ~U � ~H)��i�� 12ba(�� + 2 ~H� ~I)�(�� + ~I � ~H)�hi��R0M0Mri�abE? + a2b2E0�+R0ijM � _Ej � na ��j�+R0i0j �Ej 0 � ba�hj� ; (F75)ÆR0iMj = a2ij( ~H _h� ~H	0)� 12 �nbrij � ba2n ij ~H ~U + a2nb ij ~H ~I��+a2(���y + ( ~H� ~U)�y + ( ~H � ~I)��)( ��Eij � ij�)+12an(�y + ~H � ~I)r(i ��j) + 12ba(�� + ~H� ~U)r(i�hj)+( _R0iMj +R0iMj�� +R0i0j�y)�anB + a2n2 _E��(R00iMj +R0iMj�y +RMiMj��)�abE? + a2b2E0�+R0kMj(Eki � Æki �) +R0iMk(Ekj � Ækj�); (F76)ÆRijkl = �a4n2 ~H2	+ a4b2 ~H2h� a4nb ~H ~H�� ikjl � ki �a3n ~Hr(j ��l) � a3b ~Hr(j�hl)�+�a2(rki +Kki)� a4n2 ki ~H�� + a4b2 ki ~H�y� ( ��Ejl � jl�)�[i$ j℄ + [ik $ jl℄� [k $ l℄



53+Rmjkl(Emi � Æmi �) +Rimkl(Emj � Æmj �) +Rijml(Emk � Æmk �) +Rijkm(Eml � Æml �)+ _Rijkl �anB + a2n2 _E��R0ijkl �abE? + a2b2E0� ; (F77)ÆRij0M = ri �an(�y + ~I � ~H)��j � ba(�� + ~U � ~H)�hj�� [i$ j℄; (F78)ÆRMijk = a2rj�y( ��Eij � ij�) + a2 ~Hikrjh+ barjr(i�hk)�12a2 ~Hik � bnrj� + an (�y + ~I � ~H)��j � ban2 (�� + ~U � ~H)�hj��[j $ k℄+(RMi0krj +RMij0rk)� anB + a2n2 _E�� (RMiMkrj +RMijMrk)�abE? + a2b2E0�+Rlijk �rlE0 � ba�hl� ; (F79)ÆR0M0M = �n2(�y � ~U)�y	� 2n2(�y + ~I � ~U)(~I	)� n2 ~I�yh�b2(�� � ~I)��h� 2b2(�� + ~U � ~I)( ~Uh)� b2 ~U��	+nb���( 12�y + ~I) + �y( 12�� + ~U)��+( _R0M0M + 2R0M0M��)�anB + a2n2 _E�� (R00M0M + 2R0M0M�y)�abE? + a2b2E0� ; (F80)ÆRM0Mi = �b2(�� + ~U � ~H)rih� b2 ~Uri	+ 12nb(�y + 2~I � ~H)ri��12an(�y + 2 ~H � ~U)�(�y + ~I � ~H)��i�+ 12ba(�y + 2 ~H � ~I)�(�� + ~U � ~H)�hi�+RM0M0ri�anB + a2n2 _E�+Rj0Mi �Ej 0 � ba�hj�+RMjMi � _Ej � na ��j� ; (F81)ÆRMiMj = ��b2rij + a2 ~Hij�y + b2a2n2 ~Hij���h+ 2b2a2n2 ~H ~Uij(	 + h)�ba2n ij( ~H�y + ~H~I + ~U ~H)�� b2an ~Ur(i ��j) + ba(�y + ~H)r(i�hj)+�a2(�2y + (2 ~H � ~U)�y)� b2a2n2 ~U��� ( ��Eij � ij�)( _RMiMj + 2R0iMj�� + 2RMi0j��)� anB + a2n2 _E��(R0MiMj + 2RMiMj�y)�abE? + a2b2E0�+RMkMj(Eki � Æki ) +RMiMk(Ekj � Ækj ): (F82)9. Weyl tensorDe�ning E(01)ij = (�� + ~U � ~I)�� ��Eij + na (�� + ~U � ~H)r(i ��j); (F83)E(02)ij = ( ~H� ~U)�� ��Eij + na ( ~H� ~U)r(i ��j); (F84)E(?1)ij = (�y + ~I � ~U)�y ��Eij + ba (�y + ~I � ~H)r(i�hj); (F85)E(?2)ij = ( ~H � ~I)�y ��Eij + ba( ~H � ~I)r(i�hj); (F86)X(0) = (�� + ~U � ~I)�( ~H� ~U)(	 + h)� ��(h��)� ; (F87)



54X(?) = (�y + ~I � ~U)�( ~H � ~I)(	 + h)� �y(� +	)� ; (F88)X(�) = (���y + (~I � ~H)�� + ( ~U � ~H)�y + _~I � _~H + ~U 0 � ~H0)�: (F89)ÆC0i0j = �n2�rij � 1Nr2ij��N � 1N (� +	) + 1N (h��)��n2 N � 1N2(N + 1)ij �r2 +KN� (2� +	� h)+C0i0j(	 + h) + n2 1N (r2 � 2K) ��Eij� N � 1N(N + 1)ij �a2X(0) + a2n2b2 X(?) + a2nb X(�)�+a2�N � 1N E(01)ij +E(02)ij �+ a2n2b2 � 1NE(?1)ij +E(?2)ij �( _C0i0j + 2C0i0j��)�anB + a2n2 _E�� (C 00i0j + CMi0j�� + C0iMj��)�abE? + a2b2E0�+C0k0j(Eki � Æki �) + C0i0k(Ekj � Ækj�); (F90)ÆC0ijk = 1N ikrj �a2��(h��) + a2( ~U � ~H)(	 + h)� a2nb ( 12�y + ~I � ~H)��+12 1N ik �a3nb2 (�y + ~H � ~U)�(�y + ~I � ~H)��j�� a3b (�y + ~H � ~I)�(�� + ~U � ~H)�hj��+12 1N ikan(r2 +K(N � 1))��j + anrjr(i ��k) + a2rj _��Eik�[j $ k℄+(C0i0krj + C0ij0rk)�anB + a2n2 _E�� (C0iMkrj + C0ijMrk)�abE? + a2b2E0�+Clijk �rl _E � na ��l� ; (F91)ÆC0i0M = �N � 1N n2ri ��y(� +	) + (~I � ~H)(h+	)�+ N � 1N nb�12�u + ~U � ~H�ri��12 1N n2ba (r2 +K(N � 1))�hi+12N � 1N �an(�� + ~H� ~U)�(�y + ~I � ~H)��i�� ba(�� + ~H� ~I)�(�� + ~U � ~H)�hi���C0M0Mri �abE? + a2b2E0�+ CjM0i � _Ej � na ��j�+ C0j0i �Ej 0 � ba�hj� ; (F92)ÆC0iMj = �12nb�rij � 1Nr2ij��� 1N a2nbC0M0Mij�+12an(�y + ~H � ~I)r(i ��j) + 12ba(�� + ~H� ~U)r(i�hj)+a2 �( 12�y + ~H � ~I)�� + ( 12�� + ~H� ~U)�y� ��Eij+( _C0iMj + C0iMj�� + C0i0j�y)�anB + a2n2 _E�� (C 00iMj + C0iMj�y + CMiMj��)�abE? + a2b2E0�+C0kMj(Eki � Æki �) + C0iMk(Ekj � Ækj�); (F93)ÆCijkl = � 1N a2�rik � 1Nr2ik� jl(2� +	� h)� 1N2(N + 1)a2ikjl �r2 +KN� (2� +	� h)+Cijkl(h�	) + a2�rki +Kki � 1N ki(r2 � 2K)� ��Ejl



55� 1N(N + 1)ikjl �a4n2X(0) + a4b2X(?) + a4nbX(�)�+a4n2 1N ikE(01)jl � a4b2 1N ikE(?1)jl�[i$ j℄ + [ik $ jl℄� [k $ l℄+Cmjkl(Emi � Æmi �) + Cimkl(Emj � Æmj �) + Cijml(Emk � Æmk �) + Cijkm(Eml � Æml �)+ _Cijkl �anB + a2n2 _E�� C 0ijkl �abE? + a2b2E0� ; (F94)ÆCij0M = ri �an(�y + ~I � ~H)��j � ba(�� + ~U � ~H)�hj�� [i$ j℄; (F95)ÆCMijk = � 1N ikrj �a2�y(� +	) + a2(~I � ~H)(	 + h)� ba2n ( 12�� + ~U � ~H)��+12 1N ik �a3n (�� + ~H� ~U)�(�y + ~I � ~H)��j�� ba3n2 (�� + ~H� ~I)�(�� + ~U � ~H)�hj��+12 1N ikba(r2 +K(N � 1))�hj + barjr(i�hk) + a2rj ��E0ik�[j $ k℄+(CMi0krj + CMij0rk)�anB + a2n2 _E�� (CMiMkrj + CMijMrk)�abE? + a2b2E0�+Clijk �rlE0 � ba�hl� ; (F96)ÆC0M0M = n2b2a2 N � 1N(N + 1) �r2 +KN� (2� +	� h)+N � 1N + 1 �b2X(0) + n2X(?) + nbX(�)�+( _C0M0M + 2C0M0M��)� anB + a2n2 _E�� (C 00M0M + 2C0M0M�y)�abE? + a2b2E0� ; (F97)ÆCM0Mi = N � 1N b2ri ���(�� h) + ( ~H� ~U)(	 + h) + ( 12�y + ~I � ~H)��+12 1N nb2a (r2 +K(N � 1))��i�12N � 1N �an(�y + ~H � ~U)�(�y + ~I � ~H)��i�� ba(�y + ~H � ~I)�(�� + ~U � ~H)�hi��+CM0M0ri �anB + a2n2 _E�+ Cj0Mi �Ej 0 � ba�hj�+ CMjMi � _Ej � na ��j� ; (F98)ÆCMiMj = �b2�rij � 1Nr2ij��N � 1N (h��) + 1N (� +	)�+b2 N � 1N2(N + 1)ij �r2 +KN� (2� +	� h)�CMiMj(	 + h)� b2 1N (r2 � 2K) ��Eij+ N � 1N(N + 1)ij �b2a2n2 X(0) + a2X(?) + ba2n X(�)�+b2a2n2 � 1NE(01)ij +E(02)ij �+ a2�N � 1N E(?1)ij +E(?2)ij �+( _CMiMj + 2CMiMj��)�anB + a2n2 _E�� (C 0MiMj + 2CMiMj�y)�abE? + a2b2E0�+CMkMj(Eki � Æki �) + CMiMk(Ekj � Ækj�): (F99)



56APPENDIX G: PERTURBED MATTER CONTENT1. Unit vetorsÆu� = �� 1nA;0; 0� ; (G1)Æu� = (nA; aBi; bB?) ; (G2)Æn� = �0;0;�1bE??� ; (G3)Æn� = (�nB?;�aE?i;�bE??) ; (G4)ÆU� = � 1n(�w �A� �B?); 1avi0; 1b (w + �E??)� ; (G5)ÆU� = �n(�w +A);�a(v0i � Bi � �E?i);�b(w �B? � �E??)� ; (G6)ÆN� = � 1n(�w + �A+B?); 1af i0;�1b (E?? + �w)� ; (G7)ÆN� = ��n(w + �A);�a(f0i + �Bi + E?i); b(�w �E?? � �B?)� ; (G8)with u�U� = ; (G9)Æ(u�U�) = Æ; (G10)w = Æ� = Æ(�) ; (G11)w� = Æ�� + Æ = Æ(�)� ; (G12)w = Æ(�); (G13)v0i = riv0 + �v0i ; (G14)f0i = rif0 + �f0i : (G15)Sine n� + Æn� is not orthogonal to u� + Æu�, one does not have Æ(n�U�) = Æ(�), but rather Æ(n�U�) = Æ(�) +(U�u�)Æ(n�u�). 2. Gauge transformationv0 ! v0 � an _L� ab �L0; (G16)�v0i ! �v0i � an _�Li � ab � �Li0; (G17)f0 ! f0 + an� _L+ ab L0; (G18)�f0i ! �f0i + an� _�Li + ab  �Li0; (G19)w ! w + _� T + 0�L? � bn _L?; (G20)ÆX0 ! ÆX0 + _X0T +X 00L?; (G21)where X0 is any (N + 2)-salar quantity (density �0, pressure P0, et). Note: , �, �, Y , F are not salars as theyare de�ned through the vetor �elds u�, n� whih spei�ally depend on a oordinate hoie.3. Gauge invariant quantities



57v℄0 = v0 + an _E + ab�E0; (G22)�v0i ℄ = �v0i + an _�Ei + ab � �Ei0; (G23)f ℄0 = f0 � an� _E � ab E0; (G24)�f0i ℄ = �f0i � an� _�Ei � ab  �Ei0; (G25)w℄ = w � _� �anB + a2n2 _E�+ 0� �abE? + a2b2E0�� bn�� �abE? + a2b2E0�= w � ��(�) �anB + a2n2 _E�+ (�) 0�abE? + a2b2E0�� bn�� �abE? + a2b2E0� ; (G26)ÆX℄0 = ÆX0 � _X0�anB + a2n2 _E�+X 00�abE? + a2b2E0� : (G27)It is useful to de�ne v℄ � v℄0 + �f ℄0; (G28)�v℄i � �v0i ℄ + � �f0i ℄; (G29)f ℄ � �v℄0 + f ℄0; (G30)�f℄i � ��v0i ℄ +  �f0i ℄: (G31)4. Stress-energy tensorÆT�� = Æ((P0 + �0)U�U�)� Æ((P0 � Y0)N�N�)� Æ(P0g��) + ��� : (G32)���U� = 0; (G33)���N� = 0; (G34)�0� = 0; (G35)�M� = 0; (G36)�ij = a2�ij = a2��rij � 1Nr2ij��+r(i ��j) + ���ij� ; (G37)ÆT00 = n22(Æ�0 + �2ÆY0 + 2A(�0 + �2Y0) + 2�(Y0 + �0)w)= n2 �Æ�℄ + 2�	�+( _T00 + 2T00��)�anB + a2n2 _E�� (T 000 + 2T0M��)�abE? + a2b2E0� ; (G38)ÆT0i = �an((P0 + �0)v0i � (Y0 � P0)�f0i � 2(�0 + �2Y0)Bi � (�0 + Y0)E?i)= �an�(P + �)v℄i � Ff ℄i �+ anT00 ��i � ab T0M�hi+T00ri �anB + a2n2 _E�� T0Mri �abE? + a2b2E0�+ Tij _Ej ; (G39)ÆTij = a2(ÆP0ij +�ij + 2P0(Cij +Eij))= a2ijÆP ℄ + a2�ij+ _Tij �anB + a2n2 _E�� T 0ij �abE? + a2b2E0�+ 2Tk(i(Ekj) � Ækj)�); (G40)ÆT0M = �nb2 ��(ÆY0 + Æ�0) + (Y0 + �0)(1 + �2)w + �(Y0 + �0)(A�E??)� (�0 + �2Y0)B?�



58= �nb �ÆF ℄ + F (	� h)� ���+( _T0M + T0M�� + T00�y)�anB + a2n2 _E�� (T 00M + T0M�y + TMM��)�abE? + a2b2E0� ; (G41)ÆTiM = ba �(P0 � Y0)f0i + �(P0 + �0)v0i � 2(Y0 + �2�0)E?i � �2(�0 + Y0)Bi�= ba�Fv℄i + (P � Y )f ℄i �+ anT0M ��i � ab TMM�hi+T0Mri� anB + a2n2 _E�� TMMri �abE? + a2b2E0�+ TijEj 0; (G42)ÆTMM = b22 �(ÆY0 + �2Æ�0) + 2�(Y0 + �0)w � 2(Y0 + �2�0)E?? � 2�(Y0 + �0)B?�= b2 �ÆY ℄ � 2Y h� 2F��+( _TMM + 2T0M�y)� anB + a2n2 _E�� (T 0MM + 2TMM�y)�abE? + a2b2E0� : (G43)ÆT 00 = 1n2 �Æ�℄ � 2�	� 2F��+( _T 00 � 2T 00�� � 2T 0M�y)�anB + a2n2 _E�� T 000�abE? + a2b2E0� ; (G44)ÆT 0i = 1an �(P + �)vi℄ � Ff i℄�� anT ij ��j�T ijrj � anB + a2n2 _E�� (T 00�� + T 0M�y)Ei; (G45)ÆT ij = 1a2 �ÆP ℄ij +�ij�+ _T ij �anB + a2n2 _E�� T ij 0�abE? + a2b2E0�� 2T k(i(Ej)k � Æj)k �); (G46)ÆT 0M = 1nb �ÆF ℄ + F (h�	)� Y ��+( _T 0M � T 0M�� � TMM�y)�anB + a2n2 _E�� (T 0M 0 � T 0M�y � T 00��)�abE? + a2b2E0� ; (G47)ÆT iM = 1ba �Fvi℄ + (P � Y )f i℄�+ abT ij�hj+T ijrj �abE? + a2b2E0�� (T 0M�� + TMM�y)Ei; (G48)ÆTMM = 1b2 �ÆY ℄ + 2Y h�+ _TMM �anB + a2n2 _E�� (TMM 0 � 2TMM�y � 2T 0M��)�abE? + a2b2 E0� : (G49)5. An example: a salar �eld�0 = 12D��D��+ V= 12  _�2n2 � �02b2 !+ V; (G50)P0 = 12D��D��� V= 12  _�2n2 � �02b2 !� V; (G51)



59Y0 = P0; (G52)U� = D���pD��D��; (G53) = 1s1� n2b2 �02_�2 ; (G54)� = �nb �0_� 1s1� n2b2 �02_�2 ; (G55)� = �nb �0_� ; (G56)with the � sign determined by the ondition U0 � 0.� = 12  _�2n2 + �02b2 !+ V; (G57)P = 12  _�2n2 � �02b2 !� V; (G58)Y = 12  _�2n2 + �02b2 !� V; (G59)F = � _�n �0b : (G60)Æ�℄0 = _� _Æ�℄n2 � �0Æ�℄0b2 � _�2n2	� �02b2 h+ _�n �0b � + dVd� Æ�℄; (G61)ÆP ℄0 = _� _Æ�℄n2 � �0Æ�℄0b2 � _�2n2	� �02b2 h+ _�n �0b �� dVd� Æ�℄; (G62)Æ�℄ = (P + �) _Æ�℄_� �	!+ (Y � P )�Æ�℄0�0 + h�+ F� + dVd� Æ�℄; (G63)ÆY ℄ = (P + �) _Æ�℄_� �	!+ (Y � P )�Æ�℄0�0 + h�+ F�� dVd� Æ�℄; (G64)ÆP ℄ = (P + �) _Æ�℄_� �	!� (Y � P )�Æ�℄0�0 + h�� F�� dVd� Æ�℄; (G65)ÆF ℄ = (P + �)� + F  _Æ�℄_� �	+ Æ�℄0�0 + h! ; (G66)av℄0 = �n Æ�℄_�s1� n2b2 �02_�2 ; (G67)�v0i ℄ =  ��i + ��hi; (G68)af ℄0 = ��av℄0; (G69)�f0i ℄ = ��hi � � ��i; (G70)w = �2 A+E?? + Æ�0�0 � _Æ�_� !+ 2B?; (G71)



60w℄ = �2 	+ h+ Æ�℄0�0 � _Æ�℄_� !+ 2�; (G72)�ij = 0: (G73)Here, the omponents f i0 are arbitrary as the eigenvalues P0 and Y0 are degenerate. The expression hosen here ispurely for onveniene in order to simplify the following untilded omponents.av℄ = �nÆ�℄_� ; (G74)�v℄i = ��i; (G75)af ℄ = 0; (G76)�f℄i = ��hi: (G77)6. Interation termÆQ0 = 1n �Æ�℄ � �	�D��+( _Q0 �Q0�� �Q?�y)� anB + a2n2 _E��Q00�abE? + a2b2E0� ; (G78)ÆQi = 1aQi℄ � (Q0�� +Q?�y)Ei; (G79)ÆQ? = 1b �ÆD℄ +Dh�+ _Q?�anB + a2n2 _E�� (Q?0 �Q?�y �Q0��)�abE? + a2b2E0� ; (G80)with Q℄i = riQ℄ + �Q℄i : (G81)7. Conservation equations(�u +NH+ 2U)(Æ�℄ � F�) +NHÆP ℄ + U(ÆY ℄ � Æ�℄)+(�n +NH + 2I) �ÆF ℄ + F (	 + h)�+� �(P + �)av℄ � Faf ℄��N(P + �)�u�� (�+ Y )�uh� F�u�+ F�n(	� h�N�) = Æ�℄ + �	; (G82)(�u +NH+ U) �(P + �)av℄ � Faf ℄�+(�n +NH + I) �Fav℄ + (P � Y )af ℄�+ÆP ℄ + N � 1N (� +NK)a2�+ (P + �)	 + (Y � P )h+ F� = aQ℄; (G83)(�u +NH+ 2U) �ÆF ℄ � F (	 + h)� (�+ Y )��+(�n +NH + 2I)(ÆY ℄ � F�)�NHÆP ℄ � I(ÆY ℄ � Æ�℄)+� �Fav℄ + (P � Y )af ℄�+F�u(	� h�N�) +N(P � Y )�n�+ (�+ Y )�n	+ F�n� = ÆD℄ �Dh� ��; (G84)(�u + (N + 1)H+ U)�(P + �)(�v℄i � ��i)� F ( �f ℄i + �hi)�+(�n + (N + 1)H + I)�F (�v℄i � ��i) + (P � Y )( �f ℄i + �hi)�+12 (� + (N � 1)K) a��i = �Q℄i �D�hi � ���i: (G85)



618. Einstein equations�((N � 1)� + h) +KN(N � 1)��N ��(N � 1)H2 + 2HU�	+H�uh+ ((N � 1)H+ U) �u���N �H�n + (N + 1)H2�h� 2Nh�nH+N(�n + (N + 1)H)�n�+N (�n +NH + I) (H�) = �N+2 �Æ�℄ � F�� ; (G86)12 (�n + (N � 2)H + 2I) ��(U + (N � 1)H)	� (�u + U �H)h� (N � 1)�u� = �N+2 �(P + �)av℄ � Faf ℄� ; (G87)�K(N � 1)(N � 2)�+ �2(U + (N � 1)H)(�u + U) +N(N � 1)H2�	+2	�u(U + (N � 1)H)+ �2(I + (N � 1)H)(�n + I) +N(N � 1)H2�h+2h�n(I + (N � 1)H)+(�u + U)�u(h+ (N � 1)�)�(U + (N � 1)H)�u(	� h�N�)+(�n + I)�n(	� (N � 1)�)+(I + (N � 1)H)�n(	� h�N�)� 12 (�n�u + �u�n + I�u + U�n)�� ((U + (N � 1)H)�n + (I + (N � 1)H)�u) ��� ((�n + I)(U + (N � 1)H) + (�u + U)(I + (N � 1)H))�N (U�u � I�n) ��N(N � 1)HH� = �N+2�ÆP ℄ + N � 1N r2�� ; (G88)N�� (� +	) + (h��) = �N+2a2�; (G89)�N ((�u�n + (H � I)�u +H�n)� +H�n	�H�uh)�12���N�(�uH+H2 �HU) = �N+2 �ÆF ℄ + F (	� h)� ; (G90)12 (�u + (N � 2)H+ 2U) ��(�n + I �H)	� ((N � 1)H + I)h+ (N � 1)�n� = �N+2 �Fav℄ + (P � Y )af ℄� ; (G91)� (�((N � 1)��	) +KN(N � 1)�)+N �H�u + (N + 1)H2�	+ 2N	�uH+N (�u + (N + 1)H) �u�+N �(H�n)	 + �(N � 1)H2 + 2HI�h� ((N � 1)H�n + I�n) ���N (�u +NH+ U) (H�) = �N+2 �ÆY ℄ � F�� ; (G92)�12(� + (N � 1)K)��i�12 (�n + (N + 1)H) �(�n + I �H)��i�+12 (�n + (N + 1)H) �(�u + U �H)�hi� = �N+2 �(P + �)(�v℄i � ��i)� F ( �f ℄i + �hi)� ; (G93)(�u + (N � 1)H+ U) ��i � (�n + (N � 1)H + I) �hi = �N+2a��i; (G94)12(� + (N � 1)K)�hi+12 (�u + (N + 1)H) �(�n + I �H)��i�



62�12 (�u + (N + 1)H) �(�u + U �H)�hi� = �N+2 �F (�v℄i � ��i) + (P � Y )( �f ℄i + �hi)� ; (G95)�(�� 2K) ��Eij + (�u +NH+ U) �u ��Eij � (�n +NH + I) �n ��Eij = �N+2 ���ij : (G96)APPENDIX H: PERTURBED BRANE-RELATED QUANTITIES1. Brane positionX0 = �0 + �0(�a); (H1)X i = �i + �i(�a); (H2)XM = yb + �(�a): (H3)Under an in�nitesimal oordinate hange, the brane position � transforms into�! �� L?: (H4)2. Normal vetor to the brane(?� + Æ ?�)�X���a = 0; (H5)Æ ?� = � 1n �B? � bn _�� ; 1a � bari��Ei?� ;�1bE??� ; (H6)Æ ?� = ��n bn _�;�a bari�;�bE??� : (H7)Sine ?� plays the same role for the brane as N� for a bulk omponent, this means that formally, the quantities w,fi an be de�ned for the brane (we will note them w and f i respetively) at y = yb,w = bn _�; (H8)f i +E?i = bari�; (H9)(H10)or, equivalently, w℄ = bn _�℄; (H11)f ℄ = ba�℄; (H12)�f ℄i = ��hi: (H13)3. Indued metriÆq00 = 2n2(A+ ~I�); (H14)Æq0i = anBi; (H15)Æqij = �2a2(C + ~H�)ij � 2a2Eij ; (H16)Æq0M = nb�B? � bn _�� ; (H17)ÆqiM = ba�E?i � bari�� ; (H18)ÆqMM = 0: (H19)



634. First Israel ondition[A℄ + h~Ii � = 0; (H20)[Bi℄ = 0; (H21)[C℄ + h ~Hi � = 0; (H22)[Ei℄ = 0; (H23)h ��Eiji = 0; (H24)��anB + a2n2 _E�� = 0: (H25)Or, equivalently [	℄ = � �~I�� ~I �abE? + a2b2E0�� ; (H26)[�℄ = � ~H�� ~H �abE? + a2b2E0�� ; (H27)���i� = 0; (H28)h��Eiji = 0: (H29)With, 	 = A� (�� + ~I)�anB + a2n2 _E�+ ~I� = 	+ ~I ����abE? + a2b2E0�� ; (H30)� = �C + ~H�anB + a2n2 _E�� ~H� = �� ~H ����abE? + a2b2E0�� ; (H31)one has Æq00 = 2n2	+ (_q00 + 2q00��)�anB + a2n2 _E� ; (H32)Æq0i = �na qij ��j + q00ri �anB + a2n2 _E�+ qij _Ej ; (H33)Æqij = 2qk(i �Ekj) � Ækj)�� ; (H34)E?? ! E?? � ~UT � 1b (bL?)0; (H35)therefore �L?� = 0; (H36)�bL?� = 0: (H37)Then, [b℄ 6= 0) L?(y = yb) = 0; (H38)[b�℄ = 0: (H39)bB? � b2n � ! bB? � b2n �+ nT 0; (H40)bE?i � b2a ri� ! bE?i � b2a ri�� aL0i; (H41)



64and [bB?℄� �b2n � _� = [bB?℄ = 0; (H42)[bE?i℄� �b2a �ri� = [bE?i℄ � = 0; (H43)therefore [T 0℄ = 0; (H44)�Li0� = 0: (H45)5. New brane-related gauge invariant quantitiesAt the brane position (or on both sides of the brane),�℄ � ���abE? + a2b2E0� ; (H46)� � B? � nb �y �anB + a2n2 _E�� bn��� = �� bn���℄; (H47)h � E?? + ~U �anB + a2n2 _E�� ~U� = h� 1b�y(b�℄); (H48)	0 � A0 � �y(�� + ~I)�anB + a2n2 _E�+ ~I 0� = 	0 + ~I 0�℄ � ~I �abE? + a2b2E0�0 ; (H49)�0 � �C 0 + ( ~H�y + ~H0)�anB + a2n2 _E�� ~H 0� = 	0 � ~H 0�℄ + ~H �abE? + a2b2E0�0 ; (H50)�n	 � 1b	0; (H51)�n� � 1b�0: (H52)
b�℄� � �; (H53)�b�℄� � ��: (H54)[	℄ = �" ~Ib#�+* ~Ib+�; (H55)[�℄ = " ~Hb #��* ~Hb +�; (H56)[�℄ = [�℄� 1n ��� � D ~UE��� 1n h ~Ui�; (H57)[h℄ = [h℄ + ��yb �� ; (H58)h	i = 	�* ~Ib+�+ 14 " ~Ib#�; (H59)h�i = �+* ~Hb +�� 14 " ~Hb #�; (H60)h�i = h�i+ 1n ��� � D ~UE��+ 14 1n h ~Ui�; (H61)hhi = hhi+��yb �� ; (H62)where the terms �y� are de�ned by setting � onstant.



656. Extrinsi urvatureÆK00 = n(�� + ~U)��� bn _�+ bn�� �abE? + a2b2E0��� n2b (	0 + ~Ih) + 2K00	+K000�+( _K00 + 2K00��)� anB + a2n2 _E��K000�abE? + a2b2E0�= n(�� + ~U)�� n2b (	0 + ~Ih) + 2K00	+ ( _K00 + 2K00��)� anB + a2n2 _E� ; (H63)ÆK0i = 12n�� (�� � ~H)�b�� b�abE? + a2b2 E0��+12a(�� + ~U � ~H)�hi � 12 anb (�y + ~H � ~I)��i + anK00 ��i+K00ri�anB + a2n2 _E�+Kij _Ej= 12n�� ( 12�� + 12 ~U � ~H) �b�℄�+ 12a(�� + ~U � ~H)�hi � 12 anb (�y + ~H � ~I)��i+anK00 ��i +K00ri �anB + a2n2 _E�+Kij _Ej ; (H64)ÆKij = a2n ij ~H� bn _�� bn�� �abE? + a2b2 E0����� a2b ij(�0 � ~Hh)�rij �b�� b�abE? + a2b2E0��+ ar(i�hj) + a2b ��E0ij +K0ij�+ _Kij �anB + a2n2 _E��K0ij �abE? + a2b2E0�+ 2Kk(i(Ekj) � Ækj)�)= �a2n ij ~H�� a2b ij(�0 � ~Hh)�rij(b�℄) + ar(i�hj) + a2b ��E0ij+ _Kij �anB + a2n2 _E�+ 2Kk(i(Ekj) � Ækj)�); (H65)ÆK0M = K00Æq0M ; (H66)ÆKiM = Kji ÆqjM ; (H67)ÆKM finN = 0: (H68)7. S�� tensorThe perturbed stress-energy tensor on the brane is given in Eqns (6.80{6.85). Formally, for any quantity X de�nedon the brane, the quantity DX is a bulk salar. The quantity D is also a salar quantity of the bulk sine one isallowed to onsider the ase X = onstant. Its perturbation isÆD = DE?? � �(�y + ~U)D: (H69)Note that this derivation is a bit formal: sine E?? and h an be disontinuous, this expression and the next one areill-de�ned, even in the ase where b is ontinuous. But again, all the pathologial terms anel eah other when onewrites the Einstein equations, so that we onsider that this is not a serious problem. Using the formula (G21), it ispossible to build the gauge invariant ounterparts of both ÆD and ÆX:ÆD℄ = Dh�D0�℄; (H70)ÆX℄ = ÆX � _X �anB + a2n2 _E� : (H71)This last quantity is invariant under any in�nitesimal reparametrization of the �a. Equivalently, one has, us-ing (G22,G23), as well as the fat that  = 1 for the brane,v℄ = v + an _E; (H72)



66�v℄i = �vi + an _�Ei: (H73)With these de�nitions, ÆS00 = n2�N � 1N Æ�℄ + ÆP ℄�+2S00	+ ( _S00 + 2S00��)�anB + a2n2 _E� ; (H74)ÆS0i = �an(P + �)v℄i+anS00 ��i + S00ri�anB + a2n2 _E�+ S ij _Ej ; (H75)ÆS ij = a2�ij + a2 1N Æ�℄ij+ _S ij �anB + a2n2 _E�+ 2Sk(i(Ekj) � Ækj)�); (H76)ÆS0M = S00Æq0M ; (H77)ÆS iM = Sji ÆqjM ; (H78)ÆSMM = 0: (H79)8. Seond Israel ondition���+N [�n��Hh℄ +NH [�℄ = �N+2Æ�℄; (H80)12 ��� (�u + U � 2H)(b�℄)� = �N+2(P + �)av℄; (H81)[�n	+ Ih℄� [(�u + U) �℄ = �N+2�ÆP ℄ + N � 1N Æ�℄� ; (H82)�� = �N+2a2�; (H83)�12 [�n + I �H ℄ ��i + 12 �(�u + U �H)�hi� = �N+2(P + �)(v℄i � ��i); (H84)� ��hi� = �N+2a��i; (H85)� h�n ��Eiji = �N+2 ���ij : (H86)9. Projeted Weyl tensorAs this quantity is de�ned on the brane, it is more onvenient to express it in term of the brane-related (underlined)metri perturbations instead of the bulk-related (non underlined) metri perturbations as it was the ase for the Weyltensor. ÆZ℄ � 2N (� +NK)� + 1N�(	� h)+ (�u + U) (�u�+H	)� (�u + 2U �H) (�uh+ U	)� (�n + I)��n��Hh+H� + 1N�(b�℄)�� (�n + 2I �H) (�n	+ Ih� (�u + U) �)�	�u (U �H)� (h�n ���u) (I �H) ; (H87)ÆEv � N � 1N (� (H	+ �u�) + (�uh+ U	) + (U �H)h+ (H � I) �� 12�n ��� (�u + U � 2H) (b�℄)�� ; (H88)ÆE� � 1N �(N � 2)��	� (N � 1)h+ ((N � 2)H + I � (N � 1)�n)(b�℄)� ; (H89)



67�ÆEvi � �12 1N (� + (N � 1)K)��i + 12N � 1N (�n +H) �(�n + I �H) ��i � (�u + U �H) �hi� ; (H90)�ÆE�i � 1N �(�u + (N � 1) (H� U)) ��i + ((N � 1)�n + (H � I)) �hi� ; (H91)��ÆE�ij � 1N ((�u +NH� (N � 1)U) �u � (�� 2K) + ((N � 1)�n +NH � I) �n) ��Eij ; (H92)ÆE00 = N � 1N + 1n2ÆZ℄ + 2E00	+( _E00 + 2E00��)�anB + a2n2 _E� ; (H93)ÆE0i = �nriÆEv � an �ÆEvi+E00ri�anB + a2n2 _E�+ E ij _Ej ; (H94)ÆE ij = N � 1N(N + 1)a2ijÆZ℄+�rij � 1Nr2ij� ÆE� + ar(i �ÆE�j) + a2 ��ÆE�ij+_Eij �anB + a2n2 _E�+ 2Ek(i(Ekj) � Ækj)�); (H95)ÆE0M = E00Æq0M ; (H96)ÆE iM = Eji ÆqjM ; (H97)ÆEMM = 0: (H98)APPENDIX I: BRANE POINT OF VIEW, PERTURBED CASE1. New Einstein equationsWe rewrite the perturbed Einstein near the brane, that is near y = yb + �. We �rst de�ne some new bulk matterontent perturbations by Æ�℄ = Æ�℄ + �0�℄ � 2F bn _�℄; (I1)ÆP ℄ = ÆP ℄ + P 0�℄; (I2)ÆF ℄ = ÆF ℄ + F 0�℄ � (�+ Y ) bn _�℄; (I3)ÆY ℄ = ÆY ℄ + Y 0�℄ � 2F bn _�℄; (I4)af ℄ = af ℄ � b�℄; (I5)Æ�℄ = Æ�℄ + �0�℄ �D bn _�℄ + F r2a2 b�℄; (I6)aQ℄ = aQ℄ +Db�℄; (I7)ÆD℄ = ÆD℄ � ��+D0�℄ + (Y � P )r2a2 b�℄: (I8)The terms proportional to �℄ ome from the fat that we are onsidering the bulk perturbations at y = yb+ � insteadof y = yb. The other terms ome from the fat that the brane is not at rest with respet to the bulk oordinatesystem, and are a mere onsequene of a Lorentz boost with veloity v? = bn _� along the y axis. Going from the non



68underlined (bulk) metri perturbation to the underlined (brane-related) metri perturbations, the Einstein equationsimplify a little bit to(N � 1) (� +NK) ��N(N � 1)H (H	+ �u�)�NU (H	+ �u�)�NH (�uh+ U	)+�h�Nh�n hHi+N��uH+N (�n + (N + 1)H)��n��Hh+H�+ 1N�b�℄� = �N+2 �DÆ�℄b + Æ�℄B� ; (I9)�(N � 1) (H	+ �u�)� (�uh+ U	)� (U �H)h� (H � I) �+12 (�n +NH) ��� (�u + U � 2H) (b�℄)� = �N+2 �D(P b + �b)av℄b+(PB + �B)av℄B � FBaf ℄B� ; (I10)�(N � 2)(N � 1)K�+(N � 1) (�u +NH) (H	+ �u�) + (N � 1)	�uH+(N � 1)U (H	+ �u�) + 	�uU+(�u + 2U + (N � 1)H) (�uh+ U	)�(N � 1) (�n + I +NH) (�n��Hh+H�)+ (�n + 2I + (N � 1)H) (�n	+ Ih� (�u + U) �)+h�n hI + (N � 1)Hi ���u (I + (N � 1)H) = �N+2�DÆP ℄b + N � 1N Dr2�b (I11)+ÆP ℄B + N � 1N r2�B� ; (I12)(N � 2)��	+h+ (�n + (N � 2)H + I) (b�℄) = �N+2 �Da2�b + a2�B� ; (I13)�N (�u +H)��n��Hh+H�+ 1N�(b�℄)��NH (�n	+ Ih� (�u + U) �)�12� ��� (�u + U � 2H) (b�℄)��N (H � I) �u� = �N+2 �ÆF ℄B + FB	� ; (I14)�12 (�u +NH) ��� (�u + U � 2H) (b�℄)���1b	0 + Ih� (�u + U) ��+(N � 1)�1b�0 �Hh+H�+ 1N�(b�℄)�+(H � I)	� N � 1N (� +NK) (b�℄) = �N+2 �FBav℄B + (PB � YB)af ℄B� ; (I15)�(N � 1) (� +NK) � +�	+N	�uH +N (�u + (N + 1)H) (�u�+H	)+NH (�n	+ Ih� (�u + U) �)�N ((N � 1)H + I)��n��Hh+H�+ 1N�(b�℄)� = �N+2ÆY ℄B; (I16)�12 (� + (N � 1)K) ��i�12 (�n + (N + 1)H) �(�n + I �H ) ��i�+12 (�n + (N + 1)H) �(�u + U �H) �hi� = �N+2 �D(P b + �b)(�v℄b i � ��i)



69+(PB + �B)(�v℄B i � ��i)� FB( �f ℄B i + �hi)� ; (I17)(�u + (N � 1)H) ��i � (�n + (N � 1)H) �hi+U ��i � I�hi = �N+2 �Da��bi + a��Bi � ; (I18)12 (� + (N � 1)K) �hi+12 (�u + (N + 1)H) �(�n + I �H) ��i��12 (�u + (N + 1)H) �(�u + U �H) �hi� = �N+2 �FB(�v℄B i � ��i) + (PB � YB)( �f ℄B i + �hi)� ; (I19)(�u +NH) �u ��Eij � (�� 2K) ��Eij+U�u ��Eij � (�n +NH + I)��n ��Eij� = �N+2 �D���bij + ���Bij� : (I20)(A sum on all the brane and bulk speies is impliitly assumed on the right hand side of these equations.) One aneasily hek that the singular part of the above equation redues to the seond Israel ondition.2. Sail equationIn the following a sum on all the brane and bulk speies is impliitly assumed.N hHi ÆP ℄ � hIi Æ�℄�NP ��n��Hh+H�+ 1N����� h�n	+ Ih� (�u + U) �i = hÆY ℄i ; (I21)��2u(��)�NH�u �2��+ P����P�+K(N � 1)���N �P + N � 1N ��� �2�uH+ (N + 1)H2��(P + �)��N hHi hH � Ii+ �N+24 �(P + �)�+�(N hHi [Y � P ℄ + hIi [Y + �℄) = �ÆY ℄��N hHi ÆP ℄ + hIi Æ�℄+NP h�n��Hh+H�i+� h�n	+ Ih� (�u + U) �i+(2�u +NH)(hF i�)� ��u hF i+N hHi� ��N+24 (P + �)2 + hY � P i�+ hIi����N+24 (P + �)�+ hY + �i� : (I22)3. Perturbed onservation equationThey transform into (�u +NH+ U)�Æ�℄ � F��+NHÆP ℄ + U �ÆY ℄ � F��+(�n +NH + 2I)�ÆF ℄ + F (	 + h)�+� �a(P + �)v℄ � aFf ℄��N(P + �)�u�� (�+ Y )�uh� F�u�+ F�n(	� h�N�) = Æ�℄ + �	; (I23)(�u +NH+ U)�a(P + �)v℄ � aFf ℄�



70+ (�n +NH + I)�aFv℄ + a(P � Y )f ℄�+ÆP ℄ + N � 1N (� +NK)a2�+ (P + �)	 + (Y � P )h+ F� = aQ℄; (I24)(�u +NH + 2U)�ÆF ℄ � F (	 + h)� (�+ Y )��+(�n +NH + 2I)�ÆY ℄ � F���NHÆP ℄ � I(ÆY ℄ � Æ�℄)+� �aFv℄ + a(P � Y )f ℄�+F�u(	� h�N�) +N(P � Y )�n�+ (�+ Y )�n	+ F�n� = ÆD℄ �Dh; (I25)(�u + (N + 1)H+ U)�(P + �)(�v℄i � ��i)� F ( �f ℄i + �hi)�+(�n + (N + 1)H + I)�F (�v℄i � ��i) + (P � Y )( �f ℄i + �hi)�+12 (� + (N � 1)K) a��i = �Q℄i �D�hi � ���i: (I26)For the brane omponents, they are obtained by onsidering the disontinuity of the f0Mg, fiMg omponents ofEinstein equation or by taking the singular part of the above equations.�uÆ�℄b +NH(Æ�℄b + ÆP ℄b)+(P b + �b)�av℄b �N(P b + �b)�u� = Æ�℄b + �b	; (I27)Xb Æ�℄b + �b	 = �XB hÆF ℄B + FB	i ; (I28)(�u +NH)�(P b + �b)av℄b�+ ÆP ℄b+N � 1N (� +NK)a2�b + (P b + �b)	 = aQ℄b; (I29)Xb aQ℄b = �XB hFBav℄B + (PB � YB)af℄Bi ; (I30)(�u + (N + 1)H)�(P b + �b)(�vb ℄i � ��i)�+12 (� + (N � 1)K) a��bi = �Qb ℄i � �b ��i; (I31)Xb �Qb ℄i � �b ��i = �XB hFB(�vB ℄i � ��i) + (PB � YB)( �fB ℄i + �hi)i : (I32)4. Einstein equations using the Weyl tensor(N � 1) (� +NK)��N(N � 1)H (H	+ �u�) = 14N � 1N �2N+2 Xb �b!Xb Æ�℄b�(N � 1) hHi 
N�n��NHh+NH�+�b�℄�+N � 1N + 1�N+2XB DÆP ℄B + Æ�℄B � ÆY ℄BE+ N � 1N + 1 DÆZ℄E ; (I33)�(N � 1) (H	+ �u�) = 14N � 1N �2N+2 Xb �b!Xb �(P b + �b)av℄b��N � 12 hHi 
�� (�u + U � 2H)(b�℄)�



71+N � 1N �N+2XB D(PB + �B)av℄B � FBaf ℄BE+ hÆEvi ; (I34)N � 1N (�	� (N � 2)(� +NK)�)+(N � 1) (�u +NH) (H	+ �u�)+(N � 1)	�uH = 14N � 1N �2N+2 Xb �b!Xb ÆP ℄b�(N � 1) hHi h�n	+ Ih� (�u + U)�i+(N � 1) h(N � 2)H + Ii��n��Hh+H�+ 1N�b�℄�+ N � 1N(N + 1)�N+2XB DÆP ℄B + Æ�℄B +NÆY ℄BE+14N � 1N �2N+2 Xb (P b + �b)!Xb Æ�℄b + N � 1N(N + 1) DÆZ℄E ; (I35)(N � 2)��	 = 14N � 1N �2N+2 Xb �b! a2Xb �b�h(N � 2)H + Ii��14�2N+2 Xb (P b + �b)! a2Xb �b+N � 1N �N+2a2XB h�Bi+ DÆE�E ; (I36)�12 (� + (N � 1)K) ��i = 14N � 1N �2N+2 Xb �b!Xb �(P b + �b)(�vb ℄i � ��i)�+N � 12 hHi 
(�n + I �H)��i � (�u + U �H)�hi�+N � 1N �N+2XB D(PB + �B)(�vB ℄i � ��i)� FB( �fB ℄i + �hi)E+ 
 �ÆEvi � ; (I37)(�u + (N � 1)H) ��i = 14N � 1N �2N+2 Xb �b! aXb ��bi+ h(N � 2)H + Ii 
�hi��14�2N+2 Xb (P b + �b)! aXb ��bi+N � 1N �N+2aXB 
��Bi �+ 
 �ÆE�i � ; (I38)(�u +NH) �u ��Eij � (�� 2K) ��Eij = 14N � 1N �2N+2 Xb �b!Xb ���bij+ h(N � 2)H + IiD�n ��EijE�14�2N+2 Xb (P b + �b)!Xb ���bij+N � 1N �N+2XB D���BijE+ D ��ÆE�ijE : (I39)



725. Relationship between hÆK��i and �ÆE�����b��n��Hh+H�+ 1N��� = �Æ�℄b hHi+ 1N + 1 �hÆP ℄B + Æ�℄B � ÆY ℄Bi+ 1�N+2 hÆZ℄i� ; (I40)�(NPb + �b)��n��Hh+H� + 1N�����b h�n	+ Ih� (�u + U) �i = �(NÆP ℄b + Æ�℄b) hHi+ Æ�℄b hIi+ 1N + 1 hÆP ℄B + Æ�℄B +NÆY ℄Bi+ 1N + 1 1�N+2 hÆZ℄i ; (I41)��b 
 12�� 12 (�u + U � 2H) b�℄� = �N hHi (P b + �b)av℄b+ h(PB + �B)av℄B � FBaf ℄Bi+ NN � 1 1�N+2 [ÆEv℄ ; (I42)(NP b + �b)� = �N h(N � 2)H + Ii a2�b+(N � 1)a2 [�B℄ +N 1�N+2 hÆE�i ; (I43)��b 
 12 (�u + U �H) �hi � 12 (�n + I �H) ��i� = �N hHi (P b + �b)(v℄b i � ��i)+ h(PB + �B)(�v℄B i � ��i)� FB( �f ℄B i + �hi)i+ NN � 1 1�N+2 � �ÆEvi � ; (I44)�(NPb + �b) 
�hi� = �N h(N � 2)H + Ii a2 ��bi+(N � 1)a ���Bi �+N 1�N+2 h �ÆE�i i ; (I45)�(NPb + �b)D�n ��EijE = �N h(N � 2)H + Ii ���bij+(N � 1) h���Biji+N 1�N+2 h ��ÆE�iji : (I46)


