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es 35Appendix 37I. INTRODUCTIONThe idea that our 4-dimensional observed universe may be a hypersurfa
e or \brane" in a higher dimensionalspa
etime is motivated by string- and M -theory [1{3℄. In parti
ular, 5-dimensional braneworld s
enarios, in whi
hour universe represents the boundary of a 5-dimensional spa
etime, have re
ently re
eived 
onsiderable attention [4{58℄. The 
ase in whi
h the bulk spa
etime is Anti de Sitter spa
e and orbifold 
ompa
ti�
ation is realized with thebrane as �xed point has been parti
ularly studied. In this situation, it has been shown that 4-dimensional gravity isre
overed on the brane [11, 20, 22, 23℄ on energy s
ales mu
h lower than the brane tension and/or bulk 
urvature,and late time 
osmology is not 
hanged if the brane tension is suÆ
iently high [12, 13, 15{18℄. In an attempt tosolve the �ne-tuning problem between the bulk 
osmologi
al 
onstant and the brane tension, more 
omplex modelsin whi
h the bulk or the brane are �lled with several spe
ies (su
h as s
alar �elds) have re
ently been proposed (seefor example [24℄ and referen
es therein).In these models Z2 symmetry is often assumed, and this is parti
ularly 
onvenient when 
onsidering boundary
onditions on the brane. If Z2 symmetry is dropped, brane motion in the bulk must be taken into a

ount andinvolved 
al
ulations are required in order to determine the boundary 
onditions on the brane. Whilst Z2 symmetryis motivated by M -theory and is required for a supersymmetri
 brane 
on�guration, su
h as a BPS state [1℄, thereexist situations in whi
h Z2 symmetry is broken. This o

urs, for example, when the brane is 
harged and 
ouples toa 4-form �eld in the bulk [30℄. Cosmologi
al asymmetri
 brane models have been studied in [21, 26{32℄.These developments have prompted us to derive gauge invariant perturbation theory for brane 
osmology with one
odimension. Our aim is develop a formalism whi
h may then be applied to any situation of 
osmologi
al interest.Previously, perturbations in braneworld 
osmology have been extensively studied in the literature mostly for the 
aseof Z2 symmetry [35{51℄. Here we 
onsider the most general situation in whi
h the spatial ba
kground geometry on thebrane has maximal symmetry and thus represents a spa
e of 
onstant 
urvature k. We do not assume Z2 symmetry,and the boundary 
onditions on the brane are dis
ussed. Also, no parti
ular gauge 
hoi
e for the metri
 
omponentg44 is made. The perturbation equations in the bulk and on the brane are derived for general bulk and brane stress-energy tensors. This makes our formalism parti
ularly 
onvenient when analyzing situations in whi
h di�erent bulk
omponents (su
h as several s
alar �elds) are also 
onsidered. The formalism 
an be used to study phenomena whi
hhave important observational 
onsequen
es, the most important of them being the 
al
ulation of the anisotropies ofthe 
osmi
 mi
rowave ba
kground [47, 51℄. Sin
e one must in general �rst determine the behaviour of perturbations inthe bulk before being able to determine their behaviour on the brane [34℄, we pay parti
ular attention to the relationbetween bulk and brane gauge invariant perturbation variables. These be
ome more subtle when the position of the



3brane is displa
ed. Indeed we de�ne a set of gauge invariant variables in whi
h the perturbation equations on thebrane be
ome similar to the usual 4-dimensional equations. We then study the new terms arising in braneworlds.Sin
e we assume very general ba
kground spa
etimes and no Z2 symmetry, some of our equations are extremely
umbersome. In order to guide the reader through the rest of the paper, we now give a general overview of themethods we use, the variables we introdu
e, and the equations we derive in this paper.The basi
 setup is one of a 3 + 1-dimensional brane where the 3-spa
e of 
onstant time is maximally symmetri
(a spa
e of 
onstant 
urvature), embedded in a 4 + 1-dimensional bulk. As Z2 symmetry is not assumed, the bulkspa
etimes on ea
h side of the brane will generally di�er. Both the brane and the bulk may 
ontain arbitrary matter.Our notation is as follows:� x�; � = 0, 1, 2, 3, 4 : spa
etime 
oordinates (Greek indi
es), with metri
 g�� and 
ovariant derivative D�,� xi; i = 1, 2, 3 : 
oordinates on the maximally symmetri
 3-spa
e (se
ond part of Latin alphabet) with metri

ij and 
ovariant derivative ri,� �a; a = 0, 1, 2, 3 : brane-worldsheet 
oordinates (�rst part of Latin alphabet),� X�(�a) : brane position in target-spa
e.� A Roman subs
ript b indi
ates \brane" whilst B denotes \bulk".� Certain variables su
h as the brane matter 
ontent (P (�a), �(�a), et
) are only de�ned on the brane. Othervariables su
h as the normal ve
tor to the brane ?� or the extrinsi
 
urvature K�� are also de�ned at the braneposition, but sin
e they des
ribe the embedding of the brane in the bulk, they may take di�erent values oneither side of the brane. All these brane-related variables are underlined.The a
tion for the system isS = SEH + SmB + Smb + SGH= Z d5xpjgj� 12�5R + LmB�+ Z d4�qj�jLmb + SGH: (1.1)Here SGH is the Gibbons-Hawking boundary term required to 
onsistently derive the Israel jun
tion 
onditions [54℄,and �5 is the fundamental 5-dimensional Newton 
onstant (related to the 5-dimensional Plan
k mass M5 by �5 =6�2M35 ). Furthermore, R is the bulk s
alar 
urvature, g�� and �ab are the bulk metri
 and the indu
ed metri
 onthe brane respe
tively, and LmB and Lmb are respe
tively the Lagrangians for arbitrary matter in the bulk and matter
on�ned on the brane. They may also 
ontain a 
osmologi
al 
onstant or brane tension. The indu
ed metri
 on thebrane is (see for example [67℄) �ab(�) = g��(X)�X���a �X���b ; (1.2)and the Einstein equations resulting from a
tion (1.1) areG�� = �5 �T�� +DT��� ; (1.3)where D is a 
ovariant Dira
 Æ-fun
tion spe
ifying the position of the brane (see Se
tion III B), andT�� = 2pjgj � ÆSmBÆg��� ; (1.4)T�� = 2qj�j �X���a �X���b � ÆSmbÆ�ab� : (1.5)As noted above, we underline T�� and �ab to emphasize that they are only de�ned on the brane (see Se
tion III).We 
onsider these Einstein equations (1.3) for a homogeneous and isotropi
 brane and bulk ba
kground with �rstorder perturbations. As is summarised s
hemati
ally in the left hand panels of Fig. 1, these equations 
ontain threeparts: one is 
ontinuous; the se
ond is dis
ontinuous a
ross the brane; and the third part is singular at the braneposition (proportional to D). The 
oeÆ
ients of ea
h of the individual parts must be equated, leading to a number ofdi�erent equations. The 
ontinuous part gives the Einstein equations in the bulk and, via the Gauss-Coda

i equation,they also determine the 4-dimensional Einstein tensor on the brane (see Se
tion IV). The dis
ontinuous (but non



4singular) part is only non-trivial when Z2 symmetry is not assumed. It then gives equations for the 
ontinuous partof the extrinsi
 
urvature, and it des
ribes the energy and momentum ex
hange between the brane and bulk, leadingto the equation of motion for the brane | the so-
alled \sail equation" [30{32℄. Finally, the singular part representsthe se
ond jun
tion 
ondition whi
h relates the bulk geometries on ea
h side of the brane through the brane geometryand matter 
ontent.We also dis
uss the so-
alled 
onservation equations for the stress-energy tensors given in Eqns (1.4,1.5). Again,these 
ontain a dis
ontinuous, 
ontinuous and singular part. As is summarized s
hemati
ally in the right hand panelsof Fig. 1, the 
ontinuous part gives the bulk energy momentum 
onservation, the dis
ontinuity simply des
ribes the
onservation of the jump of the bulk stress-energy on the brane, and the singular part leads to energy momentum
onservation of the brane with a possible 
ontribution from the bulk, and to the sail equation.When dis
ussing the perturbations of these equations, we will make use of the maximal symmetry of the 3-dimensional subspa
es parallel to the brane. Our geometri
al quantities will be de
omposed into s
alar, ve
tor andtensor degrees of freedom (with respe
t to these 3-spa
es). This de
omposition is not identi
al to the more physi
alone 
ontaining density modes, vorti
ity modes, and 5-dimensional gravitational waves. The relationship between thesetwo approa
hes is given in Se
tion VA. Finally, in order to set up a 
onsistent gauge-invariant formalism for theevolution of these perturbations, we will see that it is 
ru
ial to take fully into a

ount the perturbed brane motion(whi
h 
an be written in a gauge invariant manner). This degree of freedom will be 
entral to our analysis.The outline of the paper is the following. In the next se
tion (Se
tion II) we dis
uss the unperturbed (or ba
kground)5-dimensional bulk: we allow a foliation (with two 
odimensions) into maximally symmetri
 3-spa
es, and do notspe
ify the presen
e of the brane. The Einstein and 
onservation equations for the bulk ba
kground are derived. InSe
tion III we introdu
e the brane and we dis
uss the boundary 
onditions at the brane position for the unperturbedspa
etime without imposing Z2 symmetry. In Se
tion IV we derive the ba
kground equations for an observer on thebrane. In Se
tion V, we perturb the ba
kground. We introdu
e gauge invariant variables and derive the perturbedEinstein and 
onservation equations in terms of these variables. The perturbed brane in
luding the perturbation ofthe brane position is dis
ussed in Se
tion VI. In Se
tion VII we reformulate the perturbation theory from the pointof view of an observer 
on�ned to the brane, and in the last se
tion we draw some 
on
lusions.Finally, we also provide an extensive and highly te
hni
al Appendix where we present all the relevant intermediatesteps required to obtain the results presented in the text. (Examples are, for instan
e, the perturbed Christo�elsymbols and the 
omponents of the perturbed Riemann and Weyl tensors.) The Appendix is, in fa
t, more generalthan the main text sin
e there we 
onsider an N+1-dimensional brane (with an N -dimensional maximally symmetri
subspa
e) embedded in a N + 2-dimensional bulk: in the text we have set N = 3. Furthermore, whilst the textpresents the perturbation equations in full generality, some spe
i�
 examples su
h as a bulk s
alar �eld are dis
ussedbrie
y in the Appendix. II. BULK BACKGROUNDIn this se
tion we des
ribe the bulk ba
kground geometry and energy 
ontent without introdu
ing a brane. Weassume that the spa
e orthogonal to the �fth dimension is maximally symmetri
 so that a homogeneous and isotropi
brane 
an be a

ommodated, as dis
ussed in the next se
tion. We 
onsider the most general stress-energy tensorwhi
h satis�es these symmetry 
onditions, and then derive the Einstein equations and the 
onservation equations.A. Metri
 and notationWe 
onsider a 5-dimensional spa
etime with one timelike 
oordinate x0 � �, and four spa
elike 
oordinatesfx1; x2; x3; x4g, where x4 � y. We assume that the 
onstant time hypersurfa
es are lo
ally of the form M� R,where M is a 3-dimensional maximally symmetri
 spa
e, i.e., a 3-spa
e of 
onstant 
urvature, parameterized bythe 
oordinates fx1; x2; x3g, with spatial metri
 a2(�; y)
ij . The 
urvature of this spa
e will be denoted by k. Forexample, we may 
hoose the 
oordinates fx1; x2; x3g su
h that
ij = Æij + kxixj1� kÆpqxpxq ; (2.1)where Æij is the Krone
ker symbol. The last spa
elike 
oordinate y (the \extra dimension") is orthogonal to themaximally symmetri
 spa
e. The metri
 has the signature +����. The line element of the metri
 
an thereforebe written as ds2 = n2d�2 � a2
ijdxidxj � b2dy2: (2.2)
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FIG. 1: Stru
ture of the Einstein equations and of the energy momentum 
onservation equations in the 
oordinate system (2.2),where 
oordinates 0, i are also brane 
oordinates and 4 represents the dire
tion orthogonal to the brane. In 
omponents, theEinstein equations 
an be split into three parts: f��g, f�4g, and f44g, where �, � run on indi
es 0, i. These three parts possessa 
ontinuous part (de�ned everywhere in the bulk) and a jump at the brane position. Part f��g also exhibits a singular termat the brane position. The role played by all these terms is shown in the above diagrams.



6An overdot will denote derivation with respe
t to �, and a prime derivation with respe
t to y. In addition, we shallde�ne �u � 1n��; (2.3)�n � 1b �y: (2.4)Covariant derivatives with respe
t to the full metri
 will be denoted by D�, and those with respe
t to 
ij by ri. For
onvenien
e we also de�ne H � 1n _aa ; I � 1n _nn ; U � 1n _bb ; (2.5)H � 1b a0a ; I � 1b n0n ; U � 1b b0b ; (2.6)as well as r2 � riri ; � � r2a2 ; rij � rirj ; K � ka2 : (2.7)Noti
e that �u and �n do not 
ommute sin
e �u�n � �n�u = I�u � U�n.B. Stress-energy tensorWe now 
onsider the bulk stress-energy tensor T�� whose energy 
ux need not be at rest with respe
t to our (�; y)
oordinates. Let U� be the normalized timelike eigenve
tor of T �� with eigenvalue �0. Correspondingly let N� be thenormalized eigenve
tor orthogonal to both U� and to the maximally symmetri
 3-spa
es, with eigenvalue Y0. Finally,let P0 be the eigenvalue of the three eigenve
tors parallel to the maximally symmetri
 3-dimensional sli
es. Note thatany symmetri
 tensor 
an be de
omposed in this way, and that the symmetry requires that the eigenve
tors parallelto the symmetri
 3-spa
es are degenerate. In terms of these variables, the bulk stress-energy tensor 
an be written asT�� = (P0 + �0)U�U� � (P0 � Y0)N�N� � P0g��; (2.8)where the ve
tors U� and N� are given byU� = � 1n
;0; 1b�
� ; U�U� = 1; (2.9)N� = �� 1n�
;0;�1b 
� ; N�N� = �1: (2.10)Here � represents the Lorentz boost whi
h must be performed along the y axis in order to be in the 
uid's rest frame.When one is not in the rest frame of the 
uid, both its energy density and its pressure along the extra dimension aremodi�ed, and the 
uid exhibits a 
ux through an y = 
onstant hypersurfa
e. As usual, 
 = 1=p1� �2.Below it will be more 
onvenient to use a di�erent de�nition for the stress-energy tensor 
omponents | a de�nitionwhi
h is less adapted to the 
uid, but better adapted to our 
oordinates. To derive it, let us denote by u� the5-velo
ity of a bulk observer who is at rest with respe
t to our 
oordinate system,u� = � 1n;0; 0� ; u�u� = 1; (2.11)and by n� the spa
elike unit ve
tor orthogonal to both u� and M,n� = �0;0;�1b� ; n�n� = �1 ; n�u� = 0: (2.12)Note that neither u� nor n� are geodesi
 ve
tor �elds, but their orthogonality and normalization is 
onserved. Themost general form of the bulk stress-energy tensor satisfying the required symmetry with respe
t to translations androtations in M 
an be written asT�� = (P + �)u�u� � (P � Y )n�n� � Pg�� � 2Fu(�n�); (2.13)



7where f(�g�) � 12 (f�g� + g�f�) denotes symmetrization. In 
omponents this givesT00 = n2�; (2.14)Tij = a2P
ij ; (2.15)T04 = �nbF; (2.16)T44 = b2Y: (2.17)Thus � = T��u�u� is the bulk energy density as measured by an observer with 5-velo
ity u�, F = T��u�n� is theenergy 
ux transverse to M, and P , Y are the pressure along the dire
tions xi, y, respe
tively. The new variables �,Y , P and F are related to the old ones by � = 
2(�0 + �2Y0); (2.18)Y = 
2(Y0 + �2�0); (2.19)P = P0; (2.20)F = �
2(�0 + Y0): (2.21)The last relation again shows that F represents the energy 
ux in y dire
tion. This 
ux, as well as the energy density� and pressure Y along the y dire
tion measured by an observer at rest with respe
t to the 
oordinate system, areobtained from the 
omponents of the stress-energy tensor in a frame at rest with respe
t to the 
uid simply by aLorentz transformation. Somewhat more 
ompli
ated but equally straightforward expressions express the old variablesin terms of the new ones (see Appendix C2). Note that in (2.9) the bulk velo
ity of the 
uid is � = n�U�=u�U� .When � = 0, 
 = 1, we re
over the 
ase in whi
h U� = u� and N� = n�, so that the rest frame of the bulk matterand the 
oordinate system 
oin
ide. C. Einstein equationsThe Christo�el symbols, the Riemann, Ri

i, Einstein and Weyl tensors for the metri
 (2.2) are given in Appen-di
es B3, B4, B6, B7 and B8 respe
tively, and the ba
kground bulk Einstein equations areG�� = �5T��: (2.22)With the stress-energy tensor (2.13) and the Einstein tensor from Appendix B6, Eq. (2.22) be
omes3K + 3H (H+ U)� 3 (�n + 2H)H = �5� f00g ; (2.23)�K � 3 �H2 �H2�� (�u + U) (U + 2H) + (�n + I) (I + 2H) = �5P fijg ; (2.24)3 (�uH +HH �HI) = �5F f04g ; (2.25)�3K � 3 (�u + 2H)H+ 3 (H + I)H = �5Y f44g ; (2.26)where we have indi
ated in bra
es on the right hand side from whi
h 
omponent of the Einstein tensor these bulkEinstein equations are derived. Equations (2.23,2.26) were �rst dis
ussed in [12℄, and integrated with respe
t to the�fth dimension in [13℄, for the 
ase of a negative bulk 
osmologi
al 
onstant, P = Y = �� = �.The �rst and the third of these equations (2.23,2.25) are 
onstraints (i.e., they do not involve se
ond derivativeswith respe
t to time). The other two are dynami
al equations. In fa
t, there are only two independent dynami
alvariables whi
h 
an be written as a 
ombination of the s
ale fa
tors n, a, and b. One 
an 
hoose 
oordinates to removethis ambiguity: for example, in Gaussian 
oordinates b = 1 as in [13℄, and in 
onformal 
oordinates b = n [19, 36℄.Of 
ourse other 
hoi
es of 
oordinates are also allowed. We shall, however, keep b undetermined, so that any useful
hoi
e for b 
an be made at the end. D. Conservation equationsThe Bian
hi identities lead to the so-
alled 
onservation equations for the stress-energy tensor,D�T�� = 0: (2.27)



8Only for � = 0 and � = 4 are there non-trivial relations,�u�+ 3H(P + �) + U(Y + �) + (�n + 3H + 2I)F = 0 f0g ; (2.28)(�u + 3H+ 2U)F + �nY + 3H(Y � P ) + I(Y + �) = 0 f4g : (2.29)These are the 
onservation equations for the energy density and the energy 
ux of the bulk 
omponents, respe
tively.The generalisation to several 
omponents is straightforward (see Appendix C4). Written in term of the intrinsi
 
uidquantities, they give an equation of evolution for the energy density �0 and for 
uid bulk velo
ity �.III. BULK BACKGROUND WITH A BRANEWe now 
onsider a homogeneous and isotropi
 3-brane orthogonal to y (lying in the spa
e of maximal symmetry)as a singular sour
e, with intrinsi
 stress-energy tensor T�� .A. Brane position, indu
ed metri
 and �rst fundamental formLet us 
hoose the intrinsi
 brane 
oordinates (�0; �i) = (�; xi), and embed the brane a

ording toX0 = �; (3.1)X i = xi; (3.2)X4 = yb = 
onstant: (3.3)Note that it is always possible to 
hoose the ba
kground 
oordinate y su
h that the unperturbed brane is at rest: thisis the only 
oordinate 
hoi
e made in this paper.As we shall see, the presen
e of the brane will introdu
e dis
ontinuities at y = yb in several variables. For thatreason, it is useful to de
ompose a given fun
tion f asf = [f ℄ ��(y � yb)� 12�+ hfi (y); (3.4)where � is the Heaviside fun
tion. This equation de�nes the 
ontinuous fun
tion hfi (y), whilst the dis
ontinuity orjump of f when going from one side to the other side of the brane is given by[f ℄ = lim"!0+ (f(yb + ")� f(yb � ")) � f+ � f�: (3.5)Noti
e that we have the two produ
t relationshfgi = hfi hgi+ 14 [f ℄ [g℄ ; (3.6)[fg℄ = hfi [g℄ + [f ℄ hgi : (3.7)For later 
onvenien
e, and when 
onsidering a 
ontinuous fun
tion hfi, we will also de�ne the 
ontinuous part andthe jump of its derivative by h�ni hfi � h�n hfii ; (3.8)[�n℄ hfi � [�n hfi℄ : (3.9)Sometimes we shall also need �f� for variables f des
ribing the embedding of the brane, and thus whi
h may takedi�erent values, f+, f�, on either side of the brane. The quantities �f� and 
f� are de�ned by�f� � f+ � f�; (3.10)
f� � 12 �f+ + f�� : (3.11)The normal unit ve
tor to the brane, ?�, is given by?� �X���a = 0 ; ?�?� = �1: (3.12)



9One obtains (up to an overall sign) ?� = �0;0;�1b� : (3.13)As we shall see, b 
an be dis
ontinuous on the brane and ?� 
an have di�erent values on either side of the brane.From the indu
ed metri
 one 
an de�ne the �rst fundamental form [69℄ q�� = g�� + ?�?� , where g�� is againevaluated on (either side of) the brane, and we have q��?� = 0. On the brane, q�� is related to �ab(�) byq��(X) = �X���a �X���b �ab(�): (3.14)We 
an de
ompose the stress-energy tensor on the brane, T��(X), asT�� = (P + �)u�u� � Pq��; (3.15)where u� is the 4-ve
tor of the energy 
ux on the brane matter,u� = � 1n;0; 0� ; u�u� = 1: (3.16)Note that T��?� = u�?� = 0. This is the most generi
 stress-energy tensor 
ompatible with a homogeneous andisotropi
 brane. B. Einstein equationIn the presen
e of the brane, the 5-dimensional Einstein equations be
omeG�� = �5 �T�� +DT��� ; (3.17)where, from Eqn (1.1), the \
ovariant Dira
 fun
tion" D isD = qjqjpjgjÆ(y � yb): (3.18)Here g and q are the determinants of the metri
 g�� and �rst fundamental form q�� respe
tively, evaluated at thebrane position. Written in 
omponents, the Einstein equations with the brane, Eq. (3.17), be
ome3K + 3H (H+ U)� 3 (�n + 2H)H = �5 ��+D�� f00g ; (3.19)�K � 3 �H2 �H2�� (�u + U) (U + 2H) + (�n + I) (I + 2H) = �5 (P +DP ) fijg ; (3.20)3 (�uH +HH �HI) = �5F f04g ; (3.21)�3K � 3 (�u + 2H)H + 3 (H + I)H = �5Y f44g : (3.22)A global solution to these equations has been derived in [12, 14℄ with the assumption of a pure negative 
osmologi
al
onstant in the bulk, and using Gaussian 
oordinates. The right hand sides of Eqns (3.19,3.20) 
ontain a singularterm proportional to D due to the presen
e of the brane. As we will see below, although the �rst fundamental form is
ontinuous on the brane, its �rst derivative with respe
t to the �fth dimension y (i.e., the terms H and I) may jumpand its se
ond derivative (�nH and �nI) 
an be singular. Thus the Einstein tensor 
ontains a singular part whi
hmust be mat
hed with the singular part of the stress-energy tensor. We now turn to the problem of relating theseterms to the brane matter 
ontent. C. Israel jun
tion 
onditionsThe extrinsi
 
urvature formalism is a useful tool in the analysis of jun
tion 
onditions on a singular surfa
e [70℄.The �rst Israel 
ondition [65℄ imposes the 
ontinuity of the �rst fundamental form,�q��� = 0: (3.23)
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Forbidden Allowed

FIG. 2: S
hemati
 illustration of the �rst Israel 
ondition. We have embedded in a Minkowskian spa
e a 2-dimensional spa
elikebulk of metri
 ds2 = a2dx2+ b2dy2. The brane is the thi
k horizontal line in the middle of both panels, and the grids representthe metri
 
oeÆ
ients so that the grid spa
ing is proportional to b and a along the verti
al and the horizontal dire
tionsrespe
tively. In the left panel, [a℄ 6= 0, [b℄ = 0, in the right one, [b℄ 6= 0, [a℄ = 0. The �rst Israel 
ondition states that when
onsidering a line of 
onstant x, there must not be any dis
ontinuity when 
rossing the brane: this is obviously not the 
ase inthe left panel. On the 
ontrary, nothing is said about how the spa
ing of the horizontal lines evolves a
ross the brane. Thistranslates into the fa
t that b is allowed to be dis
ontinuous (right panel).Hen
e q�� is well-de�ned on the brane. Sin
e we have q00 = n2(X) and qij = �a2(X)
ij , this 
ondition implies the
ontinuity of the s
ale fa
tors n and a: [n℄ = [a℄ = 0 (see Figure 2). Note that the 
ontinuity of the metri
 fun
tion bis not required by the jun
tion 
onditions and will not be assumed in what follows1 (see also Appendix F).Nevertheless, the �rst derivative with respe
t to y of a and n (whi
h are proportional to I and H), are allowed tojump. In order to study the behaviour of these quantities on the brane we 
onsider the extrinsi
 
urvature tensor (orse
ond fundamental form) with respe
t to the brane, namelyK�� = q�(�D�?�): (3.24)For the ba
kground metri
, the 
omponents of the extrinsi
 
urvature areK00 = �n2I; (3.25)Kij = a2H
ij : (3.26)Let us de�ne the surfa
e \stress tensor" S�� on the brane byS�� = T�� � 13Tq�� : (3.27)Then the se
ond Israel 
ondition [65℄ relates the jump in the extrinsi
 
urvature with the energy 
ontent on the braneand requires that [K�� ℄ = ��5S�� : (3.28)(Note that the 
hoi
e of the sign here is 
onsistent with our 
hoi
e for the sign of ?� in Eq. (3.13).) For our ba
kgroundthis 
ondition 
an be written as (see Appendix D7)[I ℄ = �5�23�+ P� ; (3.29)[H ℄ = ��5 13�: (3.30)1 Allowing b to be dis
ontinuous makes the 
ovariant Dira
 fun
tion D ill-de�ned. This is not a serious problem, as all the terms involvingthis fun
tion 
an be grouped together to give the se
ond Israel 
ondition. Therefore, we shall 
ontinue to use the notation D and supposethat when b is not 
ontinuous, it 
orresponds to a regularized and mathemati
ally 
onsistent expression.
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Allowed

FIG. 3: Illustration of the se
ond Israel 
ondition. With the same 
onventions as in �g. 2, we show an example where [H℄ 6= 0.This is possible if the energy density on the brane is non zero (it is positive in this illustration).(See also Figure 3.) Alternatively, Eqns (3.29,3.30) 
an be obtained dire
tly from the singular part of the Einsteinequations (3.19,3.20). D. Boundary 
onditions in the bulkWe now 
omment brie
y on the question of boundary 
onditions at the brane. Consider �rst the bulk Einsteinequations (3.19{3.22). They form a system of se
ond order partial di�erential equations in � and y, and in order tosolve them we must spe
ify initial 
onditions on a spa
elike Cau
hy hypersurfa
e, boundary 
onditions far from ourbraneworld (at in�nity in a one brane s
enario, or on another brane), and boundary 
onditions at our brane. TheIsrael jun
tion 
onditions impose the 
ontinuity of a and n, and �x the jump in their normal derivatives at the brane.Sin
e the Einstein equations represent a set of se
ond order partial di�erential equations, these jun
tion 
onditionsare suÆ
ient to allow us to solve the Einstein equations everywhere in the bulk.We now turn to the Einstein equations on the brane.IV. THE BRANE POINT OF VIEWAn observer on the brane will not see 4-dimensional Einstein gravity. This may, however, be re
overed in parti
ularsituations at low energy. The 4-dimensional Einstein tensor in general depends on bulk quantities and is quadrati
 inthe brane stress-energy tensor.Here we dis
uss the 4-dimensional \Einstein equations" whi
h lead to the modi�ed Friedmann equations, and alsothe 
onservation equation on the brane. Finally we interpret the deviation from the 4-dimensional theory in terms ofthe 5-dimensional one. A. Einstein gravity on the braneThrough the Gauss-Coda

i equations, we 
an write the 4-dimensional Einstein tensor (4)G�� in terms of the bulkstress-energy tensor T��, the extrinsi
 
urvature K�� and the proje
ted Weyl tensor E�� . The details of the 
al
ulation
an be found in [34℄, and the result is(4)G�� = 23 �G��q��q�� ��G��?�?� + 14G� q����KK�� +K��K�� + 12q��(K2 �K��K��) + E�� : (4.1)



12The proje
ted Weyl tensor E�� on the brane is obtained from the bulk Weyl tensor C��
Æ as followsC��
Æ = R��
Æ + 23(g�[ÆR
℄� + g�[
RÆ℄�) + 16Rg�[
gÆ℄�; (4.2)E�� = C����?�?� : (4.3)Here f[�g�℄ � 12 (f�g� � g�f�) denotes antisymmetrization. This proje
tion represents the 
ontribution of the freegravity in the bulk to the gravity on the brane. In 
omponents, we haveE00 = 12n2Z ; (4.4)E ij = 16a2Z
ij ; (4.5)Z = K + (�u + U) (U �H)� (�n + I) (I �H) : (4.6)There is only one independent 
omponent in the Weyl tensor (as well as in its proje
tion on the brane). This isrelated to the fa
t that this spa
etime is the 5-dimensional analog of a 4-dimensional type-D spa
etime in Petrov's
lassi�
ation [68℄. B. Friedmann equations on the braneSin
e the tensor (4)G�� 
ontains only derivatives of the 
ontinuous �rst fundamental form with respe
t to � and xi,it is 
ontinuous. Hen
e, on taking the 
ontinuous part of the right hand side of Eq. (4.1) (and applying the produ
trelation (3.6)), we �nd the proje
ted 4-dimensional Einstein equation on the brane,(4)G�� = 23�5�hT��i q��q�� ��hT��?�?�i+ 14 hT i� q����hKi hK��i+ hK��i hK��i+ 12q��(hKi2 � hK��i hK��i)+14 �� [K℄ [K�� ℄ + [K��℄ [K�� ℄ + 12q��([K℄2 � [K�� ℄ [K�� ℄)�+ 
E��� : (4.7)The right hand side of equation (4.7) 
an be split into four parts. The �rst depends on the average of the bulk stress-energy tensor, hT��i. The se
ond is given by four terms quadrati
 in the average of the extrinsi
 
urvature hK��i.These terms are known on
e the bulk Einstein equations have been solved. They vanish when Z2 symmetry is assumed| we return to this point below. Then there is a third part whi
h 
ontains four terms quadrati
 in the jump of theextrinsi
 
urvature [K�� ℄. We have already determined these through the se
ond jun
tion 
ondition (3.29,3.30), andthey are related to the brane stress-energy tensor: these terms will be responsible for the non-standard �2 
ontributionin the brane Friedmann equations. Finally there is a fourth part, the average of the proje
ted bulk Weyl tensor onthe brane, des
ribing the e�e
t from the free gravity in the bulk.In 
omponents, we obtain the modi�ed Friedmann equations whi
h 
ontain a dynami
al equation and a 
onstraint:3 �H2 +K� = 12�5 h�+ P � Y i+ �2512�2 + 3 hHi2 + 12 hZi ; (4.8)�2�uH� 3H2 �K = 16�5 h�+ P + 3Y i+ �2512(�+ 2P )�� hHi h2I +Hi+ 16 hZi ; (4.9)where we have isolated the 
ontinuous part of the proje
tion of the bulk Weyl tensor,hZi = K � �uH+ h(�u + U �H)Ui � h�n + Ii hI �Hi � �254 �23�+ P� (�+ P ): (4.10)(These equations 
ould alternatively have been obtained from the 
ontinuous part of the Einstein equations,Eqns (3.19{3.22).)The 
osmologi
al 
onsequen
es of these equations have been studied in [13, 15{18℄ with assumption of Z2 symmetry,in whi
h 
ase hK��i = hHi = hIi = 0. These authors 
onsidered a negative 
osmologi
al 
onstant in the bulk andassumed that the brane stress-energy tensor 
onsists of a rigid part | the brane tension | and a 
uid,T�� = �q�� + T f�� : (4.11)



13In this 
ase the bulk stress-energy tensor 
an be tuned to the brane tension in su
h a way that deviations fromstandard Friedmann equations are e�e
tive only at energies of order � and higher.If we assume F = hHi = _Y = 0, integrate the sum of Eq. (3.21) and (3.22) on
e with respe
t to time, and 
omparethe result with (4.8), one obtains an expression for the sum of the 
ontinuous part of the proje
ted bulk Weyl tensorand the 
ontinuous part of the bulk energy density and pressure: this behaves as a radiation term,hZi+ �5 h�+ P i = C=a4; (4.12)where C is an integration 
onstant (see Appendix E2). In [13, 15{18℄ this is dis
ussed for the 
ase �+ P = 0 so thathZi / a�4.Furthermore, noti
e that Eq. (4.11) is not a ne
essary requirement in order for the 5-dimensional Friedmannequations on the brane to redu
e to the standard 4-dimensional Friedmann equations at low energy. It suÆ
es thatthe brane stress-energy tensor is dominated by a term whi
h is almost a 
osmologi
al 
onstant today (i.e., it 
an bea slow-rolling s
alar �eld, see for example [25℄). In this 
ase, one has� = �� + �f ; (4.13)P = P � + P f ; (4.14)�� ' �P � ' �; (4.15)where �f , P f are the energy density and pressure of the ordinary matter 
ontent on the brane. Now, if in additionj�+ P j � jY j; (4.16)Y ' �; (4.17)� ' 16�5�2; (4.18)the �rst two terms of the right hand side of the above Friedmann equations on the brane are proportional to �4�f ,�4P f , with �4 = 16�25� = �5�� ; (4.19)and one re-obtains a term linear in the brane matter 
ontent. Note also that there are no extra �2 appearing in theproje
ted Weyl tensor (4.10) sin
e with these 
onditions P + � is �-independent. This was also noted in Ref. [52℄.C. Closing the system when Z2 symmetry is brokenWhen solving the Einstein equations on the brane (4.7), we need the 
ontinuous part of the extrinsi
 
urvaturehK��i. If Z2 symmetry is assumed | as motivated by M -theory | the evolution of the bulk is the same on boththe sides of the brane. In this 
ase the Israel 
onditions determine K�� entirely: it is always possible to 
hoose a
oordinate system in whi
h n(yb + y) = n(yb � y) and a(yb + y) = a(yb � y), i.e., where n and a are even. Thus Iand H are odd and the 
ontinuous value of K�� a
ross the brane vanishes,hK��i = 0 (Z2 symmetry): (4.20)This implies hIi = hHi = 0; (Z2 symmetry);I+ = �I� = 12 [I ℄ ;H+ = �H� = 12 [H ℄ : (4.21)If Z2 symmetry is not assumed, as in this paper, the evolution on either side will in general be di�erent and hK��ino longer vanishes, hK��i 6= 0 (Z2 symmetry broken): (4.22)



14One 
an, however, obtain a 
ondition for the 
ontinuous part of the extrinsi
 
urvature by 
onsidering the jump ofEq. (4.1). We obtain 0 = 23�5�[T�� ℄ q��q�� ��[T��?�?� ℄ + 14 [T ℄� q���� [K℄ hK��i+ [K��℄ hK��i+ q��([K℄ hKi � [K�� ℄ hK��i)�hKi [K�� ℄ + hK��i [K�� ℄ + �E��� : (4.23)(Noti
e that �(4)G��� = 0.) This be
omes, in 
omponents,� hHi = 14 �[P + �� Y ℄ + 1�5 [Z ℄� ; (4.24)(�+ 3P ) hHi � � hIi = 14 �[P + �+ 3Y ℄ + 1�5 [Z ℄� ; (4.25)where, using Eq. (4.6) and the jun
tion 
onditions (3.29) and (3.30), the jump of Z on the brane 
an be expressed as[Z ℄ = (�u + 2 hUi �H) [U ℄� [�n℄ hI �Hi � �5 hIi�2P + 53��+ �5 hHi�P + 23�� : (4.26)(Note that Eqns (4.24,4.25) 
ould alternatively have been obtained from the dis
ontinuous part of the Einsteinequations (3.19{3.22).)Equations (4.24,4.25) allow one to �x the unknown quantities hHi, hIi, provided the jumps of both the bulk matter
ontent and the Weyl tensor are known. Thus the 
ontinuous part of the extrinsi
 
urvature depends not only on thebrane matter 
ontent but also on the dis
ontinuity of the bulk stress-energy and the proje
ted Weyl tensors. If bothvanish, Eqns (4.24,4.25) allow in parti
ular the trivial solution hHi = hIi = 0, whi
h holds with Z2 symmetry. Thejump of the Weyl tensor, Eq. (4.26), 
ontains �rst derivatives of the extrinsi
 
urvature with respe
t to y, and so it isnot possible in general to determine hIi and hHi without �rst solving the Einstein equations in the bulk. Nonetheless,if the proje
tion (4.26) of the 5-dimensional bulk Weyl tensor on the brane is known a priori (as in the 
ase of aS
hwarzs
hild-Anti de Sitter bulk with a known bla
k hole mass on both side of the brane), then hIi and hHi 
an bedetermined dire
tly from Eqns (4.24,4.25) (see [30{32℄ for a more detailed dis
ussion).D. Brane motionOn 
ontra
ting Eq. (4.23) with the �rst fundamental form q�� and using the se
ond jun
tion 
ondition (3.28), oneobtains T�� hK��i = [?�?�T�� ℄ : (4.27)This equation is known as the \sail equation" [30{32℄. The right hand side is an external for
e density on the branedue to the asymmetry of the bulk stress-energy tensor on the two sides. In analogy with Newton's se
ond law (herethe for
e is due to a pressure di�eren
e between the two sides of the brane), T��, hK��i, and [?�?�T�� ℄ play the roleof mass, a

eleration, and for
e, respe
tively. Noti
e from (4.20) that when Z2 symmetry is assumed, this equationvanishes identi
ally. When Z2 symmetry is broken, the \a

eleration" hK��i is non-zero. In this paper we do notassume Z2 symmetry, but re
all that we have 
hosen a 
oordinate system in whi
h the brane is at rest: Eq. (4.28)must therefore be understood as di
tating the 
ondition that must be satis�ed by hHi and hIi (and therefore by the
oordinate system itself) for the brane to remain at a �xed position yb. Later, however, we will see that Eq. (4.27)does indeed give a more intuitive equation of motion for the perturbed brane position or brane displa
ement (seeSe
tion VIF).In 
omponents the sail equation leads to �hIi �+ 3 hHiP = [Y ℄ ; (4.28)whi
h 
an also be obtained by taking the dis
ontinuous part of the f44g 
omponent of the Einstein equation, Eq. (3.22)or, of 
ourse, by a linear 
ombination of Eqns (4.24,4.25). This is the only 
ombination of Equations (4.24,4.25) whi
hdoes not involve the Weyl tensor.



15E. Conservation equationsThe singular part of the 5-dimensional energy 
onservation equation (2.28) yields the stress-energy 
onservationequation on the brane: we �nd �u�+ 3H(P + �) = � [F ℄ : (4.29)(Again the generalisation to several intera
ting 
omponents may be found in Appendix D5.) Noti
e that the jumpin the bulk energy 
ux transverse to the brane enters in the 
onservation equation, meaning that the brane matter
ontent 
an a
t as a sour
e or a sink to the energy 
ux along the �fth dimension. When this energy 
ux is 
ontinuous,the 
onservation equation on the brane redu
es to the usual one, as dis
ussed in [34℄. Another 
onservation equationappears in brane 
osmology: by 
onsidering the singular part of Eq. (2.29) we obtain again the sail equation (4.28).Both equations were �rst found in [12℄ for the 
ase a bulk 
osmologi
al 
onstant.V. BULK PERTURBATIONSWe now turn to perturbed quantities, and begin in this se
tion by analysing the properties of the perturbed bulk:the perturbed brane itself will be introdu
ed in Se
tion VI. We work throughout with gauge independent perturbationvariables, whi
h are inspired from a generalisation of the Newtonian (or longitudinal) gauge to the 5-dimensional 
ase.First we introdu
e the bulk metri
 perturbation variables using the standard s
alar, ve
tor, tensor de
omposition.We study their gauge transformation properties and de�ne gauge invariant 
ombinations. Then, in Se
tion VD, theperturbations of the bulk stress-energy tensor are 
onsidered, leading, in Se
tion VE, to the gauge invariant perturbedbulk Einstein equations. Finally we write down the perturbed 
onservation equations (Bian
hi identities).A. Classi�
ation of the perturbationsLet us 
onsider the perturbations of a spa
etime with one timelike and n spa
elike 
oordinates. The perturbedmetri
 of this spa
etime possesses 12 (n+1)(n+2) di�erent 
omponents. Amongst these, a 
oordinate transformationallows n + 1 of them to be �xed, so that there are 12n(n + 1) independent metri
 
oeÆ
ients. For example, insyn
hronous gauge, the Æg0� are set to zero.When solving perturbation equations about a given spa
etime, one is naturally led to 
lassify perturbations. Two
lassi�
ations are of parti
ular relevan
e. Firstly, the perturbations may be 
lassi�ed a

ording to their physi
almeaning, and this is done by looking at the spin of the perturbation in a lo
ally Minkowskian frame. The di�erentperturbations are density (spin 0) modes, vorti
ity (spin 1) modes, and gravitational (spin 2) waves. Se
ondly, theperturbations may be 
lassi�ed more geometri
ally in terms of irredu
ible 
omponents under the group of isometriesof the unperturbed spa
etime. This leads to s
alar, ve
tor and tensor perturbations. Under some 
ir
umstan
es,these two 
lassi�
ations are identi
al. In parti
ular, this is true for a Friedmann-Lemâ�tre-Robertson-Walker (FLRW)spa
etime, whi
h 
an be foliated by a set of maximally symmetri
 spa
elike hypersurfa
es. In brane 
osmology,however, the bulk is not as symmetri
 as in the FLRW 
ase, and the two 
lassi�
ations are di�erent.Components whi
h transform irredu
ibly under symmetries of the ba
kground spa
etime evolve independently (tolinear order) while the physi
al spin 
omponents mix.1. Physi
al splittingAs explained above, metri
 perturbations 
an be de
omposed a

ording to their spin with respe
t to a lo
al rotationof the 
oordinate system. This leads to density modes, vorti
ity modes, and gravitational waves. Gravitational (spin2) waves are \true" degrees of freedom of the gravitational �eld in the sense that they 
an exist even in va
uum. Thenumber of gravitational wave modes is given by the dimension of the ve
tor spa
e spanned by symmetri
, transverse,tra
eless rank 2 tensors in an n-dimensional spa
e: this is 12 (n � 2)(n + 1). In addition, when there is a non trivialmatter 
ontent, there may be vorti
ity (or spin 1) modes arising from rotational velo
ity �elds, whi
h have n � 1independent 
omponents. Finally, there remain 12n(n+ 1)� 12 (n � 2)(n+ 1) � (n � 1) = 2 possible density (spin 0)modes, whi
h are usually represented by the two Bardeen potentials � and 	 [60, 61℄.



16More s
hemati
ally, let us 
onsider the metri
 perturbation around a lo
ally inertial frame, written in syn
hronousgauge and in Fourier spa
e 
onsidering the wave ve
tor ki = kÆi1 :
Æg�� = 0BBBBBBBBBB�

0 0 0 0 : : : 00 2k2E � 2C ikV2 ikV3 : : : ikVn0 ikV2 �2C + nXi=3 h+i h�23 : : : h�2n0 ikV3 h�23 �2C � h+3 h�3n... ... ... . . . ...0 ikVn h�2n h�3n : : : �2C � h+n
1CCCCCCCCCCA : (5.1)

The quantities E and C des
ribe the density modes (with the standard de�nition of the Bardeen potentials, one has� = �C and 	 = ��2tE), the Vi (i = 2; : : : ; n) represent the vorti
ity modes, and the h+i (i = 3; : : : ; n) and h�jk(2 � j < k � n) represent the gravitational waves (when n = 3, these notations agree with the standard de�nition ofthe h+ and h� modes). 2. Geometri
al splittingThe three above types of perturbation generally do not evolve independently: even at linear order, they are 
oupledif the unperturbed spa
etime does not possess any symmetries. However, for most 
osmologi
al models (in
luding theones 
onsidered in this paper), spa
etime possesses some symmetries, being invariant under a 
ertain group of globaltransformations. We 
onsider the symmetry group SO(N) with N < n, whi
h is of 
ourse relevant when there existsa 
oordinate system in whi
h N 
oordinates span a maximally symmetri
 spa
e.When this is the 
ase, perturbations may be de
omposed into 
omponents whi
h transform irredu
ibly underSO(N)-rotations of the 
oordinate system. This leads to what we 
all s
alar, ve
tor and tensor perturbations whi
h areperturbations whose spin with respe
t to SO(N) is 0, 1 and 2 respe
tively. The main advantage of this de
omposition isthat the three new types of perturbation are now de
oupled from ea
h other, and hen
e are 
onvenient when studyingthe evolution of 
osmologi
al perturbations. For example, 
onsider an n-dimensional spa
e with N 
oordinates(labelled by i, j, et
) spanning an N -dimensional, maximally symmetri
 sub-spa
e, with metri
 
ij , and asso
iated
ovariant derivative ri. The n � N remaining 
oordinates will be labelled by A, B, et
. In this 
ase, the metri
perturbations 
an be de
omposed as Ægij = �2C
ij � 2rijE � 2r(i �Ej) � 2��Eij ; (5.2)ÆgiA = riE(A) + �E(A)i; (5.3)ÆgAB = E(AB); (5.4)where barred quantities are divergen
eless N -ve
tors, and double barred quantities are divergen
eless, tra
eless N -tensors of rank 2 (with respe
t to the 
ovariant derivative ri and metri
 
ij respe
tively). With our de�nitions, itis 
lear that C, E, E(A), E(AB) are s
alars, �Ei, �E(A)i are ve
tors, and ��Eij are tensors under SO(N) rotations. Theperturbed metri
 
omponents 
an then be written as
Æg�� =

0BBBBBBBBBBBBBB�
0 0 0 0 : : : 0 00 2k2E � 2C �2ik �E2 �2ik �E3 : : : �2ik �EN ikE(A)0 �2ik �E2 �2C + NXi=3 h+i h�23 : : : h�2N �E(A)20 ik �E3 h�23 �2C � h+3 h�3N �E(A)3... ... ... . . . ... ...0 ik �EN h�2N h�3N : : : �2C � h+N �E(A)N0 ikE(A) �E(A)2 �E(A)3 : : : �E(A)N E(AB)

1CCCCCCCCCCCCCCA ; (5.5)
with the h+k ; h�lm des
ribing ��Eij . Obviously, one has� 2 + (n�N) + 12 (n�N)(n�N + 1) s
alar degrees of freedom,



17� (N � 1)(n�N + 1) ve
tor degrees of freedom and,� 12 (N � 2)(N + 1) tensor degrees of freedom.By de�nition, the tensor 
omponents are spin 2 quantities and represent gravitational waves. It is 
lear that whenN 6= n, not all the gravitational waves are tensor perturbations (with respe
t to SO(N)): 12 (n �N)(n + N � 1) ofthem are a
tually s
alar or ve
tor perturbations. In fa
t, the spin of the se
ond de
omposition 
an be understood asthe proje
tion of the spin of the �rst de
omposition on the maximally symmetri
 spa
e. Therefore, density modes arealways s
alar perturbations, vorti
ity modes 
an be either s
alar of ve
tor perturbations, and gravitational waves 
anbe any of the three. By 
omparing Eqns (5.1) and (5.5), it is 
lear that:� the 2 + (n � N) + 12 (n � N)(n � N + 1) s
alars de
ompose as 2 density modes, n � N vorti
ity modes, and12 (n�N)(n�N + 1) gravitational waves,� the (N � 1)(n�N + 1) ve
tors represent (N � 1) vorti
ity modes and (N � 1)(n�N) gravitational waves,� the 12 (N � 2)(N + 1) tensors all represent gravitational waves.For our purpose (n = N + 1 = 4), this redu
es to� 4 s
alar degrees of freedom whi
h split into the 2 density modes, 1 vorti
ity mode, and 1 gravitational wave,� 4 ve
tor degrees of freedom whi
h go into 2 vorti
ity modes and 2 gravitational waves,� 2 tensor degrees of freedom whi
h all represent gravitational waves.As expe
ted, we have 10 degrees of freedom 5 of whi
h are gravitational waves. This de
omposition ensures that evenin the va
uum, the s
alar and ve
tor parts of the Einstein equation will allow non trivial solutions. These are usually
alled \gravis
alars" and \graviphotons" [63, 64℄. This e�e
t represents the most striking 
hange to the physi
s ofbrane 
osmologi
al perturbations as 
ompared to that of the standard FLRW 
ase sin
e it 
an o

ur at arbitrary lowenergy as long as the 
orresponding gravitational waves exist in the bulk.3. The brane point of viewThe brane is, by de�nition, des
ribed by N +1 
oordinates: one timelike and the N spa
elike 
oordinates spanningan N -dimensional maximally symmetri
 spa
e. For the 
ase of one 
odimension, we have N = n� 1. The perturbedindu
ed metri
 of the maximally symmetri
 spa
e then has 12n(n�1) independent 
omponents. An important questionis how these perturbations 
an intera
t with the bulk perturbations. It is 
lear that whatever the bulk matter 
ontent,there are at least 12 (n � 2)(n + 1) = 12n(n � 1) � 1 degrees of freedom whi
h arise from the gravitational waves inthe bulk. Therefore, one 
an expe
t that 12 (n� 2)(n+ 1) of the brane perturbations 
an intera
t with the bulk. Wewill see that this is indeed the 
ase: the se
ond Israel 
ondition essentially states that the dis
ontinuity of some bulkperturbations whi
h 
an exist even in the va
uum des
ribe the matter 
ontent of the brane. But this also suggests thatone additional s
alar degree of freedom of the brane is likely not to be dire
tly related with the bulk perturbations.It happens, indeed, that this extra degree of freedom physi
ally 
orresponds to the perturbation of the brane positionin the bulk, whi
h is independent of the gravitational waves. For example, if the bulk is pure Minkowski spa
e, one
an 
onsider a �xed 
oordinate system (as, e.g., Newtonian gauge, whi
h is unambiguously �xed). The position of thebrane in this 
oordinate system is de�ned independently of the metri
 perturbations. This extra degree of freedomensures that in any situation all the brane perturbations 
an be related to bulk perturbations (see also the dis
ussionin Ref. [19℄). One of the aims of this paper is to make the link between these two sets of perturbations.B. Geometri
al perturbation variablesWe now make use of maximal symmetry on M. Due to rotational invarian
e, we 
an split the perturbations into
omponents whi
h transform irredu
ibly under rotations, i.e., into di�erent SO(3)-spin 
omponents, whi
h evolveindependently to �rst order perturbation theory. One 
ould then go on and split these into irredu
ible 
omponentsunder translations, 
orresponding to the expansion in terms of eigenve
tors of the Lapla
ian on M (whi
h is theFourier transform in the 
ase k = 0) [61℄. Following the dis
ussion of the last paragraph, the perturbed line element
an be generally written asds2 = n2(1 + 2A)d�2 + 2anBid�dxi � a2(
ij + hij)dxidxj + 2nbB?d�dy + 2baE?idxidy � b2(1� 2E??)dy2: (5.6)



18Here, the ? indi
es of E?i, E?? are labels. The quantities Bi and E?i are ve
tors on M whi
h 
an be respe
tivelyde
omposed into s
alar (spin 0) 
omponents B, E?, and divergen
eless ve
tor (spin 1) 
omponents �Bi, �E(?)i, su
hthat 
ijri �Bj = 
ijri �E(?)j = 0. Equivalently, the tensor on M, hij , 
an be de
omposed into two s
alars, C andE, a divergen
eless ve
tor, �Ei, and divergen
eless, tra
eless, tensor (spin 2) 
omponent, ��Eij , su
h that 
ijri �Ej =
ijri ��Eij = ��Eii = 0. This de
omposition is Bi = riB + �Bi; (5.7)E?i = riE? + �E(?)i; (5.8)hij = 2C
ij + 2Eij ; (5.9)Eij = r(iEj) + ��Eij ; (5.10)Ei = riE + �Ei: (5.11)The indi
es of these M-quantities are raised and lowered with the metri
 
ij . The symmetries of the metri
 ensurethat the s
alar (A, B, C, E, B?, E?, E??), ve
tor ( �Bi, �Ei, �E(?)i) and tensor ( ��Eij) quantities evolve independently.C. Gauge invariant metri
 perturbationsLet us 
onsider an in�nitesimal 
oordinate transformationx� ! x� + ��; (5.12)with �� = (T; Li; L?); (5.13)Li = riL+ �Li: (5.14)Under this 
oordinate 
hange the geometri
al perturbations transform in the following way:A ! A+ �u(nT ) + IbL?; (5.15)Bi ! Bi � an _Li + nariT; (5.16)C ! C +HnT +HbL?; (5.17)Ei ! Ei + Li; (5.18)��Eij ! ��Eij ; (5.19)B? ! B? � bn _L? + nb T 0; (5.20)E?i ! E?i � abL0i � bariL?; (5.21)E?? ! E?? � UnT � �n(bL?); (5.22)�anB + a2n2 _E� ! �anB + a2n2 _E�+ T; (5.23)�abE? + a2b2E0� ! �abE? + a2b2E0�� L?: (5.24)(Re
all that _ � �=�� and that 0 � �=�y. In this se
tion we will use both this notation and the �u;n de�ned inEqns (2.3,2.4): we aim to do so in su
h a way as to keep the equations as simple as possible.) We 
an therefore de�nethe following four s
alar and two ve
tor perturbation variables, whi
h are invariant under in�nitesimal 
oordinatetransformations, also 
alled gauge transformations in this 
ontext:	 = A� �u�aB + a2n _E�+ I �aE? + a2b E0� ; (5.25)� = �C +H�aB + a2n _E��H �aE? + a2b E0� ; (5.26)



19� = B? � n�n�anB + a2n2 _E�� b�u�abE? + a2b2E0� ; (5.27)h = E?? + U �aB + a2n _E�� �n�aE? + a2b E0� ; (5.28)��i = �Bi + an _�Ei; (5.29)�hi = �E(?)i + ab �E0i: (5.30)The two ve
tor variables possess two independent 
omponents (hen
e four degrees of freedom). The tensor variable ��Eijis gauge invariant sin
e there are no tensor type gauge transformations, and possesses two independent 
omponents.All these quantities represent a generalisation of the Newtonian gauge often used in FLRW 
osmologies (we 
an nolonger 
all it a \longitudinal gauge", as Æg04 6= 0). It is 
ompletely �xed by setting � anB + a2n2 _E�, Ei, �abE? + a2b2E0�to 0 and in this 
ase one has Æg00 = 2n2	; (5.31)Æg0i = an��i; (5.32)Ægij = 2a2(�
ij � ��Eij); (5.33)Æg04 = nb�; (5.34)Ægi4 = ba�hi; (5.35)Æg44 = 2b2h: (5.36)This gauge is perfe
tly well-suited for des
ribing the bulk perturbation without a brane. In the presen
e of a brane,however, things are more 
ompli
ated sin
e some of these quantities involve �rst or se
ond derivatives with respe
t tothe �fth dimension, and hen
e they are not always regular at the brane position (see Se
tion VIC). For this reason,other gauge 
hoi
es are often preferred, but not essential2.D. Perturbed stress-energy tensorWe now perturb the unit ve
tors U� and N�, de�ned in Eqns (2.8{2.10), whi
h are the timelike and spa
elike eigen-ve
tors normal to the maximally symmetri
 3-spa
es. It follows from the normalization 
onditions, Eqns (2.9,2.10),that ea
h ve
tor has only four independent 
omponents. Furthermore, as U� and N� are eigenve
tors of a symmet-ri
 tensor, they are normal to ea
h other, N�U� = 0. Hen
e at perturbed order there are only seven independent
omponents whi
h we denote by vi0, f i0, w. They are de�ned byÆU� = � 1n
(�w �A� �B?); 1avi0; 1b 
(w + �E??)� ; (5.37)ÆN� = � 1n
(�w + �A+B?); 1af i0;�1b 
(�w +E??)� : (5.38)Negle
ting the metri
 perturbations, the quantity w represents the perturbation of the Lorentz boost �,w = Æ
�
 = Æ(�
)
 = 
2Æ�: (5.39)As usual, we will de
ompose vi0, f i0, into s
alar and ve
tor 
omponents,v0i = riv0 + �v0i ; (5.40)f0i = rif0 + �f0i : (5.41)2 In any 
ase, there is no parti
ular reason why the brane and bulk metri
 perturbations should be the same as the brane perturbationdepends expli
itly on the brane position, whi
h is not a quantity that 
an be de�ned everywhere in the bulk.



20Finally, in order to write down the stress-energy tensor, it is also useful to introdu
e the variablesvi = 
(vi0 + �f i0); (5.42)f i = 
(f i0 + �vi0); (5.43)whi
h have a de
omposition into s
alar and ve
tor 
omponents similar to (5.40,5.41). With these de�nitions, generalperturbations of the bulk stress-energy tensor, ÆT�� , areÆT00 = n2 (Æ�+ 2�A) ; (5.44)ÆT0i = �an ((�+ P )vi � �Bi � F (fi +E?i)) ; (5.45)ÆT04 = �nb (ÆF + F (A�E??)� �B?) ; (5.46)ÆTij = a2 (ÆP
ij +�ij + 2P (C
ij +Eij)) ; (5.47)ÆTi4 = ba ((P � Y )fi + F (vi �Bi)� Y E?i) ; (5.48)ÆT44 = b2 (ÆY � 2Y E?? � 2FB?) : (5.49)Here we have de�ned, a

ording to (2.18{2.21,5.39):Æ� = 
2(Æ�0 + �2ÆY0) + 2Fw; (5.50)ÆY = 
2(ÆY0 + �2Æ�0) + 2Fw; (5.51)ÆP = ÆP0; (5.52)ÆF = �
2(Æ�0 + ÆY0) + (�+ Y )w; (5.53)and we have introdu
ed the anisotropi
 stress tensor �ij , whi
h again may be de
omposed into a s
alar, (divergen
e-less) ve
tor, and (divergen
eless, tra
eless) tensor 
omponents a

ording to�ij = �rij � 13r2
ij��+r(i ��j) + ���ij : (5.54)On investigation of the behaviour of these variables under the in�nitesimal 
oordinate transformations (5.12) (seeAppendix G), we �nd the following s
alar gauge invariant variablesv℄ = v + an _E; (5.55)�v℄i = �vi + an _�Ei; (5.56)f ℄ = f � abE0; (5.57)�f ℄i = �fi � ab �E0i; (5.58)w℄ = w � _
�
 �anB + a2n2 _E�+ 
0�
 �abE? + a2b2 E0�� bn�� �abE? + a2b2E0� ; (5.59)ÆX℄0 = ÆX0 � _X0� anB + a2n2 _E�+X 00�abE? + a2b2E0� ; (5.60)where X0 is any s
alar quantity (density �0, pressure P0, et
). The anisotropi
 stress tensor �ij is gauge invariant byitself due to the Stewart-Walker lemma [62℄. Noti
e that �, Y , F and w are not s
alars (sin
e they depend expli
itlyon the 
hoi
e of the 
oordinate system via the ve
tor �elds u� and n�), but we 
an, however, de�ne the followinggauge invariant variables, Æ�℄ = 
2(Æ�℄0 + �2ÆY ℄0 ) + 2Fw℄; (5.61)ÆY ℄ = 
2(ÆY ℄0 + �2Æ�℄0) + 2Fw℄; (5.62)ÆP ℄ = ÆP ℄0 ; (5.63)ÆF ℄ = �
2(Æ�℄0 + ÆY ℄0 ) + (�+ Y )w℄: (5.64)As an example, the perturbed stress-energy tensor for a s
alar �eld is given in Appendix G5.



21E. The perturbed Einstein equationsThe expli
it forms of the perturbed Christo�el symbols, the perturbed Riemann, Ri

i and Einstein tensors are allgiven in Appendi
es F4, F5, F8, F7, where they are expressed in terms of the gauge invariant variables introdu
edabove. We now write down the full perturbed bulk Einstein equations also in terms of gauge invariant variables. Theysplit into seven s
alar, three ve
tor (ea
h with two independent 
omponents), and one tensor (with two independent
omponents) equations, adding up to the required 15 
omponents of a symmetri
 5 � 5 tensor. These equationsare given below, where we indi
ate on the right hand side of ea
h equation from whi
h 
omponent of the Einsteinequations they were derived and, when ne
essary, the term to whi
h they are proportional. The seven s
alar equationsare �(2� + h) + 6K��3 �2H2 + 2HU�	� 3H�uh� 3 (2H+ U) �u��3(H�n + 4H2)h� 6h�nH+3(�n + 4H)�n�+3 (�n + 3H + I) (H�) = �5 �Æ�℄ � F�� f00g ; (5.65)12 (�n +H + 2I)��(U + 2H)	� (�u + U �H)h� 2�u� = �5 �(P + �)av℄ � Faf ℄� f0ig ; (5.66)�2K�+2 �(U + 2H)(�u + U) + 3H2�	+ 2	�u(U + 2H)+2 �(I + 2H)(�n + I) + 3H2�h+ 2h�n(I + 2H)+(�u + U)�u(h+ 2�)�(U + 2H)�u(	� h� 3�)+(�n + I)�n(	� 2�)+(I + 2H)�n(	� h� 3�)� 12 (�n�u + �u�n + I�u + U�n)�� ((U + 2H)�n + (I + 2H)�u) ��� ((�n + I)(U + 2H) + (�u + U)(I + 2H))�3 (U�u � I�n) �� 6HH� = �5 �ÆP ℄ + 23��� fijg/ 
ij ; (5.67)��	+ h = �5a2� fijg/ rij ; (5.68)�3 ((�u�n + (H � I)�u +H�n)� +H�n	�H�uh)�3��uH� �12� + 3(H2 �HU)�� = �5 �ÆF ℄ + F (	� h)� f04g ; (5.69)12 (�u +H + 2U)��(�n + I �H)	� (2H + I)h+ 2�n� = �5 �Fav℄ + (P � Y )af ℄� fi4g ; (5.70)��(2��	)� 6K�+3H (�u + 4H)	 + 6	�uH+3 (�u + 4H) �u�+3 (H�n) 	 + 3 �2H2 + 2HI�h� 3 (2H�n + I�n) ��3 (�u + 3H+ U) (H�) = �5 �ÆY ℄ � F�� f44g : (5.71)The three ve
tor equations are: �12(� + 2K)��i�12 (�n + 4H) �(�n + I �H)��i�+12 (�n + 4H) �(�u + U �H)�hi� = �5 �(P + �)(�v℄i � ��i)� F ( �f ℄i + �hi)� f0ig ; (5.72)



22(�u + 2H+ U) ��i � (�n + 2H + I) �hi = �5a��i fijg ; (5.73)12(� + 2K)�hi+12 (�u + 4H) �(�n + I �H)��i��12 (�u + 4H) �(�u + U �H)�hi� = �5 �F (�v℄i � ��i) + (P � Y )( �f ℄i + �hi)� fi4g ; (5.74)and the tensor equation is�(�� 2K) ��Eij + (�u + 3H+ U) �u ��Eij � (�n + 3H + I) �n ��Eij = �5 ���ij fijg : (5.75)As a small aside, it is interesting to 
he
k our analysis of Se
tion VA. We shall take for simpli
ity an empty,Minkowski bulk, so that the terms proportional to K, H, U , H and I vanish. Then the above equations redu
e to�(h+ 2�) = �3�2n�; (5.76)�(	� 2�) = �3�2u�; (5.77)�� = �6�u�n�; (5.78)��2u � �2n ���� = 0; (5.79)�n�hi = �u ��i; (5.80)��2u � �2n ��� ��i = 0; (5.81)��2u � �2n ��� ��Eij = 0: (5.82)In the va
uum, in addition to the usual two tensor modes, there are one s
alar and two ve
tor degrees of freedomwhi
h satisfy wave equations and represent the gravis
alar and graviphoton (for a total of �ve gravitons, as expe
ted).The remaining degrees of freedom 
an only exist if matter is present. They des
ribe either density or vorti
ity modes.F. Perturbed 
onservation equationsWe now 
ompute the perturbed energy momentum 
onservation equations. Even though they do not 
ontain newinformation, they 
an provide useful evolution equations for the matter 
ontent of the bulk. Here we write themdown just for the total bulk matter. The generalisation to several 
omponents is straightforward and is given inAppendix I3. Written in terms of gauge invariant variables there are three s
alar 
onservation equations,(�u + 3H+ 2U)(Æ�℄ � F�) + 3HÆP ℄ + U(ÆY ℄ � Æ�℄)+(�n + 3H + 2I) �ÆF ℄ + F (	 + h)�+� �(P + �)av℄ � Faf ℄��3(P + �)�u�� (�+ Y )�uh� F�u�+ F�n(	� h� 3�) = 0 f0g ; (5.83)(�u + 3H+ U) �(P + �)av℄ � Faf ℄�+(�n + 3H + I) �Fav℄ + (P � Y )af ℄�+ÆP ℄ + 23(� + 3K)a2�+ (P + �)	 + (Y � P )h+ F� = 0 fig ; (5.84)(�u + 3H+ 2U) �ÆF ℄ � F (	 + h)� (�+ Y )��+(�n + 3H + 2I)(ÆY ℄ � F�)� 3HÆP ℄ � I(ÆY ℄ � Æ�℄)+� �Fav℄ + (P � Y )af ℄�+F�u(	� h� 3�) + 3(P � Y )�n� + (�+ Y )�n	+ F�n� = 0 f4g ; (5.85)and one ve
tor 
onservation equation,(�u + 4H+ U) �(P + �)(�v℄i � ��i)� F ( �f ℄i + �hi)�+(�n + 4H + I)�F (�v℄i � ��i) + (P � Y )( �f ℄i + �hi)�+12 (� + 2K)a��i = 0 fig : (5.86)



23Finally, in order to 
lose the system, we must spe
ify an equation of state for ÆP ℄, ÆY ℄, f ℄i and �ij , as fun
tionseither of Æ�℄ or of some other non dynami
al variables (su
h as the entropy). For example, all these quantities vanishfor a bulk 
ontaining non relativisti
 matter. For a s
alar �eld, most of them are also set to zero, as is dis
ussed inAppendix G5. We 
an interpret the three s
alar equations (5.83{5.85) as the 
onservation equations for Æ�℄, v℄, andÆF ℄.Noti
e that with these Bian
hi or 
onservation equations, three s
alar and one ve
tor Einstein equations are redun-dant and 
an be dropped. Formally, the seven s
alar Einstein equations 
an be split into four dynami
al equations forthe four s
alar metri
 perturbations �, 	, � and h, and three 
onstraint equations. It happens, however, that withour 
hoi
e of variables, the splitting is not 
ompletely straightforward. For example, the f0�g Einstein equations arethe 
onstraint equations for the metri
 
omponents gij , gi4, g44, the rest being the evolution equations. However, interms of our gauge invariant variables, Eq. (5.68) is obviously a 
onstraint equation. This is be
ause 	 involves �rstand se
ond time derivatives of the metri
 perturbation E. Equivalently, the three ve
tor Einstein equations 
an besplit into one 
onstraint equation and two dynami
al equations for the variables ��i and �hi.VI. BULK PERTURBATION WITH A BRANEIn the previous se
tion we have 
onsidered the most general perturbed 5-dimensional bulk spa
etime for whi
h thereis a perturbed maximally symmetri
 spa
e orthogonal to the �fth dire
tion. We have seen that its dynami
s 
an bedes
ribed in terms of four geometri
al s
alar perturbation variables governed by four evolution equations and three
onstraints, two geometri
al ve
tor perturbation variables governed by two evolution equations and a 
onstraint, andone geometri
al tensor variable governed by one tensor evolution equation. In this se
tion we add a brane to thissystem | that is we assume, as was the 
ase for the ba
kground, that the bulk 
ontains a perturbed homogeneousand isotropi
 brane as a singular sour
e. This will introdu
e one new geometri
al degree of freedom, the branedispla
ement, whose dynami
s has to be 
onsidered in order to fully des
ribe the perturbations on the brane.A. Brane position and its displa
ementThe perturbed brane embedding is given by X0 = �0 + �0(�a); (6.1)X i = �i + �i(�a); (6.2)X4 = yb + �(�a): (6.3)Here � is the displa
ement of the brane from its ba
kground position X4 = yb, and it is a fun
tion on the braneworldsheet. It is a true new degree of freedom whi
h sometimes also 
alled \radion" [19, 59℄. On the 
ontrary, as wewill soon see, the perturbations in the X0 and X i dire
tions 
an be set to zero without loss of generality, as they donot lead to any physi
al 
onsequen
es (e.g., to a physi
al \deformation" of the brane) [19℄ .It was �rst noti
ed in [22℄ that, when studying brane perturbations of a Randall-Sundrum ba
kground (of Ref. [11℄),using the transverse and tra
eless gauge in Gaussian normal 
oordinates, the brane position is no more at 
onstanty in presen
e of matter sour
es. The presen
e of an � 6= 0 
an be interpreted as a bending of the brane due to thepresen
e of matter or gravitational waves. The bending � 
an in prin
iple be set to zero by 
hoosing a 
onvenientset of bulk 
oordinates su
h that y = yb, sin
e by the in�nitesimal 
oordinate transformation de�ned in the previousse
tion, Eq. (5.13), one has �! �� L?: (6.4)This is not, however, the most general possibility. As was noted in [36, 53℄, su
h a gauge 
hoi
e will also �x thegauge of some other perturbation variables. In fa
t, if we 
hoose L? su
h that � is zero, �abE? + a2b2E0� is �xed (seeEq. (5.24)). In a gauge invariant approa
h one must keep � arbitrary.We now 
an de�ne the perturbed ve
tor orthogonal to the brane, ?�+Æ ?�. One easily obtains (See Appendix H2)Æ ?� = (�b _�;�bri�;�bE??) : (6.5)Note that no ve
tor perturbations enter in the above formula. This is just a 
onsequen
e of Frobenius theorem [66℄.Also, the fa
t that the perturbations �a do not enter in the above expression illustrates that they do not 
orrespondto any physi
al deformation of the brane (see further 
omments below).



24B. Indu
ed metri
 and �rst fundamental formIn this subse
tion we 
al
ulate the perturbed �rst fundamental form whi
h will be used in the perturbed �rst Israeljun
tion 
ondition in the following subse
tions.We shall �rst look at the perturbation of the indu
ed metri
 �ab(�a). In doing so, it is important to re
all that thebrane embedding in the unperturbed and perturbed bulks (respe
tively given by (3.1{3.3), (6.1{6.3)) are di�erent.Therefore, ea
h brane variable has two 
ontribution to its perturbation: one 
oming from the perturbation of thevariable and a se
ond 
ontribution due to the fa
t that we have to evaluate it at the perturbed brane position. Weobtain Æ�00(�a) = 2n2 �A+ _�0 + In�0 + Ib�� ; (6.6)Æ�0i(�a) = an�Bi � an _�i + nari�0� ; (6.7)Æ�ij(�a) = �2a2 ��C +Hn�0 +Hb�� 
ij +Eij +r(i�j)� ; (6.8)where, to �rst order in perturbation theory, the right hand side of these equations are evaluated at x� = X�(
orresponding to the unperturbed embedding). As usual, we 
an de
ompose the perturbation �i into its s
alar andve
tor parts using the metri
 
ij evaluated at the unperturbed brane position: �i = ri� + ��i. This is possible sin
e,for perturbations, the time derivative �� and spatial derivatives �i are equivalent to derivation with respe
t to �0 and�i respe
tively.A word of 
aution is in order here. Re
all that the quantities A, C, I , H , et
., are de�ned in the bulk. However, dueto the presen
e of the brane, they may be (and in fa
t, are | see below) dis
ontinuous at the brane position. For thisreason, they may only be evaluated on ea
h side of the brane. Therefore we must 
he
k that the above expressionsare 
onsistent in the sense that they have the same value when evaluated on both sides of the brane | only if thatis the 
ase, they 
an be 
onsidered well de�ned on the brane. As we shall soon see, this 
onsisten
y in fa
t resultsfrom the �rst Israel 
ondition. Anti
ipating this result, the above equations allow us to de�ne in the standard waythe brane perturbations A, Bi, et
., A � A+ _�0 + In�0 + Ib�; (6.9)B � B � an _� + na �0; (6.10)�Bi � �Bi � an _��i; (6.11)C � C +Hn�0 +Hb�; (6.12)E � E + �; (6.13)�Ei � �Ei + ��i; (6.14)��Eij � ��Eij : (6.15)Using the standard 4-dimensional perturbation theory, we 
onstru
t the two Bardeen potentials, as well as the braneve
tor and tensor metri
 perturbations,	 � A� �u�aB + a2n _E� = 	+ I �b���aE? + a2b E0�� ; (6.16)� � �C +H�aB + a2n _E� = ��H �b���aE? + a2b E0�� ; (6.17)��i � �Bi + an _�Ei = ��i; (6.18)��Eij � ��Eij : (6.19)(The two �rst equations are equivalent to Eqns (5.21) of Ref. [45℄.) Finally, using Eq. (3.14), the perturbed �rstfundamental form is Æq00 = 2n2(A+ Ib�); (6.20)Æq0i = anBi; (6.21)Æqij = �2a2(C +Hb�)
ij � 2a2Eij ; (6.22)



25Æq04 = �nb�B? � bn _�� ; (6.23)Æqi4 = ba�E?i � bari�� ; (6.24)Æq44 = 0: (6.25)Noti
e that the �i do not appear in equations (6.16{6.25): this is again related to the fa
t that they do not representphysi
al degrees of freedom. These above expressions 
an also be obtained by starting from the de�nitionq�� = g�� +?�?� ; (6.26)paying attention that in the perturbed and unperturbed 
ases, the bulk metri
 is not evaluated at the same position(y = yb + � and y = yb respe
tively) [19℄.C. First Israel 
ondition for the standard 4-dimensional perturbation variablesUsing Eqns (5.15{5.24,6.4), the 
oordinate transformations of the following variables are obviously 
ontinuous asthey do not involve derivatives with respe
t to y:A+ Ib� ! A+ Ib�+ �u(nT ); (6.27)Bi ! Bi � an _Li + nariT; (6.28)C +Hb� ! C +Hb�+HnT; (6.29)Ei ! Ei + Li; (6.30)��Eij ! ��Eij ; (6.31)�anB + a2n2 _E� ! �anB + a2n2 _E�+ T: (6.32)Given the �rst fundamental form (6.20{6.25), the �rst Israel 
onditions imply that these quantities, whi
h are linear
ombinations of the 
omponents (6.20) to (6.23) of the perturbed �rst fundamental form Æq�� , are 
ontinuous,[A℄ + [Ib℄ � = 0; (6.33)[Bi℄ = 0; (6.34)[C℄ + [Hb℄ � = 0; (6.35)[Ei℄ = 0; (6.36)h ��Eiji = 0; (6.37)��anB + a2n2 _E�� = 0; (6.38)or, equivalently [	℄ = � �Ib�� I �aE? + a2b E0�� ; (6.39)[�℄ = �Hb��H �aE? + a2b E0�� ; (6.40)���i� = 0; (6.41)h ��Eiji = 0: (6.42)Hen
e tensor perturbations are 
ontinuous and only the two s
alar quantities �, h and the ve
tor quantity �hi mayjump. The �rst two equations are equivalent to [�℄ = [	℄ = 0; (6.43)



26whi
h ensures that the brane Bardeen potentials � and 	 are well de�ned. We also see that the bulk ve
tor andtensor perturbation ��i and ��Eij may be de�ned on the brane where they redu
e to the standard ve
tor and tensormetri
 perturbations of a 4-dimensional spa
etime with maximally symmetri
 spa
elike hypersurfa
es. Equivalently,the 
orresponding �rst fundamental form 
an be rewritten asÆq00 = 2n2	+ (_q00 + 2q00��)�anB + a2n2 _E� ; (6.44)Æq0i = �na qij ��j + q00ri �anB + a2n2 _E�+ qij _Ej ; (6.45)Æqij = 2qk(i �Ekj) � Ækj)�� ; (6.46)whi
h indeed redu
e to 2n2	, �na qij ��j and 2a2(�
ij� ��Eij), in longitudinal gauge (B = E = 0) for s
alar perturbationsand in the gauge �Ei = 0 for ve
tor perturbations.D. Regularity 
onditions for 
oordinate transformations and non-standard 4-dimensional perturbationvariablesSo far we have given the relationship between the intrinsi
 brane metri
 perturbations, the brane displa
ement �,and some of the bulk metri
 perturbations. Things be
ome a little bit more involved when we 
onsider the other bulkmetri
 perturbations that appear in Æg�4.As we already noti
ed, the �rst Israel 
ondition does not 
onstrain E?? (see Eq. (6.25)). Nevertheless, sin
e thetransformation law for E?? 
an be written asE?? ! E?? � UnT � �n(bL?); (6.47)and sin
e all the metri
 
oeÆ
ients must remain �nite, it follows that �bL?� = 0 (see also Appendix F) . Furthermore,as the 
oordinate transformation x� ! x�+�� must be invertible, we also require �L?� = 0. Thus if b is not 
ontinuous,then L?(yb) = 0: [b℄ 6= 0 ) L?(y = yb) = 0: (6.48)This is the only additional requirement that one must impose on the 
oordinate system in the vi
inity of the brane.Note that if Z2 symmetry is assumed, L?(y) = 0 must be imposed even though b is 
ontinuous [36℄.As mentioned in Se
tion III C, the only pla
e where dis
ontinuities or singularities are allowed is the brane position.When � = 0, the brane is at y = yb. However, if the brane position is perturbed, � 6= 0, the above requirement implies[b℄ � = 0; (6.49)and hen
e b is not allowed to jump if the brane position is perturbed. If the unperturbed metri
 has a zeroth orderdis
ontinuity in the 
oeÆ
ient b, the brane position must remain at � = 0 to �rst order perturbation theory (seeFigure 4). This statement is in fa
t valid even in the absen
e of metri
 perturbations (see Appendix F).Let us now 
onsider the 
oordinate transformations of the variables Æq04 and Æqi4 given in Eqns (6.23,6.24),bB? � b2n _� ! bB? � b2n _�+ nT 0; (6.50)bE?i � b2a ri� ! bE?i � b2a ri�� aL0i: (6.51)The �rst Israel 
ondition also states that [bB?℄� �b2n � _� = [bB?℄ = 0; (6.52)[bE?i℄� �b2a �ri� = [bE?i℄ = 0: (6.53)Therefore, in order for the transformations (6.50,6.51) to be 
ontinuous we have to imply that a valid 
oordinate
hange satis�es [T 0℄ = 0; (6.54)�Li0� = 0: (6.55)
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Allowed Forbidden

FIG. 4: Illustration of the 
onstraints on the brane position � implied by the unperturbed \s
ale fa
tor" b. When [b℄ = 0 atzeroth order, then the brane position � 
an be non zero at �rst order (left panel). On the 
ontrary, if [b℄ 6= 0 at zeroth order,then the brane position must be zero at �rst order, in order the perturbation theory to be valid, so that right panel representsa forbidden situation. This is due to the fa
t that in the situation of the right panel, an in�nitesimal, �rst order 
oordinate
hange 
ould 
hange by a large (zeroth order) amount some perturbed metri
 
oeÆ
ients in the vi
inity of the brane. (Herewe have represented a situation 
orresponding to an unperturbed bulk, but of 
ourse it also holds when it is perturbed. In fa
tthe perturbation of the brane position ne
essarily indu
es some metri
 perturbations in the bulk.)These 
onditions ensure that T and Li admit se
ond derivatives. This standard requirement for any valid 
oordinatetransformation is therefore preserved even in the presen
e of a brane. In parti
ular (see Eqns 5.23,5.18)), this meansthat if � anB + a2n2 _E�0 or Ei0 are dis
ontinuous (whi
h is allowed), then � anB + a2n2 _E� and Ei 
annot be transformedidenti
ally to zero by 
oordinate 
hanges. This does not prevent the quantities �, 	, �, h from being well de�ned.However, it does mean that there may not be a 
oordinate system in whi
h Eqns (5.31{5.36) are valid (whi
h wenever needed to suppose).The �rst Israel 
ondition does not require the 
ontinuity of � and �hi, see Eqns (6.89,6.97) below. Finally, from�aE? + a2b E0�! �aE? + a2b E0�� bL?; (6.56)and using the fa
t that �bL?� = 0, the jump ��aE? + a2b E0�� � � (6.57)is gauge invariant. Therefore the gauge invariant quantity h given in Eqn (5.28) may 
ontain a singular part,h = E?? + U �aB + a2n _E�� �n��aE? + a2b E0���D�; (6.58)whi
h again shows that h 
annot always be a 
omponent of the perturbed metri
 tensor in the vi
inity of the brane.Of 
ourse, this does not invalidate the results found previously, but simply suggests that other variables may be moresuitable to des
ribe the metri
 perturbations in the vi
inity of the brane.After these remarks on the regularity requirements of gauge transformations in a bulk-brane system, we 
an nowde�ne some further gauge invariant s
alar variables in terms of whi
h we will express the se
ond Israel 
ondition.They will also be used to write the Einstein equations for an observer on the brane when we want to 
ompare ourresults with the usual 4-dimensional 
osmologi
al perturbation theory.Let us �rst de�ne the gauge invariant 
ombination�℄ � ���abE? + a2b2E0� : (6.59)Sin
e �abE? + a2b2E0� 
an be dis
ontinuous, �℄ is de�ned on ea
h side of the brane. Note that we have�b�℄� = ��: (6.60)



28Furthermore, we set 
b�℄� � �: (6.61)When b is 
ontinuous, �=b 
an be interpreted as the \gauge invariant brane position" | that is, the position of thebrane unambiguously de�ned when D�abE? + a2b2 E0�E is set to zero by a suitable 
oordinate 
hange (whi
h alwaysexists if b is 
ontinuous).In prin
iple, derivatives normal to the brane are not de�ned for brane variables. But in what follows we will alsouse �n(b�℄) whi
h we simply de�ne as �n(b�℄) � U�� �n�aE? + a2b E0� : (6.62)In other words, the operator �n a
ts on every metri
 perturbation de�ned in the bulk but not on � (i.e., we de�ne�n� � 0). Along similar lines, one 
an also de�ne �2n(b�℄) and �2n�. The quantity �n(b�℄) 
an 
ontain a singular termbe
ause of the dis
ontinuous part of �aE? + a2b E0�. Therefore, it is useful to de�ne �n� by�n� � �n(b�℄) + D�: (6.63)This new quantity 
an take di�erent values on ea
h side of the brane, so that we 
an de�ne [�n�℄ and h�n�i followingEqns (3.10,3.11).We may not simply 
ontinue � into the bulk as a variable � is independent of y. This is a gauge dependent
ontinuation and the de�nitions for �n(b�℄) and �2n(b�℄) given above would be valid only in the gauge where � isindependent of y. From the above expressions it is also 
lear that the variables �n(b�℄) and �2n(b�℄) and all braneperturbation variables whi
h 
ontain these derivatives, like e.g. h below, are gauge invariant only with respe
t togauge transformations parallel to the brane. Therefore, it is important to keep in mind that these quantities arede�ned only on (ea
h side of) the brane, although the notation �n(b�℄), �n� may be slightly misleading. They simplyrefer to Eqns (6.62,6.63).Using equation (6.59), one 
an de�ne several gauge invariant quantities whi
h 
an also only be evaluated on eitherside of the brane (that is either at y = yb + �+ or at y = yb + ��) :� � B? � nb� anB + a2n2 _E�0 � bn _� = �� (�u � U)(b�℄); (6.64)h � E?? + U �aB + a2n _E�� Ub� = h� �n(b�℄): (6.65)By 
omparing the last equation to Eq. (6.58), it appears that h does not 
ontain a singular term (and hen
e it is aquantity that has a meaning on ea
h side of the brane).Using Eqns (6.39,6.40) we have 	 = 	+ Ib�℄; (6.66)� = ��Hb�℄: (6.67)The derivatives �n	 and �n� are de�ned via Eq. (6.62,6.63) above. The above equations will be
ome very usefulwhen 
onsidering the se
ond Israel 
onditions and writing down the perturbed Weyl tensor.The �rst Israel 
ondition states that � and 	 are de�ned on the brane, and that �n�, �n	, �, and h are well-de�ned on both sides of the brane, but it does not imply their 
ontinuity. In fa
t, it is their dis
ontinuity whi
h willenter into the perturbed se
ond Israel 
ondition. Using the above de�nitions we have the following relations for thedis
ontinuous and the 
ontinuous parts of the gauge invariant s
alar perturbation variables:[	℄ = � [I ℄ � + hIi�; (6.68)[�℄ = [H ℄ �� hHi�; (6.69)[�℄ = [�℄� (�u � hUi) �� [U ℄ �; (6.70)[h℄ = [h℄ + [�n�℄ ; (6.71)and h	i = 	� hIi�+ 14 [I ℄ �; (6.72)



29h�i = �+ hHi�� 14 [H ℄ �; (6.73)h�i = h�i+ (�u � hUi)� + 14 [U ℄ �; (6.74)hhi = hhi+ h�n�i : (6.75)If Z2 symmetry is assumed, the �rst of these relations redu
e to[	℄ = � [I ℄�; (6.76)[�℄ = [H ℄ �; (6.77)and h	i = 	+ 14 [I ℄ �; (6.78)h�i = �� 14 [H ℄ �: (6.79)These relations are very important. They allow us to move freely between the bulk (non underlined) perturbationvariables, whi
h are de�ned everywhere, and the brane-related (underlined) variables, whi
h are well de�ned only onthe brane, i.e. they are either de�ned on the brane, like � and 	, or on both sides of the brane, like b�℄, �n�, �n	,�, or h, et
.The main di�eren
e between the brane and bulk perturbation variables is �℄ whi
h appears in the former. The branedispla
ement, however, is not unrelated to the bulk metri
 perturbations: a displa
ement of the brane indu
es metri
perturbation in the bulk (as one 
ould have guessed by making an analogy with a 
harged surfa
e in ele
tromagnetism).E. Extrinsi
 
urvature and se
ond Israel 
onditionWe de�ne the perturbed stress-energy tensor on the brane asÆT�� = (Æ�+ ÆP )u�u� + 2(�+ P )u(�Æu�) � ÆPq�� � PÆq�� + a2��� ; (6.80)where Æu� is the perturbation of the energy velo
ity on the brane whi
h is given byÆu� = �� 1nA; 1avi; b2n _�� : (6.81)(The Æu4 
omponent is determined by the 
ondition (?�+ Æ ?�)(u�+ Æu�) = 0.) The variable ��� is the anisotropi
stress tensor and it is gauge invariant by itself.As dis
ussed in Appendix H7, we de�ne the gauge invariant perturbations for the energy density and the pressureon the brane by Æ�℄ = Æ�� _��anB + a2n2 _E� ; (6.82)ÆP ℄ = ÆP � _P �anB + a2n2 _E� : (6.83)Similarly we de�ne the gauge invariant perturbation variables for the velo
ity on the brane,v℄ = v + an _E; (6.84)�v℄i = �vi + an _�Ei: (6.85)To impose the se
ond Israel jun
tion 
ondition, we need to 
ompute ÆK�� whi
h is the di�eren
e between theperturbed value of K�� at the brane position y = yb + �, and the ba
kground value of K�� . The results are given inAppendix H6. The extrinsi
 
urvature has to be 
ompared to the perturbation of the surfa
e stress tensor,ÆS�� = ÆT�� � 13ÆTq�� � 13TÆq�� ; (6.86)



30whose 
omponents are given in Appendix H7.The perturbation of the se
ond Israel 
ondition,[ÆK�� ℄ = ��5ÆS�� ; (6.87)yields four dis
ontinuity 
onditions for the s
alar perturbation variables �, h, �, and the �rst derivatives �n	 and�n�, ���+ 3 [�n��HhH [�℄℄ = �5Æ�℄; (6.88)12 ��� (�u + U � 2H)(b�℄)� = �5(P + �)av℄; (6.89)[�n	+ Ih� (�u + U) �℄ = �5�ÆP ℄ + 23Æ�℄� ; (6.90)�� = �5a2�: (6.91)In terms of the gauge invariant bulk variables these 
onditions read���+ 3 [�n��Hh+H�℄+3�(H [U ℄� [�n℄ hHi)�3� (HhUi � h�ni hHi) + 3�u� = �5Æ�℄; (6.92)12 [�℄ + (�u �H)� = �5(P + �)av℄; (6.93)[�n	+ Ih� (�u + U) �℄+�([�n℄ hIi � [(�u + U)U ℄)��(h�ni hIi � h(�u + U)Ui)� �2u� = �5�ÆP ℄ + 23Æ�℄� ; (6.94)�� = �5a2�: (6.95)Noti
e that when Z2 symmetry is imposed � never appears in these equations.For the ve
tor perturbation variables we obtain two dis
ontinuity 
onditions for �hi and the �rst derivative �n ��i,�12 [�n + I �H ℄ ��i + 12 �(�u + U �H)�hi� = �5(P + �)(v℄i � ��i); (6.96)� ��hi� = �5a��i: (6.97)Finally, there is also a dis
ontinuity 
ondition for the normal derivative of the tensor perturbation variable ��Eij :� h�n ��Eiji = �5 ���ij : (6.98)Note that the Israel 
onditions do not give any 
onstraint on the f�4g 
omponents of Eq. (6.87). The above 
onstraints
an also be found dire
tly from the singular part of Einstein's equations (5.65{5.75). This is relatively straightforwardfor the ve
tor and tensor modes, but mu
h more involved for the s
alar part, as one must rewrite the equations usingthe underlined quantities de�ned above, and also be
ause one has to 
onsider the perturbation of the 
ovariant Dira
fun
tion D. However, for 
ompleteness, this has been undertaken in Appendix I1, and we have 
he
ked that bothapproa
hes lead to the same result. F. Sail equationAs we have seen, the jun
tion 
onditions are 
onveniently written using the underlined variables �, et
. In order touse them, we must know b�℄. The jump of this quantity, �, is given by Eq. (6.91). As its 
ontinuous part � representsthe brane displa
ement, it is natural to seek an equation des
ribing the brane motion. As for the unperturbed 
ase,su
h an equation is found by taking the dis
ontinuous part of the f44g 
omponent of Einstein's equations. This yields3 hHi ÆP ℄ � hIi Æ�℄�3P ��n��Hh+H�+ 13����� h�n	+ Ih� (�u + U) �i = hÆY ℄i ; (6.99)



31where ÆY ℄ 
orresponds to the pressure perturbation along the extra dimension as measured by an observer at restwith respe
t to the brane. The relationship between ÆY ℄ and ÆY ℄ is given in Eq. (7.26) below. Equation (6.99) is thetypi
al equation for the displa
ement of a membrane (it involves the Lapla
ian of the displa
ement �). When goingba
k to the bulk (non underlined) perturbations, Eq. (6.99) be
omes, as expe
ted, a wave equation for �:��2u(��)� 3H�u �2��+ P��� P��+ 2K���3�P + 23��� �2�uH+ 4H2��(P + �)��3 hHi hH � Ii+ �54 �(P + �)�+�(3 hHi [Y � P ℄ + hIi [Y + �℄) = �ÆY ℄�� 3 hHi ÆP ℄ + hIi Æ�℄+3P h�n��Hh+H�i+� h�n	+ Ih� (�u + U) �i+2�u hF i�� � (�u �NH) hF i+3 hHi���54 (P + �)2 + hY � P i�+ hIi� ���54 (P + �)�+ hY + �i� : (6.100)Note that there is nothing whi
h guarantees a priori that the motion of the brane is stable. Even in the simplest
ase (Z2 symmetry, k = 0, no bulk perturbation 
ontributing to the right hand side of the above equation and branestress-energy tensor dominated by a 
onstant tension term), this equation be
omes��2� + 2 _aa�� �r2 � 2�aa�� = 0; (6.101)and the mass term be
omes negative for suÆ
iently fast expansion rate of the brane!VII. THE BRANE POINT OF VIEWIn the previous se
tions we have derived the bulk perturbation equations and their boundary 
onditions on thebrane. This allows us in prin
iple to solve the full system of perturbation equations in the bulk for given initial
onditions. From these one 
an determine also the perturbed Weyl tensor and the se
ond fundamental form.In order to make 
onta
t with 4-dimensional 
osmology in this se
tion, we want to write the perturbed version ofthe 4-dimensional Einstein equations on the brane. As for the ba
kground, this 
an either be done dire
tly from theperturbed bulk Einstein equations (5.65{5.75), or using the Gauss-Coda

i equation.A. Proje
ted Weyl tensor on the braneThe full expression of the perturbed Weyl tensor ÆC��
Æ is given in Appendix F9. Here we write only the 
omponentsof the perturbed proje
ted Weyl tensor, ÆE�� , on the spa
elike dire
tion ?�+Æ ?�, written in terms of the underlinedgauge invariant variables. We haveÆE00 = 12n2ÆZ℄ + 2E00	+( _E00 + 2E00��)� anB + a2n2 _E� ; (7.1)ÆE0i = �nriÆEv � an �ÆEvi+E00ri �anB + a2n2 _E�+ E ij _Ej ; (7.2)ÆE ij = 16a2
ijÆZ℄+�rij � 13r2
ij� ÆE� + ar(i �ÆE�j) + a2 ��ÆE�ij



32+ _E ij �anB + a2n2 _E�+ 2Ek(i(Ekj) � Ækj)�); (7.3)ÆE04 = E00Æq04; (7.4)ÆE i4 = Eji Æqj4; (7.5)ÆE44 = 0; (7.6)where we have set ÆZ℄ � 23(� + 3K)� + 13�(	� h)+ (�u + U) (�u�+H	)� (�u + 2U �H) (�uh+ U	)� (�n + I)��n��Hh+H� + 13�(b�℄)�� (�n + 2I �H) (�n	+ Ih� (�u + U) �)�	�u (U �H)� (h�n ���u) (I �H) ; (7.7)ÆEv � 23 (� (H	+ �u�) + (�uh+ U	) + (U �H)h+ (H � I) �� 12�n ��� (�u + U � 2H) (b�℄)�� ; (7.8)ÆE� � 13 ���	� 2h+ (H + I � 2�n)(b�℄)� : (7.9)Sin
e, by solving the bulk equations, we in prin
iple obtain the non underlined variables, it is useful to express theabove 
omponents also in terms of these,ÆZ℄ = 23(� + 3K)� + 13�(	� h)+ (�u + U) (�u�+H	)� (�u + 2U �H) (�uh+ U	)� (�n + I) (�n��Hh+H�)� (�n + 2I �H) (�n	+ Ih� (�u + U) �)�	�u (U �H)� (h�n ���u) (I �H)+Z 0�℄; (7.10)ÆEv = 23 �� (H	+ �u�) + (�uh+ U	) + (U �H)h� � 12�n + I �H��� ; (7.11)ÆE� = 13 (��	� 2h) : (7.12)For the ve
tor and tensor part of the proje
ted Weyl tensor we have de�ned�ÆEvi � �16(� + 2K)��i + 13 (�n +H) �(�n + I �H) ��i � (�u + U �H) �hi� ; (7.13)�ÆE�i � 13 �(�u + 2 (H� U)) ��i + (2�n + (H � I)) �hi� ; (7.14)��ÆE�ij � 13 ((�u + 3H� 2U) �u � (�� 2K) + (2�n + 3H � I) �n) ��Eij : (7.15)B. Perturbed Einstein equations on the braneWith these de�nitions, we 
an now write the proje
ted perturbed Einstein equations on the brane. They split intofour s
alar equations, 2 (� + 3K)��6H (H	+ �u�) = 16�25 Xb �b!Xb Æ�℄b



33�2 hHi 
3�n�� 3Hh+ 3H�+�b�℄�+12�5XB DÆP ℄B + Æ�℄B � ÆY ℄BE+ 12 DÆZ℄E ; (7.16)�2 (H	+ �u�) = 16�25 Xb �b!Xb �(P b + �b)av℄b��32 hHi 
�� (�u + U � 2H)(b�℄)�+23�5XB D(PB + �B)v℄B � FBf ℄BE+ hÆEvi ; (7.17)+23 (�	� (� + 3K)�)+2 (�u + 3H) (H	+ �u�)+2	�uH = 16�25 Xb �b!Xb ÆP ℄b�2 hHi h�n	+ Ih� (�u + U)�i+2 hH + Ii��n��Hh+H�+ 13�b�℄�+16�5XB DÆP ℄B + Æ�℄B + 3ÆY ℄BE+16�25 Xb (P b + �b)!Xb Æ�℄b + 16 DÆZ℄E ; (7.18)��	 = 16�25 Xb �b! a2Xb �b�hH + Ii��14�25 Xb (P b + �b)! a2Xb �b+23�5a2XB h�Bi+ DÆE�E ; (7.19)two ve
tor equations,�12 (� + 2K) ��i = 16�25 Xb �b!Xb �(P b + �b)(�vb ℄i � ��i)�+22 hHi 
(�n + I �H)��i � (�u + U �H)�hi�+23�5XB D(PB + �B)(�vB ℄i � ��i)� FB( �fB ℄i + �hi)E+ 
 �ÆEvi � ; (7.20)(�u + 2H) ��i = 16�25 Xb �b!aXb ��bi+ hH + Ii 
�hi��14�25 Xb (P b + �b)! aXb ��bi+23�5aXB 
��Bi �+ 
 �ÆE�i � ; (7.21)



34and one tensor equation (�u + 3H)�u ��Eij � (�� 2K) ��Eij = 16�25 Xb �b!Xb ���bij+ hH + IiD�n ��EijE�14�25 Xb (P b + �b)!Xb ���bij+23�5XB D���BijE+ D ��ÆE�ijE ; (7.22)where we have set, for the bulk matter quantities evaluated at the brane position,Æ�℄ = Æ�℄ + �0�℄ � 2F bn _�℄; (7.23)ÆP ℄ = ÆP ℄ + P 0�℄; (7.24)ÆF ℄ = ÆF ℄ + F 0�℄ � (�+ Y ) bn _�℄; (7.25)ÆY ℄ = ÆY ℄ + Y 0�℄ � 2F bn _�℄; (7.26)af℄ = af ℄ � b�℄: (7.27)These 
orre
tions follow from the fa
t that we have to go in a 
oordinate system whi
h follows the brane. The termsproportional to X 0�℄ are here be
ause we 
onsider the bulk matter 
ontent at y = yb + � rather than at y = yb, theterms proportional to _�℄ 
ome from the fa
t that we also perform a Lorentz boost in order to follow the brane motion,and the term b�℄ in the last equation 
omes from the fa
t that the brane is bent.As for the unperturbed 
ase, the 
ontinuous parts of the bulk stress-energy tensor and of the proje
ted Weyl tensorappear on the right hand side of these equations, as well as the 
omponents of the 
ontinuous part of the perturbedextrinsi
 
urvature. These are related through the dis
ontinuous part of the Einstein equations to the dis
ontinuityof the perturbed Weyl tensor and of the bulk perturbed matter 
ontent. The 
orresponding equations 
an be foundin Appendix I5. C. Perturbed 
onservation equationThe brane matter 
onservation equations follow from the singular part of D�T �� = 0 or from the Bian
hi identities.One obtains (see Appendix I3)�uÆ�℄ + 3H(Æ�℄ + ÆP ℄)+(P + �)�av℄ � 3(P + �)�u� = � hÆF ℄ + F	i ; (7.28)(�u + 3H) �(P + �)av℄�+ ÆP ℄+23 (� + 3K)a2�+ (P + �)	 = � hFav℄ + (P � Y )af ℄i ; (7.29)(�u + 4H)�(P + �)(�v℄i � ��i)�+12 (� + 2K)a��i = � hF (�v℄i � ��i) + (P � Y )( �f ℄i + �hi)i : (7.30)Again, when there are no dis
ontinuities in the bulk matter perturbations, one obtains the usual 
onservation equa-tions. VIII. CONCLUSIONIn this paper we have derived gauge invariant 
osmologi
al perturbation theory in braneworld s
enarios with one
odimension. The unperturbed ba
kground system we 
onsidered (Se
tions II{IV) 
onsists of a 5-dimensional bulk



35spa
etime with a maximally symmetri
 3-dimensional subspa
e of 
urvature k, 
ontaining arbitrary (possibly inter-a
ting) matter with energy-momentum tensor T��, and a homogeneous and isotropi
 3-brane again with arbitrarystress energy tensor T�� . We have not assumed Z2 symmetry a
ross the brane. As su
h, our work generalises thatof previous authors who have 
onsidered perturbation theory mainly in the Z2-symmetri
 
ase, and with spe
i�
bulk (and brane) matter (e.g., a bulk 
osmologi
al 
onstant [45℄ or s
alar �eld [24℄). We believe that the generalsetup 
onsidered here is a ne
essary 
omponent of any serious attempt whi
h may be made to ta
kle su
h importantquestions as the 
osmi
 mi
rowave ba
kground anisotropies in braneworlds.The only 
oordinate 
hoi
e we have made is to �x the unperturbed brane to be at a given position yb in the extradimension. The bulk metri
 is expli
itly time-dependent. When the bulk 
ontains only a 
osmologi
al 
onstant, thisis not the most natural 
oordinate system: there one would work with (stati
) S
hwarzs
hild-AdS5 and a dynami
albrane [14, 55{57℄. However, in the 
ase of arbitrary bulk matter and espe
ially for the study of perturbations, wehave found it more 
onvenient to work in a 
oordinate system in whi
h the brane is at rest.In Se
tions II{IV we derived all the relevant ba
kground equations, ending with the brane Friedmann equation (4.8{4.9). As dis
ussed in Se
tion IV, when Z2 symmetry is not assumed, one has additional 
ontributions to the 4-dimensional Einstein tensor on the brane. In order to study these terms one has to in
lude equations for the extrinsi

urvature.In the remainder of the paper we studied perturbations of this system, setting up a 
ompletely gauge invariantformalism. Se
tion V 
ontains a general dis
ussion of the 
lassi�
ation of perturbations in an n+1-dimensional spa
etime, as well as the interplay between bulk and brane perturbations. An important point whi
h we note there is theexisten
e of one extra s
alar degree of freedom on the brane whi
h is not a metri
 perturbation (although it intera
tswith some bulk metri
 perturbations): this is the brane displa
ement. In Se
tion VI we have derived an equation ofmotion for the gauge invariant perturbation variable des
ribing this quantity.In Se
tion V we introdu
ed the perturbed 5-dimensional bulk spa
etime. This led to the de�nition of four s
alar,two ve
tor and one tensor gauge invariant bulk perturbation variables given in equations (5.25{5.30). Followingthe de�nition of gauge invariant variables for the perturbations of the bulk matter, we were able to write downthe perturbed bulk Einstein equations in a gauge invariant manner. The perturbed brane was then introdu
edin Se
tion VI. In analogy with usual 4-dimensional 
osmologi
al perturbation theory, our aim was to introdu
etwo s
alar gauge invariant brane perturbation variables (the Bardeen potentials), one ve
tor and one tensor metri
perturbation. The 
orre
t de�nition of these variables 
an only be given on
e the perturbed brane metri
 and Israeljun
tion 
onditions are used determine the brane variables in terms of the 
ontinuous part and the jump of the bulkperturbations. The brane variables are de�ned in equations (6.16{6.19). The gauge invariant brane displa
ement alsoenters in these de�nitions. Finally the perturbed Einstein equations on the brane were derived in Se
tion VII. As inthe unperturbed 
ase, they 
ontain a 
ontribution from the proje
tion of the perturbed bulk Weyl tensor whi
h ingeneral have to be determined by solving the bulk equations.Despite the fa
t that we have tried to present our results as 
learly as possible, the formalism presented in this paperis te
hni
ally rather 
ompli
ated. This re
e
ts the fa
t that we have 
onsidered a very general s
enario. The 
orollaryis, however, that our results should be appli
able to a whole variety of di�erent (and possibly simpler) situations ofinterest in braneworld s
enarios. In a forth
oming paper, we plan to apply this formalism to a spe
i�
 model andsolve some of the perturbation equations presented here.A
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37[70℄ W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation, (Freeman, New York, 1970).APPENDIXIn this Appendix, we give all the ne
essary formulae that were used to obtain the results presented in the text.Here we will 
onsider an N + 1 + 1-dimensional bulk with, N -dimensional maximally symmetri
, spa
elike hyper-surfa
es of 
onstant 
urvature k. Therefore, here � = 0, 1, : : :, M , where M = N + 1, and i = 1, 2, : : :, N . We will
onsider both the unperturbed (Se
tion B{E) and perturbed 
ases (Se
tion F{I). Both the bulk and the brane matter
ontent are arbitrary as well as the global geometry of the bulk. Furthermore, we do not assume Z2 symmetry.APPENDIX A: SOME USEFUL FORMULAE1. Some ensor de�nitions and sign 
onventionsFollowing the de�nitions of [70℄, we use the sign 
onvention (�++), that is the signature of the metri
 is (+� : : :�),and the Riemann and Ri

i tensors are respe
tively de�ned byR��
Æ = �
� ��Æ � �Æ� ��
 + � �
�� ��Æ � � �Æ�� ��
 ; (A1)R�� = R���� : (A2)The Weyl tensor is de�ned byC��
Æ = R��
Æ � 1N (R�
g�Æ �R�Æg�
 +R�Æg�
 �R�
g�Æ)+ 1N(N + 1)R(g�
g�Æ � g�Æg�
): (A3)2. Brane-related metri
 quantitiesThe indu
ed metri
 is de�ned by �ab � g�� �aX� �bX� : (A4)The metri
 
an be proje
ted ba
k in the bulk to give the �rst fundamental formq�� � �pq�pX� �qX�: (A5)More generally, any tensor Xa1:::an de�ned for the brane 
an be proje
ted ba
k in the bulk usingX�1:::�n = Xp1:::pn �p1X�1 : : : �pnX�n : (A6)In parti
ular, for the brane Riemann tensor, one hasR��
Æ = �pX� �qX� �rX
 �sXÆ Rpqrs: (A7)One 
an also de�ne the normal spa
elike unit ve
tor ?� to the brane a

ording to?��aX� = 0 ; ?�?� = �1; (A8)and the bulk metri
 evaluated at the brane position 
an be split intog�� = q�� �?�� ; (A9)with ?�� � ?�?� : (A10)



38Note that Eq. (A8) implies ?��2abX� = ��aX� �bX�(K�� + � ���?�): (A11)One 
an also de�ne the extrinsi
 
urvature a

ording toK�� � q�(�D�?�); (A12)whi
h obeys the following relations q��K�� = K�� ; (A13)?��K�� = 0: (A14)With these de�nition, the brane Riemann and Ri

i tensors, the brane s
alar 
urvature and the brane Einsteintensor 
an be rewrittenRab
d = �aX� �bX� �
X� �dX� �R���� �D(�?�)D(�?�) �D(�?�)D(�?�)� ; (A15)R��
Æ = q��q��q�
q�ÆR���� �K�
K�Æ +K�ÆK�
 ; (A16)R�� = N � 1N �q��q��R�� � 1N � 1q�� �G��?�� + 1N + 1G���KK�� +K��K�� + E�� ; (A17)R = R+R��?�� +K��K�� �K2; (A18)G�� = N � 1N �q��q��G�� � q�� �G��?�� + 1N + 1G���KK�� +K��K�� + 12q�� �K2 �K��K���+ E�� : (A19)APPENDIX B: BACKGROUND GEOMETRIC QUANTITIES1. Metri
g00 = n2 ; g00 = 1n2 ; (B1)gij = �a2
ij ; gij = � 1a2 
ij ; (B2)gMM = �b2 ; gMM = � 1b2 : (B3)2. Notations~H = _aa ; ~I = _nn ; ~U = _bb ; (B4)~H = a0a ; ~I = n0n ; ~U = b0b : (B5)3. Christo�el symbols



39� 0ij = a2n2 ~H
ij ; � 0MM = b2n2 ~U ; (B6)� 000 = ~I ; � ij0 = ~HÆij ; � MM0 = ~U ; (B7)� 00M = ~I ; � ijM = ~HÆij ; � MMM = ~U; (B8)� M00 = n2b2 ~I ; � Mij = �a2b2 ~H
ij ; (B9)�kij = (N)�kij ; (B10)� ��0 = ~I +N ~H+ ~U ; � ��M = ~I +N ~H + ~U: (B11)The supers
ript N means that the 
orresponding quantity is evaluated using the metri
 
ij .4. Ri

i tensorR00 = �(�� + ~U � ~I) ~U �N(�� + ~H� ~I) ~H+ n2b2 (�y + ~I � ~U)~I +N n2b2 ~H ~I; (B12)Rij = (N � 1)
ijk + a2n2 
ij(�� +N ~H+ ~U � ~I) ~H� a2b2 
ij(�y +N ~H + ~I � ~U) ~H; (B13)R0M = N(� _~H � ~H ~H + ~H~I + ~U ~H); (B14)RMM = �(�y + ~I � ~U)~I �N(�y + ~H � ~U) ~H + b2n2 (�� + ~U � ~I) ~U +N b2n2 ~H ~U : (B15)5. S
alar 
urvatureR = �N(N + 1) ~H2n2 + ka2 � ~Hb2!+ 2N ka2 � 2n2 (�� + ~U � ~I)( ~U +N ~H) + 2b2 (�y + ~I � ~U)(~I +N ~H): (B16)6. Einstein tensorG00 = N(N � 1)2 � ~H2 + n2a2 k� n2b2 ~H2�+N ~H ~U �N n2b2 ( ~H 0 + ~H2 � ~H ~U); (B17)Gij = �N(N � 1)2 �a2n2 ~H2 + k� a2b2 ~H2� 
ij + (N � 1)k
ij�a2n2 
ij(�� + ~U � ~I)� ~U + (N � 1) ~H�+ a2b2 
ij(�y + ~I � ~U)�~I + (N � 1) ~H� ; (B18)G0M = N(� _~H � ~H ~H + ~H~I + ~U ~H); (B19)GMM = �N(N � 1)2 � b2n2 ~H2 + b2a2 k� ~H2��N b2n2 ( _~H + ~H2 � ~H~I) +N ~H ~I: (B20)7. Riemann tensorR0M0M = b2(�� + ~U � ~I) ~U � n2(�y + ~I � ~U)~I; (B21)R0i0j = a2
ij(�� + ~H� ~I) ~H� a2n2b2 
ij ~H ~I; (B22)R0iMj = a2
ij( _~H + ~H ~H � ~H~I � ~U ~H); (B23)RMiMj = a2
ij(�y + ~H � ~U) ~H � b2a2n2 
ij ~H ~U ; (B24)Rijkl = �a4(
ik
jl � 
il
jk) ~H2n2 + ka2 � ~H2b2 ! : (B25)



408. Weyl tensorC0M0M = N � 1N + 1n2b2Z ; (B26)C0i0j = � 1N N � 1N + 1a2n2Z
ij ; (B27)CMiMj = 1N N � 1N + 1b2a2Z
ij ; (B28)Cijkl = � 2N(N + 1)(
ik
jl � 
il
jk)a4Z ; (B29)with Z = ka2 + 1n2 (�� + ~U � ~I)( ~U � ~H)� 1b2 (�y + ~I � ~U)(~I � ~H): (B30)APPENDIX C: BACKGROUND MATTER CONTENT1. Unit ve
torsFrom the �elds X (�) = � and X (?) = y, one 
an build two unit ve
tors u� and n�:u� = D�X (�)pD�X (�)D�X (�) ; (C1)u� = (n;0; 0); (C2)u� = � 1n;0; 0� ; (C3)u�u� = 1; (C4)n� = D�X (?)p�D�X (?)D�X (?) ; (C5)n� = (0;0; b); (C6)n� = �0;0;�1b� ; (C7)n�n� = �1: (C8)One 
an de�ne the following operators: �u � u��� = 1n��; (C9)�n � �n��� = 1b�y: (C10)As in the main text, we also use H = �uaa ; I = �unn ; U = �ubb ; (C11)H = �naa ; I = �nnn ; U = �nbb : (C12)2. Stress-energy tensor



41For the bulk matter, it is more 
onvenient to introdu
e the unit ve
tor U� whi
h represents the bulk N +2-velo
ityof the 
uid: U� = (n
;0;�b�
); (C13)U� = � 1n
;0; 1b�
� ; (C14)U�U� = 1; (C15)
2(1� �2) = 1: (C16)Here � represents the Lorentz boost whi
h must be performed along the y axis in order to be in the rest frame ofthe bulk matter. As usual 
 = 1=p1� �2. Due to the symmetries of spa
etime, the stress energy tensor of any
omponent possesses N identi
al eigenvalues P0. The other eigenvalues are �0 (asso
iated to the timelike eigenve
torU�) and Y0 (asso
iated to the spa
elike eigenve
tor N�). One hasN� = �� 1n�
;0;�1b 
� ; (C17)N� = (�n�
;0; b
): (C18)T�� = (P0 + �0)U�U� � (P0 � Y0)N�N� � P0g��; (C19)= (P + �)u�u� � (P � Y )n�n� � Pg�� � 2Fu(�n�): (C20)T00 = n2
2(�0 + �2Y0) � n2� ; T 00 = 1n2 �; (C21)Tij = a2P0
ij � a2P
ij ; T ij = 1a2P
ij ; (C22)T0M = �nb�
2(Y0 + �0) � �nbF ; T 0M = 1nbF; (C23)TMM = b2
2(Y0 + �2�0) � b2Y ; TMM = 1b2Y: (C24)� = 
2(�0 + �2Y0); (C25)Y = 
2(Y0 + �2�0); (C26)P = P0; (C27)F = �
2(�0 + Y0); (C28)�1 + �2 = F�+ Y ; (C29)� = �+ Y2F 0�1�s1�� 2F�+ Y �21A ; (C30)�0 = �� �2Y1 + �2= �� Y2 +r (�+ Y )24 � F 2; (C31)Y0 = Y � �2�1 + �2= Y � �2 +r (�+ Y )24 � F 2; (C32)P0 = P: (C33)



423. Einstein equationsN(N � 1)2 �H2 +K �H2�+NHU �N(�nH +H2) = �N+2�; (C34)�N(N � 1)2 �H2 +K �H2�+ (N � 1)K�(�u + U) (U + (N � 1)H) + (�n + I) (I + (N � 1)H) = �N+2P; (C35)N(�uH +HH �HI) = N(�nH+HH �HU) = �N+2F; (C36)�N(N � 1)2 �H2 +K �H2��N(�uH+H2) +NHI = �N+2Y: (C37)4. Conservation equationsFor any spe
ies, D�T ��f = Q�f ; (C38)Q�f = �f0U�f �Df0N�f ; (C39)Qf� = (n
f (�f0 + �fDf0 );0;�b
f (Df0 + �f�f0 )) � (n�f ;0;�bDf ); (C40)�f = 
(�f0 + �Df0 ); (C41)Df = 
(Df0 + ��f0 ); (C42)�f0 = 
(�f � �Df ); (C43)Df0 = 
(Df � ��f ); (C44)Q�f = � 1n�f ;0; 1bDf� ; (C45)Xf �f =Xf Df = 0; (C46)�u�f +NH(Pf + �f ) + U(Yf + �f ) + (�n +NH + 2I)Ff = �f ; (C47)(�u +NH+ 2U)Ff + �nYf + I(Yf + �f ) +NH(Yf � Pf ) = Df : (C48)APPENDIX D: BACKGROUND BRANE-RELATED QUANTITIES1. Brane positionIn general, one has the brane position X� as a fun
tion of N + 1 variables �a. We 
hooseX0 = �0; (D1)X i = �i; (D2)XM = yb: (D3)2. Indu
ed metri
One �rst builds the unit ve
tor orthogonal to the brane:?� �X���a = 0; (D4)?� = (0;0; b); (D5)?� = �0;0;�1b� : (D6)



43The 
omponents of this ve
tor have the same fun
tional form but possibly di�erent numeri
al values when evaluatedat y = yb+ and y = yb�. Then the indu
ed metri
 is given by:q�� = g�� +?�?� ; (D7)q��?� = 0: (D8)q00 = n2; (D9)qij = �a2
ij : (D10)3. First Israel 
onditionsFor any quantity f , we de�ne f = [f ℄ ��(y � yb)� 12�+ hfi ; (D11)where [f ℄ is the dis
ontinuity of f , hfi is the 
ontinuous part of f and � is the Heaviside fun
tion. The �rst Israel
ondition states that q��(yb+) = q��(yb�) : [a℄ = 0; (D12)[n℄ = 0: (D13)In parti
ular, this means that b is allowed to be dis
ontinuous at the brane position. Also, the derivatives of a and nwith respe
t to y 
an be dis
ontinuous. 4. Extrinsi
 
urvatureK�� = q�(�D�?�); (D14)K��?� = 0: (D15)K00 = �n2b ~I; (D16)Kij = a2b ~H
ij ; (D17)K � g��K�� = q��K�� = �1b (~I +N ~H); (D18)K��K�� = 1b2 (~I2 +N ~H2); (D19)K2 �K��K�� = Nb2 ((N � 1) ~H2 + 2 ~H ~I): (D20)5. Stress-energy tensorFormally, one 
an take a stress-energy tensor of the above form to des
ribe the brane 
ontent, provided that wehave �0 � D�; (D21)P0 � DP ; (D22)Y0 � 0; (D23)
 = 1; (D24)� = 0; (D25)with D = qjqjpjgjÆ(y � yb): (D26)



44The 
ondition 
 = 1 and � = 0 has not ne
essarily to be satis�ed but is a 
onsequen
e of the 
oordinate 
hoi
e to putthe brane at rest with respe
t to the 
oordinate system. Be
ause of the Dira
 term (D26), P and � depend on �; xionly. Sin
e the stress energy tensor of the brane is stri
tly zero elsewhere, its eigenve
tors are not de�ned outside thishypersurfa
e. The ve
tor ?� appears as the analog of the ve
tor N� as an eigenve
tor asso
iated to the eigenvalueY0 = 0. Equivalently one 
an de�ne an N + 2-velo
ity u� whi
h 
orresponds to the eigenve
tor asso
iated with theeigenvalue �0. Therefore, T b�� = DT��; (D27)T�� ?� = 0; (D28)T�� = (P + �)u�u� � Pq�� ; (D29)u� � (n;0; 0): (D30)6. S�� tensorS�� = T�� � 1N Tq�� : (D31)S00 = n2�N � 1N �+ P� ; (D32)Sij = 1N a2�
ij : (D33)7. Se
ond Israel 
ondition[K�� ℄ = ��N+2S�� : (D34)" ~Ib# = �N+2�N � 1N �+ P� ; (D35)" ~Hb # = ��N+2 1N �; (D36)�N " ~Hb # = �N+2�; (D37)" ~Ib#+ (N � 1)" ~Hb # = �N+2P ; (D38)" ~Ib#� " ~Hb # = �N+2(P + �): (D39)8. Proje
ted Weyl tensorE�� = C����?�?� ; (D40)g��E�� = q��E�� = ?�E�� = 0: (D41)E00 = N � 1N + 1n2Z ; (D42)E ij = N � 1N(N + 1)a2Z
ij : (D43)



45APPENDIX E: BRANE POINT OF VIEW, UNPERTURBED CASEUnless otherwise noted, all the quantities are evaluated at the brane position. The quantity h�niX stands for the
ontinuous part of �nX at the brane position.1. Friedmann equationTaking the 
ontinuous part of the Einstein equation at the brane position, we getN(N � 1)2 �H2 +K� = �2N+28 N + 1N �2 + �N+2 h�Bi�NHhUi+N h�ni hHi+ 12N(N + 1) hHi2 ; (E1)�12(N � 1) �H�1�u +N� �H2 +K� = ��2N+28 �2P 2 + 2N � 1N P�+ N � 1N �2�+ �N+2 hPBi+ h(�u + U + (N � 1)H)Ui� h�n + Ii hI + (N � 1)Hi � 12N(N � 1) hHi2 : (E2)As su
h, these equations are not yet very useful be
ause they involve many terms whi
h are not expli
it `branevariables'. 2. New Friedmann equationConsider the 
ombination hHfMMg+Hf0Mgi of the Einstein equations. It yields(�u + (N + 1)H)�N(N � 1)2 �H2 +K � hHi2�� N � 18N �2N+2�2� = �(N � 1)�N+2 hHY +HF i : (E3)In the 
ase hHF i = �� hY i = 0, they 
an be integrated exa
tly and we �ndN(N � 1)2 �H2 +K� = N � 18N �2N+2�2 � N � 1N + 1�N+2 hY i+ CaN+1 : (E4)3. Friedmann equations using the Weyl tensorIn general, the Friedmann equation 
an 
onveniently be rewritten using the Weyl tensor. One hasN(N � 1)2 �H2 +K� = N � 18N �2N+2 Xb �b!2+N(N � 1)2 hHi2+N � 1N + 1�N+2XB hPB + �B � YBi+ N � 1N + 1 hZi ; (E5)�N � 12 �N +H�1�u� �H2 +K� = N � 18N �2N+2 Xb �b! Xb (�b + 2Pb)!�N(N � 1)2 hHi2 � (N � 1) hHi hI �Hi+ N � 1N(N + 1)�N+2XB hPB + �B +NYBi+ N � 1N(N + 1) hZi : (E6)4. Relationship between hK��i and �E���



46� hHi = 1N + 1 �[P + �� Y ℄ + 1�N+2 [Z ℄� ; (E7)(NP + �) hHi � � hIi = 1N + 1 �[P + �+NY ℄ + 1�N+2 [Z ℄� : (E8)5. Conservation equationThese 
an be found either by taking the singular part of (C47), or by 
onsidering the dis
ontinuity of (B19). Abulk energy ex
hange term �B 
an have a singular 
omponent �(D)B so that �B = D�(D)B +[�B℄ ��(y � yb)� 12�+ h�Bi.�u�b +NH(Pb + �b) = �b; (E9)[FB℄ = �(D)B ; (E10)Xb �b = �XB [FB℄ : (E11)One also has the sail equation �hIiXb �b +N hHiXb Pb = XB [YB℄ : (E12)APPENDIX F: PERTURBED GEOMETRIC VARIABLES1. Metri
Æg00 = 2n2A ; Æg00 = � 1n2 2A; (F1)Æg0i = anBi ; Æg0i = 1anBi; (F2)Ægij = �a2hij ; Ægij = 1a2 hij ; (F3)Æg0M = nbB? ; Æg0M = 1nbB?; (F4)ÆgiM = baE?i ; ÆgiM = � 1baEi?; (F5)ÆgMM = 2b2E?? ; ÆgMM = � 1b2 2E??: (F6)Bi = riB + �Bi; (F7)hij = 2C
ij + 2Eij ; (F8)Eij = r(iEj) + ��Eij ; (F9)Ei = riE + �Ei; (F10)E?i = riE? + �E(?)i: (F11)All 3-ve
tors indi
es are raised and lowered using metri
 
ij . ri represents its asso
iated 
ovariant derivative andr2 = riri. Barred ve
tors are divergen
eless, double barred tensors are divergen
eless and tra
eless with respe
t to
ij and ri. 2. In�nitesimal 
oordinate transformation



47Under an in�nitesimal 
oordinate transformation x� ! x� + ��, the perturbed part of a tensor transforms asÆT�1:::�u�1:::�d ! ÆT�1:::�u�1:::�d + ����T�1:::�u�1:::�d � ��i��iT�1:::�i:::�u�1:::�d + ��j ��jT�1:::�u�1:::�j :::�d : (F12)Setting �� = (T; Li; L?); (F13)Li = riL+ �Li; (F14)the metri
 perturbations transform into A ! A+ _T + ~IT + ~IL?; (F15)Bi ! Bi � an _Li + nariT; (F16)C ! C + ~HT + ~HL?; (F17)Ei ! Ei + Li; (F18)��Eij ! ��Eij ; (F19)B? ! B? � bn _L? + nb T 0; (F20)E?i ! E?i � abL0i � bariL?; (F21)E?? ! E?? � ~UT � L?0 � ~UL?; (F22)�anB + a2n2 _E� ! �anB + a2n2 _E�+ T; (F23)�abE? + a2b2E0� ! �abE? + a2b2E0�� L?: (F24)There is one subtlety due to the fa
t that b may be dis
ontinuous. We 
onsider the above in�nitesimal 
oordinatetransformation. For the fMMg 
omponent, we havegMM ! gMM � T��(b2)� 2b�y(bL?): (F25)For the 
oordinate 
hange to be valid, the metri
 
omponents must remain �nite, therefore one must have[bL?℄ = 0: (F26)If b is 
ontinuous, then L? 
an be an arbitrary (
ontinuous) 
oordinate transformation, but if b is dis
ontinuous, thenL?(�; xi; yb) = 0. Geometri
ally, this is related to the fa
t that the 
oordinate system is allowed to exhibit somepathologies only at the brane position, but not in its vi
inity.3. Gauge invariant metri
 perturbationsUsing the transformation laws for � anB + a2n2 _E�, Ei, ��abE? + a2b2E0�, it is possible to 
onstru
t the followinggauge invariant quantities: 	 = A� (�� + ~I)�anB + a2n2 _E�+ ~I �abE? + a2b2E0� ; (F27)� = �C + ~H�anB + a2n2 _E�� ~H �abE? + a2b2E0� ; (F28)� = B? � nb �y �anB + a2n2 _E�� bn�� �abE? + a2b2E0� ; (F29)h = E?? + ~U �anB + a2n2 _E�� (�y + ~U)�abE? + a2b2E0� ; (F30)��i = �Bi + an _�Ei; (F31)�hi = �E(?)i + ab �E0i: (F32)



48Æg00 = 2n2	+ (2g00�� + _g00)�anB + a2n2 _E�� g000�abE? + a2b2E0� ; (F33)Æg0i = �nagij ��j + g00ri �anB + a2n2 _E�+ gij _Ej ; (F34)Ægij = _gij �anB + a2n2 _E�� g0ij �abE? + a2b2E0�+ 2gk(i(Ekj) � Ækj)�); (F35)Æg0M = nb�+ g00�y �anB + a2n2 _E�� gMM�� �abE? + a2b2E0� ; (F36)ÆgiM = � bagij�hj � gMMri� anB + a2n2 _E�+ gijEj 0; (F37)ÆgMM = 2b2h+ _gMM �anB + a2n2 _E�� (2gMM�y + g0MM)�abE? + a2b2E0� : (F38)4. Christo�el symbolsÆ� 000 = _A� nb ~IB?; (F39)Æ� 00i = riA� an ~HBi; (F40)Æ� 0ij = a2n2 ��2A ~H
ij + ~Hhij + 12 _hij�+ anr(iBj) + a2nb ~HB?
ij ; (F41)Æ� 00M = A0 � bn ~UB?; (F42)Æ� 0iM = 12 an(�y + ~I � ~H)Bi � 12 ban2 (�� + ~H+ ~U)E?i + 12 bnriB?; (F43)Æ� 0MM = bn (�y + ~I)B? � b2n2 (�� + 2 ~U)E?? � 2 b2n2 ~UA; (F44)Æ� i00 = n2a2riA� na (�� + ~H)Bi + n2ba ~IEi?; (F45)Æ� i0j = 12 _hij + 12 na (riBj �rjBj); (F46)Æ� ijk = 12(rjhik +rkhij �rkhij) + 
jk �an ~HBi � ab ~HEi?� ; (F47)Æ� i0M = �12 ba (�� + ~H� ~U)Ei? � 12 na (�y + ~H � ~I)Bi + 12 nba2riB?; (F48)Æ� ijM = 12hij 0 + 12 ba (riE?j �rjEi?); (F49)Æ� iMM = � ba(�y + ~H)Ei? + b2an ~UBi + b2a2riE??; (F50)Æ� M00 = �nb (�� + ~U)B? + n2b2 (�y + 2~I)A+ 2n2b2 ~IE??; (F51)Æ� M0i = 12 anb2 (�y + ~I + ~H)Bi � 12 ab (�� + ~U � ~H)E?i � 12 nbriB?; (F52)Æ� Mij = �a2b2 �2 ~HE??
ij + ~Hhij + 12h0ij�� abr(iE?j) + a2nb ~HB?
ij ; (F53)Æ� M0M = � _E?? + nb ~IB?; (F54)Æ� MiM = �riE?? + ab ~HE?i; (F55)Æ� MMM = �E??0 + bn ~UB?; (F56)



49Æ� ��0 = ��(A�E?? +NC +r2E); (F57)Æ� ��i = ri(A�E?? +NC +r2E); (F58)Æ� ��M = �y(A�E?? +NC +r2E): (F59)5. Ri

i tensorFrom now on, we shall write any perturbation variables mostly with the gauge invariant quantities de�ned above.The non-gauge invariant terms will be put under the form of some fa
tors involving 
omponents of the 
orrespondingunperturbed tensor multiplied by � anB + a2n2 _E�, Ei and �abE? + a2b2E0�.ÆR00 = n2a2r2	+(N ~H+ ~U)��	+ (�2� + (2 ~U � ~I)��)h+N(�2� + (2 ~H� ~I)��)�+n2b2 (�y +N ~H + ~I � ~U)(�y	+ 2~I	+ 2~Ih)� n2b2 ~I�y(	 + h+N�)�nb (���y + ~U�y + (N ~H + ~I)�� +N ~H~I +N ~U ~H + _~I + ~U 0)�+( _R00 + 2R00��)� anB + a2n2 _E�� (R000 + 2R0M��)�abE? + a2b2E0� ; (F60)ÆR0i = ((N � 1) ~H+ ~U)ri	+ (�� � ~H+ ~U)rih+ (N � 1)��ri��12 nb (�y + (N � 2) ~H + 2~I)�+12 na (r2 +K(N � 1))��i � naRij ��j+12 anb2 (�y + (N + 1) ~H � ~U)�(�y + ~I � ~H)��i�� 12 ab (�y + (N + 1) ~H � ~I)�(�� + ~U � ~H)�hi�+R00ri �anB + a2n2 _E��R0Mri �abE? + a2b2E0�+Rij _Ej ; (F61)ÆRij = (
ijr2 +Nrij + 2K(N � 1)
ij)��rij(	 + 2�� h)�a2n2 
ij �2 _~H+ 2 ~H(N ~H+ ~U � ~I)	 + ~H��(	 + h+N�)��a2b2 
ij �2 ~H 0 + 2 ~H(N ~H + ~I � ~U)h+ ~H�y(	 + h+N�)�+a2nb
ij � ~H�y + ~H�� + 2N ~H ~H + ~H0 + _~H��+an (�� + (N � 1) ~H + ~U)r(i ��j) � ab (�y + (N � 1) ~H + ~I)r(i�hj)+�a2n2 (�2� + (N ~H+ ~U � ~I)��)� a2b2 (�2y + (N ~H + ~I � ~U)�y)� ( ��Eij � 
ij�)� (r2 � 2K) ��Eij+ _Rij �anB + a2n2 _E��R0ij �abE? + a2b2E0�+ 2Rk(i(Ekj) � Ækj)�); (F62)ÆR0M = N ~H�y	�N ~H��h+N(���y + ( ~H � ~I)�� + ( ~H� ~U)�y)�+12 nba2r2� + nb (~I 0 + ~I(N ~H + ~I � ~U))�� bn ( _~U + ~U(N ~H+ ~U � ~I))�+( _R0M +R0M�� +R00�y)�anB + a2n2 _E�� (R00M +R0M�y +RMM��)�abE? + a2b2E0� ; (F63)ÆRiM = �((N � 1) ~H + ~I)rih� (�y � ~H + ~I)ri	+ (N � 1)�yri�+12 bn (�� + (N � 2) ~H+ 2 ~U)ri�+12 ba (r2 +K(N � 1))�hi � baRij�hj



50+12 an (�� + (N + 1) ~H� ~U)�(�y + ~I � ~H)��i�� 12 ban2 (�� + (N + 1) ~H� ~I)�(�� + ~U � ~H)�hi�+R0Mri �anB + a2n2 _E��RMMri�abE? + a2b2E0�+RijEj 0; (F64)ÆRMM = b2a2r2h� b2n2 (�� +N ~H+ ~U � ~I)(��h+ 2 ~Uh+ 2 ~U	) + b2n2 ~U��(	 + h�N�)�(�2y + (2~I � ~U)�y)	� (N ~H + ~I)�yh+N(�2y + (2 ~H � ~U)�y)�+ bn (���y + (N ~H+ ~U)�y + ~I�� +N ~H~I +N ~U ~H + _~I + ~U 0)�+( _RMM + 2RMM�y)�anB + a2n2 _E�� (R0MM + 2R0M�y)�abE? + a2b2E0� : (F65)6. S
alar 
urvatureÆR = 2a2 �r2(	� h� (N � 1)��KN(N � 1)��+ 2n2 �2( ~U +N ~H)(�� + ~U � ~I)	 + 2( _~U +N _~H)	+(�� + ~U � ~I)(��h+N���)+(N ~H+ ~U)��(h�	) +N(N + 1)( ~H2	+ ~H���)�+ 2b2 �2(~I +N ~H)(�y + ~I � ~U)h+ 2(~I 0 +N ~H 0)h+(�y + ~I � ~U)(�yh+N�y�))+(N ~H + ~I)�y(	� h) +N(N + 1)( ~H2h� ~H�y�)�� 2nb ��y�� + (N ~H+ ~U)�y + (N ~H + ~I)��+N ~H0 + ~U 0 +N _~H + _~I +N(N + 1) ~H ~H��+ _R�anB + a2n2 _E��R0�abE? + a2b2 E0� ; (F66)7. Einstein tensorÆG00 = n2a2 (r2 �KN(N � 1))(h��)+N �n2a2r2 � (N ~H+ ~U)�� + n2b2 (�2y + (N ~H � ~U)�y)���N �n2b2 ~H�y(h��) + ~H��(h��) + ((N � 1) ~H2 + 2 ~H ~U)(	 + h)�+N nb � ~H�y +N ~H ~H + ~H0��+2G00(	 + h)� nb G0M�+( _G00 + 2G00��)�anB + a2n2 _E�� (G000 + 2G0M��)�abE? + a2b2E0� ; (F67)ÆG0i = ri(( ~U � ~H)(	 + h) + ��(h��) +N( ~H	+ _�))



51�12 nb (�y + (N � 2) ~H + 2~I)ri�+12 anb2 (�y + (N + 1) ~H � ~U)�(�y + ~I � ~H)��i�� 12 ab (�y + (N + 1) ~H � ~I)�(�� + ~U � ~H)�hi�+12 na (r2 +K(N � 1))��i � naGij ��j+G00ri�anB + a2n2 _E��G0Mri�abE? + a2b2E0�+Gij _Ej ; (F68)ÆGij = (
ijr2 �rij)(	 + �� (h��)�N�)+a2n2 
ij �2( ~U + (N � 1) ~H)(�� + ~U � ~I) +N(N � 1) ~H2� (� +	)+a2n2 
ij �(�2� + ( ~U � ~I)��)(h� (N � 1)�)� ((N � 1) ~H + ~U)��(	 + h�N�)�+a2b2 
ij �2(~I + (N � 1) ~H)(�y + ~I � ~U) +N(N � 1) ~H2� (h��)+a2b2 
ij �(�2y + (~I � ~U)�y)(	� (N � 1)�)� ((N � 1) ~H + ~I)�y(	 + h+N�)��a2nb
ij ��y�� + ((N � 1) ~H+ ~U)�y + ((N � 1) ~H + ~I)�� +N(N � 1) ~H ~H��+2a2
ij � 1n2 (� +	)��( ~U + (N � 1) ~H) + 1b2 (h��)�y(~I + (N � 1) ~H)��a2nb
ij��(N � 1) ~H0 + ~U 0 + (N � 1) _~H + _~I��N �a2n2 ~U�� � a2b2 ~I�y��� 2Gij�+an ��� + (N � 1) ~H+ ~U�r(i ��j) � ab ��y + (N � 1) ~H + ~I�r(i�hj)+�a2n2 (�2� + (N ~H+ ~U � ~I)��)� (r2 � 2K)� a2b2 (�2y + (N ~H + ~I � ~U)�y)� ��Eij+ _Gij �anB + a2n2 _E��G0ij �abE? + a2b2E0�+ 2Gk(i(Ekj) � Ækj)�); (F69)ÆG0M = 12 �nba2r2 +N bn ( _~H+ ~H2 � ~H~I � ~H ~U)�N nb ( ~H 0 + ~H2 � ~H ~I � ~H ~U)��+N( ~H�y(� +	)� ~H��(h��) + (���y � ~U�y � ~I��)�)+12 � bnG00 � nb GMM��+( _G0M +G0M�� +G00�y)�anB + a2n2 _E�� (G00M +G0M�y +GMM��)�abE? + a2b2E0� ; (F70)ÆGiM = �ri((~I � ~H)(	 + h) + �y(� +	) +N( ~Hh+�0))+12 bn (�� + (N � 2) ~H+ 2 ~U)ri�+12 an (�� + (N + 1) ~H� ~U)�(�y + ~I � ~H)��i�� 12 ban2 (�� + (N + 1) ~H� ~I)�(�� + ~U � ~H)�hi�+12 ba (r2 +K(N � 1))�hi � baGij�hj+G0Mri �anB + a2n2 _E��GMMri �abE? + a2b2E0�+GijEj 0; (F71)ÆGMM = b2a2 (r2 �KN(N � 1))(	 + �)�N � b2a2r2 � b2n2 (N ~H� ~I)�� + (N ~H + ~I)�y��



52+N � b2n2 ~H��(	 + �) + ~H�y(� +	) + ((N � 1) ~H2 + 2 ~H ~I)(� +	)��N bn � ~H�� +N ~H ~H + _~H���2GMM(	 + h) + bnG0M�+( _GMM + 2G0M�y)�anB + a2n2 _E�� (G0MM + 2GMM�y)�abE? + a2b2E0� : (F72)8. Riemann tensorÆR0i0j = ��n2rij + a2 ~H
ij�� + a2n2b2 ~H
ij�y�	� 2a2n2b2 ~H ~I
ij(	 + h)+a2nb 
ij( ~H�� + ~H~I + ~U ~H)� + an(�� + ~H)r(i ��j) � an2b ~Ir(i�hj)+�a2(�2� + (2 ~H� ~I)��)� a2n2b2 ~I�y� ( ��Eij � 
ij�)+( _R0i0j + 2R0i0j��)�anB + a2n2 _E�� (R00i0j +RMi0j�� +R0iMj��)�abE? + a2b2E0�+R0k0j(Eki � Æki �) +R0i0k(Ekj � Ækj�); (F73)ÆR0ijk = a2rj��( ��Eik � 
ik�)� a2 ~H
ikrj	+ anrjr(i ��k)+12a2 ~H
ik �nbrj�� anb2 (�y + ~I � ~H)��j + ab (�� + ~U � ~H)�hj��[j $ k℄+(R0i0krj +R0ij0rk)�anB + a2n2 _E�� (R0iMkrj +R0ijMrk)�abE? + a2b2E0�+Rlijk �rl _E � na ��l� ; (F74)ÆR0i0M = �n2(�y + ~I � ~H)ri	� n2 ~Irih+ 12nb(�� + 2 ~U � ~H)ri�+12an(�� + 2 ~H� ~U)�(�y + ~U � ~H)��i�� 12ba(�� + 2 ~H� ~I)�(�� + ~I � ~H)�hi��R0M0Mri�abE? + a2b2E0�+R0ijM � _Ej � na ��j�+R0i0j �Ej 0 � ba�hj� ; (F75)ÆR0iMj = a2
ij( ~H _h� ~H	0)� 12 �nbrij � ba2n 
ij ~H ~U + a2nb 
ij ~H ~I��+a2(���y + ( ~H� ~U)�y + ( ~H � ~I)��)( ��Eij � 
ij�)+12an(�y + ~H � ~I)r(i ��j) + 12ba(�� + ~H� ~U)r(i�hj)+( _R0iMj +R0iMj�� +R0i0j�y)�anB + a2n2 _E��(R00iMj +R0iMj�y +RMiMj��)�abE? + a2b2E0�+R0kMj(Eki � Æki �) +R0iMk(Ekj � Ækj�); (F76)ÆRijkl = �a4n2 ~H2	+ a4b2 ~H2h� a4nb ~H ~H�� 
ik
jl � 
ki �a3n ~Hr(j ��l) � a3b ~Hr(j�hl)�+�a2(rki +K
ki)� a4n2 
ki ~H�� + a4b2 
ki ~H�y� ( ��Ejl � 
jl�)�[i$ j℄ + [ik $ jl℄� [k $ l℄



53+Rmjkl(Emi � Æmi �) +Rimkl(Emj � Æmj �) +Rijml(Emk � Æmk �) +Rijkm(Eml � Æml �)+ _Rijkl �anB + a2n2 _E��R0ijkl �abE? + a2b2E0� ; (F77)ÆRij0M = ri �an(�y + ~I � ~H)��j � ba(�� + ~U � ~H)�hj�� [i$ j℄; (F78)ÆRMijk = a2rj�y( ��Eij � 
ij�) + a2 ~H
ikrjh+ barjr(i�hk)�12a2 ~H
ik � bnrj� + an (�y + ~I � ~H)��j � ban2 (�� + ~U � ~H)�hj��[j $ k℄+(RMi0krj +RMij0rk)� anB + a2n2 _E�� (RMiMkrj +RMijMrk)�abE? + a2b2E0�+Rlijk �rlE0 � ba�hl� ; (F79)ÆR0M0M = �n2(�y � ~U)�y	� 2n2(�y + ~I � ~U)(~I	)� n2 ~I�yh�b2(�� � ~I)��h� 2b2(�� + ~U � ~I)( ~Uh)� b2 ~U��	+nb���( 12�y + ~I) + �y( 12�� + ~U)��+( _R0M0M + 2R0M0M��)�anB + a2n2 _E�� (R00M0M + 2R0M0M�y)�abE? + a2b2E0� ; (F80)ÆRM0Mi = �b2(�� + ~U � ~H)rih� b2 ~Uri	+ 12nb(�y + 2~I � ~H)ri��12an(�y + 2 ~H � ~U)�(�y + ~I � ~H)��i�+ 12ba(�y + 2 ~H � ~I)�(�� + ~U � ~H)�hi�+RM0M0ri�anB + a2n2 _E�+Rj0Mi �Ej 0 � ba�hj�+RMjMi � _Ej � na ��j� ; (F81)ÆRMiMj = ��b2rij + a2 ~H
ij�y + b2a2n2 ~H
ij���h+ 2b2a2n2 ~H ~U
ij(	 + h)�ba2n 
ij( ~H�y + ~H~I + ~U ~H)�� b2an ~Ur(i ��j) + ba(�y + ~H)r(i�hj)+�a2(�2y + (2 ~H � ~U)�y)� b2a2n2 ~U��� ( ��Eij � 
ij�)( _RMiMj + 2R0iMj�� + 2RMi0j��)� anB + a2n2 _E��(R0MiMj + 2RMiMj�y)�abE? + a2b2E0�+RMkMj(Eki � Æki ) +RMiMk(Ekj � Ækj ): (F82)9. Weyl tensorDe�ning E(01)ij = (�� + ~U � ~I)�� ��Eij + na (�� + ~U � ~H)r(i ��j); (F83)E(02)ij = ( ~H� ~U)�� ��Eij + na ( ~H� ~U)r(i ��j); (F84)E(?1)ij = (�y + ~I � ~U)�y ��Eij + ba (�y + ~I � ~H)r(i�hj); (F85)E(?2)ij = ( ~H � ~I)�y ��Eij + ba( ~H � ~I)r(i�hj); (F86)X(0) = (�� + ~U � ~I)�( ~H� ~U)(	 + h)� ��(h��)� ; (F87)



54X(?) = (�y + ~I � ~U)�( ~H � ~I)(	 + h)� �y(� +	)� ; (F88)X(�) = (���y + (~I � ~H)�� + ( ~U � ~H)�y + _~I � _~H + ~U 0 � ~H0)�: (F89)ÆC0i0j = �n2�rij � 1Nr2
ij��N � 1N (� +	) + 1N (h��)��n2 N � 1N2(N + 1)
ij �r2 +KN� (2� +	� h)+C0i0j(	 + h) + n2 1N (r2 � 2K) ��Eij� N � 1N(N + 1)
ij �a2X(0) + a2n2b2 X(?) + a2nb X(�)�+a2�N � 1N E(01)ij +E(02)ij �+ a2n2b2 � 1NE(?1)ij +E(?2)ij �( _C0i0j + 2C0i0j��)�anB + a2n2 _E�� (C 00i0j + CMi0j�� + C0iMj��)�abE? + a2b2E0�+C0k0j(Eki � Æki �) + C0i0k(Ekj � Ækj�); (F90)ÆC0ijk = 1N 
ikrj �a2��(h��) + a2( ~U � ~H)(	 + h)� a2nb ( 12�y + ~I � ~H)��+12 1N 
ik �a3nb2 (�y + ~H � ~U)�(�y + ~I � ~H)��j�� a3b (�y + ~H � ~I)�(�� + ~U � ~H)�hj��+12 1N 
ikan(r2 +K(N � 1))��j + anrjr(i ��k) + a2rj _��Eik�[j $ k℄+(C0i0krj + C0ij0rk)�anB + a2n2 _E�� (C0iMkrj + C0ijMrk)�abE? + a2b2E0�+Clijk �rl _E � na ��l� ; (F91)ÆC0i0M = �N � 1N n2ri ��y(� +	) + (~I � ~H)(h+	)�+ N � 1N nb�12�u + ~U � ~H�ri��12 1N n2ba (r2 +K(N � 1))�hi+12N � 1N �an(�� + ~H� ~U)�(�y + ~I � ~H)��i�� ba(�� + ~H� ~I)�(�� + ~U � ~H)�hi���C0M0Mri �abE? + a2b2E0�+ CjM0i � _Ej � na ��j�+ C0j0i �Ej 0 � ba�hj� ; (F92)ÆC0iMj = �12nb�rij � 1Nr2
ij��� 1N a2nbC0M0M
ij�+12an(�y + ~H � ~I)r(i ��j) + 12ba(�� + ~H� ~U)r(i�hj)+a2 �( 12�y + ~H � ~I)�� + ( 12�� + ~H� ~U)�y� ��Eij+( _C0iMj + C0iMj�� + C0i0j�y)�anB + a2n2 _E�� (C 00iMj + C0iMj�y + CMiMj��)�abE? + a2b2E0�+C0kMj(Eki � Æki �) + C0iMk(Ekj � Ækj�); (F93)ÆCijkl = � 1N a2�rik � 1Nr2
ik� 
jl(2� +	� h)� 1N2(N + 1)a2
ik
jl �r2 +KN� (2� +	� h)+Cijkl(h�	) + a2�rki +K
ki � 1N 
ki(r2 � 2K)� ��Ejl



55� 1N(N + 1)
ik
jl �a4n2X(0) + a4b2X(?) + a4nbX(�)�+a4n2 1N 
ikE(01)jl � a4b2 1N 
ikE(?1)jl�[i$ j℄ + [ik $ jl℄� [k $ l℄+Cmjkl(Emi � Æmi �) + Cimkl(Emj � Æmj �) + Cijml(Emk � Æmk �) + Cijkm(Eml � Æml �)+ _Cijkl �anB + a2n2 _E�� C 0ijkl �abE? + a2b2E0� ; (F94)ÆCij0M = ri �an(�y + ~I � ~H)��j � ba(�� + ~U � ~H)�hj�� [i$ j℄; (F95)ÆCMijk = � 1N 
ikrj �a2�y(� +	) + a2(~I � ~H)(	 + h)� ba2n ( 12�� + ~U � ~H)��+12 1N 
ik �a3n (�� + ~H� ~U)�(�y + ~I � ~H)��j�� ba3n2 (�� + ~H� ~I)�(�� + ~U � ~H)�hj��+12 1N 
ikba(r2 +K(N � 1))�hj + barjr(i�hk) + a2rj ��E0ik�[j $ k℄+(CMi0krj + CMij0rk)�anB + a2n2 _E�� (CMiMkrj + CMijMrk)�abE? + a2b2E0�+Clijk �rlE0 � ba�hl� ; (F96)ÆC0M0M = n2b2a2 N � 1N(N + 1) �r2 +KN� (2� +	� h)+N � 1N + 1 �b2X(0) + n2X(?) + nbX(�)�+( _C0M0M + 2C0M0M��)� anB + a2n2 _E�� (C 00M0M + 2C0M0M�y)�abE? + a2b2E0� ; (F97)ÆCM0Mi = N � 1N b2ri ���(�� h) + ( ~H� ~U)(	 + h) + ( 12�y + ~I � ~H)��+12 1N nb2a (r2 +K(N � 1))��i�12N � 1N �an(�y + ~H � ~U)�(�y + ~I � ~H)��i�� ba(�y + ~H � ~I)�(�� + ~U � ~H)�hi��+CM0M0ri �anB + a2n2 _E�+ Cj0Mi �Ej 0 � ba�hj�+ CMjMi � _Ej � na ��j� ; (F98)ÆCMiMj = �b2�rij � 1Nr2
ij��N � 1N (h��) + 1N (� +	)�+b2 N � 1N2(N + 1)
ij �r2 +KN� (2� +	� h)�CMiMj(	 + h)� b2 1N (r2 � 2K) ��Eij+ N � 1N(N + 1)
ij �b2a2n2 X(0) + a2X(?) + ba2n X(�)�+b2a2n2 � 1NE(01)ij +E(02)ij �+ a2�N � 1N E(?1)ij +E(?2)ij �+( _CMiMj + 2CMiMj��)�anB + a2n2 _E�� (C 0MiMj + 2CMiMj�y)�abE? + a2b2E0�+CMkMj(Eki � Æki �) + CMiMk(Ekj � Ækj�): (F99)



56APPENDIX G: PERTURBED MATTER CONTENT1. Unit ve
torsÆu� = �� 1nA;0; 0� ; (G1)Æu� = (nA; aBi; bB?) ; (G2)Æn� = �0;0;�1bE??� ; (G3)Æn� = (�nB?;�aE?i;�bE??) ; (G4)ÆU� = � 1n
(�w �A� �B?); 1avi0; 1b 
(w + �E??)� ; (G5)ÆU� = �n
(�w +A);�a(v0i � 
Bi � �
E?i);�b
(w �B? � �E??)� ; (G6)ÆN� = � 1n
(�w + �A+B?); 1af i0;�1b 
(E?? + �w)� ; (G7)ÆN� = ��n
(w + �A);�a(f0i + �
Bi + 
E?i); b
(�w �E?? � �B?)� ; (G8)with u�U� = 
; (G9)Æ(u�U�) = Æ
; (G10)w = Æ
�
 = Æ(�
)
 ; (G11)w� = Æ�� + Æ

 = Æ(�
)�
 ; (G12)
w = Æ(�
); (G13)v0i = riv0 + �v0i ; (G14)f0i = rif0 + �f0i : (G15)Sin
e n� + Æn� is not orthogonal to u� + Æu�, one does not have Æ(n�U�) = Æ(�
), but rather Æ(n�U�) = Æ(�
) +(U�u�)Æ(n�u�). 2. Gauge transformationv0 ! v0 � an
 _L� ab �
L0; (G16)�v0i ! �v0i � an
 _�Li � ab �
 �Li0; (G17)f0 ! f0 + an�
 _L+ ab 
L0; (G18)�f0i ! �f0i + an�
 _�Li + ab 
 �Li0; (G19)w ! w + _
�
 T + 
0�
L? � bn _L?; (G20)ÆX0 ! ÆX0 + _X0T +X 00L?; (G21)where X0 is any (N + 2)-s
alar quantity (density �0, pressure P0, et
). Note: 
, �, �, Y , F are not s
alars as theyare de�ned through the ve
tor �elds u�, n� whi
h spe
i�
ally depend on a 
oordinate 
hoi
e.3. Gauge invariant quantities



57v℄0 = v0 + an
 _E + ab�
E0; (G22)�v0i ℄ = �v0i + an
 _�Ei + ab �
 �Ei0; (G23)f ℄0 = f0 � an�
 _E � ab 
E0; (G24)�f0i ℄ = �f0i � an�
 _�Ei � ab 
 �Ei0; (G25)w℄ = w � _
�
 �anB + a2n2 _E�+ 
0�
 �abE? + a2b2E0�� bn�� �abE? + a2b2E0�= w � ��(�
)
 �anB + a2n2 _E�+ (�
)
 0�abE? + a2b2E0�� bn�� �abE? + a2b2E0� ; (G26)ÆX℄0 = ÆX0 � _X0�anB + a2n2 _E�+X 00�abE? + a2b2E0� : (G27)It is useful to de�ne v℄ � 
v℄0 + �
f ℄0; (G28)�v℄i � 
�v0i ℄ + �
 �f0i ℄; (G29)f ℄ � �
v℄0 + 
f ℄0; (G30)�f℄i � �
�v0i ℄ + 
 �f0i ℄: (G31)4. Stress-energy tensorÆT�� = Æ((P0 + �0)U�U�)� Æ((P0 � Y0)N�N�)� Æ(P0g��) + ��� : (G32)���U� = 0; (G33)���N� = 0; (G34)�0� = 0; (G35)�M� = 0; (G36)�ij = a2�ij = a2��rij � 1Nr2
ij��+r(i ��j) + ���ij� ; (G37)ÆT00 = n2
2(Æ�0 + �2ÆY0 + 2A(�0 + �2Y0) + 2�(Y0 + �0)w)= n2 �Æ�℄ + 2�	�+( _T00 + 2T00��)�anB + a2n2 _E�� (T 000 + 2T0M��)�abE? + a2b2E0� ; (G38)ÆT0i = �an((P0 + �0)
v0i � (Y0 � P0)�
f0i � 
2(�0 + �2Y0)Bi � (�0 + Y0)E?i)= �an�(P + �)v℄i � Ff ℄i �+ anT00 ��i � ab T0M�hi+T00ri �anB + a2n2 _E�� T0Mri �abE? + a2b2E0�+ Tij _Ej ; (G39)ÆTij = a2(ÆP0
ij +�ij + 2P0(C
ij +Eij))= a2
ijÆP ℄ + a2�ij+ _Tij �anB + a2n2 _E�� T 0ij �abE? + a2b2E0�+ 2Tk(i(Ekj) � Ækj)�); (G40)ÆT0M = �nb
2 ��(ÆY0 + Æ�0) + (Y0 + �0)(1 + �2)w + �(Y0 + �0)(A�E??)� (�0 + �2Y0)B?�



58= �nb �ÆF ℄ + F (	� h)� ���+( _T0M + T0M�� + T00�y)�anB + a2n2 _E�� (T 00M + T0M�y + TMM��)�abE? + a2b2E0� ; (G41)ÆTiM = ba �
(P0 � Y0)f0i + �
(P0 + �0)v0i � 
2(Y0 + �2�0)E?i � �
2(�0 + Y0)Bi�= ba�Fv℄i + (P � Y )f ℄i �+ anT0M ��i � ab TMM�hi+T0Mri� anB + a2n2 _E�� TMMri �abE? + a2b2E0�+ TijEj 0; (G42)ÆTMM = b2
2 �(ÆY0 + �2Æ�0) + 2�(Y0 + �0)w � 2(Y0 + �2�0)E?? � 2�(Y0 + �0)B?�= b2 �ÆY ℄ � 2Y h� 2F��+( _TMM + 2T0M�y)� anB + a2n2 _E�� (T 0MM + 2TMM�y)�abE? + a2b2E0� : (G43)ÆT 00 = 1n2 �Æ�℄ � 2�	� 2F��+( _T 00 � 2T 00�� � 2T 0M�y)�anB + a2n2 _E�� T 000�abE? + a2b2E0� ; (G44)ÆT 0i = 1an �(P + �)vi℄ � Ff i℄�� anT ij ��j�T ijrj � anB + a2n2 _E�� (T 00�� + T 0M�y)Ei; (G45)ÆT ij = 1a2 �ÆP ℄
ij +�ij�+ _T ij �anB + a2n2 _E�� T ij 0�abE? + a2b2E0�� 2T k(i(Ej)k � Æj)k �); (G46)ÆT 0M = 1nb �ÆF ℄ + F (h�	)� Y ��+( _T 0M � T 0M�� � TMM�y)�anB + a2n2 _E�� (T 0M 0 � T 0M�y � T 00��)�abE? + a2b2E0� ; (G47)ÆT iM = 1ba �Fvi℄ + (P � Y )f i℄�+ abT ij�hj+T ijrj �abE? + a2b2E0�� (T 0M�� + TMM�y)Ei; (G48)ÆTMM = 1b2 �ÆY ℄ + 2Y h�+ _TMM �anB + a2n2 _E�� (TMM 0 � 2TMM�y � 2T 0M��)�abE? + a2b2 E0� : (G49)5. An example: a s
alar �eld�0 = 12D��D��+ V= 12  _�2n2 � �02b2 !+ V; (G50)P0 = 12D��D��� V= 12  _�2n2 � �02b2 !� V; (G51)



59Y0 = P0; (G52)U� = D���pD��D��; (G53)
 = 1s1� n2b2 �02_�2 ; (G54)�
 = �nb �0_� 1s1� n2b2 �02_�2 ; (G55)� = �nb �0_� ; (G56)with the � sign determined by the 
ondition U0 � 0.� = 12  _�2n2 + �02b2 !+ V; (G57)P = 12  _�2n2 � �02b2 !� V; (G58)Y = 12  _�2n2 + �02b2 !� V; (G59)F = � _�n �0b : (G60)Æ�℄0 = _� _Æ�℄n2 � �0Æ�℄0b2 � _�2n2	� �02b2 h+ _�n �0b � + dVd� Æ�℄; (G61)ÆP ℄0 = _� _Æ�℄n2 � �0Æ�℄0b2 � _�2n2	� �02b2 h+ _�n �0b �� dVd� Æ�℄; (G62)Æ�℄ = (P + �) _Æ�℄_� �	!+ (Y � P )�Æ�℄0�0 + h�+ F� + dVd� Æ�℄; (G63)ÆY ℄ = (P + �) _Æ�℄_� �	!+ (Y � P )�Æ�℄0�0 + h�+ F�� dVd� Æ�℄; (G64)ÆP ℄ = (P + �) _Æ�℄_� �	!� (Y � P )�Æ�℄0�0 + h�� F�� dVd� Æ�℄; (G65)ÆF ℄ = (P + �)� + F  _Æ�℄_� �	+ Æ�℄0�0 + h! ; (G66)av℄0 = �n Æ�℄_�s1� n2b2 �02_�2 ; (G67)�v0i ℄ = 
 ��i + �
�hi; (G68)af ℄0 = ��av℄0; (G69)�f0i ℄ = �
�hi � �
 ��i; (G70)w = �
2 A+E?? + Æ�0�0 � _Æ�_� !+ 
2B?; (G71)



60w℄ = �
2 	+ h+ Æ�℄0�0 � _Æ�℄_� !+ 
2�; (G72)�ij = 0: (G73)Here, the 
omponents f i0 are arbitrary as the eigenvalues P0 and Y0 are degenerate. The expression 
hosen here ispurely for 
onvenien
e in order to simplify the following untilded 
omponents.av℄ = �nÆ�℄_� ; (G74)�v℄i = ��i; (G75)af ℄ = 0; (G76)�f℄i = ��hi: (G77)6. Intera
tion termÆQ0 = 1n �Æ�℄ � �	�D��+( _Q0 �Q0�� �Q?�y)� anB + a2n2 _E��Q00�abE? + a2b2E0� ; (G78)ÆQi = 1aQi℄ � (Q0�� +Q?�y)Ei; (G79)ÆQ? = 1b �ÆD℄ +Dh�+ _Q?�anB + a2n2 _E�� (Q?0 �Q?�y �Q0��)�abE? + a2b2E0� ; (G80)with Q℄i = riQ℄ + �Q℄i : (G81)7. Conservation equations(�u +NH+ 2U)(Æ�℄ � F�) +NHÆP ℄ + U(ÆY ℄ � Æ�℄)+(�n +NH + 2I) �ÆF ℄ + F (	 + h)�+� �(P + �)av℄ � Faf ℄��N(P + �)�u�� (�+ Y )�uh� F�u�+ F�n(	� h�N�) = Æ�℄ + �	; (G82)(�u +NH+ U) �(P + �)av℄ � Faf ℄�+(�n +NH + I) �Fav℄ + (P � Y )af ℄�+ÆP ℄ + N � 1N (� +NK)a2�+ (P + �)	 + (Y � P )h+ F� = aQ℄; (G83)(�u +NH+ 2U) �ÆF ℄ � F (	 + h)� (�+ Y )��+(�n +NH + 2I)(ÆY ℄ � F�)�NHÆP ℄ � I(ÆY ℄ � Æ�℄)+� �Fav℄ + (P � Y )af ℄�+F�u(	� h�N�) +N(P � Y )�n�+ (�+ Y )�n	+ F�n� = ÆD℄ �Dh� ��; (G84)(�u + (N + 1)H+ U)�(P + �)(�v℄i � ��i)� F ( �f ℄i + �hi)�+(�n + (N + 1)H + I)�F (�v℄i � ��i) + (P � Y )( �f ℄i + �hi)�+12 (� + (N � 1)K) a��i = �Q℄i �D�hi � ���i: (G85)



618. Einstein equations�((N � 1)� + h) +KN(N � 1)��N ��(N � 1)H2 + 2HU�	+H�uh+ ((N � 1)H+ U) �u���N �H�n + (N + 1)H2�h� 2Nh�nH+N(�n + (N + 1)H)�n�+N (�n +NH + I) (H�) = �N+2 �Æ�℄ � F�� ; (G86)12 (�n + (N � 2)H + 2I) ��(U + (N � 1)H)	� (�u + U �H)h� (N � 1)�u� = �N+2 �(P + �)av℄ � Faf ℄� ; (G87)�K(N � 1)(N � 2)�+ �2(U + (N � 1)H)(�u + U) +N(N � 1)H2�	+2	�u(U + (N � 1)H)+ �2(I + (N � 1)H)(�n + I) +N(N � 1)H2�h+2h�n(I + (N � 1)H)+(�u + U)�u(h+ (N � 1)�)�(U + (N � 1)H)�u(	� h�N�)+(�n + I)�n(	� (N � 1)�)+(I + (N � 1)H)�n(	� h�N�)� 12 (�n�u + �u�n + I�u + U�n)�� ((U + (N � 1)H)�n + (I + (N � 1)H)�u) ��� ((�n + I)(U + (N � 1)H) + (�u + U)(I + (N � 1)H))�N (U�u � I�n) ��N(N � 1)HH� = �N+2�ÆP ℄ + N � 1N r2�� ; (G88)N�� (� +	) + (h��) = �N+2a2�; (G89)�N ((�u�n + (H � I)�u +H�n)� +H�n	�H�uh)�12���N�(�uH+H2 �HU) = �N+2 �ÆF ℄ + F (	� h)� ; (G90)12 (�u + (N � 2)H+ 2U) ��(�n + I �H)	� ((N � 1)H + I)h+ (N � 1)�n� = �N+2 �Fav℄ + (P � Y )af ℄� ; (G91)� (�((N � 1)��	) +KN(N � 1)�)+N �H�u + (N + 1)H2�	+ 2N	�uH+N (�u + (N + 1)H) �u�+N �(H�n)	 + �(N � 1)H2 + 2HI�h� ((N � 1)H�n + I�n) ���N (�u +NH+ U) (H�) = �N+2 �ÆY ℄ � F�� ; (G92)�12(� + (N � 1)K)��i�12 (�n + (N + 1)H) �(�n + I �H)��i�+12 (�n + (N + 1)H) �(�u + U �H)�hi� = �N+2 �(P + �)(�v℄i � ��i)� F ( �f ℄i + �hi)� ; (G93)(�u + (N � 1)H+ U) ��i � (�n + (N � 1)H + I) �hi = �N+2a��i; (G94)12(� + (N � 1)K)�hi+12 (�u + (N + 1)H) �(�n + I �H)��i�



62�12 (�u + (N + 1)H) �(�u + U �H)�hi� = �N+2 �F (�v℄i � ��i) + (P � Y )( �f ℄i + �hi)� ; (G95)�(�� 2K) ��Eij + (�u +NH+ U) �u ��Eij � (�n +NH + I) �n ��Eij = �N+2 ���ij : (G96)APPENDIX H: PERTURBED BRANE-RELATED QUANTITIES1. Brane positionX0 = �0 + �0(�a); (H1)X i = �i + �i(�a); (H2)XM = yb + �(�a): (H3)Under an in�nitesimal 
oordinate 
hange, the brane position � transforms into�! �� L?: (H4)2. Normal ve
tor to the brane(?� + Æ ?�)�X���a = 0; (H5)Æ ?� = � 1n �B? � bn _�� ; 1a � bari��Ei?� ;�1bE??� ; (H6)Æ ?� = ��n bn _�;�a bari�;�bE??� : (H7)Sin
e ?� plays the same role for the brane as N� for a bulk 
omponent, this means that formally, the quantities w,fi 
an be de�ned for the brane (we will note them w and f i respe
tively) at y = yb,w = bn _�; (H8)f i +E?i = bari�; (H9)(H10)or, equivalently, w℄ = bn _�℄; (H11)f ℄ = ba�℄; (H12)�f ℄i = ��hi: (H13)3. Indu
ed metri
Æq00 = 2n2(A+ ~I�); (H14)Æq0i = anBi; (H15)Æqij = �2a2(C + ~H�)
ij � 2a2Eij ; (H16)Æq0M = nb�B? � bn _�� ; (H17)ÆqiM = ba�E?i � bari�� ; (H18)ÆqMM = 0: (H19)



634. First Israel 
ondition[A℄ + h~Ii � = 0; (H20)[Bi℄ = 0; (H21)[C℄ + h ~Hi � = 0; (H22)[Ei℄ = 0; (H23)h ��Eiji = 0; (H24)��anB + a2n2 _E�� = 0: (H25)Or, equivalently [	℄ = � �~I�� ~I �abE? + a2b2E0�� ; (H26)[�℄ = � ~H�� ~H �abE? + a2b2E0�� ; (H27)���i� = 0; (H28)h��Eiji = 0: (H29)With, 	 = A� (�� + ~I)�anB + a2n2 _E�+ ~I� = 	+ ~I ����abE? + a2b2E0�� ; (H30)� = �C + ~H�anB + a2n2 _E�� ~H� = �� ~H ����abE? + a2b2E0�� ; (H31)one has Æq00 = 2n2	+ (_q00 + 2q00��)�anB + a2n2 _E� ; (H32)Æq0i = �na qij ��j + q00ri �anB + a2n2 _E�+ qij _Ej ; (H33)Æqij = 2qk(i �Ekj) � Ækj)�� ; (H34)E?? ! E?? � ~UT � 1b (bL?)0; (H35)therefore �L?� = 0; (H36)�bL?� = 0: (H37)Then, [b℄ 6= 0) L?(y = yb) = 0; (H38)[b�℄ = 0: (H39)bB? � b2n � ! bB? � b2n �+ nT 0; (H40)bE?i � b2a ri� ! bE?i � b2a ri�� aL0i; (H41)



64and [bB?℄� �b2n � _� = [bB?℄ = 0; (H42)[bE?i℄� �b2a �ri� = [bE?i℄ � = 0; (H43)therefore [T 0℄ = 0; (H44)�Li0� = 0: (H45)5. New brane-related gauge invariant quantitiesAt the brane position (or on both sides of the brane),�℄ � ���abE? + a2b2E0� ; (H46)� � B? � nb �y �anB + a2n2 _E�� bn��� = �� bn���℄; (H47)h � E?? + ~U �anB + a2n2 _E�� ~U� = h� 1b�y(b�℄); (H48)	0 � A0 � �y(�� + ~I)�anB + a2n2 _E�+ ~I 0� = 	0 + ~I 0�℄ � ~I �abE? + a2b2E0�0 ; (H49)�0 � �C 0 + ( ~H�y + ~H0)�anB + a2n2 _E�� ~H 0� = 	0 � ~H 0�℄ + ~H �abE? + a2b2E0�0 ; (H50)�n	 � 1b	0; (H51)�n� � 1b�0: (H52)
b�℄� � �; (H53)�b�℄� � ��: (H54)[	℄ = �" ~Ib#�+* ~Ib+�; (H55)[�℄ = " ~Hb #��* ~Hb +�; (H56)[�℄ = [�℄� 1n ��� � D ~UE��� 1n h ~Ui�; (H57)[h℄ = [h℄ + ��yb �� ; (H58)h	i = 	�* ~Ib+�+ 14 " ~Ib#�; (H59)h�i = �+* ~Hb +�� 14 " ~Hb #�; (H60)h�i = h�i+ 1n ��� � D ~UE��+ 14 1n h ~Ui�; (H61)hhi = hhi+��yb �� ; (H62)where the terms �y� are de�ned by setting � 
onstant.



656. Extrinsi
 
urvatureÆK00 = n(�� + ~U)��� bn _�+ bn�� �abE? + a2b2E0��� n2b (	0 + ~Ih) + 2K00	+K000�+( _K00 + 2K00��)� anB + a2n2 _E��K000�abE? + a2b2E0�= n(�� + ~U)�� n2b (	0 + ~Ih) + 2K00	+ ( _K00 + 2K00��)� anB + a2n2 _E� ; (H63)ÆK0i = 12n�� (�� � ~H)�b�� b�abE? + a2b2 E0��+12a(�� + ~U � ~H)�hi � 12 anb (�y + ~H � ~I)��i + anK00 ��i+K00ri�anB + a2n2 _E�+Kij _Ej= 12n�� ( 12�� + 12 ~U � ~H) �b�℄�+ 12a(�� + ~U � ~H)�hi � 12 anb (�y + ~H � ~I)��i+anK00 ��i +K00ri �anB + a2n2 _E�+Kij _Ej ; (H64)ÆKij = a2n 
ij ~H� bn _�� bn�� �abE? + a2b2 E0����� a2b 
ij(�0 � ~Hh)�rij �b�� b�abE? + a2b2E0��+ ar(i�hj) + a2b ��E0ij +K0ij�+ _Kij �anB + a2n2 _E��K0ij �abE? + a2b2E0�+ 2Kk(i(Ekj) � Ækj)�)= �a2n 
ij ~H�� a2b 
ij(�0 � ~Hh)�rij(b�℄) + ar(i�hj) + a2b ��E0ij+ _Kij �anB + a2n2 _E�+ 2Kk(i(Ekj) � Ækj)�); (H65)ÆK0M = K00Æq0M ; (H66)ÆKiM = Kji ÆqjM ; (H67)ÆKM finN = 0: (H68)7. S�� tensorThe perturbed stress-energy tensor on the brane is given in Eqns (6.80{6.85). Formally, for any quantity X de�nedon the brane, the quantity DX is a bulk s
alar. The quantity D is also a s
alar quantity of the bulk sin
e one isallowed to 
onsider the 
ase X = 
onstant. Its perturbation isÆD = DE?? � �(�y + ~U)D: (H69)Note that this derivation is a bit formal: sin
e E?? and h 
an be dis
ontinuous, this expression and the next one areill-de�ned, even in the 
ase where b is 
ontinuous. But again, all the pathologi
al terms 
an
el ea
h other when onewrites the Einstein equations, so that we 
onsider that this is not a serious problem. Using the formula (G21), it ispossible to build the gauge invariant 
ounterparts of both ÆD and ÆX:ÆD℄ = Dh�D0�℄; (H70)ÆX℄ = ÆX � _X �anB + a2n2 _E� : (H71)This last quantity is invariant under any in�nitesimal reparametrization of the �a. Equivalently, one has, us-ing (G22,G23), as well as the fa
t that 
 = 1 for the brane,v℄ = v + an _E; (H72)



66�v℄i = �vi + an _�Ei: (H73)With these de�nitions, ÆS00 = n2�N � 1N Æ�℄ + ÆP ℄�+2S00	+ ( _S00 + 2S00��)�anB + a2n2 _E� ; (H74)ÆS0i = �an(P + �)v℄i+anS00 ��i + S00ri�anB + a2n2 _E�+ S ij _Ej ; (H75)ÆS ij = a2�ij + a2 1N Æ�℄
ij+ _S ij �anB + a2n2 _E�+ 2Sk(i(Ekj) � Ækj)�); (H76)ÆS0M = S00Æq0M ; (H77)ÆS iM = Sji ÆqjM ; (H78)ÆSMM = 0: (H79)8. Se
ond Israel 
ondition���+N [�n��Hh℄ +NH [�℄ = �N+2Æ�℄; (H80)12 ��� (�u + U � 2H)(b�℄)� = �N+2(P + �)av℄; (H81)[�n	+ Ih℄� [(�u + U) �℄ = �N+2�ÆP ℄ + N � 1N Æ�℄� ; (H82)�� = �N+2a2�; (H83)�12 [�n + I �H ℄ ��i + 12 �(�u + U �H)�hi� = �N+2(P + �)(v℄i � ��i); (H84)� ��hi� = �N+2a��i; (H85)� h�n ��Eiji = �N+2 ���ij : (H86)9. Proje
ted Weyl tensorAs this quantity is de�ned on the brane, it is more 
onvenient to express it in term of the brane-related (underlined)metri
 perturbations instead of the bulk-related (non underlined) metri
 perturbations as it was the 
ase for the Weyltensor. ÆZ℄ � 2N (� +NK)� + 1N�(	� h)+ (�u + U) (�u�+H	)� (�u + 2U �H) (�uh+ U	)� (�n + I)��n��Hh+H� + 1N�(b�℄)�� (�n + 2I �H) (�n	+ Ih� (�u + U) �)�	�u (U �H)� (h�n ���u) (I �H) ; (H87)ÆEv � N � 1N (� (H	+ �u�) + (�uh+ U	) + (U �H)h+ (H � I) �� 12�n ��� (�u + U � 2H) (b�℄)�� ; (H88)ÆE� � 1N �(N � 2)��	� (N � 1)h+ ((N � 2)H + I � (N � 1)�n)(b�℄)� ; (H89)



67�ÆEvi � �12 1N (� + (N � 1)K)��i + 12N � 1N (�n +H) �(�n + I �H) ��i � (�u + U �H) �hi� ; (H90)�ÆE�i � 1N �(�u + (N � 1) (H� U)) ��i + ((N � 1)�n + (H � I)) �hi� ; (H91)��ÆE�ij � 1N ((�u +NH� (N � 1)U) �u � (�� 2K) + ((N � 1)�n +NH � I) �n) ��Eij ; (H92)ÆE00 = N � 1N + 1n2ÆZ℄ + 2E00	+( _E00 + 2E00��)�anB + a2n2 _E� ; (H93)ÆE0i = �nriÆEv � an �ÆEvi+E00ri�anB + a2n2 _E�+ E ij _Ej ; (H94)ÆE ij = N � 1N(N + 1)a2
ijÆZ℄+�rij � 1Nr2
ij� ÆE� + ar(i �ÆE�j) + a2 ��ÆE�ij+_Eij �anB + a2n2 _E�+ 2Ek(i(Ekj) � Ækj)�); (H95)ÆE0M = E00Æq0M ; (H96)ÆE iM = Eji ÆqjM ; (H97)ÆEMM = 0: (H98)APPENDIX I: BRANE POINT OF VIEW, PERTURBED CASE1. New Einstein equationsWe rewrite the perturbed Einstein near the brane, that is near y = yb + �. We �rst de�ne some new bulk matter
ontent perturbations by Æ�℄ = Æ�℄ + �0�℄ � 2F bn _�℄; (I1)ÆP ℄ = ÆP ℄ + P 0�℄; (I2)ÆF ℄ = ÆF ℄ + F 0�℄ � (�+ Y ) bn _�℄; (I3)ÆY ℄ = ÆY ℄ + Y 0�℄ � 2F bn _�℄; (I4)af ℄ = af ℄ � b�℄; (I5)Æ�℄ = Æ�℄ + �0�℄ �D bn _�℄ + F r2a2 b�℄; (I6)aQ℄ = aQ℄ +Db�℄; (I7)ÆD℄ = ÆD℄ � ��+D0�℄ + (Y � P )r2a2 b�℄: (I8)The terms proportional to �℄ 
ome from the fa
t that we are 
onsidering the bulk perturbations at y = yb+ � insteadof y = yb. The other terms 
ome from the fa
t that the brane is not at rest with respe
t to the bulk 
oordinatesystem, and are a mere 
onsequen
e of a Lorentz boost with velo
ity v? = bn _� along the y axis. Going from the non



68underlined (bulk) metri
 perturbation to the underlined (brane-related) metri
 perturbations, the Einstein equationsimplify a little bit to(N � 1) (� +NK) ��N(N � 1)H (H	+ �u�)�NU (H	+ �u�)�NH (�uh+ U	)+�h�Nh�n hHi+N��uH+N (�n + (N + 1)H)��n��Hh+H�+ 1N�b�℄� = �N+2 �DÆ�℄b + Æ�℄B� ; (I9)�(N � 1) (H	+ �u�)� (�uh+ U	)� (U �H)h� (H � I) �+12 (�n +NH) ��� (�u + U � 2H) (b�℄)� = �N+2 �D(P b + �b)av℄b+(PB + �B)av℄B � FBaf ℄B� ; (I10)�(N � 2)(N � 1)K�+(N � 1) (�u +NH) (H	+ �u�) + (N � 1)	�uH+(N � 1)U (H	+ �u�) + 	�uU+(�u + 2U + (N � 1)H) (�uh+ U	)�(N � 1) (�n + I +NH) (�n��Hh+H�)+ (�n + 2I + (N � 1)H) (�n	+ Ih� (�u + U) �)+h�n hI + (N � 1)Hi ���u (I + (N � 1)H) = �N+2�DÆP ℄b + N � 1N Dr2�b (I11)+ÆP ℄B + N � 1N r2�B� ; (I12)(N � 2)��	+h+ (�n + (N � 2)H + I) (b�℄) = �N+2 �Da2�b + a2�B� ; (I13)�N (�u +H)��n��Hh+H�+ 1N�(b�℄)��NH (�n	+ Ih� (�u + U) �)�12� ��� (�u + U � 2H) (b�℄)��N (H � I) �u� = �N+2 �ÆF ℄B + FB	� ; (I14)�12 (�u +NH) ��� (�u + U � 2H) (b�℄)���1b	0 + Ih� (�u + U) ��+(N � 1)�1b�0 �Hh+H�+ 1N�(b�℄)�+(H � I)	� N � 1N (� +NK) (b�℄) = �N+2 �FBav℄B + (PB � YB)af ℄B� ; (I15)�(N � 1) (� +NK) � +�	+N	�uH +N (�u + (N + 1)H) (�u�+H	)+NH (�n	+ Ih� (�u + U) �)�N ((N � 1)H + I)��n��Hh+H�+ 1N�(b�℄)� = �N+2ÆY ℄B; (I16)�12 (� + (N � 1)K) ��i�12 (�n + (N + 1)H) �(�n + I �H ) ��i�+12 (�n + (N + 1)H) �(�u + U �H) �hi� = �N+2 �D(P b + �b)(�v℄b i � ��i)



69+(PB + �B)(�v℄B i � ��i)� FB( �f ℄B i + �hi)� ; (I17)(�u + (N � 1)H) ��i � (�n + (N � 1)H) �hi+U ��i � I�hi = �N+2 �Da��bi + a��Bi � ; (I18)12 (� + (N � 1)K) �hi+12 (�u + (N + 1)H) �(�n + I �H) ��i��12 (�u + (N + 1)H) �(�u + U �H) �hi� = �N+2 �FB(�v℄B i � ��i) + (PB � YB)( �f ℄B i + �hi)� ; (I19)(�u +NH) �u ��Eij � (�� 2K) ��Eij+U�u ��Eij � (�n +NH + I)��n ��Eij� = �N+2 �D���bij + ���Bij� : (I20)(A sum on all the brane and bulk spe
ies is impli
itly assumed on the right hand side of these equations.) One 
aneasily 
he
k that the singular part of the above equation redu
es to the se
ond Israel 
ondition.2. Sail equationIn the following a sum on all the brane and bulk spe
ies is impli
itly assumed.N hHi ÆP ℄ � hIi Æ�℄�NP ��n��Hh+H�+ 1N����� h�n	+ Ih� (�u + U) �i = hÆY ℄i ; (I21)��2u(��)�NH�u �2��+ P����P�+K(N � 1)���N �P + N � 1N ��� �2�uH+ (N + 1)H2��(P + �)��N hHi hH � Ii+ �N+24 �(P + �)�+�(N hHi [Y � P ℄ + hIi [Y + �℄) = �ÆY ℄��N hHi ÆP ℄ + hIi Æ�℄+NP h�n��Hh+H�i+� h�n	+ Ih� (�u + U) �i+(2�u +NH)(hF i�)� ��u hF i+N hHi� ��N+24 (P + �)2 + hY � P i�+ hIi����N+24 (P + �)�+ hY + �i� : (I22)3. Perturbed 
onservation equationThey transform into (�u +NH+ U)�Æ�℄ � F��+NHÆP ℄ + U �ÆY ℄ � F��+(�n +NH + 2I)�ÆF ℄ + F (	 + h)�+� �a(P + �)v℄ � aFf ℄��N(P + �)�u�� (�+ Y )�uh� F�u�+ F�n(	� h�N�) = Æ�℄ + �	; (I23)(�u +NH+ U)�a(P + �)v℄ � aFf ℄�



70+ (�n +NH + I)�aFv℄ + a(P � Y )f ℄�+ÆP ℄ + N � 1N (� +NK)a2�+ (P + �)	 + (Y � P )h+ F� = aQ℄; (I24)(�u +NH + 2U)�ÆF ℄ � F (	 + h)� (�+ Y )��+(�n +NH + 2I)�ÆY ℄ � F���NHÆP ℄ � I(ÆY ℄ � Æ�℄)+� �aFv℄ + a(P � Y )f ℄�+F�u(	� h�N�) +N(P � Y )�n�+ (�+ Y )�n	+ F�n� = ÆD℄ �Dh; (I25)(�u + (N + 1)H+ U)�(P + �)(�v℄i � ��i)� F ( �f ℄i + �hi)�+(�n + (N + 1)H + I)�F (�v℄i � ��i) + (P � Y )( �f ℄i + �hi)�+12 (� + (N � 1)K) a��i = �Q℄i �D�hi � ���i: (I26)For the brane 
omponents, they are obtained by 
onsidering the dis
ontinuity of the f0Mg, fiMg 
omponents ofEinstein equation or by taking the singular part of the above equations.�uÆ�℄b +NH(Æ�℄b + ÆP ℄b)+(P b + �b)�av℄b �N(P b + �b)�u� = Æ�℄b + �b	; (I27)Xb Æ�℄b + �b	 = �XB hÆF ℄B + FB	i ; (I28)(�u +NH)�(P b + �b)av℄b�+ ÆP ℄b+N � 1N (� +NK)a2�b + (P b + �b)	 = aQ℄b; (I29)Xb aQ℄b = �XB hFBav℄B + (PB � YB)af℄Bi ; (I30)(�u + (N + 1)H)�(P b + �b)(�vb ℄i � ��i)�+12 (� + (N � 1)K) a��bi = �Qb ℄i � �b ��i; (I31)Xb �Qb ℄i � �b ��i = �XB hFB(�vB ℄i � ��i) + (PB � YB)( �fB ℄i + �hi)i : (I32)4. Einstein equations using the Weyl tensor(N � 1) (� +NK)��N(N � 1)H (H	+ �u�) = 14N � 1N �2N+2 Xb �b!Xb Æ�℄b�(N � 1) hHi 
N�n��NHh+NH�+�b�℄�+N � 1N + 1�N+2XB DÆP ℄B + Æ�℄B � ÆY ℄BE+ N � 1N + 1 DÆZ℄E ; (I33)�(N � 1) (H	+ �u�) = 14N � 1N �2N+2 Xb �b!Xb �(P b + �b)av℄b��N � 12 hHi 
�� (�u + U � 2H)(b�℄)�



71+N � 1N �N+2XB D(PB + �B)av℄B � FBaf ℄BE+ hÆEvi ; (I34)N � 1N (�	� (N � 2)(� +NK)�)+(N � 1) (�u +NH) (H	+ �u�)+(N � 1)	�uH = 14N � 1N �2N+2 Xb �b!Xb ÆP ℄b�(N � 1) hHi h�n	+ Ih� (�u + U)�i+(N � 1) h(N � 2)H + Ii��n��Hh+H�+ 1N�b�℄�+ N � 1N(N + 1)�N+2XB DÆP ℄B + Æ�℄B +NÆY ℄BE+14N � 1N �2N+2 Xb (P b + �b)!Xb Æ�℄b + N � 1N(N + 1) DÆZ℄E ; (I35)(N � 2)��	 = 14N � 1N �2N+2 Xb �b! a2Xb �b�h(N � 2)H + Ii��14�2N+2 Xb (P b + �b)! a2Xb �b+N � 1N �N+2a2XB h�Bi+ DÆE�E ; (I36)�12 (� + (N � 1)K) ��i = 14N � 1N �2N+2 Xb �b!Xb �(P b + �b)(�vb ℄i � ��i)�+N � 12 hHi 
(�n + I �H)��i � (�u + U �H)�hi�+N � 1N �N+2XB D(PB + �B)(�vB ℄i � ��i)� FB( �fB ℄i + �hi)E+ 
 �ÆEvi � ; (I37)(�u + (N � 1)H) ��i = 14N � 1N �2N+2 Xb �b! aXb ��bi+ h(N � 2)H + Ii 
�hi��14�2N+2 Xb (P b + �b)! aXb ��bi+N � 1N �N+2aXB 
��Bi �+ 
 �ÆE�i � ; (I38)(�u +NH) �u ��Eij � (�� 2K) ��Eij = 14N � 1N �2N+2 Xb �b!Xb ���bij+ h(N � 2)H + IiD�n ��EijE�14�2N+2 Xb (P b + �b)!Xb ���bij+N � 1N �N+2XB D���BijE+ D ��ÆE�ijE : (I39)



725. Relationship between hÆK��i and �ÆE�����b��n��Hh+H�+ 1N��� = �Æ�℄b hHi+ 1N + 1 �hÆP ℄B + Æ�℄B � ÆY ℄Bi+ 1�N+2 hÆZ℄i� ; (I40)�(NPb + �b)��n��Hh+H� + 1N�����b h�n	+ Ih� (�u + U) �i = �(NÆP ℄b + Æ�℄b) hHi+ Æ�℄b hIi+ 1N + 1 hÆP ℄B + Æ�℄B +NÆY ℄Bi+ 1N + 1 1�N+2 hÆZ℄i ; (I41)��b 
 12�� 12 (�u + U � 2H) b�℄� = �N hHi (P b + �b)av℄b+ h(PB + �B)av℄B � FBaf ℄Bi+ NN � 1 1�N+2 [ÆEv℄ ; (I42)(NP b + �b)� = �N h(N � 2)H + Ii a2�b+(N � 1)a2 [�B℄ +N 1�N+2 hÆE�i ; (I43)��b 
 12 (�u + U �H) �hi � 12 (�n + I �H) ��i� = �N hHi (P b + �b)(v℄b i � ��i)+ h(PB + �B)(�v℄B i � ��i)� FB( �f ℄B i + �hi)i+ NN � 1 1�N+2 � �ÆEvi � ; (I44)�(NPb + �b) 
�hi� = �N h(N � 2)H + Ii a2 ��bi+(N � 1)a ���Bi �+N 1�N+2 h �ÆE�i i ; (I45)�(NPb + �b)D�n ��EijE = �N h(N � 2)H + Ii ���bij+(N � 1) h���Biji+N 1�N+2 h ��ÆE�iji : (I46)


